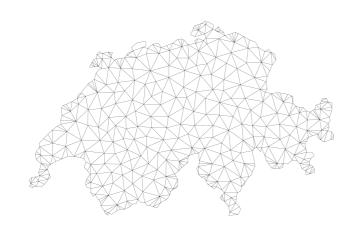
Graph Signal Processing for Machine Learning A Review and New Perspectives

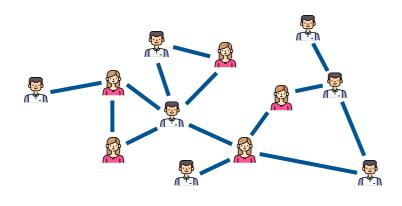
Xiaowen Dong, Dorina Thanou, Laura Toni, Michael Bronstein, Pascal Frossard

ICASSP Tutorial, June 2021

Networks are pervasive



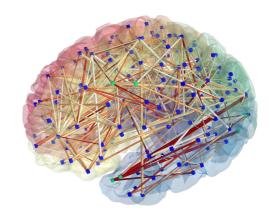
geographical network



social network



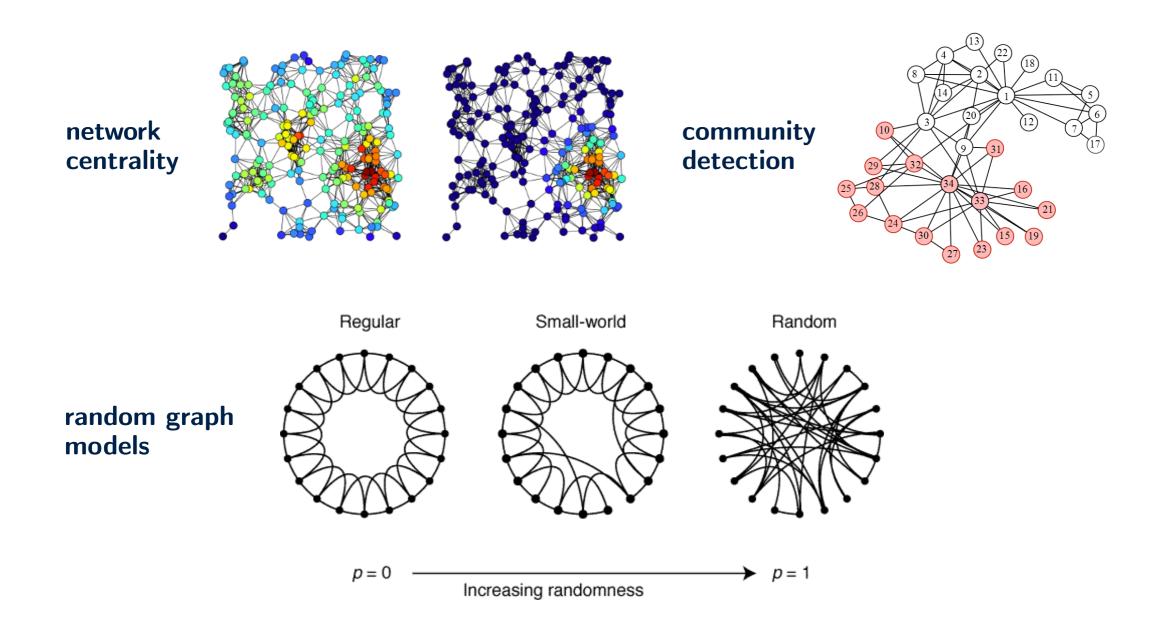
traffic network



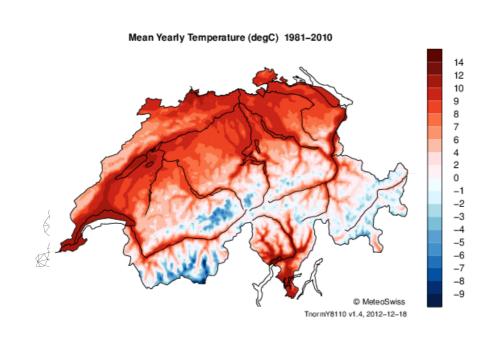
brain network

graphs provide mathematical representation of networks

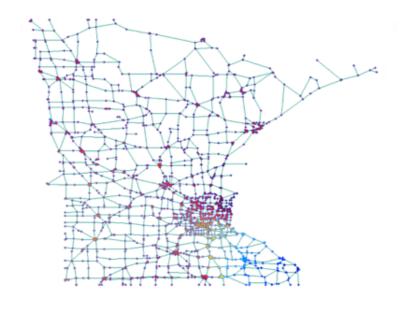
The field of network science



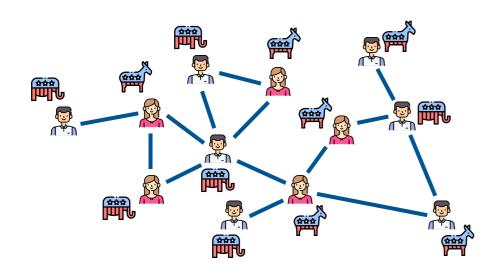
from edge attributes to node attributes from graphs to graph-structured data



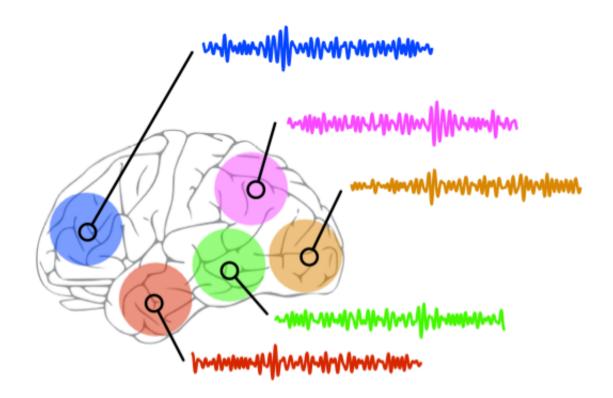
- nodes
 - geographical regions
- edges
 - geographical proximity between regions
- signal
 - temperature records in these regions



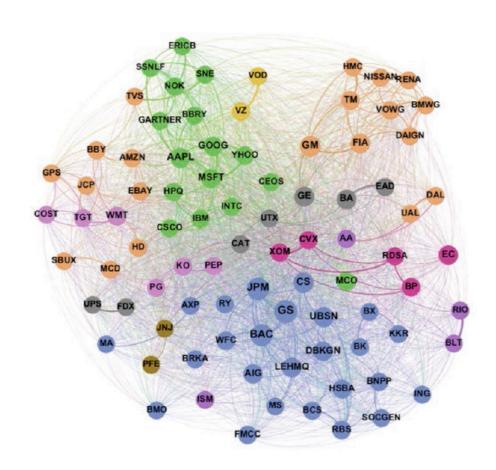
- nodes
 - road junctions
- edges
 - road connections
- signal
 - traffic congestion at junctions



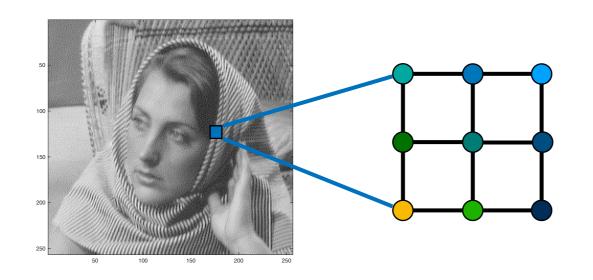
- nodes
 - individuals
- edges
 - friendship between individuals
- signal
 - political view



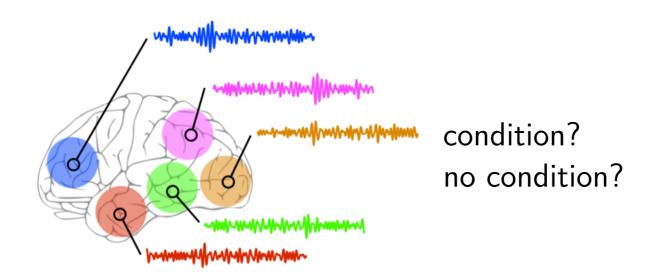
- nodes
 - brain regions
- edges
 - structural connectivity between brain regions
- signal
 - blood-oxygen-level-dependent (BOLD) time series



