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In many classical ML applications, data is scarce or noisy
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A. Improvement on data efficiency and robustness

In many classical ML applications, data is scarce or noisy

(Graph-based) ML Tasks Challenges
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Need for prior knowledge to improve performance:
- Graph-based regularization could help in that direction



A.1. Graph signal smoothness as loss function

Cross entropy loss is widely used in (semi-)supervised learning
frameworks. However:

- Underlying manifold structure is not preserved: Inputs of the same class tend to
be mapped to the same output

- One-hot-bit encoding is independent of the input distribution and network
initialization: slow training process
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Experimental validation

» Clustered like embeddings for CIFAR-10

Epoch 49 Epoch 99 Epoch 149 Epoch 199 (end)

Proposed Loss

Cross Entropy Loss

- Robustness to cluster deviations

Method Clean test error | MCE  relative MCE
Cross-entropy 5.06% 100 100
Proposed 5.60% 95.28 90.33

Bontonou et al., “Introducing graph smoothness loss for training deep learning architectures,” IEEE Data Science
Workshop 2019



A.2. Latent geometry graphs

- Capture the latent geometry of intermediate layers of deep networks
using graphs

- Quantify the expressive power of each layer by measuring the label
variation

(@) Input o : 0.48 (b) Middle ¢ : 0.17 (c) Penultimate ¢ : 0.05

- Impose desirable properties into these representations by applying
GSP constraints

- Robustness: Enforce smooth label variations between consecutive layers

Lassance et al., “Representing Deep Neural Networks Latent Space Geometries with Graphs ”, Algorithms, 2021
Lassance et al., “Laplacian networks: bounding indicator function smoothness for neural networks robustness”,
APSIPA Trans. on Sign. and Infor. Process., 2021



A.3. Graph reqgularization for dealing with noisy labels

- Main challenge: Binary classification with noisy labels

Proposed approach (DynGLR): A two step learning process

- Graph learning: extract deep feature maps and learn a graph that maximizes/
minimizes similarity between two nodes that have same/opposite labels (G-Net)

- Classifier learning: alternate between refining the graph (H-Net) and restoring
the corrupted classifier signal (W-Net) through graph Laplacian regularization

(GLR)
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Experimental validation

- Classification error curves for different levels of noisy labels

- Phoneme: contains nasal and oral sounds

- CIFAR-10: subselection of two classes, airplane and ship

% label noise 0 5 10 15 20 25
SVM-RBF 18.33 | 18.75 | 19.13 | 19.57 | 20.07 | 20.87
CNN 17.58 | 17.77 | 18.00 | 18.57 | 19.01 | 20.00
DynGraph-CNN 17.66 | 19.04 | 20.80 | 22.44 | 25.20 | 28.84
DML-KNN 17.04 | 17.54 | 17.82 | 18.58 | 19.64 | 21.00
DML-KNN-s 17.01 | 17.49 | 17.71 | 18.43 | 19.24 | 20.41
LN-Robust-SVM-RBF*| 18.57 | 19.42 | 19.65 | 19.70 | 20.03 | 20.28
Graph-Hybrid* 22.01 | 23.77 | 25.58 | 27.97 | 30.33 | 33.39
CNN-Savage™ 17.52 | 17.72 | 18.04 | 18.51 | 19.02 | 19.87
CNN-BootStrapHard® | 17.46 | 17.72 | 18.00 | 18.31 | 18.84 | 20.15
CNN-D2L* 17.47 | 17.80 | 17.96 | 18.41 | 18.91 | 20.04
DynGLR-G-2* 17.04 | 17.50 | 17.70 | 18.34 | 18.81 | 20.03
DynGLR-G-12* 1693 | 17.36 | 17.64 | 18.23 | 18.52 | 19.59
DynGLR-G-12s* 16.89 | 17.36 | 17.62 | 18.21 | 18.52 | 19.54
DynGLR-G-1232* 1690 | 17.29 | 17.36 | 18.16 | 18.48 | 19.47
DynGLR-G-12312* | 16.87 | 17.19 | 17.34 | 18.03 | 18.38 | 19.43
DynGLR-G-12312s* | 16.87 | 17.18 | 17.32 | 17.91 | 18.24 | 19.18

