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Data are often structured



Data are often structured

Mean Yearly Temperature (degC) 1981-2010

Social network data Neuroimaging data

We need to take into account the structure behind the data
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Graphs are appealing tools

o Efficient representations for pairwise relations between entities

The Konigsberg Bridge Problem
[Leonhard Euler, 1736]
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o Efficient representations for pairwise relations between entities

e Structured data can be represented by graph signals
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Graphs are appealing tools

o Efficient representations for pairwise relations between entities

e Structured data can be represented by graph signals
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Takes into account both structure (edges) and
data (values at vertices)
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Graph signals are pervasive
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e Vertices:
- 9000 grid cells in London

e Edges:
- geographical proximity of grid

cells

e Signal:

- 7 Flickr users who have taken
photos in two and a half year

PR

RIS

6/47



Graph signals are pervasive

e \ertices:
o, ‘ - 1000 Twitter users

e Edges:
- - following relationship among
users

. e Signal:
. - # Apple-related hashtags they
have posted in six weeks
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Graph signals are pervasive

e \ertices:
- brain regions

e Edges:
- structural connectivity between
brain regions

e Signal:
- blood-oxygen-level-dependent
(BOLD) time series

8/47



Research challenges

sin(mx)

How to generalise classical signal processing tools
on irregular domains such as graphs?
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Graph signal processing

e Graph signals provide a nice compact format to encode structure within
data

e Generalisation of classical signal processing tools can greatly benefit
analysis of such data

e Numerous applications: Transportation, biomedical,
social network analysis, etc.
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Graph signal processing

e Graph signals provide a nice compact format to encode structure within
data

e Generalisation of classical signal processing tools can greatly benefit
analysis of such data

e Numerous applications: Transportation, biomedical,
social network analysis, etc.

e An increasingly rich literature
- classical signal processing

- algebraic and spectral graph theory

- computational harmonic analysis

- machine learning
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Outline

e Motivation

e Graph signal processing (GSP): Basic concepts
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Two paradigms

e The main approaches can be categorised into two families:
- vertex (spatial) domain designs

- frequency (graph spectral) domain designs
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Two paradigms

e The main approaches can be categorised into two families:

- vertex (spatial) domain designs

Important for analysis of signal properties

12/47



Need for frequency

Classical Fourier transform provides the frequency domain representation
of the signals

 cos(wyt) F {cos(w,t)}
A/ A = B
\/ 0\/ A -0, 0 +w, > @

Source: http://www.physik.uni-kl.de
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Need for frequency

e C(lassical Fourier transform provides the frequency domain representation
of the signals

 cos(wyt) F {cos(w,t)}
ANVANVANN] = ! 1
\/ O\/ ¥ -0, 0 +w, > @

Source: http://www.physik.uni-kl.de

A notion of frequency for graph signals:

We need the graph Laplacian matrix
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Graph Laplacian
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Graph Laplacian

Weighted and undirected graph:

G

W, €}
D = diag(d(vy), - - -

yd(vn))
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Graph Laplacian

Weighted and undirected graph:

G

W, €}
D = diag(d(vy), - - -

L=D-W

,d(vn))
Equivalent to G!
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Graph Laplacian

Weighted and undirected graph:

g = {Vv 5}

D = diag(d(vy), -+ ,d(vn))
L=D—-—W Equivalent to G!
Lyorm = D73 (D — W)D ™3>

o

000000 01000000 1 -1 0 0 0 0 0 :
000000 /10100100\ (—1 3 -1 0 0 -1 0 o\ e Symmetric

400000 010101710 0 -1 4 -1 0 -1 -1 0

020000 00101000[__]o0o 0o -1 2 -1 0 0 0 o i ' _ it
O O I e S TP Off-diagonal entries non-positive
000400 011010710 0 -1 -1 0 -1 4 -1 0

000030 00100101 0 0 -1 0 0 -1 3 -1 e Rows sum up to zero
0000001 \0 0 0000 1 0/ \o 0 0 0 0 0 -1 1)

-
=
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Graph Laplacian

Why graph Laplacian?
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Graph Laplacian

Why graph Laplacian?

- approximation of the Laplace operator

(Lf)() =4f (@) = [f(r) + f(d2) + f(s) + f(Ja)]

standard 5-point stencil for approximating —V?f
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Graph Laplacian

Why graph Laplacian?