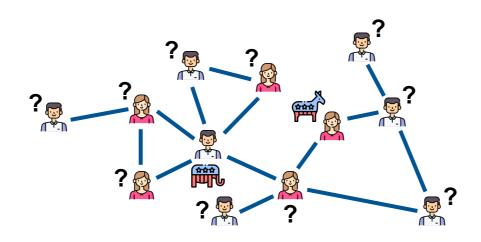
- nodes
 - companies
- edges
 - co-occurrence of companies in financial news
- signal
 - stock prices of these companies



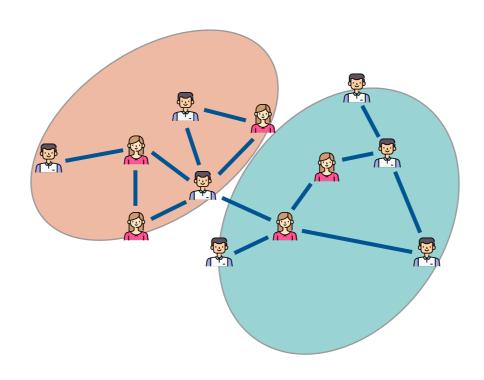
- nodes
 - pixels
- edges
 - spatial proximity between pixels
- signal
 - pixel values



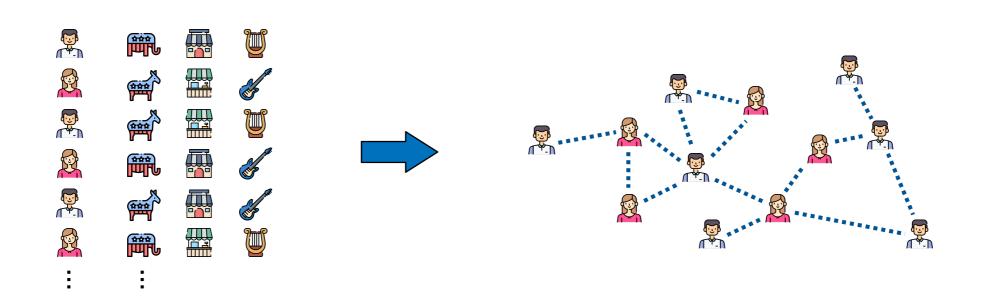
(supervised) graph-level classification



(semi-supervised) node-wise classification

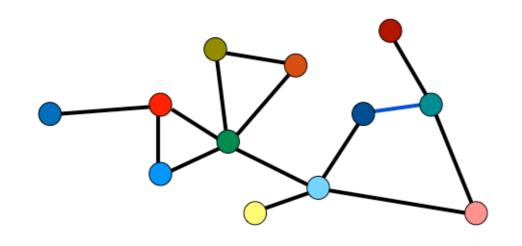


(unsupervised) clustering



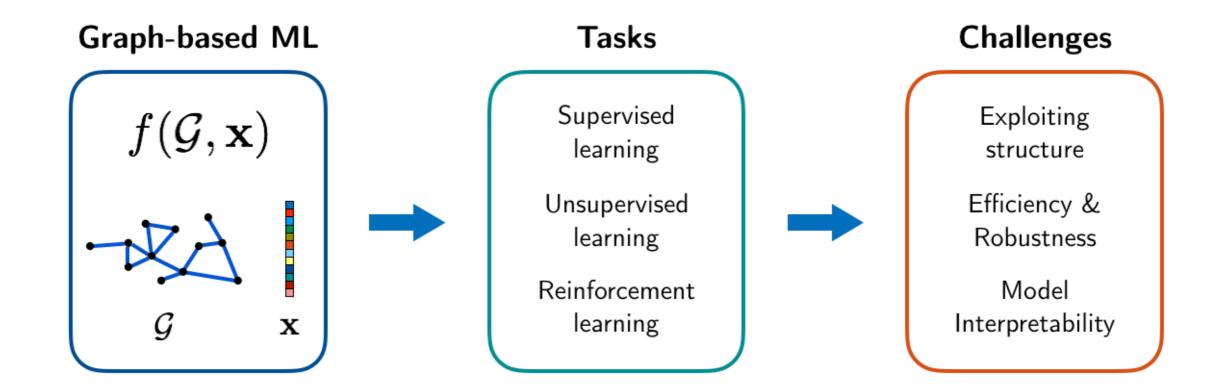
inferring graph topology from data

Graph-based machine learning



This tutorial:

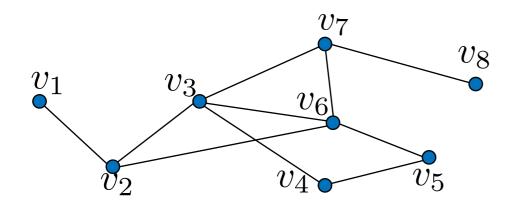
- graph-structured data are graph signals
- how graph signal processing brings unique contribution to (graph-based) ML?



Outline

- Brief introduction to graph signal processing (GSP)
- Challenge I: GSP for exploiting data structure
- Challenge II: GSP for improving efficiency and robustness
- Challenge III: GSP for enhancing model interpretability
- Applications
- Summary, open challenges, and new perspectives

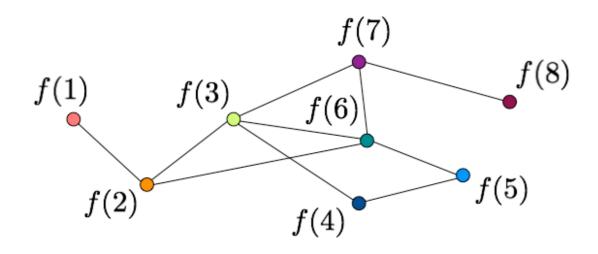
Graphs and graph Laplacian



weighted and undirected graph:

$$\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$$
 $D = \operatorname{diag}(d(v_1), \cdots, d(v_N))$
 $L = D - W$ equivalent to G!
 $L_{\operatorname{norm}} = D^{-\frac{1}{2}}(D - W)D^{-\frac{1}{2}}$

Graphs and graph Laplacian



graph signal $f:\mathcal{V}
ightarrow \mathbb{R}$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 & -1 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 & -1 & 4 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 3 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} f(1) \\ f(2) \\ f(3) \\ f(4) \\ f(5) \\ f(6) \\ f(7) \\ f(8) \end{pmatrix}$$

$$\begin{pmatrix} f(1) \\ f(2) \\ f(3) \\ f(4) \\ f(5) \\ f(6) \\ f(7) \\ f(8) \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 & -1 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & -1 & 4 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 3 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} f(1) \\ f(2) \\ f(3) \\ f(4) \\ f(5) \\ f(6) \\ f(7) \\ f(8) \end{pmatrix}$$

$$Lf(i) = \sum_{j=1}^{N} W_{ij}(f(i) - f(j))$$

$$f^{T}Lf = \frac{1}{2} \sum_{i,j=1}^{N} W_{ij} (f(i) - f(j))^{2}$$

a measure of "smoothness"