% label noise 0 5 10 15 20 25

SVM-Linear 212 | 546 | 7.66 | 995 | 12.96 | 16.75
CNN 2.67 2.9 3.16 | 3.66 | 436 | 6.26
DML-KNN 2.72 2.32 334 | 389 | 446 | 5.22
DML-KNN-s 2.69 | 2.88 3.12 354 | 396 | 451
LN-Robust-SVM-Linear*| 2.93 3.25 3.5 3.78 3.97 4.46
Graph-Hybrid* 8.65 0.74 | 11.58 | 14.05 | 17.21 | 20.45
CNN-BootStrapHard* 229 | 2.65 3.11 3.78 | 434 | 4.61
CNN-D2L* 2.82 3.02 3.13 3.28 3.97 4.32
DynGLR-G-2* 6.64 | 668 | 6.74 | 6.76 | 7.00 | 7.08
DynGLR-G-12* 204 | 2116 | 2.32 234 | 2.54 2.64
DynGLR-G-12s* 204 | 2.15 2.30 | 2.32 2.51 2.61
DynGLR-G-1232* 1.40 1.41 1.67 1.83 1.99 2.33
DynGLR-G-12312* 1.31 1.32 1.59 1.76 1.84 2.20
DynGLR-G-12312s* 1.31 1.32 1.58 1.73 1.81 2.16

- Introducing GLR is beneficial especially in the high noise regime

Ye et al., “Robust Deep Graph Based Learning for Binary Classification” IEEE Tans. on Sign. and Inform.
Process. over Net. 2020
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A.4. Graph reqgularization for zero shot learning

Zero shot learning: Exploit models trained with supervision, and
some mapping to a semantic space, to recognise objects as belonging
to classes with unseen examples during training

Visual embeddings

Semantic embeddings

Key assumption: Regularize the space of the continuous manifolds Z, S
and the map between them by minimising the isoperimetric loss (IPL)

11



Graph-based approximation of IPL

- Isoperimetric loss (IPL): measures the flow through a closed
neighborhood relative to the area of its boundary

12



Graph-based approximation of IPL

Isoperimetric loss (IPL): measures the flow through a closed
neighborhood relative to the area of its boundary

A graph-based approximation of IPL.:

Treat visual embeddings as vertices in a graph, with affinities as edges, G = (Z, W)
and visual-to-embedding map as a linear function on the graph v : G — S

Seek a non-parametric deformation represented by changes in the connectivity
matrix, that minimises the IPL

Approximate IPL loss by using spectral reduction: Spectral graph wavelets of
the semantic embedding space S = g(L)S

A

Construct a new graph based on the spectral embeddings G = (S, W")

Perform clustering to map clusters to labels

12



Experimental validation

- Embeddings in AWA1

2D t-SNE, no IPL 2D t-SNE, with IPL

- |IPL regularization generates more compact embeddings
- Error decrease of 9.8% and 44% for AWA1 and CUB dataset

Deutch et al., “Zero shot learning with the isoperimetric loss”, AAAI, 2020

13



A.5. GSP for multi-task learning

- Multi-task learning: Learn simultaneously several related tasks
- Helps improve generalisation performance

-+ Often data are collected in a distributed fashion
- Each node can communicate only with local neighbors to solve a task

a) single task learning b) multi-task learning

Nassif et al., “Multi-task learning over graphs”, IEEE Signal Process. Mag., 2020

14



Spectral regularization for multi-task learning

- The graph captures the correlation between the tasks, i.e., nodes of
the graph

- The goal of each node £ is to compute the parameters that minimise
an objective function

wp = arg min Jy (wy,)

Wk

- The relationship between the tasks can be exploited by imposing a
regularization of the cost function on the task graph

N
k . glob _ Q
W* = arg min JIP(W) ,;1 Ji(wy) + 5 R(W,G)

Regularization examples:
- Smoothness of tasks in the graph R(W,G) = W' LW
- Graph spectral regularization RW,G) =W'g(L)W

15



Summary so far

Graphs can be used to capture hidden dependencies of any type of
data

The domain of the graph is application specific
- Latent space of features

- Manifold approximation

- Distributed agents

GSP tools, and in particular, graph regularization help towards
Imposing desirable properties

- Better node embeddings
- Cleaner signals
- More robust models

16



GSP for improving efficiency and robustness

A. Improvement on data efficiency and robustness

B. Robustness against topological noise

C. Improvement on computational efficiency
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GSP for improving efficiency and robustness

B. Robustness against topological noise
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B. Robustness against topological noise

In the context of graph-structured data, stability can be defined with
respect to perturbation to the underlying topology

Graph-Based
Machine Learning

) (f(g,x> J

G: Protein—Protein
Interaction Graph

x: Expression Level of
Individual Genes

18



B. Robustness against topological noise

In the context of graph-structured data, stability can be defined with
respect to perturbation to the underlying topology

Graph-Based
Machine Learning

- noisy/unreliable
- ( il J graph

Why is it important?