- approximation of the Laplace operator

(Lf)() =4f (@) = [f(r) + f(d2) + f(s) + f(Ja)]

standard 5-point stencil for approximating —V?f

- converges to the Laplace-Beltrami operator (given certain conditions)

- provides a notion of “frequency” on graphs

15/47



Graph Laplacian

Graph signal f : )V — RY
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Graph Laplacian
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Graph Laplacian

Graph signal f : )V — RY

1 -1 0 0 0 0 0 O f(1) £(1) T/1 10 0 0 0 0 o0 f(1)
(—1 3 -1 0 0 -1 0 o\ (f(Q)\ /f(2)\ (1 3 -1 0 0 -1 0 0\ (f(2)\
0 -1 4 -1 0 -1 -1 0 7(3) £(3) 0 -1 4 -1 0 -1 -1 0 £(3)
0 0 -1 2 -1 0 0 O f(4) £(4) 0 0 -1 2 -1 0 0 O £(4)
0 0 0 -1 2 -1 0 0 f(5) 7(5) 0 0 0 -1 2 -1 0 0 F(5)
0 -1 -1 0 -1 4 -1 0 £(6) £(6) 0 -1 -1 0 -1 4 -1 0 7(6)
o 0 -1 0 o -1 3 —1|/{re £(7) 0o 0 -1 0 0 -1 3 —1|/|7£®
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N . . T . AN 2
Lf(i) = E Wi () — f(5)) foLf = § Wii (f () = F(J))
7=1 1,7=1

A measure of “smoothness’

Zhou and Scholkopf, “A regularization framework for learning from graph data,” ICML Workshop, 2004. 16/47



Graph Laplacian
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Graph Laplacian

e L has a complete set of orthonormal eigenvectors: I = yAy?

| ] [P 0 1[— Xo—7
L = X() XNI
_‘ ‘ . _O AN_l_ -_XN-I_—
X A X
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Graph Laplacian

e L has a complete set of orthonormal eigenvectors: I = yAy?

| ] [P 0 1[—— Xo—~
L = XO XNI
_‘ ‘ . _O AN_l_ -_XN-I_—
X A X'

o Eigenvalues are usually sorted increasingly: 0 = A\g < A1 < ... < An_1
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Graph Fourier transform
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Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013.



raph Fourier transform
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Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 19/47



Graph Fourier transform

AT AN s
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Low frequency

X&' Lxo =X =0

High frequency

X50LX50 = As0

Eigenvectors associated with smaller eigenvalues have values that vary less rapidly
along the edges

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 19/47



raph Fourier transform
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Graph Fourier transform:
[Hammond11] - - T
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Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 19/47



Graph Fourier transform
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Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 19/47



Graph Fourier transform

e The Laplacian L admits the following eigendecomposition: Ly, = A¢Xxe
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Graph Fourier transform

e The Laplacian L admits the following eigendecomposition: Ly, = A¢Xxe

one-dimensional Laplace operator: —V/?

$

eigenfunctions: e7%%

'

Classical FT: f(w) = / (e79%)* f(z)dz

fla)= o / F(w)e™= duw
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Graph Fourier transform

e The Laplacian L admits the following eigendecomposition: Ly, = A¢Xxe

one-dimensional Laplace operator: —V/? . graph Laplacian: L

$

$

eigenfunctions: e/%* ' eigenvectors: X/

$ $oF
A N

Classical FT:  f(w) = / (e7“7)" f(x)dw Graph FT: f(¢) = (xo, [) = ZXZ(i)f(i)

fo) = 5 [ Fper o F6) = 3 F0xli
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Graph Fourier transform

e The Laplacian L admits the following eigendecomposition: Ly, = A¢Xxe

one-dimensional Laplace operator: —V/? . graph Laplacian: L

$

i

eigenfunctions: e7%% ' eigenvectors:

$ lf o

Classical FT: f(w)zﬂ[eﬂw “f ‘d:ci Graph FT: f(/) = <Xg,f>:Z)<Z(i)“f(i)

1=1

N—-1

)= o [ e F6) = 3 F0xli

¢=0
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Two special cases

S

m (Unordered) Laplacian eigenvalues: Ay =2 — 2 cos (2‘%)

m One possible choice of orthogonal Laplacian eigenvectors:

