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ABSTRACT

Equivariant neural networks have shown improved performance, expressiveness
and sample complexity on symmetrical domains. But for some specific symme-
tries, representations, and choice of coordinates, the most common point-wise ac-
tivations, such as ReLU, are not equivariant, hence they cannot be employed in the
design of equivariant neural networks. The theorem we present in this paper de-
scribes all possible combinations of finite-dimensional representations, choice of
coordinates and point-wise activations to obtain an exactly equivariant layer, gen-
eralizing and strengthening existing characterizations. Notable cases of practical
relevance are discussed as corollaries. Indeed, we prove that rotation-equivariant
networks can only be invariant, as it happens for any network which is equiv-
ariant with respect to connected compact groups. Then, we discuss implications
of our findings when applied to important instances of exactly equivariant net-
works. First, we completely characterize permutation equivariant networks such
as Invariant Graph Networks with point-wise nonlinearities and their geometric
counterparts, highlighting a plethora of models whose expressive power and per-
formance are still unknown. Second, we show that feature spaces of disentangled
steerable convolutional neural networks are trivial representations.

1 INTRODUCTION

In recent years, equivariant neural networks have improved the performance of standard neural net-
works by harnessing symmetries of the training data, and have risen to an entirely new branch of
machine learning known as geometric deep learning (Bronstein et al., 2021; 2017; Kondor & Trivedi,
2018). Those networks (Wood & Shawe-Taylor, 1996; Cohen & Welling, 2016a) have shown im-
proved generalization capabilities across various research areas, including computer vision (Worrall
et al., 2017; Hoogeboom et al., 2018; Dieleman et al., 2016), computer graphics (Weiler et al., 2018;
Zaheer et al., 2017; Qi et al., 2017; Maron et al., 2020; Marcos et al., 2017; Sifre & Mallat, 2013),
and graph learning (Maron et al., 2018; 2019a;b; Geerts, 2020; Kondor et al., 2018; Hy et al., 2018).
However, these networks pose additional constraints in the architecture design. Namely, the use
of pointwise activations, which are fundamental in common neural networks for their simplicitly,
easiness to train, and computational efficiency, is limited by a lack of equivariance in certain set-
tings (Cohen & Welling, 2016b; Weiler et al., 2018). Their application in equivariant models is thus
restricted and needs a careful choice, which is however only partially explored. Indeed, pioneering
work (Wood & Shawe-Taylor, 1996) proved a theorem that enables researchers, having at their dis-
posal certain representations, to be automatically informed of all employable point-wise activations
and vice-versa. This, to the best of our knowledge, is the first and only characterization theorem
for equivariant networks with point-wise activations, which has however significant limitations in
several aspects, namely, (i) it only applies to finite groups, (ii) it is redundant, since its classification
is unable to identify representations that are equivalent up to isomorphisms or change of bases, and
(iii) it is restricted to a subclass of possible activation functions.
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In this paper, using tools from representation theory (Fulton & Harris, 2004) and matrix group
theory (Flor, 1969), we present a stronger and more general theorem that fills the described gaps
in the result of Wood & Shawe-Taylor (1996). In more details, we consider classes F of activation
functions and groups M of representation matrices, and we investigate when they can be combined
to obtain an equivariant layer, i.e., they commute–see Section 4. We start by defining operations that
map any F to a corresponding maximal admissible group of matrices M(F), and vice-versa map
M to a maximal admissible family of activations F(M). Crucially, we highlight the dual nature of
those operations and how their composition stabilizes, leading to a finite family of explicitly defined
maximal classes. Finally, for these few maximal classes we exhibit the dual pairings (F ,M), thus
obtaining a complete and exhaustive categorization of admissible activation-representation pairs,
which includes the classification of Wood & Shawe-Taylor (1996) as a special case.

We then apply this theorem to obtain a number of novel results. First, we leverage it to collect
new theoretical insights into existing methods. Namely, we prove a stronger result than Wood &
Shawe-Taylor (1996) in the case of finite groups (Section 5.1) by identifying isomorphic admissi-
ble representations. Moreover, we consider disentangled equivariant networks (Cohen & Welling,
2016b), and we show that they admit point-wise activations if and only if the linear representa-
tions underlying their feature spaces are trivial (Section 5.2). Second, we specialize our results to
particular cases of equivariant networks of practical relevance (Section 6). For rotation-equivariant
networks (Weiler et al., 2018), we show that all admissible networks are invariant, and hence unable
to learn many equivariant tasks such as segmentation or detection. This proves a significant barrier
for the use of equivariant networks with point-wise activations in this kind of tasks. Instead, for
Invariant Graph Networks (IGNs) (Maron et al., 2018) and geometric IGNs (Dym & Gortler, 2022;
Finkelshtein et al., 2022; Joshi et al., 2023), including the k-order invariant and equivariant networks
presented by Maron et al. (2018), we show that the choice of admissible representation layers com-
patible with point-wise activations is not only limited to those described by Maron et al. (2018),
and in fact we highlight and fully characterize a wider class of permutation equivariant networks in
terms of subgroups of the symmetric group. This opens new directions and provides novel tools for
the design of equivariant networks beyond the known ones.

