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Introduction
• Why is it important?

3

Objective: functional connectivity 
between brain regions

Input: fMRI recordings in these regions

Objective: behavioral similarity/
influence between people

Input: individual history of activities

How do we build/learn the graph?

- Learning relations between entities benefits numerous application domains
- The learned relations can help us predict future observations

image credit:
http://blog.myesr.org/mri-reveals-the-human-connectome/
https://www.iconexperience.com
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• A signal processing perspective
- GSP idea for graph learning
- Three signal/graph models

• Perspective
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covariance
selection

Dempster

Prune the smallest elements in precision (inverse covariance) matrix

Not applicable when sample 
covariance is not invertible!data matrix
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inverse of 
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groundtruth 
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- Similarity function (e.g., Gaussian RBF)

11

• Learning graphical models
- Classical learning approaches lead to both positive/negative relations
- What about learning a graph topology with non-negative weights?

• Learning topologies with non-negative weights
- M-matrices (sym., p.d., non-pos. off-diag.) have been used as precision, leading to 

attractive GMRF (Slawski and Hein 2015)

From arbitrary precision matrix to graph Laplacian!

- The combinatorial graph Laplacian L = Deg - W belongs to M-matrices and is 
equivalent to graph topology
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• Opportunity and challenge for graph signal processing

- GSP tools such as frequency-analysis and filtering can contribute to the graph 
learning problem

- Filtering-based approaches can provide generative models for signals with complex 
non-Gaussian behavior
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⇥ =

v1

v2

v3 v4

v5

• Forward: Given G and x, design D to study c

16

c GxD(G)

Fourier/wavelet 
atoms

graph Fourier/
wavelet coefficient

graph dictionary 
coefficient

trained dictionary 
atoms

[Coifman06,Narang09,Hammond11,
Shuman13,Sandryhaila13]

[Zhang12,Thanou14]
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• Backward (graph learning): Given x, design D and c to infer G

- The key is a signal/graph model behind D

- Designed around graph operators (adjacency/Laplacian matrices, shift operators)

- Choice of/assumption on c often determines signal characteristics

16

c GxD(G)
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Wij (x(i)� x(j))2

Similar to previous approaches:

min
L
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tr(XTLsX)� �||W||F

max
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�2 I
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M
tr(XXT⇥)� ⇢||⇥||1Lake (2010):

Hu (2013):
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• Signal values vary smoothly between all pairs of nodes that are connected

• Example: Temperature of different locations in a flat geographical region

• Usually quantified by the Laplacian quadratic form:

v1

v2
v3 v4

v5
v6v7v8

v9

x

T
Lx = 1

x

T
Lx = 21

Daitch (2009):
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• Dong et al. (2015) & Kalofolias (2016)
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quadratic form:
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-                 (eigenvector matrix of L)

- Gaussian assumption on c:  c ⇠ N (0,⇤)

min
L,Y

||X�Y||2F + ↵ tr(YTLY) + �||L||2F

data fidelity smoothness on Y regularization

Learning enforces signal property (global smoothness)!

- Maximum a posterior (MAP) estimation on c leads to minimization of Laplacian 
quadratic form:
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Model 1: Global smoothness
• Egilmez et al. (2016)

19

- Solve for     as three different graph Laplacian matrices:⇥

⇥ =

v1

v2

v3 v4

v5

c Gx

�s.t. K = S� ↵

2
(11T � I)

min

⇥
tr(⇥K)� log det⇥
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Model 1: Global smoothness
• Egilmez et al. (2016)

19

- Solve for     as three different graph Laplacian matrices:⇥

non-negative

negative

combinatorial 
Laplacian

diagonally dominant 
generalized Laplacian

generalized 
Laplacian

⇥ =

v1

v2

v3 v4

v5

c Gx

�s.t. K = S� ↵

2
(11T � I)

min

⇥
tr(⇥K)� log det⇥

Generalizes graphical LASSO and Lake
Adding priors on edge weights leads to interpretation of MAP estimation

⇥ = L+V

= Deg �W +V

⇥ = L+V

= Deg �W +V (V � 0)

⇥ = L = Deg �W



/34

Model 1: Global smoothness
• Chepuri et al. (2016)

20
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Model 1: Global smoothness
• Chepuri et al. (2016)

20
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v6v7v8

v9

- An edge selection mechanism based on the same smoothness measure:

⇥ =

v1

v2

v3 v4

v5

c Gx

�

Similar in spirit to Dempster
Good for learning unweighted graph
Explicit edge-handler is desirable in some applications
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Model 2: Diffusion process
• Signals are outcome of some diffusion processes on the graph (more of 

local smoothness than global one!)