— 2mj
Xe = [1,we,w2£, - ,w(N 1)6] , Where w = e N
| |
B | xo --- xn_1 | isthe Discrete Fourier Transform (DFT) matrix

Vandergheynst and Shuman, “Wavelets on graphs, an introduction,” Université de Provence, 2011.
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Two special cases

wil )\g:2—2cos(%) 0 xo(/) = ﬁ Xg(i):\/%cos(“e(';o's)), (=1,2,...,N—1

Eigenvector 0

°¥ B B ] o B B m]

05 | | l | l | |
1 2 3 4 5 6 7 8

0 Eigenvector 1

05 1 1 I t ‘.%—!
1 2 3 4

0 Eigenvector 2 -

035 2 3 - ! 7 8

Eigenvector 3

B
O.Q\!‘\_! —a — m .
035 2 : : 5 7 =

Eigenvector 4

Eigenvector 5

?\ ,/'\-:gemecm:./_'\,
Eigenvector 7

-o:§\~ /_!\1/’\! 4/!—'—\!

2 3 5 7 8

is the Discrete Cosine Transform matrix (DCT-II, Strang, 1999),
which is used in JPEG image compression

Vandergheynst and Shuman, “Wavelets on graphs, an introduction,” Université de Provence, 2011. 22/47



Outline

e Motivation
e Graph signal processing (GSP): Basic concepts

e Spectral filtering: Basic tools of GSP
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Classical frequency filtering

Classical FT:  f(w) :/(ej“‘”)*f(x)dx f(z) = %/f’(w)ejmdw
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Classical frequency filtering

Classical FT:  f(w)

0y f(@)de  f(z) = o [ F(w)er dw
/ )

Apply filter with transfer function §(-) to a signal f

FT

f| =

JE

(w)

g(w)

=)

(@) f(w)

IFT

f*g

24/47



Classical frequency filtering

Classical FT:  f(w)

Apply filter with transfer function §(:

FT

[ (=) (@)

f| =

=)

| F

1 ¢ jwx
= %/f(w)e dw
to a signal f
IFT
g(w)f(w)| = | fxg

24/47



Graph spectral filtering

GFT: f(0) = {xe, f) = Zm F@) = F0)xe(i)
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Graph spectral filtering

GFT: £(6) = (xer f) — ng Fi) = 3 Fepeti

¢=0

Apply filter with transfer function G(-) to a graph signal f:V — RN

GFT g(Ae) IGFT

Fol m [ f) = | GO0 = |50 = 3 i0nfox
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Graph spectral filtering

N N-—-1

GFT: f(0) = (xe, f) =D _xi()f (@) f(i) =D f(O)xeld)

1=1 (=

Apply filter with transfer function G(-) to a graph signal f:V — RN

GFT IGFT
N—-1

Fol = [ f) = |G| = |50 = 3 i0nfox

>
>

Low-pass 14 High-pass ¢ Band-pass  /

= a =
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Graph spectral filtering

GFT: f(0) = (xe, f) =D _xi()f (@) f(i) =D f(O)xeld)

N N-—-1

1=1

=

Apply filter with transfer function G(-) to a graph signal f:V — RN

A

IGFT

=)

= | G(A)x' f
[§(Mo) 0
0 0w,

25/47



Graph Laplacian revisited

GFT: f(0) = (xe, f) = xi(i)f(i)

N

1=1

N-—-1

=

The Laplacian L is a difference operator: Lf = xAx" f

GFT

A

X' f

Ax' f

IGFT

=)

f(@) =Y FOxe(i)

YAXTf
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Graph Laplacian revisited

GFT: f(0) = (v f) = i) )= 3 FOxl)
1=1 £=0

The Laplacian L is a difference operator: Lf = xAx" f

GFT GFT

foomp T om | ANTr | om AT

- 0 AN_]'_

The Laplacian operator filters the signal in the spectral domain by its eigenvalues!

The Laplacian quadratic form: f1Lf = HL%fHQ = HXA%XT]CHQ

26/47



Graph transform/dictionary design

e Transforms and dictionaries can be designed through graph spectral
filtering: Functions of graph Laplacian!

GFT

T

X' f

g(A)
=)

gA)X" f

IGFT

=)

(M)x" f
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Graph transform/dictionary design

e Transforms and dictionaries can be designed through graph spectral
filtering: Functions of graph Laplacian!