VS .
adversaries

G: Protein—Protein (f(g/,, x)j . transferability

Interaction Graph

x: Expression Level of .
Individual Genes C_hanges through
time




B.1. Stability of graph filters

(‘\
[]
ge(g7 X) ]
=y |0 W
[
- 190(G, %) — g96(Fp,x)||2
original graph | | X| |2
m
Relative output distance
B = o/
y X
ge(gp ) O
perturbed graph \J

spectral graph filters in the Cayley smoothness space are stable

, E| .
lg(A) = g(A"]| <lglle ((IIAII 1) ” |||E|| + IIEII) A : graph shift operator

:()(HA , A’H)- E : error matrix

Levie et al., “On the transferability of spectral graph filters,” SampTA, 2019.
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Stability of graph filters

(-\
[]
ge (gv X) ]
mp (I
[ ]
W, 196(G, %) — 96(Fp,Xx)|2
original graph | |x| |2
7\
L] Relative output distance
=) = o
y X
96(Gp ) 0
perturbed graph U

polynomial spectral graph filters are stable

K +1 L : graph Laplacian

K
L - Lyl
1) =Ll

1 .
L) — go(Ly)|l2 < =]|O_ K? -1
190(L) = go(Lp)ll2 < 4” ol )( . polynomial coefficient

~0* (except for constant)

Kenlay et al., “On the stability of polynomial spectral graph filters,” ICASSP, 2020. 20



B.2. Stability of graph neural networks

X —>  zg=Hy(S)x Xy =0(z,) : » 2= Hp(S)x, > X; = 0(zp) » xo= P(x; S, H)

Layer 1 Layer 2

10

equivariance of graph neural networks under permutation P

d(x;S,H) = PT®(x;S,H)
GSP with GNNs is independent of node relabelings!

Gama et al., “Stability properties of graph neural networks,” IEEE TSP, 2020.

Ruiz et al., “Graph neural networks: Architectures, stability, and transferability,” Proceedings of the IEEE, 2021.

21



Stability of graph neural networks

A A, A A

graph neural networks with integral Lipschitz filters are stable

|®(x;S,H) — @B x; P*"SP*, H)|| < 20(1 +6VN) Lle ||x|| + O(*)
operator
minimising
operator distance

Lipschitz eigenvector number operator
constant misalignment of layers distance

Gama et al., “Stability properties of graph neural networks,” IEEE TSP, 2020.

Ruiz et al., “Graph neural networks: Architectures, stability, and transferability,” Proceedings of the IEEE, 2021.

22



Stability of graph neural networks

Perturbations that do not modify the degree distribution of the graph

| —— 3 T
B - |
N —_ = =
= - — ——
: : l
L:’ /-f——-‘:| — —J |
stability under double-edge rewiring
||X(L) — XZ(,L) | < Vd | E||2 d = Node feature dimension
\ J = Number of layers
outpu;ghange data structural change — Ap - A

Kenlay et al., “On the stability of graph convolutional neural networks under edge rewiring,” ICASSP, 2021. 23



B.3. Interpretable stability bounds

PGD Robust PGD Robust
—— Edge addition — Edge addition . \ » .
—— Edge deletion $ » —— Edge deletion b [.

° .\. L

BA graph 3-regular graph

how does stability depend on topological properties of
perturbation?

