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Outline

e Motivation: Why Graph Neural Networks?
e Basic definitions on graphs

e Partial historical overview
- Graph CNN (main focus)
- Graph autoencoders (briefly)

e Applications
Naturally graph-structured data
Images
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Network data are pervasive
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Graphs provide a mathematical representation for describing
and modeling complex systems
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Why graph-based modelling?

 Provide a different perspective of data
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Why graph-based modelling?

 Provide a different perspective of data

 Lead to knowledge discovery /
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Typical learning tasks on graph-structured data

 Graph-wise classification
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e Link prediction
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A naive approach

 Embed graph and features into a Euclidean space
 Feed them into a deep neural net
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e |ssues with that:
- O(N) parameters
- Not applicable to graphs of different sizes
- Not invariant to node ordering

Can we do better?

Dorina Thanou University of Oxford, 21-10-2021



GNN: A growing trend

ICLR Keyword Growth 2018-2020 ICLR 2021 Submission Top 50 Keywords
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CNN on Euclidean data ()

 Main assumption: data lives on a grid

e Typical CNN architecture:

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

https://en.wikipedia.org/wiki/File:Typical cnn.png
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https://en.wikipedia.org/wiki/File:Typical_cnn.png
https://en.wikipedia.org/wiki/File:Typical_cnn.png

CNN on Euclidean data (ll)

e Single CNN layer with 3x3 filter:

Non-linearity Filter weights
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How can we extend CNN on graphs?

Desirable properties

- Convolution: how to achieve translation invariance

- Localization: what is the notion of locality

- Graph pooling: how to downsample on graphs

- Efficiency: how to keep the computational complexity low

- Generalization: how to build models that generalize to unseen graphs

Dorina Thanou University of Oxford, 21-10-2021
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Outline

e Motivation: Why Graph Neural Networks?

 Basic definitions on graphs
- Convolution
- Pooling

e Partial historical overview
- Graph CNN (main focus)
- Graph autoencoders (briefly)

e Applications
- Naturally graph-structured data
- Images
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Graphs and signals on graphs

* Irregular domain: connected, undirected, weighted graph G = (V, £, W)

e Graph description:

- Degree matrix D: diagonal matrix with sum of weights of incident edges
o Laplacian matrix L: L=D —W, L= yAyx’

Complete set of orthonormal eigenvectors X — X0, X1y s XN—1]
Real, non-negative eigenvalue 0= Xy < A1 <= Xy <= ... <= An_1

 Graph signal: a function y: )V — R that assigns real values to each
vertex of the graph

Dorina Thanou University of Oxford, 21-10-2021
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Graphs and signals on graphs

* Graph description: o Q. . Tg-e

O‘m
- Degree matrix D: diagonal matrix with sum of weights of incident edges
o Laplacian matrix L: L=D —W, L= yAx’

Complete set of orthonormal eigenvectors X — X0> X15 ey XN—1]

Real, non-negative eigenvalue 0= Xy < A1 <= Xy <= ... <= An_1

 Graph signal: a function y: )V — R that assigns real values to each
vertex of the graph
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Frequency on the graph

» Global smoothness on the graph
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Frequency on the graph

» Global smoothness on the graph
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Frequency on the graph

» Global smoothness on the graph
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Frequency on the graph

» Global smoothness on the graph
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Frequency on the graph

Global smoothness on the graph

?JTL?J — Z Z Wi nly(m) — y(n)]Q

meY neN,,

The eigenvectors of the Laplacian permit to define a harmonic (Fourier)
analysis of graph signals
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Frequency on the graph

Global smoothness on the graph

?JTL?J — Z Z Wi nly(m) — y(n)]Q
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The eigenvectors of the Laplacian permit to define a harmonic (Fourier)
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Filtering on graphs

e Filtering in the spectral domain with a transfer function g(-)
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Filtering on graphs
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e Filtering in the spectral domain with a transfer function g(-)

GFT
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Filtering on graphs
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Filtering on graphs
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Filtering on graphs
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e Filtering in the spectral domain with a transfer function g(-)
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Filtering on graphs

e Filtering in the spectral domain with a transfer function g(-)

IGFT

14
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Spectral convolution on graphs

Classical convolution : Convolution on graphs

Frae = [ (- )g(r)dr
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Spectral convolution on graphs

Classical convolution : Convolution on graphs

Frae = [ (- )g(r)dr

.
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Spectral convolution on graphs