GFT

T

X' f

g(A)
=)

gA)X" f

IGFT

=)

xg(A)x" f

SRS R AR

G(L): functions of L!
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Graph transform/dictionary design

e Transforms and dictionaries can be designed through graph spectral
filtering: Functions of graph Laplacian!

GFT

T

X' f

g(A)
=)

gA)X" f

IGFT

=)

xg(A)x" f

SRS R AR

G(L): functions of L!

e Important properties can be achieved by properly defining g(L) , such

as localisation of atoms

e (Closely related to kernels and regularisation on graphs

Smola and Kondor, “Kernels and regularization on graphs”, COLT, 2003.
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A simple example

GFT

T

X' f

&
§=

28/47



A simple example

GFT g(A) IGFT

o= o = g(A)x f | = xg(A)x S

Problem: We observe a noisy graph signal f = yo + 7 and wish to recover g

[ Y = argm;n{||y — fll3 +vy" Ly} J

28/47



A simple example

GFT g(A) IGFT

foome xf m | gA)x f | xGg(A)x S

Problem: We observe a noisy graph signal f = yo + 7 and wish to recover g

— Data fitting term

[ y* = arg myinm@l ~

“Smoothness” assumption
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A simple example

GFT g(A) IGFT

foome xf m | gA)x f | xGg(A)x S

Problem: We observe a noisy graph signal f = yo + 7 and wish to recover g

— Data fitting term

[y =g mgnml _
$

“Smoothness” assumption

. —1

Y _(I+7L) __f Laplacian (Tikhonov) regularisation is equivalent to
A low-pass filtering in the graph spectral domain!
g(L)

28/47



A simple example

e noisy image as the observed noisy graph signal

e regular grid graph (weights inversely proportional to pixel value difference)

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 29/47



A simple example

e noisy image as the observed noisy graph signal

e regular grid graph (weights inversely proportional to pixel value difference)

Gaussian Filtered Gaussian Filtered
(Std. Dev. = 1.5) (Std. Dev. = 3.5)

Original Image Noisy Image Graph Filtered

[FIGS2] Image denoising via classical Gaussian filtering and graph spectral filtering.

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 29/47



Example designs

GFT g(A) IGFT

foome xf m | gA)x f | xGg(A)x S

Low-pass filters: §(L) = (I +~yL)" ' = x(I +vA) " 'x?

30/47



Example designs

GFT g(A) IGFT

foome xf m | gA)x f | xGg(A)x S

Low-pass filters: §(L) = (I +~yL)" ' = x(I +vA) " 'x?
Window kernel: Windowed graph Fourier transform
Shifted and dilated band-pass filters: Spectral graph wavelets g§(sL)

Adapted kernels: Learn values of §(L) directly from data

K K
Parametric polynomials: §s(L) = Y awL® = x(>_ asA")x"
k=0 k=0

Shuman et al., “Dictionary design for graph signal processing,” GSP Workshop, 2016. 30/47



Outline

Motivation
Graph signal processing (GSP): Basic concepts
Spectral filtering: Basic tools of GSP

Connection with literature
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GSP and the literature

There is a rich literature about data analysis and learning on graphs
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GSP and the literature

There is a rich literature about data analysis and learning on graphs

network science
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GSP and the literature

There is a rich literature about data analysis and learning on graphs
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GSP and the literature

There is a rich literature about data analysis and learning on graphs

v 1
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Us vy gt U U7 | Y, -
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[ 4 [ ¢
network science diffusion on graphs

unsupervised learning (dimensionality
reduction, clustering)
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GSP and the literature

There is a rich literature about data analysis and learning on graphs

network science

unsupervised learning (dimensionality

) . semi-supervised learnin
reduction, clustering) P g
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Network centrality

eigenvector centrality degree centrality

33/47



Network centrality

eigenvector centrality degree centrality

Wx = Apax®

- Google's PageRank is a variant of eigenvector centrality

- eigenvectors of W can also be used to provide a frequency
interpretation for graph signals

PageRank: http://www.ams.org/publicoutreach /feature-column /fcarc-pagerank
Sandryhaila and Moura, “Discrete signal processing on graphs’, IEEE TSP, 2013. 33/47
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Diffusion on graphs
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Diffusion on graphs