Kenlay et al., “Interpretable stability bounds for spectral graph filters,” ICML, 2021.
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B.3. Interpretable stability bounds

PGD Robust PGD Robust
—— Edge addition °* ! — Edge addition \ » .
—— Edge deletion $ . » —— Edge deletion [
P ] Y PY [ ] Y ) [ ]
A ° ° ([} .\. L]
[ J * » L] ° » \ ° o
o * ’ . ] ]
} . : 5 s
. ® .ﬂ . ° L ° \ \
e L] ° ° ° L] L ° °
L L] R [ ] L] ° [} ® [ ® °
po ° ° ° ° L4 °
o o ° —* *
. ] ..\. J ° . ] ° °
[ Py ° ° [ v " [ v
* [ ] [}

BA graph 3-regular graph

how does stability depend on topological properties of
perturbation?
spectral graph filters are most stable if

adding or deleting edges between high degree nodes
not perturbing too much around any one node

Kenlay et al., “Interpretable stability bounds for spectral graph filters,” ICML, 2021. 24



B.4. Robustness beyond stability

GSP in the presence of topological uncertainty (more in part lll) [2, 4]

Filters on stochastic time-evolving graphs [1]

Stochastic graph filters built on sequence of randomly perturbed
graphs [3]

Sox Si.0x So.0X S.0x
X) S() _ I 0 N Sl 1:0 N S2 2:0 ) S3 3:0
h() lll ]12 ],3
H(S;;:(,)x

[1] Isufi et al., “Filtering random graph processes over random time-varying graphs,” IEEE TSP, 2017.

[2] Ceci and Barbarossa, “Graph signal processing in the presence of topology uncertainties,” IEEE TSP, 2020.

[3] Gao et al., “Stochastic graph neural networks,” ICASSP, 2020.

[4] Miettinen et al., “Modelling graph errors: Towards robust graph signal processing,” arXiv, 2020. 25
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C. Improvement on computational complexity

Many ML algorithms require a large amount of resources (i.e., space,
runtime, communication) for their computation

- Eigendecomposition of a large matrix is expensive

- Training and deploying GNNs remains challenging due to high memory
consumption and inference latency

https://en.wikipedia.org/wiki/Social_network_analysis
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C. Improvement on computational complexity

Many ML algorithms require a large amount of resources (i.e., space,
runtime, communication) for their computation

- Eigendecomposition of a large matrix is expensive

- Training and deploying GNNs remains challenging due to high memory
consumption and inference latency

https://en.wikipedia.org/wiki/Social_network_analysis

Can we use the graph structure and classical GSP operators to
alleviate some of these issues?

27



C.1. Complexity of spectral clustering

Spectral clustering : Given a graph G capturing the structure of V

data points, find the partition of the nodes into K clusters

. ) .:"o ’ ﬁ‘. . ,:"o
3; .' o";“.:. \. .:0 ;g zi .' o";::.
-":. o ”‘. Y et r ";. . e ."2. ® !‘. et
x SRS T L 'f' $H 4 ¥ < fEetey (RN g
° . & * ' d ) 1 . o
i ‘}'s )‘ ;"V e "s A' .’."V B N )' ‘Y
“ . ‘: ® e \" .
"y e 5y £
... . ! o:
Data points Graph structure Detected clusters

Algorithm: Given the graph Laplacian matrix L
- Compute the first K eigenvectors Vi = [V1, Va, ..., Vk]
- Compute the embedding of each node 7 in Vi : ¢n = Ujdn

- Run K-Means with Euclidean distance on the embeddings Du.m = ||¢n — ¢m|2

to compute the clusters

Bottlenecks: When N, K are large
- Computing the eigendecomposition is expensive O(N K?)
- The complexity of K-means is high O(NK?)

von Luxburg, “A tutorial on spectral clustering”, Statistics and Computing, 2007
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Compressive spectral clustering

- A GSP perspective

Computation of eigenvectors is bypassed by filtering random graph signals
K-means is performed on a subset of randomly selected nodes m ~ K log K
The cluster centers of the whole graph are interpolated

Algorithm:

Estimate Ax from L

Generate d random graph signals in matrix £ €
Filter them with a polynomial filter ., , i.e., on = (H R)T6;
If d~logN :Dyp = |On — dmll2 = Dy om

Draw randomly m ~ K log K sample nodes, and run K-means to obtain cluster
centers ¢ =c],...,Cx]

Interpolate the centers by exploiting the sampling theory of bandlimited graph
signals

RNxd

¢; = arg m%nN |Mec; — 5|5 + el g(L)e;

Trembley et al., “Compressing spectral clustering”, ICML, 2016
Trembley et al., “Approximating spectral clustering by sampling: A review”, Sampling Techniques for Supervisec&9
or Unsupervised Tasks, Springer 2020