Classical convolution Convolution on graphs

Frae = [ (- )g(r)dr
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Spectral convolution on graphs

Classical convolution Convolution on graphs

Frae = [ (- )g(r)dr
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Spectral convolution on graphs

Classical convolution Convolution on graphs
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Spectral convolution on graphs

Classical convolution Convolution on graphs

frg=xg(Mx"f=9L)f

1

(fxg) (V) = (X" f)og) (M)

Frae = [ (- )g(r)dr
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K-hops localization on graphs
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K-hops localization on graphs

Frg=xg(Mx"f=9L)f
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K-hops localization on graphs

Frg=xg(Mx"f=9L)f

K
go(A) =) 6;X, 6 e REH!

7=0

Dorina Thanou University of Oxford, 21-10-2021



16

K-hops localization on graphs

Frg=xg(Mx"f=9L)f
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K-hops localization on graphs

Frg=xg(Mx"f=9L)f
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K-hops localization on graphs

Frg=xg(Mx"f=9L)f
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K-hops localization on graphs

Frg=xg(Mx"f=9L)f
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K .

() =S 0N, perit EEp (L) =) OﬁHjL”
— j=

!

Localization within K-hop
neighborhood
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K-hops localization on graphs

Frg=xg(Mx"f=9L)f
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K-hops localization on graphs

Frg=xg(Mx"f=9L)f
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K :
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Localization within K-hop
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K-hops localization on graphs

K
G0N = DN, peRITT I go(l) =) 0L
]:

.

Localization within K-hop
neighborhood

.

« Convolution on graphs:

 spectrally motivated
« spatially implemented
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K-hops localization on graphs

K
Go(A) =) 0;), 0 e RFH! ) Pk = Zoer
J:
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Localization within K-hop
neighborhood

.

« Convolution on graphs:
 spectrally motivated
« spatially implemented
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Powers of the graph Laplacian

L% defines the k-neighborhood
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Spatial convolution on graphs

Classical convolution Convolution on graphs

Fro)= [ (fe-rarrar wm (g0 = 3 (f0m

mey

function value at neighbors

e Defined as a weighted sum of function values at neighboring nodes

Dorina Thanou University of Oxford, 21-10-2021
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Spatial convolution on graphs

Classical convolution Convolution on graphs

(f *g)( / ftf‘# (fxg)n =D [f(m
mey

function value at neighbors

weighting function/nodes’ similarity

e Defined as a weighted sum of function values at neighboring nodes
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How to define pooling on graphs?

Feature maps

Convolutions Subsampling Convolutions Subsampling |Fully connected

e Arelatively open question, with ongoing research

 Methods can be grouped in three main categories:
- topology based pooling
- global pooling
- hierarchical pooling

Dorina Thanou University of Oxford, 21-10-2021
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Topology based pooling

Multi-scale graph coarsening: no features involved

Go

Graclus algorithm (Dhillon et al. 2007)
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Topology based pooling

Multi-scale graph coarsening: no features involved

Graclus algorithm (Dhillon et al. 2007)
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Topology based pooling

Multi-scale graph coarsening: no features involved

Graclus algorithm (Dhillon et al. 2007)

Local greedy way of merging vertices that minimises the normalised cut
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Topology based pooling

Multi-scale graph coarsening: no features involved

Graclus algorithm (Dhillon et al. 2007)

Local greedy way of merging vertices that minimises the normalised cut

Add artificial nodes to ensure two children for each vertex
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Topology based pooling

Multi-scale graph coarsening: no features involved
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Topology based pooling

Multi-scale graph coarsening: no features involved

Go —» G1 —> G

Graclus algorithm (Dhillon et al. 2007)

Local greedy way of merging vertices that minimises the normalised cut

Add artificial nodes to ensure two children for each vertex
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Topology based pooling

Multi-scale graph coarsening: no features involved

ol1[2I3T4l5l6l7]8Toliolit] = € R'?

*0\1/2( ,}eR?’

