Signal Processing and Machine
Learning on Graphs

Xiaowen Dong

Department of Engineering Science
University of Oxford

Summer School in Economic Networks
Oxford, June 2019

Gwad) UNIVERSITY OF




Networks are everywhere

social network brain network [Huang18]
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Network-structured data are everywhere

e vertices
- geographical regions

e edges
- geographical proximity between
regions
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Network-structured data are everywhere

e vertices
- geographical regions

Mean Yearly Temperature (degC) 1981-2010

: e edges
- geographical proximity between
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regions

e signal
- temperature records in these
regions
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Network-structured data are everywhere

e vertices
- road junctions

e edges
- road network
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Network-structured data are everywhere
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Network-structured data are everywhere

o ® vertices
c.o\:. | - individuals
D “\. R— e edges
| ~® = friendship between individual
@ - friendship between individuals
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Network-structured data are everywhere
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Network-structured data are everywhere

e vertices
- brain regions

e edges
- structural connectivity between
brain regions
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Network-structured data are everywhere

e vertices
- brain regions

e edges
- structural connectivity between
brain regions
e signal
- blood-oxygen-level-dependent
(BOLD) time series

Richiardi et al., “Machine learning with brain graphs,” IEEE SPM, 2013. 6/48



Network-structured data are everywhere

e Vvertices

- pixels

e edges
- spatial proximity between pixels
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Network-structured data are everywhere

e vertices
g el
T - pixels

e edges

W . . . .
. - spatial proximity between pixels
<P
iams,s,s,s,m e signal
- pixel values

Monti et al., “Geometric deep learning on graphs and manifolds using mixture model CNNs,” CVPR, 2017. 7/48



Learning with network-structured data

no medical condition?

< mae b, medical condition?
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network-wise classification
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Learning with network-structured data
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vertex-wise classification
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earning with network-structured data

denoising and inpainting (inspired by image processing)
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Learning with network-structured data
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denoising and inpainting (inspired by image processing)
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Learning with network-structured data
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inferring network structure from data

11/48



Learning with network-structured data
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inferring network structure from data

11/48



How to incorporate network into learning?

e Straightforward approach: embed the network into a Euclidean space
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How to incorporate network into learning?

e Straightforward approach: embed the network into a Euclidean space

[ -

2 | , , L

(’) @ e

@ I \. /‘. ]
w | |
Lo
$ ~-- N o))
network embedding node features labels

12/48



How to incorporate network into learning?

e Straightforward approach: embed the network into a Euclidean space
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network embedding node features labels

- embedding of network structure leads to information loss

- need for new models & tools that directly incorporate structure

in data analysis
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Outline

Graph signal processing (GSP): Basic concepts
Spectral filtering: Basic tools of GSP
Connection with literature

Research topics inspired by GSP

Applications
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Outline

e Graph signal processing (GSP): Basic concepts
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Graph signal processing

e Network-structured data can be represented by graph signals
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Graph signal processing

e Network-structured data can be represented by graph signals

+ f:V%RN
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Graph signal processing

e Network-structured data can be represented by graph signals
RN

+ f:V%RN

takes into account both structure (edges) and
data (values at vertices)
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Graph signal processing

sin(mx)

how to generalise classical signal processing tools
on irregular domains such as graphs?
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Graph signal processing

e Graph signals provide a nice compact format to encode structure within
data

e Generalisation of classical signal processing tools can greatly benefit
analysis of such data

e Numerous applications: Transportation, biomedical,
social, economic network analysis

e An increasingly rich literature
- classical signal processing
- algebraic and spectral graph theory

- computational harmonic analysis

- machine learning
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Two paradigms

e« Main GSP approaches can be categorised into two families:
vertex (spatial) domain designs

frequency (graph spectral) domain designs

17/48



Two paradigms

e Main GSP approaches can be categorised into two families:

- vertex (spatial) domain designs

i [frequency (graph spectral) domain designs)

important for analysis of signal properties
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Need for notion of frequency

Classical Fourier transform provides frequency domain representation of
signals

/N /N
NN

\ /\VI\\/\ /\\/ﬂ\/ AN V@ QV/_\ Vg !