We point out that our approach has limitations, since we focus solely on exact equivariance with re-
spect to arbitrary finite-dimensional representations. Those representations encompass disentangled
representations as well as regular representations (Cohen & Welling, 2016a;b), and thus we address
a substantial portion of documented use cases in the literature. Nevertheless, our work does not
apply to infinite-dimensional representations, and in particular to the vast body of literature utilizing
harmonic analysis techniques. Also in this case, however, our results have a space of application.
Indeed, for computational reasons these infinite-dimensional models are often transformed into fi-
nite ones in diverse ways, and when this is achieved through the discretization of both the symmetry
group and the domain, the resulting discrete model can be frequently analyzed using our approach.
Instead, we can not analyze those cases where the discretized model does not exhibit exact equiv-
ariance with respect to the initial symmetry group, even if for these models the empirical evidence
suggests that this equivariance is approximately maintained (Cohen et al., 2018). Moreover, it is
crucial to emphasize that further alternative approaches exist in the literature, and unexplored possi-
bilities remain.

In brief, our contributions are summarized as follows: (i) we provide a characterization theorem for
equivariant neural networks with continuous point-wise activations, by showing the existence of a
finite number of maximal sets of equivariant classes, enumerating them, and providing an explicit
dual pairing between activations and representations, (ii) we use this result to give an exhaustive
description of networks that are equivariant with respect to finite groups, and to show a barrier
in the use of disentangled equivariant networks, and (iii) we discuss implications of this theorem
in practical and relevant scenarios, namely highlighting a severe limitation of rotation-equivariant
networks, while providing new and unexplored design possibilities for (geometric) IGNs.

The paper is organized as follows: Section 2 provides an overview of related work on equivariant
models and existing limitations concerning point-wise activations. Section 3 provides preliminar-
ies for our work. In Section 4, we present the general formulation of the characterization theorem
for equivariant networks with point-wise activations. Section 5 explores significant implications of
the theorem for specific but still abstract cases such as finite groups or disentangled networks. In
Section 6 we discuss examples of relevant significance in practical scenarios such as equivariance
with respect to the symmetric group and the rotation group and their application to graph invari-
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ant networks, networks equivariant with respect to Euclidean transformations, and geometric graph
processing. Finally, Section 7 summarizes our findings and discusses future research directions.

2 RELATED WORK

Historically, early explicit integration of representation theory and harmonic analysis into machine
learning can be dated to Kakarala (1992) and Kondor (2008). Wood & Shawe-Taylor (1996) are the
first to bring equivariance into deep learning with a general approach. They define equivariant neural
networks and give a classification of those models for the case of point-wise activations. In more
recent years, Cohen & Welling (2014; 2016a;b) presented the foundational work of group equiv-
ariant convolutional networks and introduced the general model of steerable Convolutional Neural
Networks (CNNs) (Cohen & Welling, 2016b), a popular and efficient class of equivariant models. In
the following years many equivariant models and many applications to different domains appeared
in the literature: rotation-invariance for galaxy morphology prediction (Dieleman et al., 2015), per-
mutation invariance for set processing (Qi et al., 2017; Zaheer et al., 2017), permutation invariance
for graph and relational structure learning (Maron et al., 2018; Kondor et al., 2018; Pan & Kon-
dor, 2022), simultaneous roto-translation invariance and permutation-invariance for 3D point-cloud
processing (Thomas et al., 2018; Dym & Maron, 2020), and roto-translation invariance for medical
image analysis (Bekkers et al., 2018). Different research directions focused instead on theoretical
aspects of equivariant models, including the design of new frameworks (Cohen et al., 2019), proofs
of expressivity and universality (Maron et al., 2019b; Geerts, 2020; Ravanbakhsh, 2020; Zhou, 2020;
Yarotsky, 2018; Joshi et al., 2023), generalization bounds and sample complexity (Behboodi et al.,
2022; Cohen et al., 2019; Sannai et al., 2021; Zweig & Bruna, 2021; Elesedy, 2022), and characteri-
zations (Wood & Shawe-Taylor, 1996; Kondor & Trivedi, 2018; Lang & Weiler, 2021). Despite this
extensive theoretical investigation, a comprehensive study of the interaction of activations and rep-
resentations is still missing. This constitutes a potential limitation in the understanding and design
of novel equivariant architectures enjoying certain desired properties. This paper aims at filling this
gap. We remark finally that there exist activations which are not point-wise, and that they are some-
times employed in practice even if they are less computationally favourable, and their investigation
is still at its infancy. Indeed, to the best of our knowledge, a general framework to describe and
study them in a principled manner is yet to be proposed. Examples of those activations are the norm
nonlinearities (Worrall et al., 2017), squashing nonlinearities (Sabour et al., 2017), tensor product
nonlinearities (Kondor, 2018), and gated nonlinearities (Weiler et al., 2018). We refer to Weiler &
Cesa (2019) for further details.

3 PRELIMINARIES

3.1 GROUPS, REPRESENTATIONS AND AFFINE TRANSFORMATIONS

We would like to define functions symmetrical with respect to a certain set of transformations.
Classes of transformations suitable for computation and technical manipulation are groups (Fulton
& Harris, 2004). A group is a set of elements which can be composed together, can be inverted and
such that there exists an element neutral with respect to composition. For further details we refer to
Definition 6 and Example 2 in Appendix A.2.

Despite the properties presented by groups, these algebraic structures need adaptation to work with
the language of linear algebra typical of neural networks. The right tool to operate this translation is
representation theory (Fulton & Harris, 2004) which studies how abstract groups can be translated
to sets of matrices which are group themselves. Given a group G, a vector space V on the field R of
real numbers, and the set GL(V ) of linear invertible functions from V to itself, a G-representation
is a function ρ : G → GL(V ) compatible with the group structures. When possible we will indicate
such a representation by using simply V (Definition 10). We will write GLn(R) when V = Rn.