Defferrard et al. 2016

Graclus algorithm (Dhillon et al. 2007)
Local greedy way of merging vertices that minimises the normalised cut

Add artificial nodes to ensure two children for each vertex

1D grid pooling: [max(0,1), max(4,5,6), max(8,9,10)]

Dorina Thanou University of Oxford, 21-10-2021



Global pooling

 |nvolves node features

21

e Uses sum/max or neural networks to pool all representation of nodes

ha = mean/max/sum(h

e Also known as READOUT

 Example: SortPool (Zhang et al. 2018)

K K K
O RS i)

- sorts embeddings for nodes according to the structural roles of a graph

Dorina Thanou
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Hierarchical pooling

 |nvolved nodes features

e Aggregate information in a hierarchical way that respects the graph
structure

e Results in cluster selection
o Example: DiffPool [Ying et al. 2019]

Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 at level 3 classification

22
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Summary so far

Feature maps

Convolutions Subsampling

Convolutions

23

Subsampling Fully connected
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Summary so far

Feature maps

w Subsampling

23

Subsampling Fully connected
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Summary so far

Feature maps

* Graph convolution: spectral or spatial
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Summary so far

Feature maps

Convolutions Subsampling Convolutions

* Graph convolution: spectral or spatial

23

Subsampling Fully connected

Dorina Thanou

University of Oxford, 21-10-2021



23

Summary so far

Feature maps

Convolutions Subsampling Convolutions Subsampling |Fully connected

* Graph convolution: spectral or spatial

« Graph pooling: structural, global, or hierarchical

Dorina Thanou University of Oxford, 21-10-2021
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Outline

e Motivation: Why Graph Neural Networks?
e Basic definitions on graphs

e Partial historical overview
- Graph CNN (main focus)
- Graph autoencoders (briefly)

e Applications
- Naturally graph-structured data
- Images

Dorina Thanou University of Oxford, 21-10-2021



25

Partial historical overview

Original Spectral N PATCHY- ChebNet TIGraNet

h CN GIN
GNN GNN  grap SAN MoNet SGN Xu at al.
. : Niepert Defferrard et alKhasanove et al. . ICLR
Gori et al. Sc;?raslelll Brl(JIréaLeRt)al. U NIPS) (ML) Monti et al. Wu et al. (ICLR)
' (ICML) (CVPR)
\ v A A M A4 v \4 M
2005 2009 2015 2016 2016 2016 2017 2017 2017 2017 2018 2019 2019 2019
A A A R R
Gated-GNN 1stChebNet GraphSAGE GAT CapsGNN
Li et al Kipf et al. Hamilton atal.  Velickovic at al. Xi?]pisat ol
(ICLR) (ICLR) (NIPS) (ICLR) (IéLR) '

Spatial-based methods Spectral-based methods

 Recent trends in introducing GSP-inspired architectures

GraphHeat (Xu’19), GWNN (Xu’19), SIGN (Frasca’20), DGN (Beaini’20), Spectral GNs (Stachenfeld’20), Framelets (Zheng'21),
FAGCN (Bo’21) ...

Balcilar et al., “Analyzing the expressive power of graph neural networks in a spectral perspective,” ICLR, 2021
Bronstein et al., Geometric deep learning: Grids, Groups, Graphs, Geodesics, and Gauges, arXiv, 2021

Dorina Thanou University of Oxford, 21-10-2021



GNNs in one slide

Cha \Cbl) (Yb:\
“be C

Xp —c Xe 0 e Xp —— e ——X
Cbd be e > Apd <" (wf\
X, X, X, X, X
Convolutional Attentional

h; =¢ (Xz‘, D Cij¢(xj)) h; =¢ (xi, . a(xz',xj)i/)(xg'))

JEN; JEN;
ChebyNet MoNet
GCN GAT
SGC

26

Message-passing

h;=¢ (Xi, 5 1/’("1#"3’))

JEN;

MPNN
GraphNets

Slide taken from P. Velickovi¢

Dorina Thanou
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Spatial approaches in one slide

 Generate node embeddings based on local neighborhoods
- nodes aggregate information from their neighbors using neural networks

 Feed the embeddings into a loss function

* Key difference: how nodes aggregate information across layers

’rLENi

O
0 0/8\0
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Spatial approaches in one slide

 Generate node embeddings based on local neighborhoods
- nodes aggregate information from their neighbors using neural networks

 Feed the embeddings into a loss function

* Key difference: how nodes aggregate information across layers

pEHD = o (W BpE) 4 o) Z B0
’rLENi

O
0 0/8\0
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Spatial approaches in one slide
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Spatial approaches in one slide

 Generate node embeddings based on local neighborhoods
- nodes aggregate information from their neighbors using neural networks