C.2. Adaptive filters and per-node weighting in GNN

- A (graph) signal processing approach for efficient hardware usage

l w' = ®x'" + b
7 AN ‘

@\

N \ . l N P

X ® h > E y

” X 7 w\ d ” X
O}
o

Run separate graph filters N\ \‘I “ 7 Apply per-node weightings
. 1 . .
parameterised by &, over graph P AN w'") to each basis filter

Adaptive graph filters for each node
Node-specific weighted combination of adaptive filters ©
For 1-order Chebyshev polynomials:

B
Y =) w,®(D'?AD"'/?) X6,
b=1

Tailor et al., “Adaptive filters and aggregator fusion for efficient graph convolutions,” arXiv, 2021.
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Adaptive filters and per-node weighting in GNN

1

”‘h.l}i@x(') + E ”h.i._/(-)x“)
I JEN (1)

H
o H (—) Z (U,_,‘_.,X(")
h=1 JEN(i)U{i}
—~—

N o

I
y (i) — ’
h

-~

Shared Weights Message Matenalization

Graph attention network

(2)

ﬁ (i: (i) > Z x\7)

u"' 0, . '
o\ ATy V/deg(i)deg())
H . (7)

(-)(;') x. ;
I'H] / (_,. .\;)um \/dcg(i)dcg(_/))

S - ~~ o
Computable via SpMM

Varying per Node

Efficient graph convolution

Operations can be computed with the standard compressed

sparse row (CSR) algorithm (SpMM)

Lower memory consumption (no message materialisation)

Requires only O(N) memory

31



C.3. Scalable inception graph network

X ‘
I o,
A O, o Q £
A— O,

diffusion operators A can be chosen as different powers of a
graph shift operator (shallow network with wider receptive field)

r=0 (I) corresponds to 1x1 convolution in inception module

matrix products AX do not depend on © and can be pre-
computed

Frasca et al., “SIGN: Scalable inception graph neural networks,” ICML Workshop, 2020.
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Scalable inception graph network

0.93 -
0.92 -
—
(.
S 0.91 -
©
ke
0.90 1 %’;’ / —— GraphSAINT
- ~ == ClusterGCN
089 . : /I —— S'GN (4'0‘0)
i: —-= SIGN (4-2-0)
5 e SIGN (5-3-0)
0.88 4= : : : : : : :
0 50 100 150 200 250 300 350 400

Time (in seconds)

Frasca et al., “SIGN: Scalable inception graph neural networks,” ICML Workshop, 2020.
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Take home message:

GSP for robustness and efficiency

GSP Tools ...

Graph signal regularization

Graph based transforms
Graph interpolation

Graph filtering

Diffusion operators

... for ML

Better embeddings

Higher classification accuracy in noisy settings

Stability with respect to topological noise

Faster approximation of eigendecomposition

Less complex GNNs

34
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- Applications
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GSP for enhancing interpretability

A. Domain specific: Extract relevant knowledge from data
- A.1. Signal analysis: Use GSP to reveal interpretable features
- A.2. Structure inference: Use GSP to learn interpretable structures

B. Model specific: Improve our understanding of ML models
- B.1. Understanding the expressive power of GNNs
- B.2. A posteriori interpretation of DNN

36



GSP for enhancing interpretability

A. Domain specific: Extract relevant knowledge from data
- A.1. Signal analysis: Use GSP to reveal interpretable features
- A.2. Structure inference: Use GSP to learn interpretable structures

36



A.1. Extracting domain knowledge

- Graph based transforms have been successful in domain specific
knowledge discovery

- In neuroscience, GSP tools have been used to improve our
understanding of the biological mechanisms underlying human
cognition and brain disorders

rC Graph Fourier transform )

time J low-frequency modes

$e80e% £olte’s
‘0'ﬁ.° ‘of‘g&'
Se®Pec. cet Ppc.
fe 900 o feoids o’

ectrum
: q L 08 S,
5 .’..

high-frequency modes

%
63‘

|
10
.. B

W .“._" ‘J;G .“‘_9 -‘_..1
o o€ « . p .

¢ '@ “om © 3

W e W W

e B o/ e @ o,

TN 4 21 et

T aricdew a° v

[Fig. from Huang’18]

- Analysis in the spectral domain reveals the variation of signals on the
anatomical network




A.1.1. GSP for understanding cognitive flexibility

Cognitive flexibility describes the human ability to switch between
modes of mental function

Clarifying the nature of cognitive flexibility is critical to understand the
human mind

GSP provides a framework for integrating brain network structure,
function, and cognitive measures

It allows to decompose each BOLD signal into aligned and liberal
components

Aligned Liberal

""’ $~- V

Medaglia et al., “Functional Alignment with Anatomical Networks is Associated with Cognitive Flexibility”, Nat.