For our purposes some particular representations will play an important role. Given an action of G
on a finite set X with cardinality n, setting V = RX , and considering the standard basis B = {ei}ni=1
of X , a permutation representation is a representation such that g(ei) = egi for each g ∈ G and
i ∈ X , and a signed permutation representation is such that g(ei) = ±egi. Moreover, a monomial
representation is such that g(ei) = ag,iegi for some non-null real number ag,i, and if additionally
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ag,i is positive we say that the monomial representation is non-negative. If each ag,i belongs to
the multiplicative group ⟨bn⟩n∈Z for a real value 0 < b ̸= 1, we say that the representation is
b-monomial. Similarly if each ag,i belongs to ⟨±bn⟩n∈Z, we say that the representation is ±b-
monomial (Definition 12). These representations respectively generate the group of permutation
matrices, signed-permutation matrices, monomial matrices, non-negatove monomial matrices, and
b- and ±b-monomial matrices in GLn(R). The following matrices P, S and M are respectively
examples of permutation matrices, signed permutation matrices and 2-monomial matrices:

P =

[
0 0 1
1 0 0
0 1 0

]
, S =

[
0 0 1
1 0 0
0 −1 0

]
, M =

0 − 1
2 0

0 0 2
2 0 0

 .

If V and W are vector spaces underlying representations ρV and ρW of the same group G, we say
that a function f : V → W is G-equivariant if f ◦ρV = ρW ◦f . We write Hom(V,W ) for the set of
all linear maps from V to W , and define HomG(V,W ) as the set of G-equivariant linear functions
from V to W . For the interest of this work, we consider affine maps between V and W , i.e., a
composition between a linear map Hom(V,W ) and a translation on W . We denote as Aff(V,W )
those maps and as AffG(V,W ) the set of equivariant affine functions (see also Appendix A.5).

3.2 EQUIVARIANT NEURAL NETWORKS

We now define equivariant neural networks, which were first introduced by Wood & Shawe-Taylor
(1996) as Group Representation Networks and by Cohen & Welling (2016b) as G-Steerable Con-
volutional Networks. The same model later appears in other papers such as Behboodi et al. (2022)
under the name of equivariant neural networks, which is the notation we adopt in this paper.

Given a group G and arbitrary G-representations Vi for 1 ≤ i ≤ m, a G-equivariant neural network
is a composition

Φ = ϕm ◦ f̃m−1 ◦ ϕm−1 ◦ · · · ◦ f̃1 ◦ ϕ0, (1)

where each activation f̃i : Vi → Vi is a G-equivariant function, and ϕi ∈ AffG(Vi, Vi+1) is an
affine G-equivariant map.

An activation f̃ : Vi → Vi is point-wise if there exist a basis Bi = {v1, . . . , vm} of Vi and a real
scalar function f such that

f̃(a1v1 + · · ·+ amvm) = f(a1)v1 + · · ·+ f(am)vm ∀ a1, . . . , am ∈ R.

In this case, we say that f induces f̃ on B. Note that we do not constrain activations to be non-linear
or non-affine but, from now on, we only consider continuous functions C(R). This condition is not
particularly restrictive as continuous functions constitute a wide class of function which includes
all commonly employed point-wise activations (such as ReLU, tanh, ...), they are compatible with
backpropagation, and strictly encompasses activations dealt by Wood & Shawe-Taylor (1996).

We remark that other works (Kondor & Trivedi, 2018; Cohen et al., 2019) have considered different
definitions of equivariant networks, which allow one to treat infinite dimensional representations,
but are limited to represent signals defined on homogeneous spaces. As mentioned in Section 1,
by avoiding these infinite dimensional representations we fail to fully describe various physical
phenomena that are modeled as continuous, and therefore belonging to infinite-dimensional spaces,
which are however discretized and often reduced to finite models in the computational practice.

4 MAIN RESULT

We present a stronger and more general version of the characterization theorem proposed in Wood
& Shawe-Taylor (1996), which is the only existing partial characterization of admissible activa-
tion functions to the best of our knowledge. Although building on the existing results of Wood &
Shawe-Taylor (1996), we introduce several extensions and improvements, namely i) we generalize
the theorem to non-finite groups and continuous activations, such as non-discrete ones as rotations
and Euclidean transformations (Weiler et al., 2018); ii) We identify certain network classes by con-
sidering representations up to isomorphism; iii) We integrate the theory with several adjustments
that make the classification effective, such as the maximality discussed in Lemma 1; iv) We ground
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our characterization on the classification of multiplicative subgroups of R, which highlights the po-
tential to generalize these results to different scenarios. For the reader’s convenience, we present the
general result in Theorem 1, and its specialization to compact groups in Theorem 2.

For our purposes, we consider the following sets F of functions as activation functions:

• Continuous functions, C(R),
• The set of b-multiplicative functions for a given real value b > 1, namely each f ∈ C(R)

such that f(bnx) = bnf(x) for each n ∈ Z and for each x ∈ R (see Lemma 8 in Appendix
A.8 for a more explicit definition),

• The set of ±b-multiplicative functions for a given real value b > 1, namely each f ∈ C(R)
such that f(±bnx) = ±bnf(x) for each n ∈ Z and for each x ∈ R (see Lemma 8 in
Appendix A.8 for a more explicit definition),

• Odd functions, namely each f ∈ C(R) such that f(−x) = −f(x) for each x ∈ R,

• Semilinear functions, namely each f ∈ C(R) that is linear on R>0 and on R<0.