 Feed the embeddings into a loss function

* Key difference: how nodes aggregate information across layers

nENi

O
0 0/8\0

Trainable parameters

Dorina Thanou University of Oxford, 21-10-2021



GraphSAGE

 Node's neighborhood defines a computational graph
e Each edge in this graph is a transformation/aggregator function

e Cross-entropy loss
e 2-3 layers deep

1. Sample neighborhood

28

/ label

2. Aggregate feature information 3. Predict graph context and label

from neighbors

using aggregated information

Y = Relu(WHRY N (Relu(QPR(P)))

nE./\/}

Dorina Thanou
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GraphSAGE

 Node's neighborhood defines a computational graph
e Each edge in this graph is a transformation/aggregator function

e Cross-entropy loss
e 2-3 layers deep

1. Sample neighborhood

28

/ label

2. Aggregate feature information 3. Predict graph context and label

from neighbors

using aggregated information

Y = Relu(W®RM D™ (Relu(QPR(P)))

nEN;
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GraphSAGE

 Node's neighborhood defines a computational graph
e Each edge in this graph is a transformation/aggregator function

e Cross-entropy loss
e 2-3 layers deep

1. Sample neighborhood

28

]/ label

2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

Y = Relu(W®RM D™ (Relu(QPR(P)))

nEN;

Averaging/max pooling/LSTM

Dorina Thanou
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Graph attention networks (GAT)

 Nodes attend over their neighborhood’s features
- Different weights to different nodes in a neighbourhood
- Remove dependence on the global graph structure

| Attention weights |

£ —, | Comparison of
input features

Dorina Thanou University of Oxford, 21-10-2021
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Summary of spatial methods

* Pros:
- Intuitive
- Easy to implement
- Generalized to inductive settings

e Cons:
- Lack of interpretation in the spectral domain
- Requires many message passing iterations is the size of the graph is large

Dorina Thanou University of Oxford, 21-10-2021
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Partial historical overview

Original Spectral
G?VN GNN  graph CNN F. AST/C\:/J Y- ChebNet TiGraNet MoNet GIN
i S 1oL
. : Niepert Defferrard et alKhasanove et al. .
Gori et al. S%?rglelh Brl(JIréaL%[)al. U NIPS) (ML) Monti et al. Wu et al. (ICLR)
' (ICML) (CVPR)
\ \4 v \4 M A4 A \4 M
2005 2009 2015 2016 2016 2016 2017 2017 2017 2017 2018 2019 2019 2019
A A A R R
Gated-GNN 1stChebNet GraphSAGE GAT CansGNN
Li et al Kipf et al. Hamilton atal.  Velickovic at al. Xi?]pisat o
(ICLR) (ICLR) (NIPS) (ICLR) (IéLR) '

Spatial-based methods

Spectral-based methods

Dorina Thanou University of Oxford, 21-10-2021
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Spectral approaches in one slide

e Convolution is defined on the graph Fourier domain

xxgg=x9(0)x" @

* Spectral GCNN:

e ChebNet:

. GCN: K=1mm) vxg= (0] — 6D "?AD™'/?)z

 Parameters © are learned through the network

Dorina Thanou University of Oxford, 21-10-2021
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Spectral approaches in one slide

e Convolution is defined on the graph Fourier domain

xxgg=x9(0)x" @

* Spectral GCNN: g(0) =6 :> L *g g = X@XTQj
K K
+ ChebNet:  j(0) =S 0,7;(A) mmp T¥o9 =) 6:Ti(L)x
i=1 =1
. GCN: K=1mm) vxg= (0] — 6D "?AD™'/?)z

 Parameters © are learned through the network

Dorina Thanou University of Oxford, 21-10-2021



32

Spectral approaches in one slide

e Convolution is defined on the graph Fourier domain

xxgg=x9(0)x" @

* Spectral GCNN:

e ChebNet:

. GCN: K=1mm) vxg= (0] — 6D "?AD™'/?)z

 Parameters © are learned through the network

Dorina Thanou University of Oxford, 21-10-2021



32

Spectral approaches in one slide

e Convolution is defined on the graph Fourier domain

xxgg=x9(0)x" @

* Spectral GCNN: g(0) =
K
e ChebNet: Z
. GCN: K = 1 » wxgg=(00] —6,DVPADT?)