..Ul 173}
~~~~~ V3. _..eV4 heat diffusion "'~..JQ_J§____1?{4.
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Diffusion on graphs

‘Ul 1731
~~~~~ U3 ...el4 heat diffusion "'~..JT_J§____1Q4.
U2, =207 e Us IQ% """"""" Us,
" .:;. v e
v vy 6. ' Vg vr o8- 1
s  Yr ___e*” IS at--
@-=====-=- :,-."" @=====-= ::,1 I
/Ug‘¢" I UQ;"‘
[ 2 o

- heat diffusion on graphs is a typical physical process on graphs
- other possibilities exist (e.g., random walk on graphs)

- many have an interpretation of filtering on graphs

Smola and Kondor, “Kernels and regularization on graphs”, COLT, 2003. 34/47



Graph clustering (community detection)
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Graph clustering (community detection)

NOUt(Al,

l\DIr—\

WA, A)
Zv(o)

1=1

- first k eigenvectors of graph Laplacian minimise the graph cut

- eigenvectors of graph Laplacian enable a Fourier-like analysis
for graph signals

Ulrike von Luxburg, “A tutorial on spectral clustering”, Statistics and Computing, 2007. 35/47



Semi-supervised learning

Zhu, “Semi-supervised learning with graphs”, Ph.D. dissertation, CMU, 2005. 36/47
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Zhu, “Semi-supervised learning with graphs”, Ph.D. dissertation, CMU, 2005. 36/47



Semi-supervised learning

: 2 T
min ||y — + L
Inin |y — z||5 + o 2" Lz,

- learning by assuming smoothness of predicted labels

- this is equivalent to a denoising problem for graph signal y

Zhu, “Semi-supervised learning with graphs”, Ph.D. dissertation, CMU, 2005. 36/47



GSP and the literature

centrality, diffused information, class membership, node labels (and
node-level features in general) can ALL be viewed as graph signals

o U1
PHRE CENpC NPT (I G
2 - Sag _—’ SN a (%
" v ze” EEp vg 23
Vg U7 e U8 U7 _ _er”
.----‘-’.--- .----’-' - r
L 4
Vg, » 7:9,'
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reduction, clustering) P g
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Outline

Motivation

Graph signal processing (GSP): Basic concepts
Spectral filtering: Basic tools of GSP
Connection with literature

Applications in neuroscience
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A typical analysis framework
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Huang et al., “A graph signal processing perspective on functional brain imaging”, Proc. IEEE, 2018. 39/47
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Huang et al., “A graph signal processing perspective on functional brain imaging”, Proc. IEEE, 2018. 39/47



Application |I: Understanding brain functioning
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Medaglia et al., “Functional alignment with anatomical networks is associated with cognitive flexibility”, Nature Human
Behaviour, 2018. 40/47



Application |I: Understanding brain functioning
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Medaglia et al., “Functional alignment with anatomical networks is associated with cognitive flexibility”, Nature Human
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Application |I: Understanding brain functioning
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Application |I: Understanding brain functioning

(a) (b) ()
low-freq. mid-freq. high-freq.
components components components

- record BOLD signals while responding to sequentially presented stimuli

Huang et al., “Graph frequency analysis of brain signals”, IEEE JSTSP, 2016. 41/47



Application |I: Understanding brain functioning

(a) (b) (¢)
low-freq. mid-freq. high-freq.
components components components

- record BOLD signals while responding to sequentially presented stimuli

- it favours learning to have
» smooth, spread signals (low-freq.) when facing unfamiliar task

= varied, spiking signals (high-freq.) when task becomes familiar

Huang et al., “Graph frequency analysis of brain signals”, IEEE JSTSP, 2016. 41/47



Application |l: Disease classification
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Hu et al., “Matched signal detection on graphs”, Neurolmage, 2016.
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Application Il: Disease classification
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Application |l: Disease classification

N subjects Population graph

Feature vector

Phenotypic data
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M labelled samples
N-M samples to classify

Parisot et al., “Disease prediction using graph convolutional networks”, Medical Image Analysis, 2018. 43/47



Application Il: Disease classification

ADNI (structural MRI): volumes of brain structures
ABIDE (fMRI): off-diagonal of functional connectivity

]

N subjects Population graph

Feature vector

M labelled samples
N-M samples to classify

Parisot et al., “Disease prediction using graph convolutional networks”, Medical Image Analysis, 2018. 43/47