For our construction we will need also the following relations between activations and matrices.
Given a group G and a representation ρ : G → GL(V ) of G, we consider a point-wise activation
f̃ : V → V induced by f : R → R on a basis B of V . The image of ρ in GL(V ) with respect to
the basis B forms a group of matrices which we denote M, and note that f̃ is G-equivariant if and
only if it commutes with respect to the matrices in M, i.e., f̃(Mv) = Mf̃(v) for each M ∈ M and
v ∈ V , where both v and M are written on the basis B.

This paper proposes a simple procedure to recover the maximal group of representation matrices M
compatible with a given class F of activation functions, and vice-versa the widest class of functions
F given a group of representation matrices M. The precise definition is as follows.

Definition 1. Given F ⊆ C(R), we define the maximal group M(F) admitted by F as the set of
all matrices in GLn(R) which commutes with each f̃ induced by f ∈ F . Conversely, given M ⊆
GLn(R), the maximal set F(M) admitted by M is the set of all functions f ∈ C(R) such that f̃
induced by f commutes with each M ∈ M.

Observe that M(F) has trivially a group structure with respect to matrix product, since if M1,M2 ∈
M(F) commute with f̃ , then also their product M1M2 does. Moreover, the following stabilization
lemma (Lemma 1) proves that the maps to the maximal sets (Definition 1) stabilize after two it-
erations for any initial choice of M or F , proving the duality of the operators M(·) and F(·) on
maximal elements. See Section A.8 for the proof.

Lemma 1. The group of matrices M′ = M(F(M)) is the largest group in GLn(R) for which
F(M′) = F(M), and F ′ = F(M(F)) is the largest family of functions in C(R) for which
M(F ′) = M(F).

Thanks to Lemma 1, it is sufficient to provide explicit pairings between M and F(M) (or F and
M(F)) just for maximal admissible groups M, and similarly for maximal admissible families of
functions F . Indeed, given any other M (or F) which is not maximal, it is sufficient to find a
superset M of M which is a maximal group in the sense of Definition 1, and this will give a set of
admissible functions F which are equivariant also for M.

We can now state our main result, which shows that, under mild assumptions, these maximal groups
(or, equivalently, maximal function classes) are only in a very limited number. Moreover, for each
of these we provide the exact correspondence between M and F , thus providing an exhaustive
classification of all possible admissible pairs of M and F . As the set F represents the activation
functions, we make the basic assumptions that it does not contain only affine functions. We remark
that the proof of this theorem, for which we refer to Section A.8, uses a novel algebraic approach
that makes it easier to generalize the result to other scenarios, as discussed in Section 7.

Theorem 1. Assume that F is not a set of affine functions. The following are exactly all dual pairs
of maximal admissible families of activations F and associated maximal admissible groups M:

1. Continuous functions and permutation matrices,
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2. Odd continuous functions and signed permutation matrices,

3. Semilinear functions and non-negative monomial matrices,

4. Continuous b-multiplicative functions and b-monomial matrices,

5. Continuous ±b-multiplicative functions and ±b-monomial matrices.

Note that some groups of matrices or families of functions are contained in each other. For example,
permutation matrices are signed permutation matrices, while b2-monomial matrices are contained
into b-monomial matrices, but they are still maximal following Definition 1.

We classified groups of matrices and families of activation functions commuting with each others,
and this classification is exhaustive. However, for compact groups G we show that there is another
tool to enlarge the set of possible activation functions, namely moving to isomorphic representation
which admit a wider family of activation functions. This approach solves and generalizes an issue
raised in Wood & Shawe-Taylor (1996), where in Section 4.2 it is noted that the representation
ρ : Z2 → GL2(R) given by

ρ(0) =

[
1 0
0 1

]
, ρ(1) =

[
0 2
1
2 0

]
only admits semi-linear activation functions, according to the rather narrow set of activations studied
by Wood & Shawe-Taylor (1996). To be more precise, by expanding the class of activation functions
to continuous functions, we have shown in Theorem 1 that in fact the broader set of 2-multiplicative
functions is admissible. Despite 2-multiplicative functions being a larger set than semi-linear func-
tions, they still do not include common activations such as tanh, sigmoid, or softplus. However, by
a basis change through the matrix B = diag(1/

√
2,
√
2), we obtain the isomorphic representation

Bρ(0)B−1 =

[
1 0
0 1

]
, Bρ(1)B−1 =

[
0 1
1 0

]
,

which is the standard permutation representation of Z2, and thus commutes with all continuous
functions (see Theorem 1). This approach is generalized to the case of arbitrary compact groups by
the following theorem, showing that in this case representations are always isomorphic to (signed)
permutation representations, which have the widest admissible family of activations. We refer to
Section A.8 for its proof.
Theorem 2. Let G be a compact group and assume that F is not a set of affine functions. Then any
representation of G admitted by F is isomorphic to a subgroup of the (signed) permutation matrices.
Thus, F can always be chosen as the set of (odd) continuous functions.

5 RELEVANT IMPLICATIONS FOR PRACTICAL SCENARIOS

In this section, we delve into the practical implications of Theorems 1 and 2, focusing on non-odd
non-affine activations, the most used activations in practice. We further specialize these results to the
case of finite groups, where the only non-trivial admissible representations is induced by permutation
representations, which can be described with more precision. We explore the implications of these
results on neural networks designed for processing first-order relational structures like sets and point
clouds (Qi et al., 2017; Zaheer et al., 2017). These networks have proven highly effective in practice,
showcasing efficiency and accuracy when dealing with such unordered data. Finally, in this setting,
we show that admissible disentangled representations coupled with point-wise activations are trivial.