 Parameters © are learned through the network
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Spectral approaches in one slide

e Convolution is defined on the graph Fourier domain

xxgg=x9(0)x" @

* Spectral GCNN: T *x9 g = X@XT:B
K
+ ChebNet: T mm) T*09= > 6,Ti(L)x
. i=1

e GCN:

Neighborhood aggregation

 Parameters © are learned through the network

Dorina Thanou University of Oxford, 21-10-2021



ChebNet

Spectral Filters L
O(K) parameters :\/t\ )S:;r_u
O(E.K) operations (GPUs) (I &o

/
N\
o >

be "33

G =G
2
Yor,y \
I~ ,:-g?x
/ A ”v@,/ /
e
Graph S
Ex: social, biological, :5.\ [0
telecommunication graphs .<:—g>o/
E N
Rn N //
T € o w

|
.CL’l:O c R"t=0

a,/,lg:() = RnOFl

Graph filters: Chebyshev polynomials

Relu activation

+ =
- Gl 1
Graph coarsening
Factor 2P
Pre-computed

+
Pooling (Gpus)

/N /1IN 71N

xl:]_ e Ranl

33

°7
&) Output signal
Class labels
Ne
y € R

91:6 c R"5Me

',L,l:5 e R715F5
9l=5 = RKsFl---Fs

I
T
T
T .
1
T
!
T

9121 - RKl Fy ny = 7l()/2p1
Input signal Graph convolutional layers
on graphs (extract local stationary features on graphs)

Fully connected layers

Dorina Thanou

University of Oxford, 21-10-2021



GCN

Input
X =HW

A

Hidden layer
.
o ®
® o
o
® o
[
o /L' ReLU
= U ﬂ@_>
T e
®
L ]
¢ ®
® o
o ;
® %

Hidden layer

e

RelU

34

Node classification

softmaz(hV)

Output
-
@
®

Graph classification

N
softmax(z hiD)
n=1

Fig. from T. Kirf

Dorina Thanou
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GCN

Hidden layer Hidden layer Node classification
4 N\ e ™\
< <t softmaz(hV)
. ® . ® n
® o

¢ —>—> ¢ g .

4

&)
° ¢ Output
e A » » 4 A
= / / o o
> -~ RelLU S RelLU
e} \ ‘ \-a\\ N 'g

X = H© ] o 7 — HW)
o« o7 T Graph classification
L J A ‘ o . ° N
NS M softmax(z hiD)
n=1
(I+1) OMTI0 L ()7 ()
hy ™V =0 bWy + ) —h;'W;
JEN; W Fig. from T. Kirf
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Simple graph convolution (SGC)

Input Graph , Predictions

(El/-f ?l}_—w ) /_,,,-.*—-._;_ [\/—_—
( ( — — —
P @ up @
» Feature Propagatlon Nonlinearity » -
) « SH*-1 \ (ij / H™) « ReLUH™) ‘—\_ —

—{ K
@ — YGCN — Softde(SH(K 1)9( ))
Linear Transformanon
A% —~are*
o /
Predlctlons
K-step Feature Propagation J(f
X « S%X
\. / Logistic Regression
Feature Val —
[Class +1: @ Class -1: @ Feature Vector: [ i_eL_%au_eﬂj Yb( ¢ = softmax x®

Fig. from Wu et al.

 Reduces the procedure to a simple feature propagation step followed
by standard logistic regression

Dorina Thanou University of Oxford, 21-10-2021
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Summary of spectral methods

 Pros:
- More interpretable
- Takes into account the global structure of the graph

e Cons:
- Generalization is an open research question

Dorina Thanou University of Oxford, 21-10-2021



DeepGCNs

C 030'. :
e

GCN
Backbone
Block

Add

> Concat

! FusionBlock ||

k = # of nearest neighbors

f = # of filters or hidden units

d = dilation rate

2 22| [lzall2e]|l2
3 &N 5% gN|| 38| 8=
o 9 oa $ On O N o E e
X&) [OX = EH =7 | output
-
MLP
Prediction
Block

Input f
- h 4

PlainGCN
k=16 f=64

I

PlainGCN
k=16 f=64

l

PlainGCN
k=16 f=64

PlainGCN
k=16 =64

{

!

PlainGCN
k=16 f=64

¥
b4

- . . - e . e e e e e e e e e e e e . e e

Input I

ResGCN
k=16 f=64 d=1

ResGCN
k=16 f=64 d=1

ResGCN
k=16 f=64 d=2

ResGCN
k=16 =64 d=26

.