18/48



Need for notion of frequency

Classical Fourier transform provides frequency domain representation of
signals

N\ /N
N NS

NN NF - "“building blocks" of signal
\AAAAA

V V\/ ’M% 4’ - different frequency (oscillation)
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Need for notion of frequency

Classical Fourier transform provides frequency domain representation of

signals
I\ /\
BV
\/\ I f\Al\ N A - “building blocks" of signal
V\/ V\/ ’WVAV% 4/‘ - different frequency (oscillation)

f:V—=RY
e What about a notion of frequency for graph
signals?
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Need for notion of frequency

Classical Fourier transform provides frequency domain representation of
signals

> /\/\/\/ \ - "building blocks" of signal
’Wﬁ% 4/ - different frequency (oscillation)

f:V—=RY

What about a notion of frequency for graph
signals?

we need the graph Laplacian matrix

18/48



Graph Laplacian
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Graph Laplacian

weighted and undirected graph:

G

W, €}
D = diag(d(vy), - - -

yd(vn))
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Graph Laplacian

weighted and undirected graph:

G

W, €}
D = diag(d(vy), - -

L=D-W

,d(vn))
equivalent to G!
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Graph Laplacian

weighted and undirected graph:

g = {V75}
D = diag(d(v1), -+ ,d(vn))

L=D—-—W equivalent to G!
Lyorm = D~ 2(D — W)D™ 2

000000 01000000 1 -1 0 0 0 0 0 0 :
00000 0 /10100100\ (—1 3 -1 0 0 -1 0 o\ e symmetriC

400000 010101710 0 -1 4 -1 0 -1 -1 0

020000 00101000[__]o0o 0o -1 2 -1 0 0 0 o i : _ i
R g B B g I I A off-diagonal entries non-positive
000400 011010710 0 -1 -1 0 -1 4 -1 0

000030 00100101 0 0 -1 0 0 -1 3 -1 e rows sum up to zero
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Graph Laplacian

graph signal f:V — RY
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Graph Laplacian
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Graph Laplacian

graph signal f:) — RY

1 -1 0 0 0 0 0 O f(1) £(1) T/1 10 0 0 0 0 o0 f(1)
(—1 3 -1 0 0 -1 0 o\ (f(Q)\ /f(2)\ (—1 3 -1 0 0 -1 0 0\ (f(2)\
0 -1 4 -1 0 -1 -1 0 7(3) £(3) 0 -1 4 -1 0 -1 -1 0 £(3)
0 0 -1 2 -1 0 0 O f(4) £(4) 0 0 -1 2 -1 0 0 O £(4)
0 0 0 -1 2 -1 0 0 f(5) 7(5) 0 0 0 -1 2 -1 0 0 F(5)
0 -1 -1 0 -1 4 -1 0 £(6) £(6) 0 -1 -1 0 -1 4 -1 0 7(6)
o 0 -1 0 o -1 3 —1|/{re £(7) 0o 0 -1 0 0 -1 3 —1|/|7£®
\o 0 0 0 0o 0 -1 1) \s®) \/®)/) \o 0o 0o o o o -1 1) \5®)
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N . . T . AN 2
Lf(i) = E Wi () — f(5)) foLf = § Wii (f () = F(J))
7=1 1,7=1

a measure of “smoothness”

Zhou and Scholkopf, “A regularization framework for learning from graph data,” ICML Workshop, 2004. 20/48



Graph Laplacian
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Graph Laplacian

e L has a complete set of orthonormal eigenvectors: L = yAx’

- Xg__

T
L — Xy —

XT
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Graph Laplacian

e L has a complete set of orthonormal eigenvectors: L = yAx’

- Xg__

T
L — Xy —

XT

Eigenvalues are usually sorted increasingly: 0 = A\g < A1 < ... < Any_1
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Graph Fourier transform
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Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013.



Graph Fourier transform
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low frequency high frequency
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Eigenvectors associated with smaller eigenvalues have values that vary less rapidly
along the edges

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013.

23/48



raph Fourier transform
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graph Fourier transform:
[Hammond11] - T

f(€)=<X£,f>3 Xo o Xyl /f

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 23/48



raph Fourier transform
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Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 23/48



Graph Fourier transform

Example on a simple graph

eigenvector u;

eigenvector u,

0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6

0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
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Graph Fourier transform

e Example on a simple graph

. . sensor
elgenveCtor Uy elgenveCtor uz Lo G.N=60 nodes, G.Ne=302 edges
’ 2.0
1.5
2.0
1.0
0.5 1.5 A
0.0
o 1.0 A \l\
-1.0 05
-1.5
-2.0 0.0
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Graph Fourier transform

e Example on a simple graph

. . sensor
elgenvector U elgenveCtor u; o G.N=60 nodes, G.Ne=302 edges
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Outline

e Graph signal processing (GSP): Basic concepts

e Filtering of graph signals: Basic tool of GSP
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Filtering of graph signals

GFT: f(6) = (xe, f) = ng f(@) =) f(Oxe(d)

¢=0
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Filtering of graph signals

GFT: f(€)=<xf,f>=ZxZ(i)f(i) FG@) = f(O)xe(i)

