# Graph Signal Processing for Machine Learning A Review and New Perspectives

Xiaowen Dong, Dorina Thanou, Laura Toni, Michael Bronstein, Pascal Frossard

ICASSP Tutorial, June 2021









## Networks are pervasive



geographical network



social network



traffic network



brain network

graphs provide mathematical representation of networks

#### The field of network science



from edge attributes to node attributes from graphs to graph-structured data



- nodes
  - geographical regions
- edges
  - geographical proximity between regions
- signal
  - temperature records in these regions



- nodes
  - road junctions
- edges
  - road connections
- signal
  - traffic congestion at junctions



- nodes
  - individuals
- edges
  - friendship between individuals
- signal
  - political view



- nodes
  - brain regions
- edges
  - structural connectivity between brain regions
- signal
  - blood-oxygen-level-dependent (BOLD) time series



- nodes
  - companies
- edges
  - co-occurrence of companies in financial news
- signal
  - stock prices of these companies



- nodes
  - pixels
- edges
  - spatial proximity between pixels
- signal
  - pixel values



(supervised) graph-level classification



(semi-supervised) node-wise classification



(unsupervised) clustering



inferring graph topology from data

#### Graph-based machine learning



#### This tutorial:

- graph-structured data are graph signals
- how graph signal processing brings unique contribution to (graph-based) ML?



#### Outline

- Brief introduction to graph signal processing (GSP)
- Challenge I: GSP for exploiting data structure
- Challenge II: GSP for improving efficiency and robustness
- Challenge III: GSP for enhancing model interpretability
- Applications
- Summary, open challenges, and new perspectives

#### Graphs and graph Laplacian



weighted and undirected graph:

$$\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$$
 $D = \operatorname{diag}(d(v_1), \cdots, d(v_N))$ 
 $L = D - W$  equivalent to G!
 $L_{\operatorname{norm}} = D^{-\frac{1}{2}}(D - W)D^{-\frac{1}{2}}$ 

#### Graphs and graph Laplacian



graph signal  $f:\mathcal{V} 
ightarrow \mathbb{R}$ 

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 & -1 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 & -1 & 4 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 3 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} f(1) \\ f(2) \\ f(3) \\ f(4) \\ f(5) \\ f(6) \\ f(7) \\ f(8) \end{pmatrix}$$

$$\begin{pmatrix} f(1) \\ f(2) \\ f(3) \\ f(4) \\ f(5) \\ f(6) \\ f(7) \\ f(8) \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 & -1 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & -1 & 4 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 3 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} f(1) \\ f(2) \\ f(3) \\ f(4) \\ f(5) \\ f(6) \\ f(7) \\ f(8) \end{pmatrix}$$

$$Lf(i) = \sum_{j=1}^{N} W_{ij}(f(i) - f(j))$$

$$f^{T}Lf = \frac{1}{2} \sum_{i,j=1}^{N} W_{ij} (f(i) - f(j))^{2}$$

a measure of "smoothness"

#### Graphs and graph Laplacian

• L has a complete set of orthonormal eigenvectors:  $L = \chi \Lambda \chi^T$ 

$$L = \begin{bmatrix} 1 & & & 1 \\ \chi_0 & \cdots & \chi_{N-1} \end{bmatrix} \begin{bmatrix} \lambda_0 & & 0 \\ & \ddots & \\ 0 & & \lambda_{N-1} \end{bmatrix} \begin{bmatrix} & & & \chi_0^T & \\ & & \ddots & \\ & & & \chi_{N-1} & \end{bmatrix}$$

$$\chi \qquad \qquad \Lambda \qquad \qquad \chi^T$$

• Eigenvalues are usually sorted increasingly:  $0 = \lambda_0 < \lambda_1 \leq \ldots \leq \lambda_{N-1}$ 