5.1 FINITE GROUPS

As the majority of activations used in practice are induced by non-odd non-linear functions, we
present a corollary of Theorem 2 that completely describes representations for finite groups that can
be used in these cases. We show that admissible representations are only permutations representa-
tions up to positive-scaling of the basis.
Corollary 1. Let G be a finite group, and let f : V → V be a non-odd non-affine equivariant
activation function on a G-representation V defined on the basis B. Then there exists a positive
scaling of B and a collection of finite index subgroups Hi < G such that V = RG/H1×· · ·×RG/Hm .
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Proof. We can consider V to be a finite permutation representation thanks to Theorem 2, as the only
admissible bounded matrix groups are permutation matrices, while signed permutation matrices are
compatible only with odd functions. A permutation representation has an underlying permutation
set that can be decomposed in the disjoint union of orbits. Recall that, for any X on which G acts
transitively, there exists a set bijection X ∼= G/H for some subgroup H of G. Hence, a permutation
representation V can be decomposed into the direct sum V = R

∏
G/Hi for a collection of finite

index subgroups Hi < G such that there is a bijection between the orbits Xi of G in X and the
quotients G/Hi.

Note that in general a permutation representation is given by the action of a group G on a set X
and then extended on RX such that, for each g ∈ G and x ∈ X , an element ex of the canonical
basis of RX transforms as gex = egx. But the action of G on X , i.e., the computation of gx, is not
explicit and easy to convert in computational terms, while the action of G on one of its quotients
G/H provides an algebraic, hence computable, alternative. Furthermore, this notion provides the
complete list of possible sets admitting G-actions up to isomorphism, which is in bijection with the
set of all the quotients of G.

Let us now discuss how representation spaces of permutations equivariant networks on sets (Za-
heer et al., 2017; Qi et al., 2017) reduce to a simple instance of the representation space shown in
Corollary 1. Indeed, the symmetric group of n elements, Sn, is the set of permutations of [n], and
then Sn-equivariant networks are able to process sets of elements independently of their order. A
complete treatment of the representations of Sn can be found in Sagan (2001). Now we want to
construct group quotients able to define representations for Sn-equivariant networks used in prac-
tice. Consider λ = (λ1, . . . , λl) to be a partition of n, i.e., a decreasingly ordered tuple of positive
integers whose sum is n. Define Sλ = Sλ1

× · · · × Sλl
as the subgroup of Sn where the ith factor

permutes the elements form
∑i−1

j=1 λj to
∑i

j=1 λj . Now set λ to be the partition (n−1, 1), elements
of Sn/S(n−1,1) will be represented by the identity element and all the permutations of [n] that send 1
into an element i of {2, . . . , n} which we indicate with [(1i)] (See Definition 8 for more information
about quotients of groups). The action of σ ∈ Sn on [(1i)] ∈ Sn/S(n−1,1) will be [(1σ(i))] where
we can identify [(11)] with the identity element. The bijection [(1i)] 7→ i from Sn/S(n−1,1) to [n]
is compatible with the action of Sn on those sets, hence we have an equivariant isomorphism be-
tween RSn/S(n−1,1) and Rn which is the standard representation space for permutations equivariant
networks on sets (Zaheer et al., 2017; Qi et al., 2017). Due to Corollary 1, RSn/S(n−1,1) is one of the
admissible representation spaces for Sn on the family of non-odd non-affine continuous activations.
In a similar way, in Section 6.2, we will see how to obtain representation spaces of IGNs and we will
highlight that many other admissible representation space could be possible. It is relevant how it is
possible to obtain efficient models through this procedure and which however offers the possibility
of building models starting from the simple knowledge of the group of symmetries of the input.

5.2 DISENTANGLED REPRESENTATIONS

Disentangled representations (Cohen & Welling, 2016b) can be described as follows. An irreducible
representation of a G-representation Vi is a minimal non-trivial G-invariant subspace, and each
representation Vi can be decomposed into a direct sum of irreducible spaces (Definition 15 and
Theorem 5). Composing irreducible representations with each other allows us to construct arbitrary
representation spaces and control the number of parameters of each layer at will thanks to Schur’s
Lemma (Lemma 2). The easiest way to compose these representations with each other is by doing a
direct sum. If then, to define activations, we choose a basis whose vectors are contained in a single
irreducible component we say that such a space is disentangled (Cohen & Welling, 2016b). As a
consequence of Theorem 1, we obtain the following characterization of disentangle representations.

Corollary 2. For finite groups and activation functions f : V → V induced by non-odd non-affine
continuous functions, the representation is disentangled if and only if the representation V is a sum
of trivial representations.

Proof. The direct sum of trivial representations is clearly disentangled and admissible for Theo-
rem 1. To prove the inverse implication, thanks to Corollary 1, we can consider V to be a per-
mutation representation. By disentanglement, we can suppose V to be irreducible and with basis
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B = {v1, . . . , vm} defining f . Given v ∈ V , the subspace ⟨
∑

g∈G gv⟩ is trivial, non-zero because
V is a permutations representation, and G-invariant. Hence, V = ⟨

∑
g∈G gv⟩ is trivial.

Even if composability and control of the number of parameters are particularly good properties
of disentangled network, being able to admit only trivial irreducible representations is not achiev-
able in most cases of practical use. Let us consider again the example of representation spaces
of permutation equivariant networks on sets (Zaheer et al., 2017; Qi et al., 2017). The irreducible
decomposition of the standard action of Sn on Rn is the direct sum of a trivial component and a
(n− 1)-dimensional one. Hence, a linear layer between this input space and a disentangled admis-
sible representation space will send the input contained in the (n− 1)-dimensional component to 0
due to Schur’s Lemma (Lemma 2). For large n as customary, this eliminates the entire information
inside the input in the forward pass of the first layer of the network.

