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Networks are pervasive

geographical network

a~a '\
1 \

social network brain network

graphs provide mathematical representation of networks
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The field of network science

community
detection

network
centrality

Regular Small-world

random graph
models

Increasing randomness

from edge attributes to node attributes
from graphs to graph-structured data

Watts and Strogatz, “Collective dynamics of ‘small-world" networks,” Nature, 1998.
Newman, “Networks: An introduction,” Oxford University Press, 2010. 3/57



Graph-structured data are pervasive

e nodes
- geographical regions

Mean Yearly Temperature (degC) 1981-2010

: e edges
- geographical proximity between
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regions

e signal
- temperature records in these
regions
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Graph-structured data are pervasive

| e nodes

e edges
- road connections

..... _' e signal
N\ POy - traffic congestion at junctions
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Graph-structured data are pervasive

o] _J -u- e nodes
v o \ \ . _ individuals
9 /\\ Y.\ g — i o edges
\ /\ / \ - friendship between individuals
ﬁiﬂa /\ ' e signal
(i oo - political view
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Graph-structured data are pervasive

e nodes
- brain regions

e edges
- structural connectivity between
brain regions
e signal
- blood-oxygen-level-dependent
(BOLD) time series

Richiardi et al., “Machine learning with brain graphs,” IEEE SPM, 2013. 7/57



Graph-structured data are pervasive

E@B
SSNLF " - e
o B e e nodes
G@ERQ%” ¥ . ad .
o - companies
e _aos . omFa
e o "%‘?‘% e o® o e edges
voe e%e w - co-occurrence of companies in
e ) e ® financial news
PG . -"\ Sk
¢ce 081 gge o e signal
o ? o® _ [ .
® o o - stock prices of these
Loe® g mpani
o ® oo ., companies
Fmcc ®

Wan et al., “Sentiment correlation in financial news networks and associated market movements,” Scientific Reports, 2021. 8/57



Graph-structured data are pervasive

e nodes
- pixels

e edges

- spatial proximity between pixels
e signal

- pixel values
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Learning with graph-structured data
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(g% Q\ no condition?

(supervised) graph-level classification
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Learning with graph-structured data

(semi-supervised) node-wise classification
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Learning with graph-structured data
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(unsupervised) clustering
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Learning with graph-structured data
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inferring graph topology from data
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Graph-based machine learning

This tutorial:

e graph-structured data are graph signals

e how graph signal processing brings

unique contribution to (graph-based) ML?

Graph-based ML Tasks Challenges
4 ) ( ) a )
f (g X) Supervised Exploiting
’ learning structure
Unsupervised Efficiency &
._&;A ' learning ' Robustness
Reinforcement Model
g X learning Interpretability
\_ ), \_ ), -
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Outline
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Graphs and graph Laplacian

O OO OO koo

weighted and undirected graph:

G =1{V,&}

D = diag(d(vl)a T 7d(vN))
L=D—-—W equivalent to G!

Loorm = D™ 2(D —W)D™ 2
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symmetric

off-diagonal entries non-positive

rows sum up to zero
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Graphs and graph Laplacian

graph signal f: VYV — R

1 -1 0 0 0O 0 0 O f(1) f(1) 1 -1 0 0 0 0 0 O f(1)
{—1 3 -1 0 0 -1 0 0\ {f(2)\ (f(2)\ (—1 3 -1 0 0 -1 0 0\ (f(2)\
0 -1 4 -1 0 -1 -1 0 f(3) f(3) 0 -1 4 -1 0 -1 -1 0 f(3)
0 0 -1 2 -1 0 0 0 f(4) f(4) 0 0 -1 2 -1 0 0 O f(4)
0 0 0 -1 2 -1 0 0 f(5) f(5) 0 0 0 -1 2 -1 0 0 f(5)
0 -1 -1 0 -1 4 -1 0 1(6) f(6) 0 -1 -1 0 -1 4 -1 0 f(6)
0o 0 -1 0 0 -1 3 -1 f(7) f(7) 0o 0 -1 0 0 -1 3 -1 f(7)
\o 0 0 0 0 o0 -1 1/ Kf(S)) \f(S)) \0 0 0 0 0 0 -1 1) \I(S)/

N . . T . . \\ 2

Lf(i) =Y Wi(£()— £(4)) JLf =g > Wi (£(i) — £(5))

7=1 2,7=1

a measure of “smoothness”’

Zhou and Scholkopf, “A regularization framework for learning from graph data,” ICML Workshop, 2004. 17/57



Graphs and graph Laplacian

e L has a complete set of orthonormal eigenvectors: L = yAx’

- Xg__

T
L — Xy — -

XT

Eigenvalues are usually sorted increasingly: 0 = A\g < A1 < ... < Any_1
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raph Fourier transform
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Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 19/57



Graph Fourier transform

e Graph Fourier transform -‘ ‘ - T‘

A

f(g):<X£7f>i Xo 0 Xy S
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Classical frequency filtering

Classical FT:

fw)

FT

[y t@de f@) =5 [ fued
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IFT

=)

f*g
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Graph spectral filtering

N
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Graph transform/dictionary design

e Transforms and dictionaries can be designed through graph spectral
filtering: Functions of graph Laplacian!