#### Graph Fourier transform



low frequency

high frequency

$$L = \chi \Lambda \chi^T$$

$$L = \chi \Lambda \chi^T \quad \chi_0^T L \chi_0 = \lambda_0 = 0$$

$$\chi_{50}^T L \chi_{50} = \lambda_{50}$$

#### graph Fourier transform:

$$\hat{f}(\ell) = \langle \chi_{\ell}, f \rangle : \begin{bmatrix} \chi_0 & \cdots & \chi_{N-1} \end{bmatrix}^T \\ \downarrow & \downarrow & \downarrow \\ \lambda_0 & \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 & \cdots & \lambda_{N-1} \\ \text{low frequency} & \text{high frequency} \end{bmatrix}$$

#### Graph Fourier transform

Graph Fourier transform



## Classical frequency filtering

Classical FT: 
$$\hat{f}(\omega) = \int (e^{j\omega x})^* f(x) dx$$
  $f(x) = \frac{1}{2\pi} \int \hat{f}(\omega) e^{j\omega x} d\omega$ 



#### Graph spectral filtering

$$\mathsf{GFT:} \quad \hat{f}(\ell) = \langle \chi_\ell, f \rangle = \sum_{i=1}^N \chi_\ell^*(i) f(i) \qquad f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_\ell(i)$$



0.2

## Graph transform/dictionary design

 Transforms and dictionaries can be designed through graph spectral filtering: Functions of graph Laplacian!



- Important properties can be achieved by properly defining  $\hat{g}(L)$  , such as localisation of atoms (more on this later)
- Closely related to kernels and regularisation on graphs

#### A practical example



problem: we observe a noisy graph signal  $f = y_0 + \eta$  and wish to recover  $y_0$ 



"smoothness" assumption



remove noise by low-pass filtering in graph spectral domain!

# Graph transform/dictionary design

smoothing/low-pass filtering: 
$$\hat{g}(L) = (I + \gamma L)^{-1} = \chi (I + \gamma \Lambda)^{-1} \chi^T$$

**Graph-based** regularisation

windowed kernel: windowed graph Fourier transform shifted and dilated band-pass filters: spectral graph wavelets  $\hat{g}(sL)$ 

Graph filters & transforms

adapted kernels: learn values of  $\,\hat{g}(L)\,$  directly from data

parametric kernel: 
$$\hat{g}(L) = \sum_{k=0}^K \theta_j L^k = \chi(\sum_{k=0}^K \theta_j \Lambda^k) \chi^T$$

Learning models on graphs

## GSP for machine learning

Exploiting structure

Efficiency & Robustness

Model Interpretability **Graph-based** regularisation

Graph filters & transforms

**GSP-related**learning models

- enable convolution & hierarchical modelling on graphs
- improve efficiency & robustness of (graph-based) ML models
- interpret data structure & learning models on graphs

#### Outline

- Brief introduction to graph signal processing (GSP)
- Challenge I: GSP for exploiting data structure
- Challenge II: GSP for improving efficiency and robustness
- Challenge III: GSP for enhancing model interpretability
- Applications
- Summary, open challenges, and new perspectives

## GSP for exploiting data structure



- GSP enables definition of graph convolution
- GSP enriches design of graph convolutional models
- GSP facilitates hierarchical modelling on graphs

# GSP for defining convolution on graphs

#### classical convolution

#### time domain

$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$

frequency domain

$$\widehat{(f * g)}(\omega) = \widehat{f}(\omega) \cdot \widehat{g}(\omega)$$

#### convolution on graphs

spatial (node) domain

$$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$



graph spectral domain

$$\widehat{(f*g)}(\lambda) = ((\chi^T f) \circ \hat{g})(\lambda)$$

$$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$



learning a non-parametric filter:

$$\hat{g}_{\theta}(\Lambda) = \operatorname{diag}(\theta), \ \theta \in \mathbb{R}^{N}$$



- convolution expressed in the graph spectral domain
- no localisation in the spatial (node) domain

$$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$



parametric filter as polynomial of Laplacian

$$\hat{g}_{\theta}(\lambda) = \sum_{j=0}^{K} \theta_{j} \lambda^{j}, \ \theta \in \mathbb{R}^{K+1}$$

$$\hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_{j} L^{j}$$



$$\hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_{j} L^{j}$$

what do powers of graph Laplacian capture?