6 PRACTICAL USE CASES

In this section, we aim at understanding how Theorem 2 affects and limits the design choices of
networks in a relevant practical scenario such as geometric IGNs (Joshi et al., 2023), a broad family
of models particularly proficient in processing geometric data such as point-clouds or meshes. We
achieve this objective in Section 6.3, but beforehand, we need to decompose our task into two more
manageable subproblems. Specifically, in Section 6.1, we investigate rotation-equivariant networks,
a case of networks of that will be necessary to understand the following analysis. In Section 6.2, we
delve into higher-order IGN, widely employed in practical applications. Finally, in Section 6.3, we
merge the preceding results to analyze geometric IGN comprehensively.

6.1 ROTATION EQUIVARIANCE AND EQUIVARIANCE FOR COMPACT GROUPS

Rotation-equivariant neural networks (Finkelshtein et al., 2022) have the ability to process geomet-
rical data tracking orientation and pose. We now discuss how our results affects the design of this
kind of networks. The group of rotations around the origin of R3 is denoted as SO(3), it can be
described as the group of real orthogonal 3× 3 matrices with positive determinant. More generally,
let G = SO(n) be the group of real orthogonal n × n matrices with positive determinant. It acts
on Rn by left multiplication. Note that SO(n) is a connected and compact topological group and
the presented representation is irreducible and non-trivial (Fulton & Harris, 2004). The following
Corollary 3 implies that rotation-equivariant networks are invariant.
Corollary 3. Let G be compact group and let G0 be the connected component containing the identity
element. An admissible G-representation for non-affine activation functions is G0-invariant. In
particular, if G is connected, an admissible G-representation is trivial.

Proof. First, suppose G to be connected. The image of a continuous representation of a compact
and connected topological group is a compact and connected matrix group due to Theorem 4. The
only possible representations described by Theorem 2 are permutation representations and signed
permutation representations whose images are finite groups whose only compact and connected
subgroup is the one containing only the identity. Hence, the original representation is trivial. If G is
not connected, a G-representations induced a G0-representations which will be G0-invariant.

This means that in general it will be possible to create neural networks capable of performing in-
variant tasks such as classification but not more general equivariant tasks such as segmentation or
detection (Qi et al., 2017). Further, as SO(3) is a subgroup of Euclidean transformations of R3, this
phenomenon afflicts networks equivariant with respect to general Euclidean transformations, i.e.,
they will be invariant to the rotational part of Euclidean transformations although possibly sensitive
to reflections and translations.

6.2 ON INVARIANT GRAPH NETWORKS

Let us now go back at the example proposed in Section 5.1 and generalize it to high-order structures
to obtain IGNs. Introduced by Maron et al. (2018), they are a class of neural networks equivariant
with respect to the symmetric group and their expressiveness is intimately related to graph neural
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networks (Maron et al., 2019a; Geerts, 2020). They are permutation equivariant models taking as
input a relational structure such as a set, a graph, or an higher-order structure such as simplicial
complexes in form of a tensor of the corresponding order. For example, a directed graph with n
nodes can be seen as a tensor in Rn ⊗ Rn. Elements of this space can be represented as linear
combinations of ei ⊗ ej for i, j ∈ [n] and each σ ∈ Sn acts on them permuting their indices si-
multaneously, σ(ei ⊗ ej) = eσ(i) ⊗ eσ(j). More in general, a k-ary relational structure can be
represented as a k-order tensor in (Rn)⊗k with Sn simultaneously acting on each Rn component.
Regardless of the order of the input tensor, intermediate representation spaces may be the sum of
tensors of arbitrary order, hence a linear layer of an IGN will be the direct sum of linear equivariant
maps between spaces (Rn)⊗k and (Rn)⊗h for arbitrary k and h and they admit point-wise activa-
tions, hence, by Corollary 1, they should be able to be represented as R

∏
i Sn/Hi for some subgroups

Hi < Sn. In Section 5.1 we have seen how Rn ∼= RSn/S(n−1,1) . Following Benkart et al. (2016),
we get (Rn)⊗k = ⊕k

t=0atR
Sn/S(n−t,1t) where at’s are positive integers.

This shows that representation spaces of IGNs are direct sum of RSn/S(n−t,1t) for some t. But
such (n − t, 1t) are only but a fraction of the partitions of n, therefore S(n−t,1t)’s are only but a
fraction of the subgroups Sλ which are only few of the subgroups of Sn as they are not transitive
on [n] for λ ̸= (n), unlike other subgroups such as the alternating group, An. Indeed, the module
RSn/An will be a two-dimensional representation compatible with point-wise activations. Maron
et al. (2019a) and Geerts & Reutter (2022) prove lower and upper bounds on the expressiveness of
k-order IGNs. In the proofs of these bounds, they implicitly employ the decomposition (Rn)⊗k =

⊕k
t=0atR

Sn/S(n−t,1t) as this equality is strongly related to the decomposition in tensors of different
partition type. This makes it natural to ask what the expressiveness of models employing other types
of admissible spaces would be.

6.3 GEOMETRIC GRAPHS AND PRODUCT GROUPS

Geometric graphs (Joshi et al., 2023; Finkelshtein et al., 2022; Bekkers et al., 2023; Gasteiger et al.,
2022) are utilized as a data structure for modeling systems in computational biology, computational
chemistry, and computer graphics. Those are graphs, or higher-order structures, embedded in the
Euclidean space and as such may transform according to the symmetries of the ambient space, i.e.
isometries of R3, E(3). Hence, it becomes relevant to develop neural networks simultaneously
equivariant to such ambient symmetries and node permutations, and in algebraic terms this means
that we need E(3) × Sn-equivariant networks able to process elements in R3 ⊗ (Rn)⊗k, where
the first tensor factor represent the geometrical features and the second the relational structure. We
synthesize the results concerning this case in the following corollary of Theorem 2. See Appendix
A.6 for the proof.