Hum. Behav., 2018
n v 38



BOLD signal alignment across the brain

* Functional alignment with anatomical networks facilitates cognitive
flexibility (lower switch costs)
- Liberal signals are concentrated in subcortical regions and cingulate cortices

- Aligned signals are concentrated in subcortical, default mode, fronto-patietal,
and cingulo-opercular systems

Aligned Liberal

White matter Decomposition of the signals into aligned

BOLD signals network and liberal using GFT

39



A.1.2. Structural decoupling index

- Ratio of liberal versus aligned energy in a specific node

- Spatial organization of regions according to decoupling index reveals
behaviourally relevant gradient

Visual perception 12
Structurally coupled regions: M“'t'se“soRrga%’i‘r’fg Ll
Sensory regions Motor I W
Eye movements [
Numerical cognition Ll
Auditory processing H B B
Visual attention ]
Pain N N
Action - NIl | ]
Visuospatial
Cued attention

O
|
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A.1.3. Understanding ASD through GSP

- Predict Autism Spectrum Disorder (ASD) by exploiting structural and
functional information

- Discriminative patterns are extracted in the graph Fourier domain

- Frequency signatures are defined as the variability over time of graph
Fourier modes
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Interpretable and discriminative features
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Neurotypical patients express a predominant activity in the parieto-
occipital regions

ASD patients express high level of activity in the pronto-temporal
areas
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A.2. Structure inference

Given observations on a number of variables, and some prior
knowledge (distribution, model, constraints), learn a measure of
relations between them
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A.2. Structure inference

Given observations on a number of variables, and some prior
knowledge (distribution, model, constraints), learn a measure of
relations between them

graph signal

How to infer interpretable structure from data?
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GSP for structure inference
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Dong et al., “Learning graphs from data: A signal representation perspective,” IEEE SPM, 2019.
Mateos et al., “Connecting the dots: Identifying network structure via graph signal processing,” IEEE SPM, 2019. 44



GSP for structure inference
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GSP for structure inference
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Mateos et al., “Connecting the dots: Identifying network structure via graph signal processing,” IEEE SPM, 2019.
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GSP for structure inference
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 Examples of signal graph models:

e Smoothness: D(G) = x
e Diffusion: D(G) =e "

Dong et al., “Learning graphs from data: A signal representation perspective,” IEEE SPM, 2019.
Mateos et al., “Connecting the dots: Identifying network structure via graph signal processing,” IEEE SPM, 2019. 44



A.2.1 Imposing domain specific priors

Leads to more interpretable structures
- Genes are typically clustered into pathways
- Bipartite graph structure is more probable for drug discovery

Example of spatial and spectral constraints:
- K-component graph

Sy={{N=0_1,c1 <A1 < <Ny < oo}
- Connected sparse graph

Sy={M=0,c0 < A <--- <Ay <o}
- K-connected d-regular graph
Sy={{\; = O}é?zl,cl < Apg1 <o <A, <o}y, diag(L) =d1
- Cospectral graph

Sy ={\i = f(\), Vi€ [1,p]}

Kumar et al., “Structured Graph Learning via Laplacian Spectral Constraints”, NeurlPS, 2019
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lllustrative example

Animals dataset
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+ Imposing components leads to more semantically meaningful graphs



A.2.2. Learning product graphs

-+ Cartesian product graphs are useful to explain complex relationships
In multi-domain graph data

A A Ao D
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exact decomposition approximate decomposition

learning graph factors with rank constraints

inimi tr(LpS tr(LoS h(Lp,L
B, TS )+ haSa) +hlLr. Lo)

subject to  tr(Lp) = P, tr(Lg) = Q,
rank(Lp) = Rp and rank(Lg) = Rg

Kadambari and Chepuri, “Product graph learning from multi-domain data with sparsity and rank constraints,” arXiv, 2020.
47



Multi-view object clustering

COIL-20 dataset:
- 10 objects mm)p Object graph of 10 nodes
- Rotation every 10 degrees: 36 views/image # View graph with 36 nodes