## Powers of graph Laplacian

#### $L^k$ defines the k-neighborhood



Localization:  $d_{\mathcal{G}}(v_i, v_i) > K$  implies  $(L^K)_{ij} = 0$ 

(slide by Michaël Deferrard)

$$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$



parametric filter as polynomial of Laplacian

$$\hat{g}_{\theta}(\lambda) = \sum_{j=0}^{K} \theta_{j} \lambda^{j}, \ \theta \in \mathbb{R}^{K+1}$$



$$\hat{g}_{\theta}(\lambda) = \sum_{j=0}^{K} \theta_{j} \lambda^{j}, \ \theta \in \mathbb{R}^{K+1}$$

$$\hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_{j} L^{j} \Rightarrow \sum_{j=0}^{K} \theta_{j} T_{j}(\tilde{L})$$



- convolution is expressed in the graph spectral domain
- localisation within K-hop neighbourhood
- Chebyshev approximation using  $\tilde{L} = 2L/\lambda_{N-1} - I$

$$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$



simplified polynomial

$$\hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_{j} L^{j} \Rightarrow \sum_{j=0}^{K} \theta_{j} T_{j}(\tilde{L})$$



(localisation within 1-hop neighbourhood)



$$\alpha = \theta_0 = -\theta_1$$

$$= \alpha (I + D^{-\frac{1}{2}} W D^{-\frac{1}{2}})$$

renormalisation

$$\Rightarrow \alpha(\tilde{D}^{-\frac{1}{2}}\tilde{W}\tilde{D}^{-\frac{1}{2}})$$

#### Convolution on graphs - Remarks

Convolution is defined via the graph spectral domain...

$$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$

...but can be implemented in the spatial (node) domain

$$y = \hat{g}_{\theta}(L)f = \alpha(\tilde{D}^{-\frac{1}{2}}\tilde{W}\tilde{D}^{-\frac{1}{2}})f$$



simple neighbourhood averaging in Kipf and Welling 2017

## Convolution on graphs - Remarks

Convolution in classical signal processing relies on the shift operator

$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$

Notion of shift by a graph shift operator (e.g., adjacency/Laplacian matrix)

$$g(S)f = \sum_{k=0}^{K} \theta_k S^k f$$

- spatial definition of convolution that resembles an FIR filter (on graphs)
- motivated from a spatial perspective, but has a spectral interpretation via eigendecomposition of  ${\cal S}$

## Convolution on graphs - Remarks

Convolution can also be interpreted as a weighted summation

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau) g(t - \tau) d\tau$$

Spatial generalisation of convolution in non-Euclidean domain

$$D(x)f = \int_{\mathcal{X}} f(x') u(x,x') dx'$$
  $D(v)f = \sum_{\mathcal{V}} f(v') u(v,v')$ 

- weighting function u(v,v') determines relative importance of neighbours

## Graph convolutional networks

Input

 $\mathbf{X} = \mathbf{H}^{(0)}$ 

• Convolution on graphs leads to graph convolutional networks (GCNs)...



$$\mathbf{H}^{(l+1)} = \sigma \left( \hat{\mathbf{A}} \mathbf{H}^{(l)} \mathbf{W}^{(l)} \right)$$

## Graph neural networks

...and more generally graph neural networks (GNNs)



spatial vs spectral designs

## GSP for enriching graph convolutional models

## Expressive power of GNNs



- convolutional layers in various GNN models can be understood as graph filters of different spectral profiles
- focusing on low-frequency information may lead to over-smoothing

## Beyond low-frequency information



- combine low-pass operations based on GCN with band-pass operations based on geometric scattering (Min et al. 2020)
- combine low-pass and high-pass filtering (Bo et al. 2021)

## Beyond low-frequency information



- combine short-range and long-range filtering
- long-range filtering facilitated by low-rank approximation to affinity matrix based on Lanczos algorithm
- learnable spectral filters based on the approximation

## Adaptive filters



 stack graph filters with learnable filter parameters to build highly adaptive model

## Adaptive filters



- stack learnable filters across network layers (removing nonlinearities at second and subsequence layers)
- learn separate adaptive filter for each feature channel