Corollary 4. Every SO(3)×Sn-equivariant layer defined on R3⊗ (Rn)⊗k coupled with non-affine
activations is null. Hence, E(3)× Sn-equivariant networks are rotation invariant.

7 CONCLUSIONS AND FUTURE DIRECTIONS

In conclusion, we have provided a complete characterization of networks with equivariant layers
featuring point-wise equivariant activations up to isomorphism of the linear part. Our analysis inves-
tigates relevant examples, including IGNs and rotation-equivariant CNNs. Future work will involve
investigating equivalent results for complex-valued networks, as this extension is made possible by
the novel algebraic approach that we have introduced for the proof of Theorem 1. Since complex
numbers admit non-dense non-discrete multiplicative subgroups, this property should alleviate the
limitations of real-valued networks equivariant with respect to non-discrete groups. Future research
directions beyond point-wise activations introduce us to a wide domain with no explicit guidelines
for navigation. Various endeavors have been documented in the literature, some of which are norm
activations (Worrall et al., 2017), squashing activations (Sabour et al., 2017), tensor product activa-
tions (Kondor, 2018), and gated activations (Weiler et al., 2018). An instance of activation functions
amenable to theoretical analysis can be found in equivariant polynomial functions. Structures–such
as symmetric polynomials–have been studied in mathematics for a long time and are beginning to
provide insights for the construction of efficient equivariant models (Puny et al., 2023).
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A APPENDIX

A.1 TOPOLOGICAL SPACES

Definition 2. A topological space1 is a pair (X, τ), where X is a set and τ is a collection of subsets
of X such that:

1. X belongs to τ .

2. The intersection of any finite number of sets in τ is also in τ .

3. The union of any collection of sets in τ is also in τ .

The sets in τ are called open sets, and the collection τ is called the topology on X .

Example 1 (Discrete Topology). The discrete topology on a set X is the topology in which every
subset of X is an open set, i.e., τ = P(X), where P(X) is the power set of X .

The set of integers Z with the discrete topology is a topological space. In this topology, every
singleton set {n} is open for all n ∈ Z.
Definition 3 (Continuous Maps). Let (X, τX) and (Y, τY ) be topological spaces. A function f :
X → Y is said to be continuous if for every open set V in Y , the inverse image f−1(V ) is an open
set in X .
Definition 4 (Compact Spaces). An open cover of a topological space X is a set U ⊆ τ such that
X =

⋃
U∈U U . A refinement of a cover U of X is a subset of U which is still a cover. A topological

space X is said to be compact if every open cover of X has a finite refinement.
Theorem 3. A subspace X ⊆ Rn is compact if and only if is closed and limited.
Definition 5 (Connected Spaces). A topological space X is said to be connected if it cannot be
expressed as the union of two disjoint nonempty open sets. A subset of X who is maximal under
containment order and connected is called a connected component of X .
Theorem 4. If X and Y are two topological and f : X → Y is a continuous map then the two
following statements hold

• if X is compact then f(X) is compact

• if X is connected then f(X) is connected

A.2 GROUP THEORY

Definition 6. A group is a pair (G, ·) where G is a set and · : G×G → G is a function satisfying
the following axioms.

• Associativity: for each g, h, k ∈ G we have(g · h) · k = g · (h · k).

• Identity: there exists an element e ∈ G such that g · e = e · g = g for each g ∈ G.

• Inverse Element: for each element g ∈ G, there exists an element g−1 ∈ G such that
g · g−1 = g−1 · g = e.

A group is finite if it contains a finite number of elements. A group is abelian or commutative if
gh = hg for each g, h ∈ G.

1Aggiungere ref, va bene Hatcher?
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Example 2. Here we present some fundamental examples of groups.

• The set of integers with addition.

• The set S1 = {ρα} of rotations of angle α centered in the origin of the 2D Cartesian plane
with composition.

• The set GL(V ) of bijective linear maps of a vector space V into itself with composition.
Then, the set GLn(R) of n × n real invertible matrices form a group where the operation
is row-column multiplication.

• Let SOn(R), or simply SO(n), be the group of orthogonal matrices with positive determi-
nant.

• Fix [n] = {1, . . . , n}. The set

Sn = {f : [n] → [n] | f is bijective}

with the composition operation form the symmetric group or the permutation group.

• Given two groups G and H , the direct product G ×H of them is still a group. The set of
the elements is the Cartesian product of G and H while the sum is defined as

(g1, h1) ◦G×H (g2, h2) = (g1 ◦G g2, h1 ◦H h2).

Now, we introduce notion of group homomorphism, a transformation between groups which pre-
serves the operation.
Definition 7. A group homomorphism is a map

ϕ : G → H

between G and H groups such that, for each g, h ∈ G

ϕ(g · h) = ϕ(g) · ϕ(h).

Example 3. The map Φ : S1 → GL2(R) defined by

ρα 7→
[

cos(α) sin(α)
− sin(α) cos(α)

]
(2)

is an homomorphism between the group of rotations of angle α and the 2× 2 invertible matrices.
Definition 8 (Quotients). Let G be a group and H be a subgroup of G. The quotient of G by H is
the set G/H = {gH : g ∈ G}, where gH = {gh : h ∈ H} are the left cosets of H .
Example 4. 1. Consider G = Z and the subgroup H = nZ of integers multiples of n. The

quotient G/H is a group and is isomorphic to the cyclic group of n elements, Zn, i.e.,
integers modulo n.