ResGCN
k=16 f=64 d=27

37

Design deeper networks by using intuitions from ResNet, DenseNet

Input I

DenseGCN
k=16 =64 d=1

-

DenseGCN \\.

k:xﬁf:sjj:l/'

—
DenseGCN - /
k=16 f=64 d=2 \,

DenseGCN
k=16 =64 d=26

Ko

DenseGCN
k=16 =64 d=27

Li et. al, 2019
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Partial historical overview

Original Spectral
G?VN GNN  graph CNN F. AST/C\:/J Y- ChebNet TiGraNet MoNet GIN
i S 1oL
. : Niepert Defferrard et alKhasanove et al. .
Gori et al. S%?rglelh Brl(JIréaL%[)al. U NIPS) (ML) Monti et al. Wu et al. (ICLR)
' (ICML) (CVPR)
\ \4 v \4 M A4 A \4 M
2005 2009 2015 2016 2016 2016 2017 2017 2017 2017 2018 2019 2019 2019
A A A R R
Gated-GNN 1stChebNet GraphSAGE GAT CansGNN
Li et al Kipf et al. Hamilton atal.  Velickovic at al. Xi?]pisat o
(ICLR) (ICLR) (NIPS) (ICLR) (IéLR) '

Spatial-based methods

Spectral-based methods
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Partial historical overview

Original Spectral
GNN' ~ GNN  graph CNN  PATCHY- ChebNet  TiGraNet MoNet GIN
i S 1oL
. : Niepert Defferrard et alKhasanove et al. .
Gori et al. S%?rglelh Brl(JIréaL%[)al. U NIPS) (ML) Monti et al. Wu et al. (ICLR)
' (ICML) (CVPR)
v v v \4 v \4 v v M
2005 2009 2015 2016 2016 2016 2017 2017 2017 2017 2018 2019 2019 2019 2020
A A A N N Y
Gated-GNN 1stChebNet GraphSAGE GAT ConsGNN DG
Li et al Kipf et al. Hamilton atal.  Velickovic at al. Xi?]pisat o Kazi ot al
(ICLR) (ICLR) (NIPS) (ICLR) (CLR) '

Spatial-based methods

Spectral-based methods
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Joint graph learning

* |nfers simultaneously the graph structure

Ongmal graph structure 4 Refined graph structure A* Node embeddings Z  Leammg objective £
, 2
= g |
z od @
g z | |
e = I | =
3 E | @ |
: : o0e
= 2 Rodndndl
w
Leaming parameters of the refined graph structure Learming GNN model parameters

Dorina Thanou University of Oxford, 21-10-2021



Joint graph learning

* |nfers simultaneously the graph structure

Onginal graph structure 4 Refined graph structure A*

Surpepow amyonng
sylomyau feanau ydein

Leaming parameters of the refined graph structure

Zhu et al., Deep Graph Structure Learning for Robust Representations: A Survey, arXiv, 2021

Node embeddin

39

gs Z  Leammg objective £

Learming GNN model parameters

Dorina Thanou
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Outline

e Motivation: Why Graph Neural Networks?
e Basic definitions on graphs

e Partial historical overview
- Graph CNN (main focus)
- Graph autoencoders (briefly)

e Applications
- Naturally graph-structured data
- Images

Dorina Thanou University of Oxford, 21-10-2021
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Graph autoencoders (GAEsSs)

* Unsupervised learning: encode graphs into a latent space and
reconstruct the graph from that space

Gconv Geconv

p 7 Z VA A
- | 1l @C|eniaf + aival) |
® 9 e 06 0 o
. . Q a a
X . o Vad
o | - Decoder
@ 000 Encoder Wu et. al 2019

Dorina Thanou University of Oxford, 21-10-2021
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Outline

e Motivation: Why Graph Neural Networks?
e Basic definitions on graphs

e Partial historical overview
- Graph CNN (main focus)
- Graph autoencoders (briefly)

e Applications
- Naturally graph-structured data
- Images
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Neuroscience: learn to compare

labelled graph

estimate :

Ktena et al., Neurolmage, 2018

Dorina Thanou University of Oxford, 21-10-2021
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Protein-protein interactions

o Exploit GNNs to learn interaction fingerprints in protein molecular
surfaces

Approach, systematic
Protein molecular surface Interaction fingerprint extraction of patches

Hydrophobic
Electron donor
Pocket
Knob

Positive charge

D)