Graphs and graph Laplacian

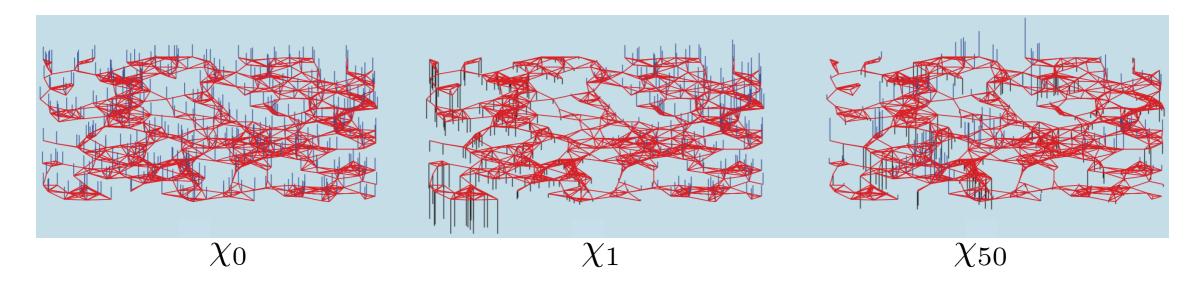
• L has a complete set of orthonormal eigenvectors: $L = \chi \Lambda \chi^T$

$$L = \begin{bmatrix} 1 & & & 1 \\ \chi_0 & \cdots & \chi_{N-1} \end{bmatrix} \begin{bmatrix} \lambda_0 & & 0 \\ & \ddots & \\ 0 & & \lambda_{N-1} \end{bmatrix} \begin{bmatrix} & & & \chi_0^T & \\ & & \ddots & \\ & & & \chi_{N-1} & \end{bmatrix}$$

$$\chi \qquad \qquad \Lambda \qquad \qquad \chi^T$$

• Eigenvalues are usually sorted increasingly: $0 = \lambda_0 < \lambda_1 \leq \ldots \leq \lambda_{N-1}$

Graph Fourier transform



low frequency

high frequency

$$L = \chi \Lambda \chi^T$$

$$L = \chi \Lambda \chi^T \quad \chi_0^T L \chi_0 = \lambda_0 = 0$$

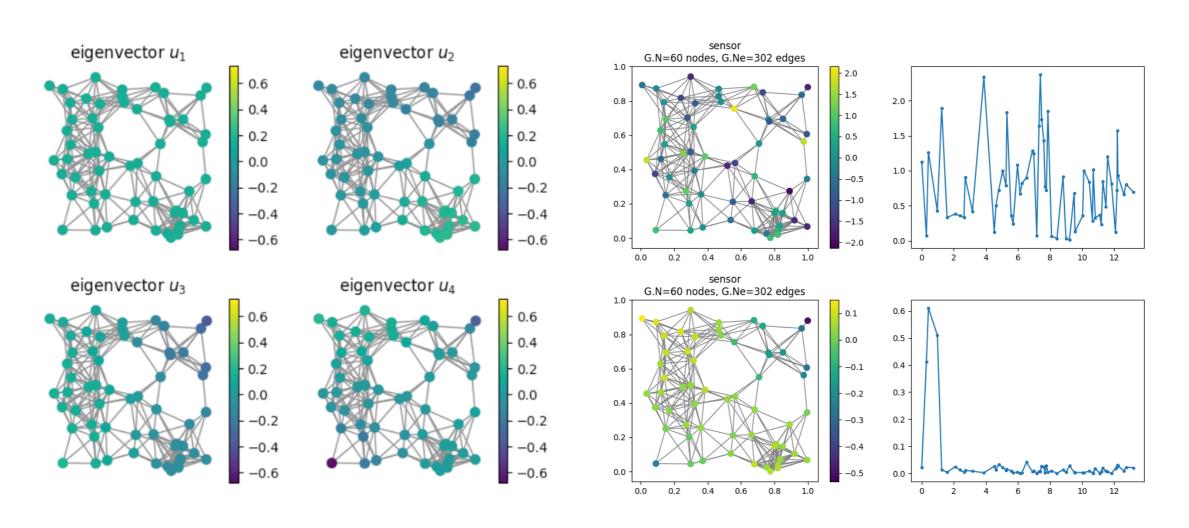
$$\chi_{50}^T L \chi_{50} = \lambda_{50}$$

graph Fourier transform:

$$\hat{f}(\ell) = \langle \chi_{\ell}, f \rangle : \begin{bmatrix} \chi_0 & \cdots & \chi_{N-1} \end{bmatrix}^T \\ \downarrow & \downarrow & \downarrow \\ \lambda_0 & \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 & \cdots & \lambda_{N-1} \\ \text{low frequency} & \text{high frequency} \end{bmatrix}$$

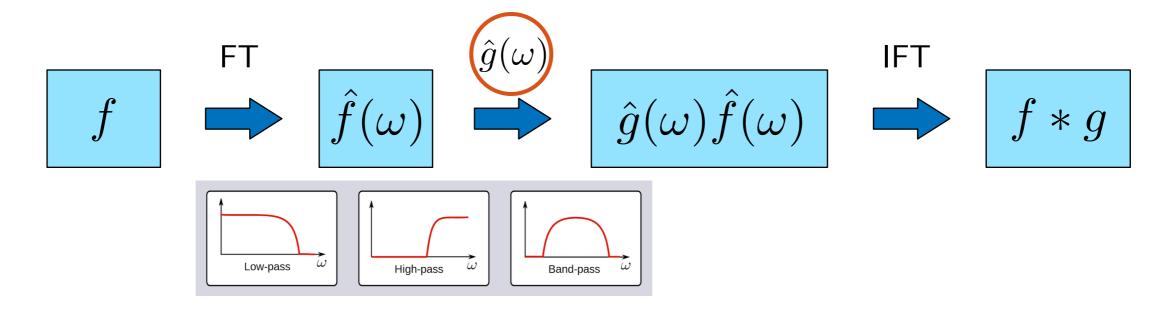
Graph Fourier transform

Graph Fourier transform



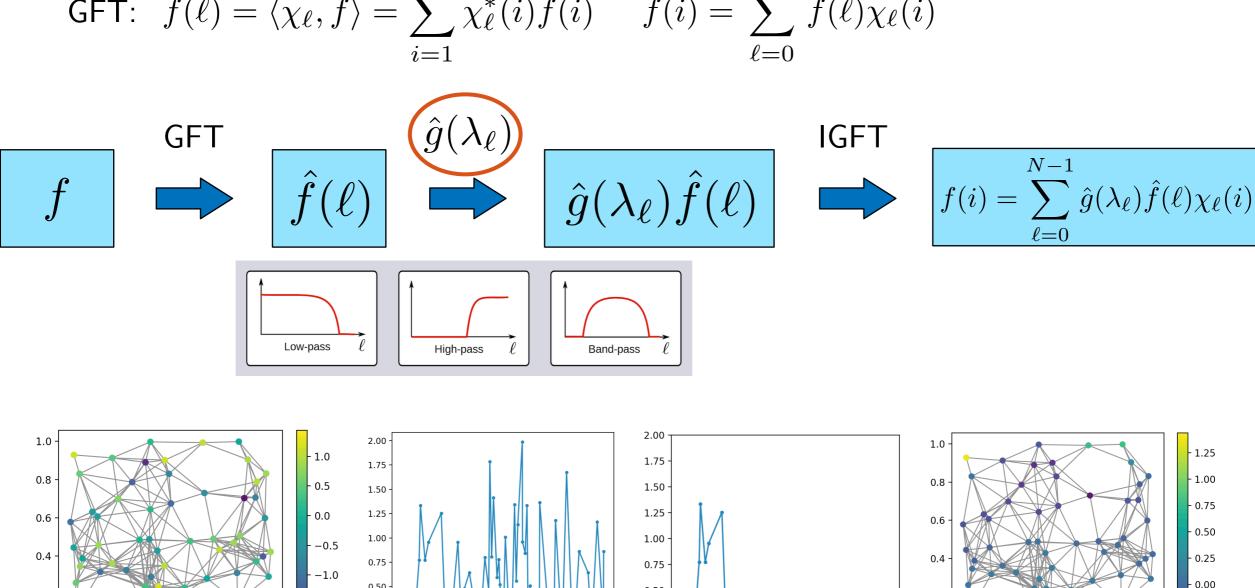
Classical frequency filtering

Classical FT:
$$\hat{f}(\omega) = \int (e^{j\omega x})^* f(x) dx$$
 $f(x) = \frac{1}{2\pi} \int \hat{f}(\omega) e^{j\omega x} d\omega$