1.0 1
1.0
0.8 A 0.5
0.6 0.0
044 \7,'0// -0.5
-1.0
0.2 A
‘ -1.5
0.0 4 -2.0

26,/48



Filtering of graph signals
GFT: F() = (xe ) = i @) 1) = 3 FOxeld

1=1 ¢=0

GFT

fo| = | f0)

1.0 1 2.00 -
1.0
1.75 A
0.8 1
0-5 1'50_
0.6 1 0.0 1.2541
05 1.00
1 N~ e
04 {i_ 0.75 1
-1.0
0.50
0.2 1
-15 0.25 1
0.0 1 -2.0 0.00
0.0 0.2 0.4 0.6 0.8 0 2 4 6 8 10 12 14
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Filtering of graph signals

N N-—-1

GFT: f(€)=<xf,f>=ZxZ(i)f(i) FG@) = f(O)xe(i)

=
e

0.0
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Filtering of graph signals

N N-—-1

2.00

1.75 A1

1.50 1

1.25 4

1.00 A
0.75 A
0.50 A
0.25 A L
0.00

0 2 4 6 8 10 12 14

26,/48



Filtering of graph signals

N N-—-1

GFT: f() = {xes £) =D _xi (@ (@) f(i) = DY f(O)xe(d)

1=1 ¢=0

GFT IGFT
R N-1

2.00
=20 107 1.25
1.0 1751 1.75 '
i 1.00
0.5 1.50 1.50 0.8
0.75
0.0 1.25 1 1.25 1 0.6 1
1.00 1.00 1 i ,‘. 0.50
-0.5 ‘.\\‘,// :‘:‘A\i
0.75 0.75 041 RSN 0-25
-L0 ) ! 0.00
0.50 0.50 - 02 A==y~ :
-1.5 ' ‘
0.25 - 0.5 L 0.25
-2.0 0.00 4 0.0 1
T T T T T T T T 0.00 T T T T T 0.50
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Filtering of graph signals

N-—-1

f(@) =Y FOxe(i)

=

IGFT

G(\e)f(€)| m

GFT: f(0) = (xu, f) = ix?(i)f(i)
GFT
[ = | f() =
BRI ||y
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Filtering of graph signals

N N-—-1

GFT: f(0) = (xe, f) =D _xi()f (@) f(i) =D f(O)xeld)

1=1 14

B I R,

[G(Xo) 0

0 G(An-1)]

IGFT

=)

Xg(M)x" f

27/48



Filtering of graph signals

GFT: f(0) = (v f) = i) )= 3 FOxl)
1=1 =

GFT IGFT

foom T f = g(A)xf] = xg(A)x S

SR IS R AR

] g(L): functions of L!
9(Ao) 0

0 G(An-1)]
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A practical example

GFT

T

X' f

&
§=

gA)X" f
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A practical example

GFT g(A) IGFT

o= o = g(A)x f | = xg(A)x S

problem: we observe a noisy graph signal f = yo +7 and wish to recover g

[ Y = argm;n{||y — fll3 +vy" Ly} J

28/48



A practical example

GFT g(A) IGFT

foome xf m | gA)x f | xGg(A)x S

problem: we observe a noisy graph signal f = yo +7 and wish to recover g

— data fitting term

“smoothness’ assumption
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A practical example

GFT g(A) IGFT

foome xf m | gA)x f | xGg(A)x S

problem: we observe a noisy graph signal f = yo +7 and wish to recover g

— data fitting term

y = +yL)"'f
g(L)

“smoothness’ assumption
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A practical example

GFT g(A) IGFT

f| = ' f = | gAY f| = Wf

problem: we observe a noisy graph signal f = yo +7 and wish to recover g

— data fitting term

y =T +yL) 7 f = x(1+yA) X f remove noise by low-pass filtering

“smoothness’ assumption

~ in graph spectral domain!
g(L)

28/48



A practical example

e noisy image as observed noisy graph signal

e regular grid graph (weights inversely proportional to pixel value difference)

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 29/48



A practical example

e noisy image as observed noisy graph signal

e regular grid graph (weights inversely proportional to pixel value difference)

Gaussian Filtered Gaussian Filtered
(Std. Dev. = 1.5) (Std. Dev. = 3.5)

Original Image Noisy Image Graph Filtered

[FIGS2] Image denoising via classical Gaussian filtering and graph spectral filtering.