» Patch center points
== Patch radius

Gainza et al, Nature methods, 2019

Dorina Thanou University of Oxford, 21-10-2021
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Protein-protein interactions

o Exploit GNNs to learn interaction fingerprints in protein molecular

surfaces
Geometric features N/ Chemical features
. A ' ‘
0 ¢
| ’ ‘ .. P
— ' \ .t'
‘ ",. ‘./‘ ’ﬂ\ ‘,
Shape Distance-dependent Hydropathy Continuum Free electrons/
index curvature 1 electrostatics protons

Gainza et al, Nature methods, 2019

Dorina Thanou University of Oxford, 21-10-2021
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Protein-protein interactions

o Exploit GNNs to learn interaction fingerprints in protein molecular

surfaces

Polar

/7~ coordinates

/,

@

=
@

Angular coordinates

Radial coordinates
Ny J

Map features
to learned
soft grid

MaSIF-geometric deep learning N )

N filters (\

K rotations

XTI

Fmgerpnnt | Application-
descriptor ) specific layers
AN

Convolutional layers

e

Gainza et al, Nature methods, 2019

Dorina Thanou
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Protein-protein interactions

o Exploit GNNs to learn interaction fingerprints in protein molecular
surfaces

/ Applications

ADP
CoA
FAD

Heme | o "
NAD e | g . \
NADP Interface -7 :\ A
SAM Noninterface N
Pocket classification Interface site prediction Ultra-fast PPI search
\_ MaSIF-ligand MaSIF-site MaSIF-search -/

Gainza et al, Nature methods, 2019

Dorina Thanou University of Oxford, 21-10-2021



GNNs for medical imaging

e Digital pathology [1]

Tissue detection Tissue graph Tissue GNN Embedding
»
g e T v
AN -
ey dl: H H
- \ " ?. f:’—::‘/'."’ $ i we ¥ D
NS ol et SN VR, - n C1C2C3 C4
Stain normalization Nuclei detection Cell graph Cell GNN Prediction
Preprocessing Entity detection Graph construction Hierarchical GNN Classification

 Graph based representations provide a flexible tool for modelling
complex dependencies at different levels of hierarchy (e.g., cells,
tissues)

[1] Pati et al, “Hierarchical graph representation in digital pathology,” arXiv, 2021

[2] Li et al, Representation learning for networks in biology and medicine: Advancements, challenges, and opportunities, arXiv, 2021

45
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GNNs for spherical imaging

» Spherical data has specific spatial and statistical properties that cannot
be captured by regular CNN models

-0.00025 0.00025

Cosmic microwave
background temperature

Brain activity (MEG) Omnidirectional images

* Sphere is modelled as a graph and classical operation (convolution,
translation, pooling...) are performed on the graph

Perraudin et al., “DeepSphere”, Astronomy and Computing, 2019
Bidgoli et al, OSLO: On-the-Sphere Learning for Omnidirectional images and its application to 360-degree image compression, arXiv, 2021

Dorina Thanou University of Oxford, 21-10-2021



Point cloud semantic

A A

point cloud

—p

EdgeConv

layer 1

| —

EdgeConv

!
layer 2

| —

EdgeConv

—

—

layer 3

feature concat.
&
multi-layer perceptron|

segmentation

output

Wang et al., 2019
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3D point clouds semantic

Original Ground Truth PlainGCN-28 ResGCN-28 DenseGCN-28

or i I 5 BROGED o

Li et al. 2019

Dorina Thanou University of Oxford, 21-10-2021
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Recommender systems

e Matrix completion: deep learning on user and item graphs

 Multi-graph convolution (spatial features), followed by LSTM (diffusion
process)

X1 — x () L gx®

dX®)

X ®) X (®
X = MGCNN|—— | RNN

row+column filtering

Monti et al. NIPS, 2017

Dorina Thanou University of Oxford, 21-10-2021
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Few-shot learning

 Represent images as a fully connected graph
 Pose the problem as a supervised task using GNN

Garcia at et., ICLR, 2018

Dorina Thanou University of Oxford, 21-10-2021



Drecled messade
pasang neural network

Ambobc predicions
{upper it 108 #)

Chemcal space

s00000 \ A
see \

LL L

v N

E
9 Jv
A".?ﬁok&

Traiming set
(10* molecudes)

11

Deoop learning

{2

Moce! vakdaton

Drug Repurposing Hub

HALICIN
&F N.;t _ \pH
.;.>~—:.'. ¢
Q -~ ey | ':r—_,” -
' o, 1
('_1 " = N
| .
HN o