Graph spectral filtering

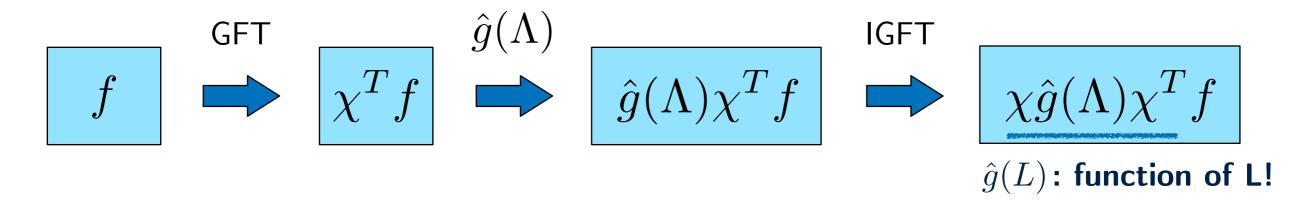
$$\mathsf{GFT:} \quad \hat{f}(\ell) = \langle \chi_\ell, f \rangle = \sum_{i=1}^N \chi_\ell^*(i) f(i) \qquad f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_\ell(i)$$



0.2

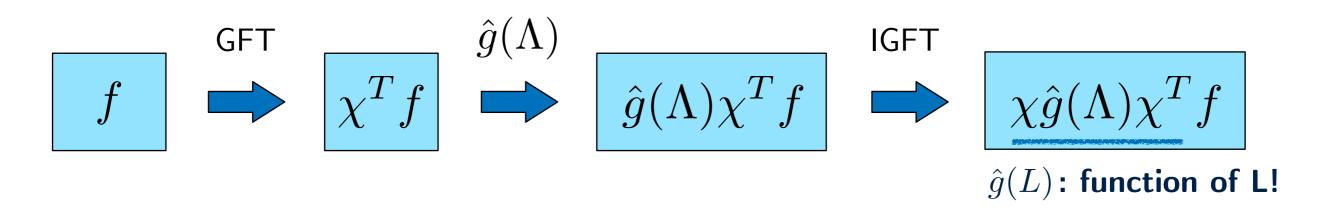
Graph transform/dictionary design

 Transforms and dictionaries can be designed through graph spectral filtering: Functions of graph Laplacian!

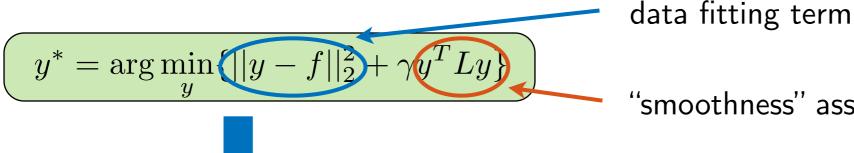


- Important properties can be achieved by properly defining $\hat{g}(L)$, such as localisation of atoms (more on this later)
- Closely related to kernels and regularisation on graphs

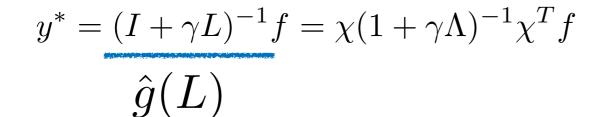
A practical example



problem: we observe a noisy graph signal $f = y_0 + \eta$ and wish to recover y_0



"smoothness" assumption



remove noise by low-pass filtering in graph spectral domain!

Graph transform/dictionary design

smoothing/low-pass filtering:
$$\hat{g}(L) = (I + \gamma L)^{-1} = \chi (I + \gamma \Lambda)^{-1} \chi^T$$

Graph-based regularisation

windowed kernel: windowed graph Fourier transform shifted and dilated band-pass filters: spectral graph wavelets $\hat{g}(sL)$

Graph filters & transforms

adapted kernels: learn values of $\,\hat{g}(L)\,$ directly from data

parametric kernel:
$$\hat{g}(L) = \sum_{k=0}^K \theta_j L^k = \chi(\sum_{k=0}^K \theta_j \Lambda^k) \chi^T$$

Learning models on graphs

GSP for machine learning

Exploiting structure

Efficiency & Robustness

Model Interpretability **Graph-based** regularisation

Graph filters & transforms

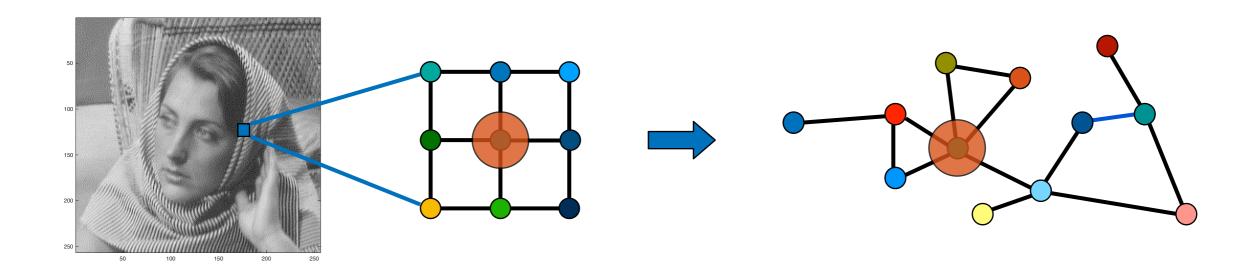
GSP-relatedlearning models

- enable convolution & hierarchical modelling on graphs
- improve efficiency & robustness of (graph-based) ML models
- interpret data structure & learning models on graphs

Outline

- Brief introduction to graph signal processing (GSP)
- Challenge I: GSP for exploiting data structure
- Challenge II: GSP for improving efficiency and robustness
- Challenge III: GSP for enhancing model interpretability
- Applications
- Summary, open challenges, and new perspectives

GSP for exploiting data structure



- GSP enables definition of graph convolution
- GSP enriches design of graph convolutional models
- GSP facilitates hierarchical modelling on graphs

GSP for defining convolution on graphs

classical convolution

time domain

$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$

frequency domain

$$\widehat{(f * g)}(\omega) = \widehat{f}(\omega) \cdot \widehat{g}(\omega)$$

convolution on graphs

spatial (node) domain

$$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$

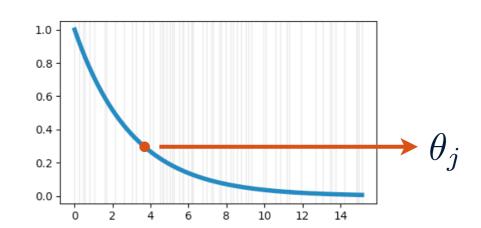
graph spectral domain

$$\widehat{(f*g)}(\lambda) = ((\chi^T f) \circ \hat{g})(\lambda)$$

$$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$

learning a non-parametric filter:

$$\hat{g}_{\theta}(\Lambda) = \operatorname{diag}(\theta), \ \theta \in \mathbb{R}^{N}$$



- convolution expressed in the graph spectral domain
- no localisation in the spatial (node) domain

$$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$

parametric filter as polynomial of Laplacian

$$\hat{g}_{\theta}(\lambda) = \sum_{j=0}^{K} \theta_{j} \lambda^{j}, \ \theta \in \mathbb{R}^{K+1}$$

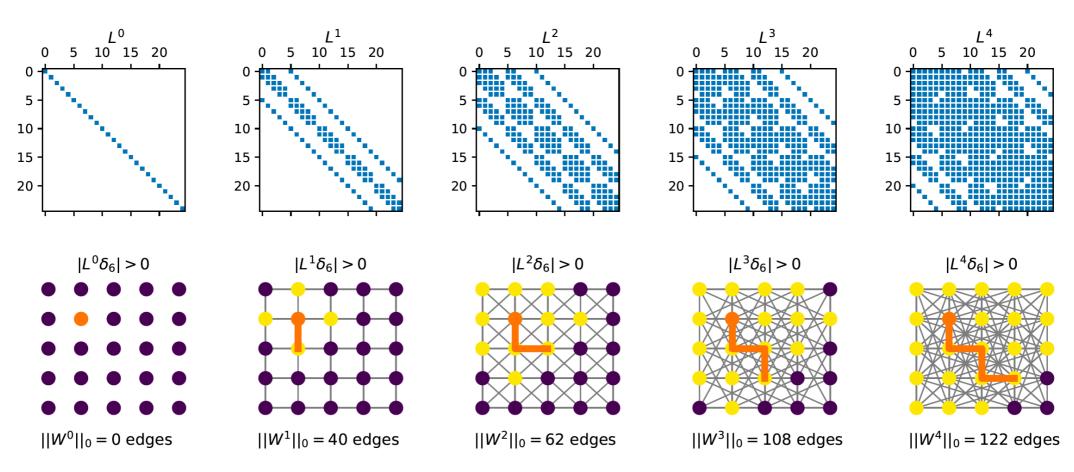
$$\hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_{j} L^{j}$$

$$\hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_{j} L^{j}$$

what do powers of graph Laplacian capture?