Application Il: Disease classification

ADNI (structural MRI): volumes of brain structures
ABIDE (fMRI): off-diagonal of functional connectivity

]

N subjects Population graph

Feature vector

M labelled samples

‘ N-M samples to classify

similarity in phenotypic data

Parisot et al., “Disease prediction using graph convolutional networks”, Medical Image Analysis, 2018. 43/47



Application Il: Disease classification

ADNI (structural MRI): volumes of brain structures
ABIDE (fMRI): off-diagonal of functional connectivity

]

N subjects Population graph Fully labelled graph
e——— Feature vector
S, Graph Convolutional
Neural Network
S,
: —
Sy

M labelled samples

‘ N-M samples to classify

similarity in phenotypic data
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Application |lI: Gender classification
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Application IV: Inferring brain connectivity
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(a) Mapping from image voxels (cubes) to vertices (ellipses) of a graph. (b) Amplitudes of the GFT coefficients.

Hu et al., “A spectral graph regression model for learning brain connectivity of Alzheimer’s disease”, PLOS ONE, 2015.
Shen et al., “Nonlinear structural vector autoregressive models for inferring effective brain network connectivity”’, 2016. 45/47



Application IV: Inferring brain connectivity

Alzheimer's disease

Hu et al., “A spectral graph regression model for learning brain connectivity of Alzheimer’s disease”, PLOS ONE, 2015.
Shen et al., “Nonlinear structural vector autoregressive models for inferring effective brain network connectivity”’, 2016. 45/47



Future of GSP

e Mathematical models for graph signals
- global and local smoothness / regularity
- underlying physical processes

e Graph construction
- how to infer topologies given observed data?

e Fast implementation
- fast graph Fourier transform
- distributed processing

e Connection to / combination with other fields
- statistical machine learning
- deep learning on graphs and manifolds

e Key applications

Bronstein et al., “Geometric deep learning”’, IEEE SPM, 2017.
Wu et al., “A comprehensive survey on graph neural networks”, arXiv, 2019. 46/47
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of Signal Processing
on Graphs
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Extending high-dimensional data analysis
to networks and other irregular domains

n applicaticns such as social, energy, transportation, sensor,

besn prq;osed to efficiently extract information from high-

and neuronal networks, high-di data naturally
reside n the vertices of weighted graphs, The emergi

on graphs. We conclude with a brief discussion
of open isuts ible extensions.

of signal processing on graphs mngsalgbnm and spz(tnl
graph theoretic concepts with -

TION

ysis to process such signals on graphs. In this mm.mmm
we outline the main challenges of the area, discuss different ways
to define graph spectral domains, which are the analogs to the
classical frequency domain, and highlight the importance of
incorporating the irregular structures of graph data domains
when processing signals on graphs. We then review methods to
generalize fundamental operations such as filtering, translation,
modulation, dilation, and downsampling to the graph setting
and survey the localized, multiscale transforms that have
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Graphs are generic data representation forms that are useful
for describing the geometric structures of data domains in
numerous applications, including social, energy, transporta-
tion, sensor, and neuronal networks. The weight associated
with each edge in the graph often represents the similarity
between the two vertices it connects. The connectivities and
edge weights are either dictated by the physics of the problem
at hand or inferred from the data. For instance, the edge
weight may be inversely proportional to the physical distance
between nodes in the network. The data cn these graphs can
be visualized as a finite colkection of samples, with one sample
at each vertex in the graph. Collectively, we refer to these
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Graph Signal Processing:
Overview, Challenges, and

Applications

This article presents methods to process data associated to graphs (graph signals) extending

techniques (transforms, sampling, and others) that are used for conventional signals.

By AnTonio Orteca ™, Fellow IEEE, Pascal Frossaro, Fellow IEEE, JeLena Kovacevid, Fellow IEEE,
José M. F. Moura"', Fellow IEEE, anD PiERRE VANDERGHEYNST

ABSTRACT | Research in graph signal processing (GSP) aims
to develop tools for processing data defined on imegular graph
‘domains. In this paper.