View graph and its connected components
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GSP for enhancing interpretability

A. Domain specific: Extract relevant knowledge from data
- A.1. Signal analysis: Use GSP to reveal interpretable features
- A.2. Structure inference: Use GSP to learn interpretable structures

B. Model specific: Improve our understanding of ML models
- B.1. Understanding the expressive power of GNNs
- B.2. A posteriori interpretation of DNNs
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GSP for enhancing interpretability

B. Model specific: Improve our understanding of ML models
- B.1. Understanding the expressive power of GNNs
- B.2. A posteriori interpretation of DNNs
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B.1. A GSP perspective on the expressive power of
GNNs

- A spectral analysis of GNNs provides a complementary point of view
to classical Weisfeiler-Lehman (WL) test

*  One step further in explaining GNNs

- A common framework for spectral and spatial GNNs

HOD = o3 0@ HOW )

T

Convolution support

- The frequency profile is defined as:

D, (N\) = diag L (UTC®U)

Eigenvectors of the Laplacian
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Frequency support of well known architectures

d,(N\) = diag L (UTC®U)

Table 1: Summary of the studied GNN models.

Design Support Type ~ Convolution Matrix Frequency Response

MLP Spectral Fixed cC=1 . d(A) =1

GCN Spatial Fixed C=D"%°AD7%° ®(A)~1—-Ap/(p+1)

GIN Spatial  Trainable ~ C = A+ (1 + )l S(N\) ~ P (% +1- A)

GAT Spatial Trainable C) = evu/ S hesrv) v,k NA
ct) =1 d1(A) =1

CayleyNet”  Spectral Trainable C®?") = Re(p(hL)") ®5,-(A) = cos(rf(hA))
Cc@mt1) = Re(ip(hL)") P2r41(A) = —sin(r6(hA))
C(l) — I q)l(A)zl

ChebNet Spectral Fixed C®?) = 2L/ Amax — I ®2(A) = 22X /Amax — 1

c) —o20@)(s—1) _ 0(s=2) Pg(A) =2P2(AN)Ps_1(A) — Ps_2(N)

“p(z) = (z —il)/(z + i)

Balcilar et al., Analyzing the expressive power of graph neural networks in a spectral perspective, ICLR 2021
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Frequency profiles of known GNNs
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B.2. A posteriori interpretation of learning architectures

Hypothesis: Identify relative change in model’s prediction

Model Analysis and Reasoning using Graph-based Interpretability:
- Construct a domain (for interpretability) graph

- Define an explanation function at the nodes of the graph

- Choose the influential nodes by applying a high pass graph filtering

- Generate explanations by determining influential nodes on the graph

: : Graph Function Influence
Domain Design g g : .. . :
=EET | D
B = =

Identify incorrectly
labeled samples
from the training set

Influence

e.g. Local label Sample ID
agreement
G = (V,E, A) f(G) I(i) = |If — Afl3,VieV

Anirudh et al., MARGIN: Uncovering Deep Neural Networks Using Graph Signal Analysis, Frontiers in Big Data, 2021 53



Explanations for image classification (l)

- Nodes of the graph: superpixels from images
- @Graph edges: relative importance of each superpixel

Explanation: ratio between size of superpixel corresponding to the
node and the size of the largest superpixel

Dense Saliency Map MARGIN Scores for Explanation
Sparsity function
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Explanations for image classification (ll)
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Interpreting decision boundaries

Use MARGIN to identify samples that are likely to be misclassified
- Nodes: embeddings of each sample

- Edges: similarity between embeddings

- Explanation function: local label agreement

(b) Most confusing examples for a CNN trained on MNIST for the 0/6 digit classes
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Take home message:
GSP for interpretability

Interpreting the data

- Graph-based transforms reveal new and interpretable features

- Integrating them into a machine learning framework leads to more accurate and
iInterpretable models

- Imposing application-related constraints in topology inference algorithms
generates interpretable structures

Interpreting the models

- Analysing the spectral behaviour of GNNs provides insights on their expressive
power

-  GSP operators contribute towards the a posteriori interpretation of learning
architectures
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Summary

GSP has shown promising results towards improving different aspects
of classical ML algorithms

- Robustness to noisy and limited data
- Robustness to topological noise
- Data and model interpretability

Presented works are indicative only and non-exhaustive

Plenty of room for exciting research!
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