Powers of graph Laplacian

L^k defines the k-neighborhood



Localization: $d_{\mathcal{G}}(v_i, v_i) > K$ implies $(L^K)_{ij} = 0$

(slide by Michaël Deferrard)

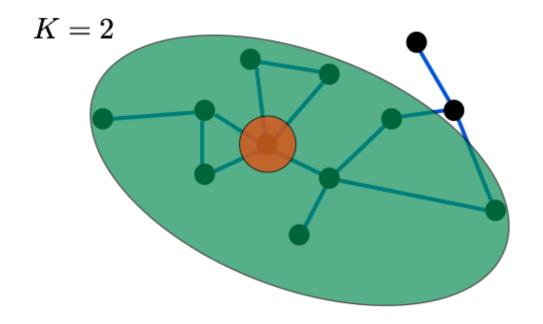
$$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$

parametric filter as polynomial of Laplacian

$$\hat{g}_{\theta}(\lambda) = \sum_{j=0}^{K} \theta_{j} \lambda^{j}, \ \theta \in \mathbb{R}^{K+1}$$

$$\hat{g}_{\theta}(\lambda) = \sum_{j=0}^{K} \theta_{j} \lambda^{j}, \ \theta \in \mathbb{R}^{K+1}$$

$$\hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_{j} L^{j} \Rightarrow \sum_{j=0}^{K} \theta_{j} T_{j}(\tilde{L})$$

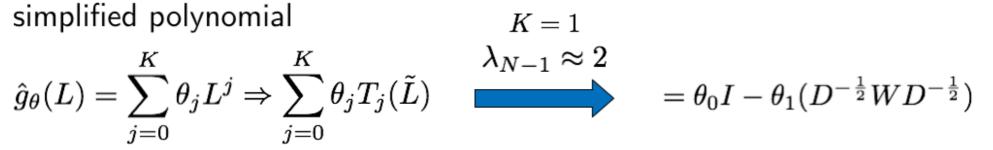


- convolution is expressed in the graph spectral domain
- localisation within K-hop neighbourhood
- Chebyshev approximation using $\tilde{L} = 2L/\lambda_{N-1} - I$

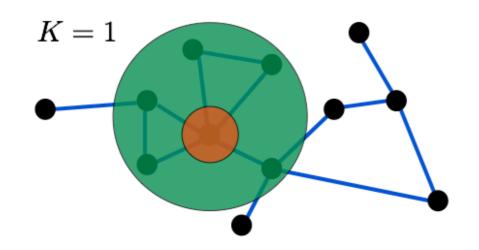
$$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$

simplified polynomial

$$\hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_{j} L^{j} \Rightarrow \sum_{j=0}^{K} \theta_{j} T_{j}(\tilde{L})$$



(localisation within 1-hop neighbourhood)



$$\alpha = \theta_0 = -\theta_1$$

$$= \alpha (I + D^{-\frac{1}{2}} W D^{-\frac{1}{2}})$$

renormalisation

$$\Rightarrow \alpha(\tilde{D}^{-\frac{1}{2}}\tilde{W}\tilde{D}^{-\frac{1}{2}})$$

Convolution on graphs - Remarks

Convolution is defined via the graph spectral domain...

$$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$

...but can be implemented in the spatial (node) domain

$$y = \hat{g}_{\theta}(L)f = \alpha(\tilde{D}^{-\frac{1}{2}}\tilde{W}\tilde{D}^{-\frac{1}{2}})f$$

simple neighbourhood averaging in Kipf and Welling 2017

Convolution on graphs - Remarks

Convolution in classical signal processing relies on the shift operator

$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$

Notion of shift by a graph shift operator (e.g., adjacency/Laplacian matrix)

$$g(S)f = \sum_{k=0}^{K} \theta_k S^k f$$

- spatial definition of convolution that resembles an FIR filter (on graphs)
- motivated from a spatial perspective, but has a spectral interpretation via eigendecomposition of ${\cal S}$

Convolution on graphs - Remarks

Convolution can also be interpreted as a weighted summation

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau) g(t - \tau) d\tau$$

Spatial generalisation of convolution in non-Euclidean domain

$$D(x)f = \int_{\mathcal{X}} f(x') u(x,x') dx'$$
 $D(v)f = \sum_{\mathcal{V}} f(v') u(v,v')$

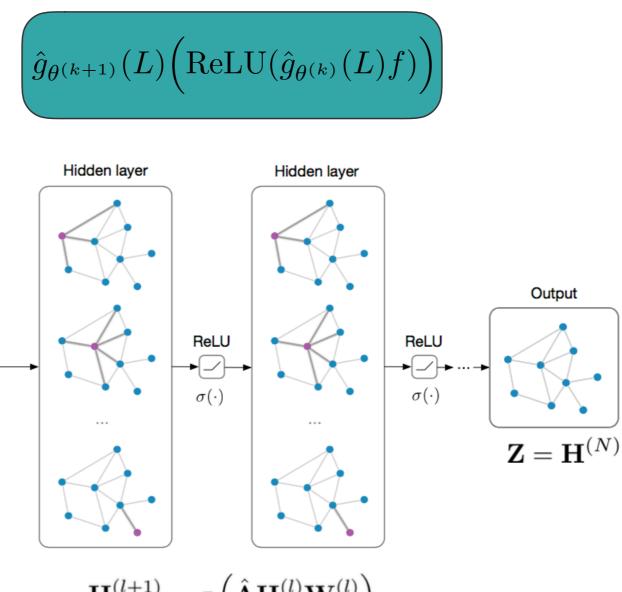
- weighting function u(v,v') determines relative importance of neighbours

Graph convolutional networks

Input

 $\mathbf{X} = \mathbf{H}^{(0)}$

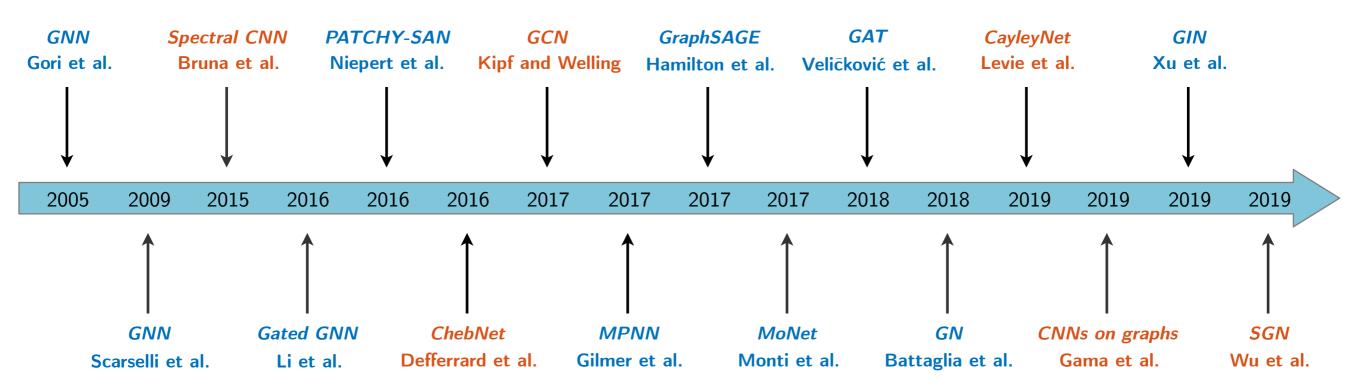
• Convolution on graphs leads to graph convolutional networks (GCNs)...