### local basis filters



replace Fourier basis with spectral graph wavelet basis to achieve localised convolution

#### local basis filters



- learnable local filters where localisation is imposed in spatial domain
- regularisation by local graph Laplacian to improve robustness

## Graph convolutional Gaussian processes



- graph convolution enriches design of kernels associated with Gaussian processes (GPs)
- different formulations of convolution lead to different GP designs

# GSP for hierarchical modelling on graphs

## Hierarchical modelling on graphs



## Wavelets on graphs



Hammond et al., "Wavelets on graphs via spectral graph theory," ACHA, 2011. Gao et al., "Geometric scattering for graph data analysis," ICML, 2019.

## Spectral graph wavelets for multiscale clustering



- spectral graph wavelets with different scales centred at node  ${\bf u}$  provides an "egocentered view" of the graph seen from  ${\bf u}$
- similarity between nodes can be built at different levels to facilitate multiscale clustering

## Haar-like wavelets for graph learning



coarse-grained graph chain

orthogonal basis construction

- given a coarse-grained graph chain an orthogonal basis is constructed
- this can then be used for both graph convolution and hierarchical graph pooling

## GSP for exploiting data structure - Summary



- GSP enables various definitions of convolution on graphs
- graph filters enrich design of convolutional learning models on graphs (both GNNs and graph-based GPs)
- multiscale transforms (in particular wavelets) facilitate hierarchical modelling on graphs

#### References

- Shuman et al., "The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98, May 2013.
- Sandryhaila and Moura, "Discrete signal processing on graphs," IEEE Transactions on Signal Processing, vol. 61, no. 7, pp. 1644-1656, April 2013.
- Ortega et al., "Graph signal processing: Overview, challenges, and applications," Proceedings of the IEEE, vol. 106, no. 5, pp. 808-828, May 2018.
- Dong et al., "Graph signal processing for machine learning: A review and new perspectives," IEEE Signal Processing Magazine, vol. 37, no. 6, pp. 117-127, November 2020.
- Mateos et al., "Connecting the dots: Identifying network structure via graph signal processing," IEEE Signal Processing Magazine, vol. 36, no. 3, pp. 16-43, May 2019.
- Dong et al., "Learning graphs from data: A signal representation perspective," IEEE Signal Processing Magazine, vol. 36, no. 3, pp. 44-63, May 2019.
- Gama et al., "Graphs, convolutions, and neural networks: From graph filters to graph neural networks," IEEE Signal Processing Magazine, vol. 37, no. 6, pp. 128-138, November 2020.
- Cheung et al., "Graph signal processing and deep learning: Convolution, pooling, and topology," IEEE Signal Processing Magazine, vol. 37, no. 6, pp. 139-149, November 2020.
- Ruiz et al., "Graph neural networks: Architectures, stability, and transferability," Proceedings of the IEEE, vol. 109, no. 5, pp. 660-682, May 2021.

## Image credit

- icons made by Freepik from <u>www.flaticon.com</u>
- https://cityu-bioinformatics.netlify.app/too2/new\_pheno/brain/
- <a href="https://stock.adobe.com/images/polygonal-mesh-map-of-switzerland-in-black-color-abstract-mesh-lines-triangles-and-points-with-map-of-switzerland-wire-frame-2d-polygonal-line-network-in-vector-format/236496556">https://stock.adobe.com/images/polygonal-mesh-map-of-switzerland-in-black-color-abstract-mesh-lines-triangles-and-points-with-map-of-switzerland-wire-frame-2d-polygonal-line-network-in-vector-format/236496556</a>
- https://commons.wikimedia.org/wiki/File:6\_centrality\_measures.png
- https://en.wikipedia.org/wiki/File:Zachary%27s\_karate\_club.png
- <a href="https://www.meteoswiss.admin.ch/home/climate/swiss-climate-in-detail/monthly-and-annual-maps.html">https://www.meteoswiss.admin.ch/home/climate/swiss-climate-in-detail/monthly-and-annual-maps.html</a>
- https://commons.wikimedia.org/wiki/File:Chebyshev Polynomials of the First Kind.svg