• Example: Movement of people/vehicles in transportation network
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• Signals are outcome of some diffusion processes on the graph (more of 

local smoothness than global one!)

• Example: Movement of people/vehicles in transportation network

21
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v6v7v8

v9

v5

v1

v2
v3 v4

v5
v6v7v8

v9

observation

initial stage

v1

v2
v3 v4

v5
v6v7v8

v9

heat diffusion

general 
graph shift 
operator 
(e.g., A)

• Characterized by diffusion operators

observation
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Model 2: Diffusion process
• Pasdeloup et al. (2015, 2016)

22

-                               

-         are i.i.d. samples with independent entries

c Gx

⇥ =

v1

v2

v3 v4

v5

Wk
norm

D(G) = Tk(m) = Wk(m)

norm

{cm}
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-                               

-         are i.i.d. samples with independent entries

- Two-step approach:

- Estimate eigenvector matrix from sample covariance (if covariance unknown):

(polynomial of          )W
norm

c Gx

⇥ =

v1

v2

v3 v4

v5

Wk
norm

D(G) = Tk(m) = Wk(m)

norm

⌃ = E
h MX

m=1

X(m)X(m)T
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=

MX

m=1

W2k(m)
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Model 2: Diffusion process
• Pasdeloup et al. (2015, 2016)

22

-                               

-         are i.i.d. samples with independent entries

- Two-step approach:

- Estimate eigenvector matrix from sample covariance (if covariance unknown):

- Optimize for eigenvalues given constraints of           (mainly non-negativity of 
off-diagonal of            and eigenvalue range) and some priors (e.g., sparsity)

More a “graph-centric” learning framework: Cost function on graph components 
instead of signals

W
norm

(polynomial of          )W
norm

W
norm

c Gx

⇥ =

v1

v2

v3 v4

v5

Wk
norm

D(G) = Tk(m) = Wk(m)

norm

⌃ = E
h MX

m=1

X(m)X(m)T
i
=

MX

m=1

W2k(m)

norm

{cm}
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Model 2: Diffusion process
• Segarra et al. (2016)

23

-                                        

- c is a white signal

(diffusion defined by a graph shift operator     that can be arbitrary, but practically W or L)SG

D(G) = H(SG) =
L�1X

l=0

hlSG
l

⇥ =

v1

v2

v3 v4

v5

c Gx

H(SG)
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-                                        

- c is a white signal

(diffusion defined by a graph shift operator     that can be arbitrary, but practically W or L)SG

- Two-step approach:

- Estimate eigenvector matrix:
- Select eigenvalues that satisfy constraints of      :
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Model 2: Diffusion process
• Segarra et al. (2016)

23

-                                        

- c is a white signal

(diffusion defined by a graph shift operator     that can be arbitrary, but practically W or L)SG

- Two-step approach:

- Estimate eigenvector matrix:
- Select eigenvalues that satisfy constraints of      :

⌃ = HHT

min
SG ,�

||SG ||0 s.t. SG =
NX

n=1

�nvnvn
T “spectral templates”

(eigenvectors)

D(G) = H(SG) =
L�1X

l=0

hlSG
l

⇥ =

v1

v2

v3 v4

v5

c Gx

H(SG)

Similar in spirit to Pasdeloup, same assumption on stationarity but different inference 
framework due to different D
Can handle noisy or incomplete information on spectral templates

SG
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Model 2: Diffusion process
• Thanou et al. (2016)

24

-                   (localization in vertex domain)