$$\mathbf{H}^{(l+1)} = \sigma \left(\hat{\mathbf{A}} \mathbf{H}^{(l)} \mathbf{W}^{(l)} \right)$$

Graph neural networks

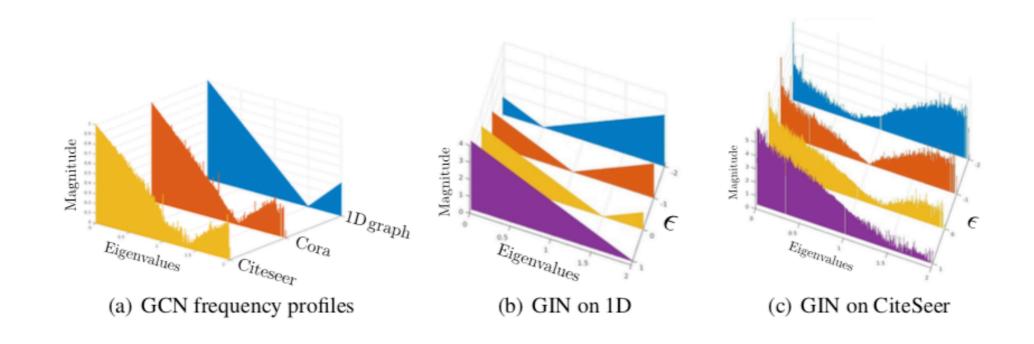
...and more generally graph neural networks (GNNs)



spatial vs spectral designs

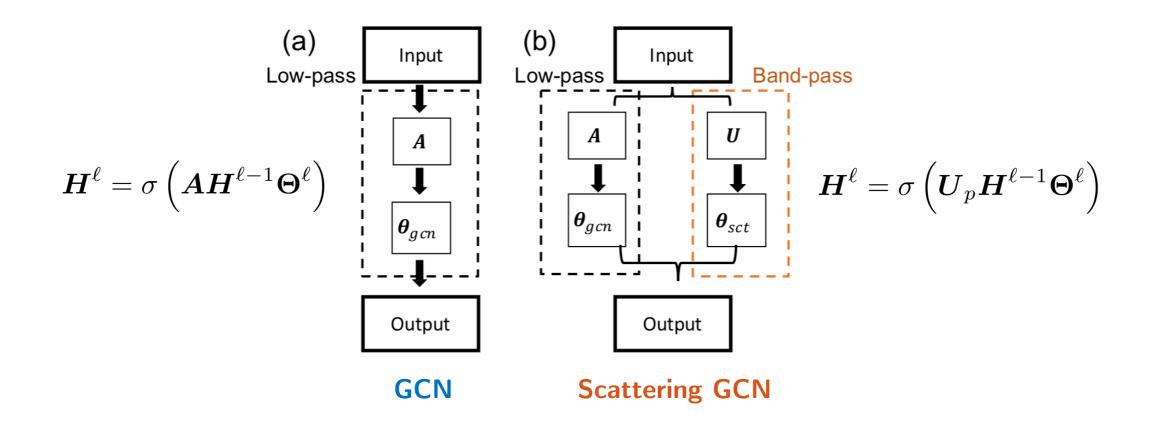
GSP for enriching graph convolutional models

Expressive power of GNNs



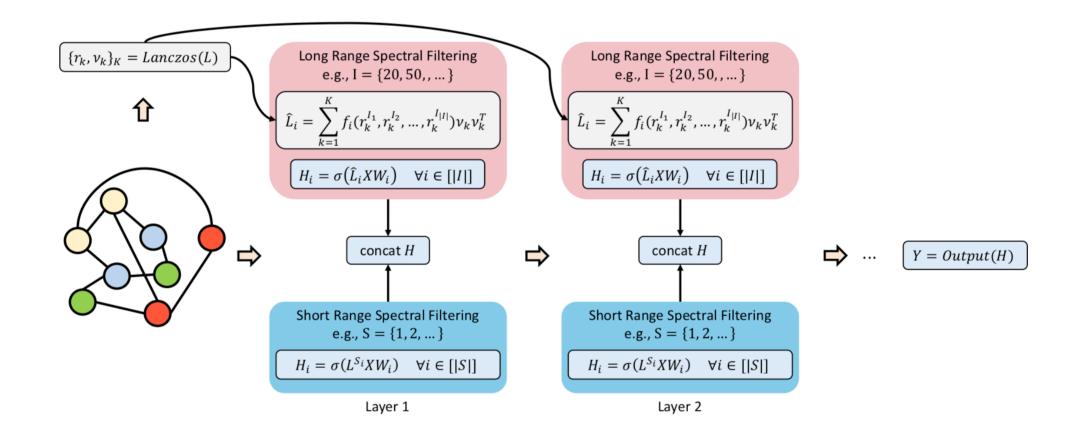
- convolutional layers in various GNN models can be understood as graph filters of different spectral profiles
- focusing on low-frequency information may lead to over-smoothing

Beyond low-frequency information



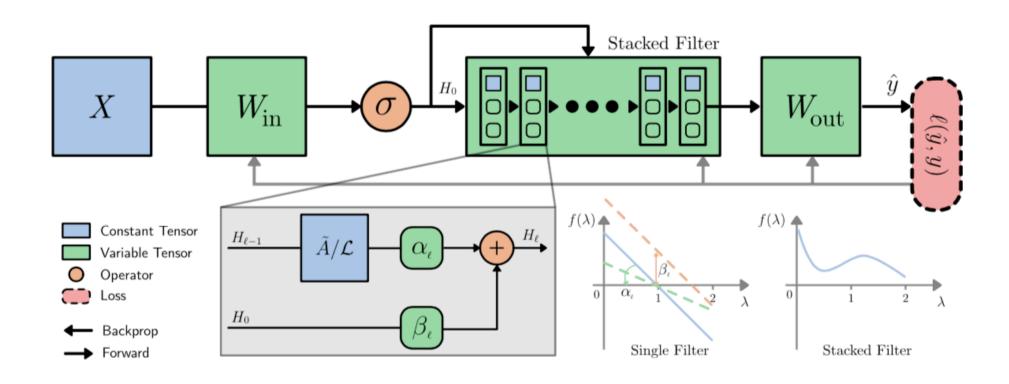
- combine low-pass operations based on GCN with band-pass operations based on geometric scattering (Min et al. 2020)
- combine low-pass and high-pass filtering (Bo et al. 2021)

Beyond low-frequency information



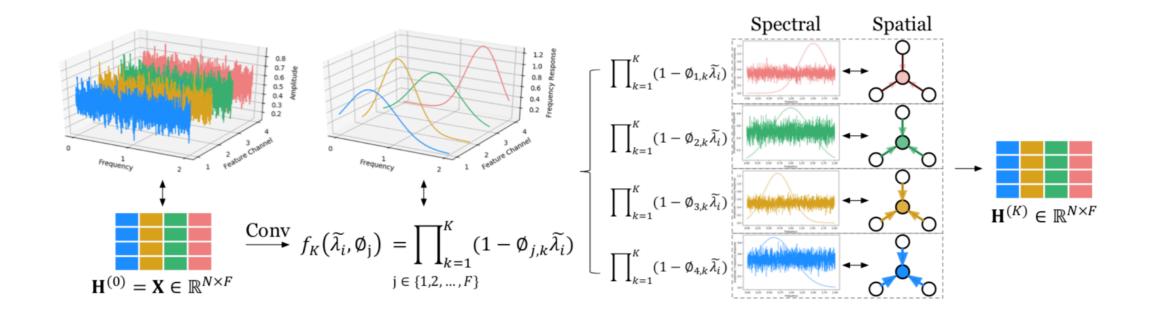
- combine short-range and long-range filtering
- long-range filtering facilitated by low-rank approximation to affinity matrix based on Lanczos algorithm
- learnable spectral filters based on the approximation