Graphs offer the ability to model such data and complex
interactions among them. For example, users on Thwitter can be

GSP and their connection to conventional digital signal processing.
along with a brief historical perspective to highlight how concepts
recently developed in GSP build on top of prior research in other

as edgec. This paper
nnddmgihnnsquonzmph forexampl,ear ofgraduc

etc. Do

areas.
tools, including methods for sampling. filtering. or graph learning.
Next. we review progress in several application areas using GSP.

signal processing concepts and toole such as Fourer transform,
ltering, ard{rq\mtyrsspomemdmrmdxqonwaphz.k

data,

KEYWORDS | Graph signal processing (GSP); network science
and graphs; sampling; signal processing

I. INTRODUCTION AND MOTIVATION

Data is all around us, and massive amounts of it. Almost
every aspect of human life iz now being recorded at all lev-
elz: from the marking and recording of processing incide the
cells starting with the advent of fluorescent markers, to our
personal data through health monitoring devices and apps,
financial and banking data, our social networks, mobility
and traffic patterns, marketing preferences, fads, and many
more. The complexity of such networks [1] and

phdwly‘.ﬁneﬁelddmguher:nﬂquuem’awm\dﬂamm-
mon umbrella s graph signal procecsing (GSF) (2, 3}

While the precise definition of a graph signal will be

given laer in the paper, let us assume for now that a graph

nodes. These nod
are connected via (pocsibly weighted) edges. As in classical
signal processing, such signals can stem from a variety of
domains; unlike in classical signal processing, however, the
underlying graphs can tell a fair amount about those signals
through their structure. Different types of graphs model dif-
ferent types of networks that these nodes represent.

Typical graphs that are used to represent common real-
world data include Erdés-Rényi graphs, ring graphs, random
geometric graphs, cmall-world graphs, power-law graphs,

le-free graphs, and many others.

means that the data now recide on irregular and complex
structures that do not lend themselves to standard tools.
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These model networks with random connections (Erddc—
Rényi graphs), networks of brain neurons (small-world
graphs), social hs), and others.

s in classical signal processing, graph cignals can have
properties, such as smoothness, that need to be appropri-
ataly defined. They can also be represented via basic atoms
and can have a spectral representation. In particular, the
graph Fourier transform allows uz to develop the intuition
gathered in the classical cetting and extend it to graphs; we
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A Graph Signal Processing
Perspective on Functional

Brain Imaging

This article addresses how the signal proces:

sing view on brain graphs can provide

additional insights into brain network analysis.

By Weivu Huang, Thomas A. W. BoLtoN™, StupeNt Memser IEEE Joun D. MEDAGLIA,
DANIELLE S. BASSETT™, ALEJANDRO RIBEIRO, AND DimMITRI VAN DE ViLLE™, SENIOR MEMBER IEEE

ABSTRACT | Modern neuroimaging techniques provide us with
unique views on brain structure and function; ie., how the brain
s wired, and where and when activity takes place. Data acquired
using these techniques can be analyzed in terms of ts network

analyze the signals from a new viewpoint. Here, we review GSP
for brain imaging data and discuss thei potential to integrate
brainstr
residing in the graph signals. We review how brain activity can

I.Graph  be i filtered based on concepts of spectral modes
representations are versatile models where nodes are associated  derived from brain structure. We also derive other operations

tural such as surrog formed
Structural graphs model neural pathways in white matter, which ystems. In sum, GSP off for

are the anatomical backbone between regions. Functional graphs
are built based on functional connectivity, which is a pairwise
measure of statistical interdependency between pairs of regional
activity traces. Therefore, most research to date has focused on
analyzing these graphs reflecting structure or function. Graph
signal processing (GSP) is an emerging area of research where
signals recorded at the nodes of the graph are studied atop the
i i number of
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I. INTRODUCTION

Advances in neuroimaging techniques such as magnetic
resonance imaging (MRI) have provided opportunities to
measure human brain structure and function in a noninva-
sive manner [2]. Diffusion-weighted MRI allows to meas-
ure major fiber tracts in white matter and thereby map the
structural scaffold that supports neural communication.
Functional MRI (IMRI) takes an indirect estimate of the
brain i each second, in the form of blood oxy-
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" Shaped by evolution, the brain has evolved connectiv-
ity pattems that often look haphazard yet are crucial in
cognitive processes. The apparent importance of these con-
nectomes has motivated the emergence of network neuro-
science as a clearly defined field to study the relevance of
network structure for cognitive function [3}-[5]. The fun-
damental components in network neuroscience are graph
models (6] where nodes are associated to brain regions and
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