GFT

T

X' f

g(A)
=)

gA)X" f

IGFT

=)

Xg(A)x

SR IS R AR

G(L): function of L!

e Important properties can be achieved by properly defining g(L) , such

as localisation of atoms (more on this later)

e (Closely related to kernels and regularisation on graphs

Smola and Kondor, “Kernels and regularization on graphs,” COLT, 2003.
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A practical example

GFT g(A) IGFT

oo TE AT | (A f

AR RIS N

g(L): function of L!

problem: we observe a noisy graph signal f = yo +7 and wish to recover g

— data fitting term

y =T +yL) 7 f = x(1+yA) X f remove noise by low-pass filtering

“smoothness’ assumption

~ in graph spectral domain!
g(L)
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Graph transform/dictionary design

GFT g(A) IGFT
= s = -

§(L) : function of L!

Graph-based
regularisation

Graph filters
& transforms

Learning models
on graphs

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 25/57



GSP for machine learning

~

\—

Exploiting
structure

Efficiency &
Robustness

Model
Interpretability

~

_J

Graph-based Graph filters GSP-related
regularisation & transforms learning models

e enable convolution & hierarchical modelling on graphs
e improve efficiency & robustness of (graph-based) ML models

e interpret data structure & learning models on graphs

Dong et al., “Graph signal processing for machine learning,” IEEE SPM, 2020.
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Outline

e Brief introduction to graph signal processing (GSP)

e Challenge |: GSP for exploiting data structure
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GSP for exploiting data structure

e GSP enables definition of graph convolution

e GSP enriches design of graph convolutional models

o GSP facilitates hierarchical modelling on graphs

28/57



GSP for defining convolution
on graphs
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Convolution on graphs

classical convolution convolution on graphs
time domain : spatial (node) domain
e = [ fe-ngmdr F o frg= g =g(D)f
frequency domain i graph spectral domain
. -
(fxg)w) = f(w) - §(w) L (FrN) = (X Heg))
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Convolution on graphs

Frg=xgN)x"f=9(L)f

4

learning a non-parametric filter:

0.6
0.4 4

Go(A) = diag(9), 0 € RN - 0,

0.0 4

- convolution expressed in the graph spectral domain

- no localisation in the spatial (node) domain

Bruna et al., “Spectral networks and deep locally connected networks on graphs,” ICLR, 2014. 31/57



Convolution on graphs

Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of Laplacian

K K
Go(N) =Y 0N, 0 € REH! —> Go(L) = Zej@
=0

j=0

what do powers of graph Laplacian capture?

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 32/57



Powers of graph Laplacian

L* defines the k-neighborhood
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Localization: dg(v;, v;) > K implies (LX); =0 (slide by Michaél Deferrard)

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 33/57



Convolution on graphs

frg=xaAN)x"f=3a(L)f

\ 4

parametric filter as polynomial of Laplacian

K K K
Go(A) = 0;M, 6 € REH! —> go(L) =Y 0,L7 = 6,T;(L)
Jj=0 j=0 7=0

- convolution is expressed in the
graph spectral domain

- localisation within K-hop
neighbourhood

- Chebyshev approximation using
L=2L/An_1—1

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 34/57



Convolution on graphs

fg=x3(N)x"f=39(L)f

4

simplified polynomial K=1
K . K ~ )‘N—l ~ 2
Go(L) =Y 0;L7 => 6,T;(L) o) =0oI—6,(D WD %)
§=0 §=0

(localisation within 1-hop neighbourhood)

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017.
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Convolution on graphs - Remarks

e Convolution is defined via the graph spectral domain...
frg=xg(M)x"f=4L)f

e ...but can be implemented in the spatial (node) domain

simple neighbourhood averaging

A — a(D WDz
y=90(L)f =a(D"2WD"2)f  wmp in Kipf and Welling 2017

36/57



Convolution on graphs - Remarks

e Convolution in classical signal processing relies on the shift operator

Fr9)0) = [ [[ESDp(r)ar

e Notion of shift by a graph shift operator (e.g., adjacency/Laplacian matrix)

. =) 9(5)f=’§)9k.