Adaptive filters



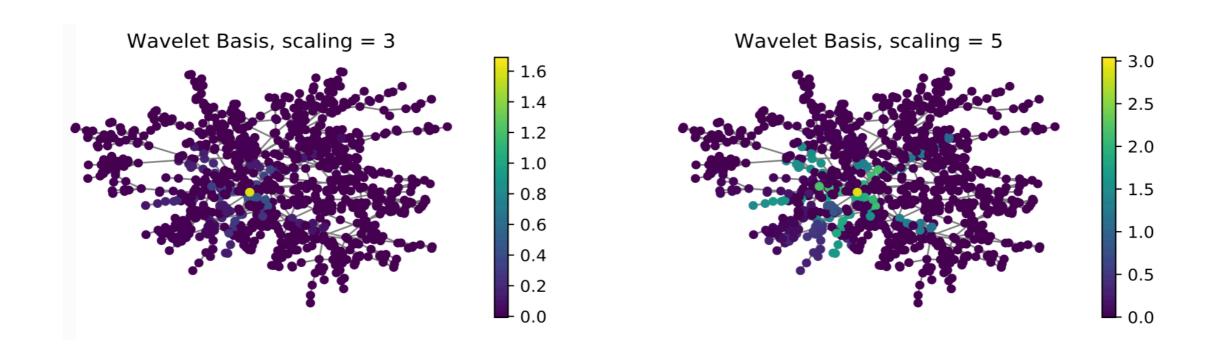
 stack graph filters with learnable filter parameters to build highly adaptive model

Adaptive filters



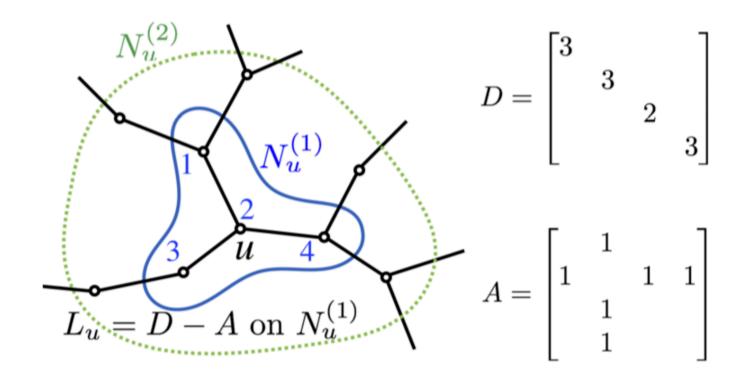
- stack learnable filters across network layers (removing nonlinearities at second and subsequence layers)
- learn separate adaptive filter for each feature channel

local basis filters



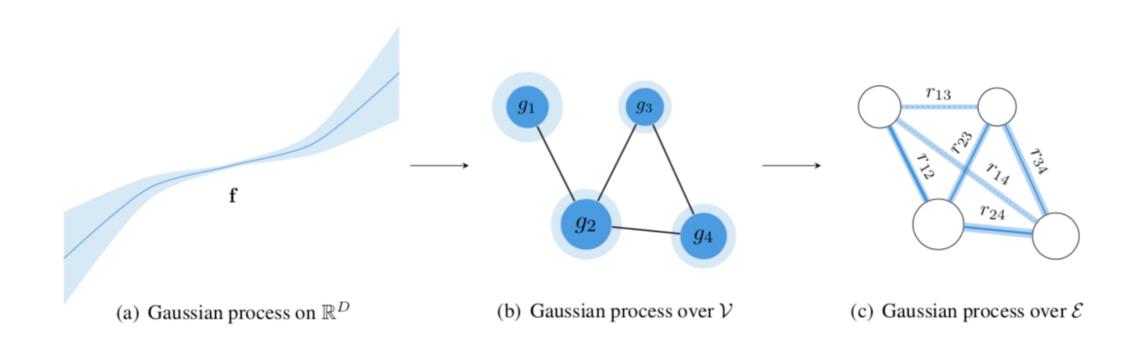
replace Fourier basis with spectral graph wavelet basis to achieve localised convolution

local basis filters



- learnable local filters where localisation is imposed in spatial domain
- regularisation by local graph Laplacian to improve robustness

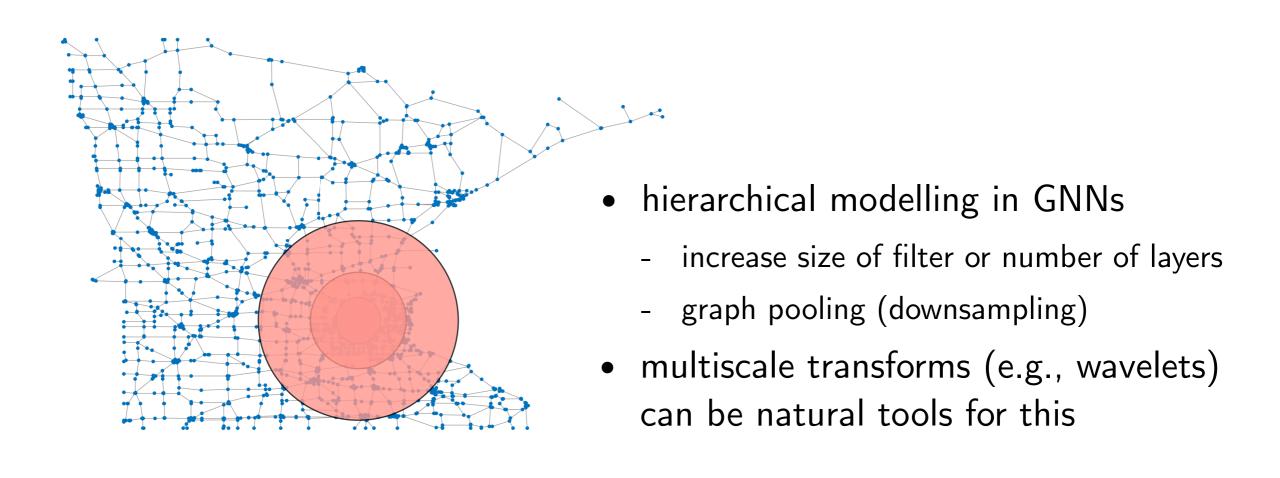
Graph convolutional Gaussian processes



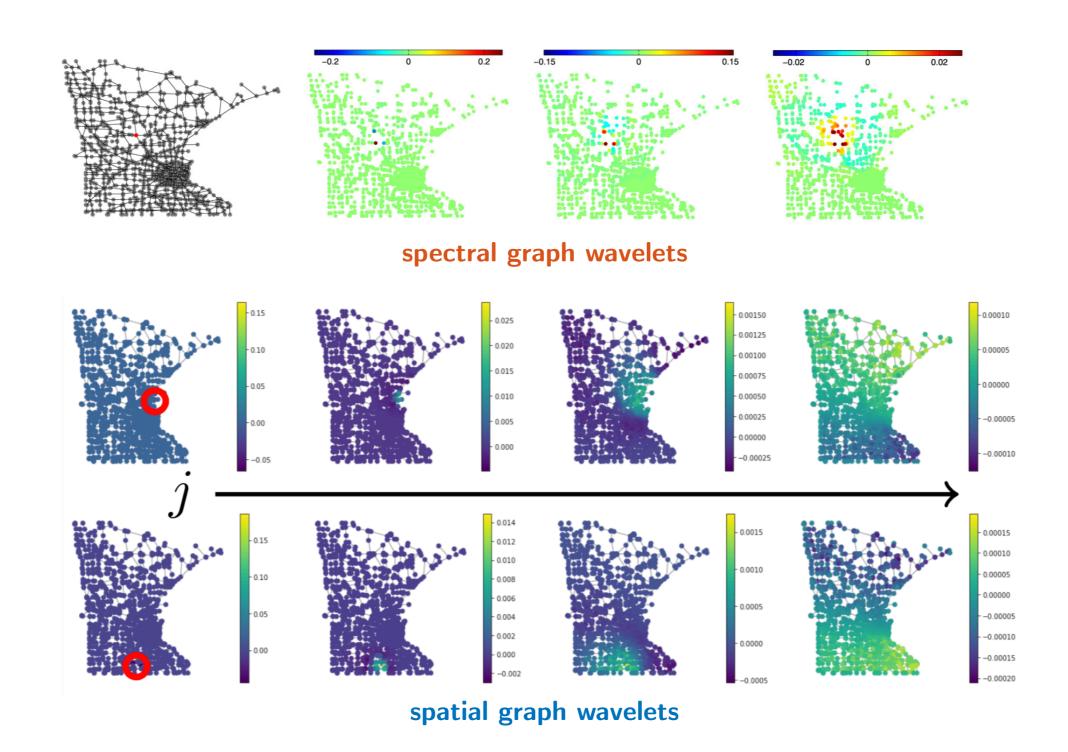
- graph convolution enriches design of kernels associated with Gaussian processes (GPs)
- different formulations of convolution lead to different GP designs