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 29/48



More filtering operations

GFT g(A) IGFT

foome xf m | gA)x f | xGg(A)x S

low-pass filters:  G(L) = (I +~yL)™ ' = x(I +~vA) " 'x?
window kernel: windowed graph Fourier transform
shifted and dilated band-pass filters: spectral graph wavelets §(sL)

adapted kernels: learn values of §(L) directly from data

K K
parametric polynomials: §s(L) = > o L? = x(D_ aseA")x"
k=0 k=0

Shuman, “Dictionary design for graph signal processing,” GSP Workshop, 2016. 30/48



Outline

e Graph signal processing (GSP): Basic concepts
e Filtering of graph signals: Basic tool of GSP

e Connection with literature
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GSP and the literature

there is a rich literature about data analysis and learning on graphs
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there is a rich literature about data analysis and learning on graphs

network science
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GSP and the literature

there is a rich literature about data analysis and learning on graphs
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GSP and the literature

there is a rich literature about data analysis and learning on graphs
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unsupervised learning (dimensionality
reduction, clustering)
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GSP and the literature

there is a rich literature about data analysis and learning on graphs
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Network centrality

eigenvector centrality degree centrality
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Network centrality

eigenvector centrality degree centrality

Wx = Apax®

- Google's PageRank is a variant of eigenvector centrality

- eigenvectors of W can also be used to provide a frequency
interpretation for graph signals

PageRank: http://www.ams.org/publicoutreach /feature-column /fcarc-pagerank
Sandryhaila and Moura, “Discrete signal processing on graphs,” IEEE TSP, 2013. 33/48



http://www.ams.org/publicoutreach/feature-column/fcarc-pagerank

Diffusion on graphs
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Ditfusion on graphs
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Diffusion on graphs

..Ul 1731
~~~~~ U3 ...el4 heat diffusion "'~..J?_J§____l?{4.
U2, .-20777 e Us _' IQ% """"""" Us,
" .:;. v e
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s Yr ___e*” S at--
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- heat diffusion on graphs is a typical physical process on graphs
- other possibilities exist (e.g., random walk on graphs)

- many have an interpretation of filtering on graphs

Smola and Kondor, “Kernels and regularization on graphs,” COLT, 2003. 34/48



Graph clustering (community detection)
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Graph clustering (community detection)
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Graph clustering (community detection)
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Graph clustering (community detection)

NOUt(Al,

l\DIr—\

WA, A)
Zv(o)

1=1

- first k eigenvectors of graph Laplacian minimise the graph cut

- eigenvectors of graph Laplacian enable a Fourier-like analysis
for graph signals

Ulrike von Luxburg, “A tutorial on spectral clustering,” Statistics and Computing, 2007. 35/48



Semi-supervised learning

Zhu, “Semi-supervised learning with graphs,” Ph.D. dissertation, CMU, 2005. 36/48



Semi-supervised learning

Zhu, “Semi-supervised learning with graphs,” Ph.D. dissertation, CMU, 2005. 36/48



Semi-supervised learning

: 2 T
min ||y — + L
Inin |y — z||5 + o 2" Lz,

- learning by assuming smoothness of predicted labels

- this is equivalent to a denoising problem for graph signal y

Zhu, “Semi-supervised learning with graphs,” Ph.D. dissertation, CMU, 2005. 36/48



GSP and the literature

centrality, diffused information, cluster membership, node labels (and
node features in general) can ALL be viewed as graph signals

network science

unsupervised learning (dimensionality

) . semi-supervised learnin
reduction, clustering) P g

37/48



Outline

e Graph signal processing (GSP): Basic concepts
e Filtering of graph signals: Basic tool of GSP
e Connection with literature

e Research topics inspired by GSP
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Deep learning on graphs
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Deep learning on graphs
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Inferring graph structure from data
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Inferring graph structure from data

idea: choose the structure that enforces certain signal characteristics

Dong et al., “Learning Laplacian matrix in smooth graph signal representations,” IEEE TSP, 2016. 41/48
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Application |: Community detection
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Hammond et al., “Wavelets on graphs via spectral graph theory,” Applied and Computational Harmonic Analysis, 2011.
Tremblay and Borgnat, “Graph wavelets for multiscale community mining,” IEEE TSP, 2014. 43/48
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Application |I: Recommender systems
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Monti et al., “Geometric matrix completion with recurrent multi-graph neural networks,” NIPS, 2017. 44/48



Application |I: Recommender systems
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Monti et al., “Geometric matrix completion with recurrent multi-graph neural networks,” NIPS, 2017.
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Application Ill: Functional brain imaging
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Application Ill: Functional brain imaging
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Application IV: Inferring brain connectivity

Hu et al., “A spectral graph regression model for learning brain connectivity of Alzheimer's disease,” PLOS ONE, 2015. 46/48
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Application V: Disease classification
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Parisot et al., “Disease prediction using graph convolutional networks,” Medical Image Analysis, 2018. 47/48



Application V: Disease classification

features extracted from brain analysis
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Application V: Disease classification

features extracted from brain analysis
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