- Sparsity assumption on c

D(G) = e�⌧L

⇥ =
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Model 2: Diffusion process
• Thanou et al. (2016)

24

-                   (localization in vertex domain)

- Sparsity assumption on c

⌧- Each signal is a combination of several heat diffusion processes at time 

data fidelity sparsity on c regularization

s.t. D = [e�⌧1L, ..., e�⌧SL]min
L,C,⌧

||X�D(L)C||2F + ↵
MX

m=1

||cm||1 + �||L||2F

D(G) = e�⌧L

⇥ =

v1

v2

v3 v4

v5

c Gxe�⌧L

Still diffusion-based model, but more “signal-centric”
No assumption on eigenvectors/stationarity, but on signal structure and sparsity
Can be extended to general polynomial case (Maretic et al. 2017)
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Model 3: Time-varying observations
• Signals are time-varying observations that are causal outcome of current 

or past values (mixed degree of smoothness depending on previous states)

• Example: Evolution of individual behavior due to influence of different 
friends at different timestamps

• Characterized by an autoregressive model or a structural equation model 
(SEM)

25
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Model 3: Time-varying observations
• Mei and Moura (2015)

26

-                       : polynomial of W of degree s              

- Define      as x[t� s]

Ds(G) = Ps(W)

cs

⇥ =

v1

v2

v3 v4

v5

Gx

⇣ ⌘
⌃S

s=1

Ps(W)
x[t� s]
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Polynomial design similar in spirit to Pasdeloup and Segarra
Good for inferring causal relations between signals
Kernelized version (nonlinear): Shen et al. (2016)
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Model 3: Time-varying observations
• Baingana and Giannakis (2016)

27

-                     : Graph at time t

- Define c as x

⇥ =

v1

v2

v3 v4

v5

GxW x

+

ext.

(topologies switch at each time between S discrete states)

D(G) = Ws(t)
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Model 3: Time-varying observations
• Baingana and Giannakis (2016)

27

- Solve for all states of W:

-                     : Graph at time t

- Define c as x
x[t] = W

s(t)
x[t] +B

s(t)
y[t]

internal (neighbors) external

data fidelity sparsity on W

min
{Ws(t),Bs(t)}

1

2
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t=1

||x[t]�W
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x[t]�B
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�s||Ws(t)||1

⇥ =
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+
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(topologies switch at each time between S discrete states)
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Model 3: Time-varying observations
• Baingana and Giannakis (2016)

27

- Solve for all states of W:

-                     : Graph at time t

- Define c as x
x[t] = W

s(t)
x[t] +B

s(t)
y[t]

internal (neighbors) external

data fidelity sparsity on W

min
{Ws(t),Bs(t)}

1

2

TX

t=1

||x[t]�W

s(t)
x[t]�B

s(t)
y[t]||2F +

SX

s=1

�s||Ws(t)||1

⇥ =

v1

v2

v3 v4

v5

GxW x

+

ext.

(topologies switch at each time between S discrete states)

D(G) = Ws(t)

Good for inferring causal relations between signals as well as dynamic topologies
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Comparison of different methods

28

Methods Signal model Assumption Learning output Edge direction Inference

Dong (2015) Global smoothness Gaussian Laplacian Undirected Signal-centric

Kalofolias (2016) Global smoothness Gaussian Adjacency Undirected Signal-centric

Egilmez (2016) Global smoothness Gaussian Generalized 
Laplacian Undirected Signal-centric

Chepuri (2016) Global smoothness Gaussian Adjacency Undirected Graph-centric

Pasdeloup (2015) Diffusion by Adj. Stationary Normalized Adj./
Laplacian Undirected Graph-centric

Segarra (2016) Diffusion by Graph 
shift operator Stationary Graph shift 

operator Undirected Graph-centric

Thanou (2016) Heat diffusion Sparsity Laplacian Undirected Signal-centric

Mei (2015) Time-varying Dependent on 
previous states Adjacency Directed Signal-centric

Baingana (2016) Time-varying Dependent on 
current int/ext info

Time-varying 
Adjacency Directed Signal-centric
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