GSP for hierarchical modelling on graphs

Hierarchical modelling on graphs

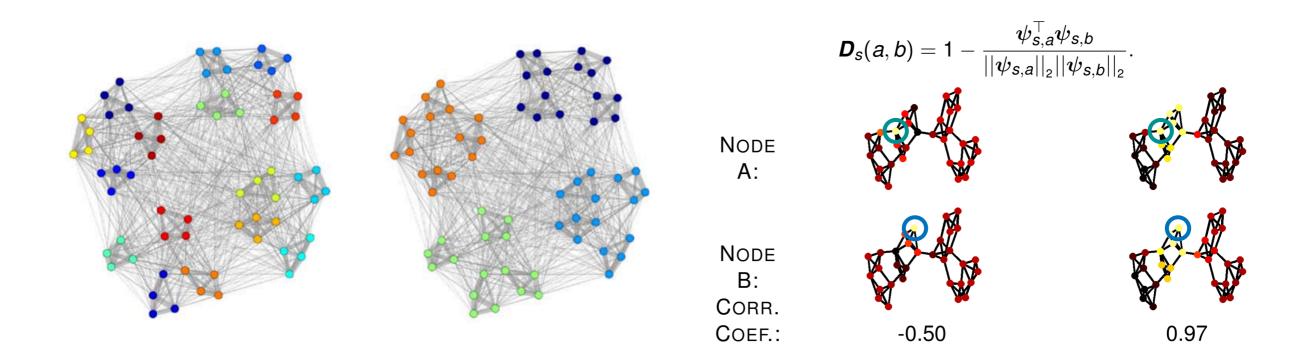


Wavelets on graphs



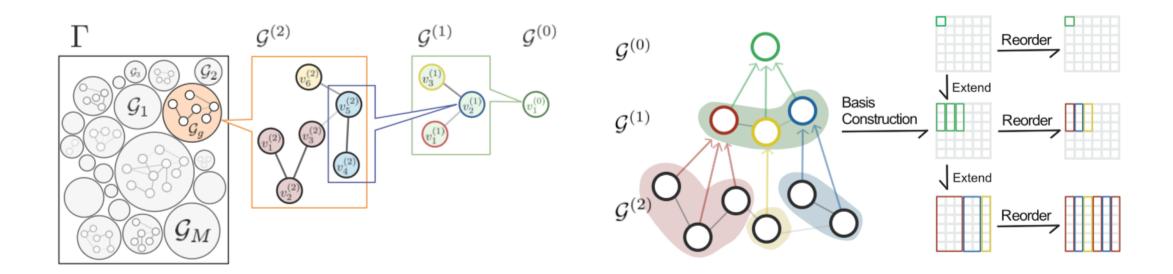
Hammond et al., "Wavelets on graphs via spectral graph theory," ACHA, 2011. Gao et al., "Geometric scattering for graph data analysis," ICML, 2019.

Spectral graph wavelets for multiscale clustering



- spectral graph wavelets with different scales centred at node ${\bf u}$ provides an "egocentered view" of the graph seen from ${\bf u}$
- similarity between nodes can be built at different levels to facilitate multiscale clustering

Haar-like wavelets for graph learning

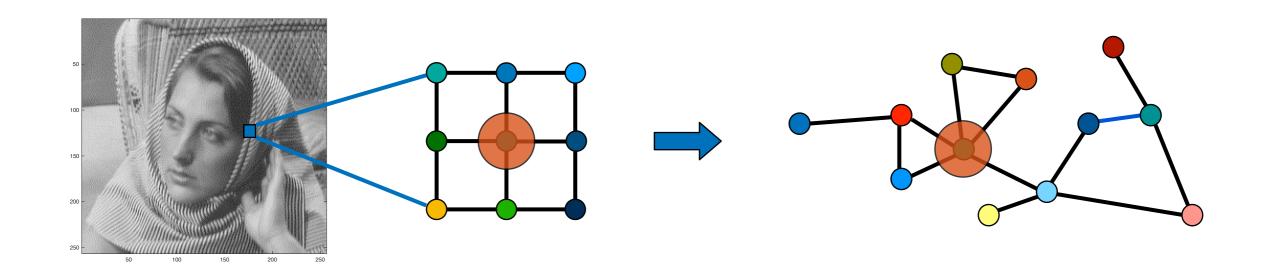


coarse-grained graph chain

orthogonal basis construction

- given a coarse-grained graph chain an orthogonal basis is constructed
- this can then be used for both graph convolution and hierarchical graph pooling

GSP for exploiting data structure - Summary



- GSP enables various definitions of convolution on graphs
- graph filters enrich design of convolutional learning models on graphs (both GNNs and graph-based GPs)
- multiscale transforms (in particular wavelets) facilitate hierarchical modelling on graphs

References

- Shuman et al., "The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98, May 2013.
- Sandryhaila and Moura, "Discrete signal processing on graphs," IEEE Transactions on Signal Processing, vol. 61, no. 7, pp. 1644-1656, April 2013.
- Ortega et al., "Graph signal processing: Overview, challenges, and applications," Proceedings of the IEEE, vol. 106, no. 5, pp. 808-828, May 2018.
- Dong et al., "Graph signal processing for machine learning: A review and new perspectives," IEEE Signal Processing Magazine, vol. 37, no. 6, pp. 117-127, November 2020.
- Mateos et al., "Connecting the dots: Identifying network structure via graph signal processing," IEEE Signal Processing Magazine, vol. 36, no. 3, pp. 16-43, May 2019.
- Dong et al., "Learning graphs from data: A signal representation perspective," IEEE Signal Processing Magazine, vol. 36, no. 3, pp. 44-63, May 2019.
- Gama et al., "Graphs, convolutions, and neural networks: From graph filters to graph neural networks," IEEE Signal Processing Magazine, vol. 37, no. 6, pp. 128-138, November 2020.
- Cheung et al., "Graph signal processing and deep learning: Convolution, pooling, and topology," IEEE Signal Processing Magazine, vol. 37, no. 6, pp. 139-149, November 2020.
- Ruiz et al., "Graph neural networks: Architectures, stability, and transferability," Proceedings of the IEEE, vol. 109, no. 5, pp. 660-682, May 2021.

Image credit

- icons made by Freepik from <u>www.flaticon.com</u>
- https://cityu-bioinformatics.netlify.app/too2/new_pheno/brain/
- https://stock.adobe.com/images/polygonal-mesh-map-of-switzerland-in-black-color-abstract-mesh-lines-triangles-and-points-with-map-of-switzerland-wire-frame-2d-polygonal-line-network-in-vector-format/236496556
- https://commons.wikimedia.org/wiki/File:6_centrality_measures.png
- https://en.wikipedia.org/wiki/File:Zachary%27s_karate_club.png
- https://www.meteoswiss.admin.ch/home/climate/swiss-climate-in-detail/monthly-and-annual-maps.html
- https://commons.wikimedia.org/wiki/File:Chebyshev Polynomials of the First Kind.svg