- spatial definition of convolution that resembles an FIR filter (on graphs)

- motivated from a spatial perspective, but has a spectral interpretation
via eigendecomposition of S

Ortega et al., “Graph signal processing,” Proceedings of the IEEE, 2018.
Cheung et al., “Graph signal processing and deep learning,” IEEE SPM, 2020.
Gama et al., “Graphs, convolutions, and neural networks,” IEEE SPM, 2020. 37/57



Convolution on graphs - Remarks

e Convolution can also be interpreted as a weighted summation

Fr)) = [ s gl

e Spatial generalisation of convolution in non-Euclidean domain

D@)f = [ r(o' ilEEh D<v>f=zvjf(v’)-

- weighting function u(v,v") determines relative importance of neighbours

Monti et al., “Geometric deep learning on graphs and manifolds using mixture model CNNs,” CVPR, 2017.
Walker and Glocker, “Graph convolutional Gaussian processes,” ICML, 2019.
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Graph convolutional networks

e Convolution on graphs leads to graph convolutional networks (GCNs)...

Hidden layer Hidden layer
s ' s ~N
® i)
® ® ® ®
Input ® o ® e Output

by
#
o)
i
Y

HD — 4 ( AH(”W(”)

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 39/57



Graph neural networks

e ...and more generally graph neural networks (GNNs)

GNN Spectral CNN PATCHY-SAN GCN GraphSAGE GAT CayleyNet GIN
Gori et al. Bruna et al. Niepert et al. Kipf and Welling Hamilton et al. Velickovi¢ et al. Levie et al. Xu et al.

2005 2009 2015 2016 2016 2016 2017 2017 2017 2017 2018 2018 2019 2019 2019 2019

GNN Gated GNN ChebNet MPNN MoNet GN CNNs on graphs SGN
Scarselli et al. Li et al. Defferrard et al. Gilmer et al. Monti et al. Battaglia et al. Gama et al. Wu et al.

- spatial vs spectral designs

Balcilar et al., “Analyzing the expressive power of graph neural networks in a spectral perspective,” ICLR, 2021.
Velickovi¢, “Theoretical foundations of graph neural networks,” https://petar-v.com/talks/GNN-Wednesday.pdf, 2021. 40/57



GSP for enriching graph
convolutional models
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Expressive power of GNNs

Magnitude
Magnitude

Magnitude

Darap,,
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C Org Ej

Ejg, o
Seny, gy,

i
e C; geny..
S - 1;(,5001‘ (1111(,5

(a) GCN frequency profiles (b) GIN on 1D (¢c) GIN on CiteSeer

e convolutional layers in various GNN models can be understood as
graph filters of different spectral profiles

e focusing on low-frequency information may lead to over-smoothing

Balcilar et al., “Analyzing the expressive power of graph neural networks in a spectral perspective,” ICLR, 2021.
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Beyond low-frequency information

(a) Input (b) Input
Low-pass L Low-_pgs_s_ — Band-pass
: 1 : :- | | |
Ll | VA | u
[ | I
H' =o(aH'0) + ¥ 1 1 1 L | H' -0 (UH""O)
|
SN O
I | | 1
-—— J_ - L e e '
Output Output
GCN Scattering GCN

e combine low-pass operations based on GCN with band-pass operations
based on geometric scattering (Min et al. 2020)

e combine low-pass and high-pass filtering (Bo et al. 2021)

Min et al., “Scattering GCN: Overcoming oversmoothness in graph convolutional networks,” NeurlPS, 2020.
Bo et al., “Beyond low-frequency information in graph convolutional networks,” AAAI, 2021.
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Beyond low-frequency information

—
[ {re, Vi Jx = Lanczos(L) Long Range Spectral Filtering
e.g., 1 ={20,50,,..} eg.,1=1{20,50,,..}

@ 5 S
T Iy I I T T Iy Iz I T
L; = Zf,-(rk T sy WiVic L; = fi s D Vievi

k=1 k=1

(Hi=0(ZiXWi) Vie[|l|]J [Hi=0(ziXWi) Vi€[|l|]]