Bacterial cell death

Acnslobacier Saumanny
Ciastrdocha Aeie

S~ .
i\ '
e : > Naw
ol = Antibiotics
[antitsoic) ' 5 | ‘
ZINC15 Database
N O
ol 3
NN v R 4 ~tarke
< T apdly bactencidal
T Y s 30 1, e Brcad.spectrum
o N N, N
] L i M o
Q o N o
wn_
y S8
o |
M M .
gl - { Low MIC
N |h Srcad-spechrum
o M o~ o
¥ [ ]
i o

51

Molecular graph generation

 Recent advances in antibiotic discovery ...

(B]B] O Ssignin Home News Sport Reel Worklife Travel

NEWS

Home | Coronavirus | Climate | Video | World | UK | Business | Tech | Science | Stories | Entertainment & Arts

Health | Coronavirus

Do we ask too
much of our planet?

Watch Now —

Scientists discover powerful
antibiotic using Al

©21 February 2020

Searchjobs @ Signin O, Se|

Support the Guardian

Available for everyone, funded by readers

News Opinion Sport

Culture Lifestyle More v

Education Schools Teachers Universities Students

Antibiotics © This article is more than 1year old

Powerful antibiotic discovered using
machine learning for first time

Team at MIT says halicin kills some of the world’s most dangerous
strains

Ian Sample Science editor

¥ @iansample

Simonovsky et al, 2017, De Cao et al 2018, Stokes et al 2020
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Traffic prediction

Google Maps ETA Improvements Around the World

Toronto
26%
New Yor
21%
J Washingt
22% 29%

Bangkok
21%
200/0 Singapare
*)
31%
22%

52

[Derrow-Pinion et al., 2021]
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Traffic prediction

Predictions

: Google Maps

/N

) —

Surfaced

Analysed Training

data

Google.Maps Candidate Google Maps
routing user routes L
system A-B

The model architecture for determining optimal routes and their travel time.

[Derrow-Pinion et al., 2021]
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GNN for COVID-19

 Use GNN to locate the source of the epidemics [Shah et al. 2020]

T=0,8=0.9, y=0.13 T=5,8=0.9, y=0.13 T=10,8=0.9, y=0.13

Dorina Thanou University of Oxford, 21-10-2021
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Concluding remarks

e Deep learning on graphs
- Emerging field that extends data analysis to irregular domains

- Highly disciplinary topic: machine learning, signal processing, graph theory,
harmonic analysis, statistics

- Spectral- and spatial-domain approaches: different frameworks, significant
overlaps

- More and more applications are emerging

Dorina Thanou University of Oxford, 21-10-2021
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Open issues/Future directions

o Scalability issues

_imited theoretical understanding

_ack of performance guarantees; vulnerability to adversarial attacks
_ack of interpretability

Dealing with dynamic graphs

ncorporating higher-order structures into GNNs

_ack of standardized benchmarks

nttps.//towardsdatascience.com/graph-deep-learning/home

Dorina Thanou University of Oxford, 21-10-2021
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Abstract—Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video
processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the
Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and
are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has
imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning
approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in
data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into different
categories. With a focus on graph convolutional networks, we review alternative architectures that have recently been developed; these
learning paradigms include graph attention networks, graph autoencoders, graph generative networks, and graph spatial-temporal
networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes
and benchmarks of the existing algorithms on different learning tasks. Finally, we propose potential research directions in this
fast-growing field.
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Index Terms—Deep Learning, graph neural networks, graph convolutional networks, graph representation learning, graph
autoencoder, network embedding

Geometric Deep Learning

Going beyond Euclidean data

. R — 5 Geometric Deep Learning
Grids, Groups, Graphs,
Geodesics, and Gauges

Michael M. Bronstein!, Joan Bruna?, Taco Cohen?, Petar Veli¢kovi¢*

May 4, 2021

https://www.cs.mcgill.ca/~wlh/grl_book/
https://github.com/DeepGraphlearning/LiteratureDL4Graph
https://github.com/thunlp/NRLPapers
https://github.com/thunlp/GNNPapers
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Useful resources

e Toolboxes

- https://github.com/rusty1s/pytorch_geometric

- https://github.com/dmlc/dgl

Datasets

- https://chrsmrrs.github.io/datasets/

- https://ogb.stanford.edu

Y
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Thank you for your attention!
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