Long Range Spectral Filtering

= Enc@ = EncatH = (Y= oupu) |

Short Range Spectral Filtering Short Range Spectral Filtering
eg,S=1{1,2..} eg,S=1{1,2..}
[ Hi = O'(LSiXWi) Vi € [lSl] ] [ Hi = O'(LSiXWi) Vi € [lSl] ]
Layer 1 Layer 2

e combine short-range and long-range filtering

e long-range filtering facilitated by low-rank approximation to affinity
matrix based on Lanczos algorithm

e learnable spectral filters based on the approximation

Liao et al., “LanczosNet: Multi-scale deep graph convolutional networks,” ICLR, 2019. 44 /57



Adaptive filters

l Stacked Filter

7 B (] [ O] 1O U Y
X W- o) » |OPO e e e »OpO » WV >
s
| |
T T | = )
1 ]
\ \-o'
D Constant Tensor fA) &
[ Variable Tensor
O Operator J > )
T2 Loss @ \ 0 1 \
4— Backprop
P [Forward Single Filter Stacked Filter

o stack graph filters with learnable filter parameters to build highly
adaptive model

NT et al., “Adaptive stacked graph filter,” https://openreview.net/forum?id=6VPI9khIMz, 2020. 45/57



Adaptive filters

Spectral Spatial -

- (1= 0ukd) |-
4 Ag=1 :'

—1 K

(1- ®2,k;fi)§i'
k=1 1

—K i

I [ L0 Gt
mcoommes Conv |~ K ~ ‘

I . - fK(Airwj) = (1- ¢j,k/1i) K il

---- k=1 L (1 _ 04!(2)«
H© = X € RNXF j€{12,..,F} L Ly g

o stack learnable filters across network layers (removing nonlinearities at
second and subsequence layers)

e |earn separate adaptive filter for each feature channel

Dong et al., “Graph neural networks with adaptive frequency response filter,” arXiv, 2021. 46/57



local basis filters

Wavelet Basis, scaling = 3 Wavelet Basis, scaling =5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

e replace Fourier basis with spectral graph wavelet basis to achieve
localised convolution

Xu et al., “Graph wavelet neural network,” ICLR, 20109. 47 /57



local basis filters

_3 -
3
2
- 3_.
- 1 -
_ A Ao 1 11
LUZD—AOH U \ 1

e learnable local filters where localisation is imposed in spatial domain

e regularisation by local graph Laplacian to improve robustness

Cheng et al., “Graph convolution with low-rank learnable local filters,” ICLR, 2021.
Isufi et al., “EdgeNets: Edge varying graph neural networks,” arXiv, 2020. 48/57



Graph convolutional Gaussian processes

SERRVANS

(a) Gaussian process on R” (b) Gaussian process over V (c) Gaussian process over £

e graph convolution enriches design of kernels associated with
Gaussian processes (GPs)

o different formulations of convolution lead to different GP designs

Opolka and Lio, “Graph convolutional Gaussian processes for link prediction,” ICML Workshop, 2020.
Walker and Glocker, “Graph convolutional Gaussian processes,” ICML, 2019.
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GSP for hierarchical modelling
on graphs
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Hierarchical modelling on graphs

e hierarchical modelling in GNNs
- increase size of filter or number of layers
- graph pooling (downsampling)

e multiscale transforms (e.g., wavelets)
can be natural tools for this

51/57



Wavelets on graphs
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spatial graph wavelets

Hammond et al., “Wavelets on graphs via spectral graph theory,” ACHA, 2011.
Gao et al., “Geometric scattering for graph data analysis,” ICML, 2019.
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Spectral graph wavelets for multiscale clustering
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e spectral graph wavelets with different scales centred at node u
provides an “egocentered view' of the graph seen from u

Tremblay and Borgnat, “Graph wavelets for multiscale community mining,” IEEE TSP, 2014.

similarity between nodes can be built at different levels to facilitate
multiscale clustering

53/57



Haar-like wavelets for graph learning

O O
g (0) O Reorder
Basis N Extend
(1) O Construction []D Reorder I:I]

-_—7

G OF T Sorsiucion.
\ Extend
g (2) Reorder |:|:|
O —

coarse-grained graph chain orthogonal basis construction

e given a coarse-grained graph chain an orthogonal basis is constructed

e this can then be used for both graph convolution and hierarchical
graph pooling

Wang et al., “Haar graph pooling,” ICML, 2020.

Zheng et al., “MathNet: Haar-like wavelet multiresolution analysis for graph representation and learning,” arXiv, 2021.
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GSP for exploiting data structure - Summary

e GSP enables various definitions of convolution on graphs

e graph filters enrich design of convolutional learning models
on graphs (both GNNs and graph-based GPs)

e multiscale transforms (in particular wavelets) facilitate
hierarchical modelling on graphs
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