2. Consider G = S3, the symmetric group on three elements, and the subgroup H =
{(1), (12)}. The quotient G/H is a group and is isomorphic to S2, symmetric group on
two elements.

3. Consider G = Sn, the symmetric group on n elements, and the subgroup H = An, the
alternating group on n elements. The quotient G/H is a group and is isomorphic to Z2.

A.3 TOPOLOGICAL GROUPS

Definition 9. A topological group is a group G equipped with a topology such that multiplication
and inversion are continuous maps.

Example 5. • The real numbers R with the standard topology form a topological group un-
der addition.

• The multiplicative group of non-zero real numbers R∗ with the standard topology is a
topological group.
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• Each finite group G with the discrete topology is a topological group. Note that the con-
nected components of this group are all the singleton elements {g} for each g ∈ G. Note
that this group is compact as P(G) is finite, hence each open cover is finite.

• The additive group of integers Z with the discrete topology is a topological group. Note
that the connected components of this group are all the singleton elements {n} for each
n ∈ Z. All this singletons form an infinite open cover of Z which cannot be refined.

A.4 REPRESENTATION THEORY

Definition 10. A representation of a group G in a vector space V is a group homomorphism
ρ : G → GL(V ).

Definition 11. Consider G = Sn.

• dimV = 1 and ρ(g) = id for each g ∈ Sn. This is called the trivial representation of Sn.

• dimV = 1 and ρ(g) = sgn(g)id. This is called the sign representation of Sn.
Definition 12. A representation ρ : G → GLn(R) is

• Non-negative if all the elements of each ρ(g) are non-negative.

• Monomial if each row and column of each ρ(g) has exactly one non-zero element.

• A permutation representation if it is monomial and each non-zero element is 1.

• A signed permutation representation if it is monomial and each non-zero element is ±1.

Definition 13 (Representations of Topological Groups). Let G be a topological group and V be
real vector space. A continuous representation of G on V is a continuous group homomorphism
ρ : G → GL(V ).

Example 6. Consider the general linear group GL(V ) of invertible n×n matrices, with the topology
induced by the Euclidean norm on matrices. Let V = Rn be the standard Euclidean space. The map
ρ : G → GL(V ) defined by ρ(A)(v) = Av is a continuous representation. Similarly, restricting
this representation to SO(n) we get a representation of SO(n).

Definition 14. A linear map Φ : V → W is G-equivariant with respect to the representations
ρ1 : G → GL(V ) and ρ2 : G → GL(W ) if

ρ2 ◦ Φ = Φ ◦ ρ1.
We will denote the space of all G-equivariant maps between ρ1 and ρ2 by HomG(ρ1, ρ2) or
HomG(V,W ) when ρ1 and ρ2 will be clear from the context.
Definition 15. A representation ρ : G → GL(V ) is irreducible if there exists no non-trivial sub-
space W of V such that ρ(g)(W ) ⊆ W for each g ∈ G.

An important result in representation theory of finite groups states that there is always a decomposi-
tion into irreducible representations.
Theorem 5. For each representation ρ : G → GL(V ), there exists a decomposition

V = V1 ⊕ · · · ⊕ Vm

where each Vi is irreducible for ρ. This decomposition is unique up to isomorphism and permutation
of the factors.

Another tool coming from Representation Theory is Schur’s Lemma which will be fundamental to
understand our results.
Lemma 2. Let V and W be non-isomorphic irreducible representations, there is only one G-
equivariant linear map between them and it is the trivial one.
Definition 16. The fixed set for a representation ρ : G → GL(V ) is V G = {v : gv = v}. Note that
V G is a representation for G and the action is trivial.
Theorem 6. The following properties are true for representations of a finite group G.

• dimV G is the multiplicity of the trivial representation in V ,

• dimHomG(V,W ) = dim(V ⊗W )G.
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A.5 AFFINE MAPS

Definition 17. Let V and W be two K-vector spaces and define the translation of a vector w in W
as a non-linear bijective map τw : v 7→ v + w. Define the space of affine maps from V to W as

Aff(V,W ) = {τw ◦ f |w ∈ W and f ∈ Hom(V,W )}.

Note that is a more general definition with respect to the standard one, where f is an isomorphism
of a vector space V .
Theorem 7. The decomposition of an affine map ϕ ∈ Aff(V,W ) in translational part τw and f
linear part is unique.

Proof.
τw1 ◦ f1 = ϕ = τw2 ◦ f2,

evaluating in 0 leads to
w1 = ϕ(0) = w2.

Write w = w1 = w2, and note that
τw ◦ f1 = τw ◦ f2,

by the bijectivity of translations,
f1 = f2.

Let V and W be G-representation. An affine map ϕ ∈ Aff(V,W ) is G-equivariant if ϕ ◦ g = g ◦ ϕ
for each g ∈ G, write the set of G-equivariant affine maps from V to W as AffG(V,W ).
Theorem 8. ϕ = τw ◦ f ∈ AffG(V,W ) if and if f ∈ HomG(V,W ) and v is invariant.

Proof. Note that for each g ∈ G,

g ◦ τw ◦ f = τgw ◦ (g ◦ f).

Observe that
ϕ ◦ g = g ◦ ϕ,

if and only if
τw ◦ f ◦ g = g ◦ τw ◦ f = τgw ◦ (g ◦ f)

if and only if, by the previous proposition,

w = gw

and
f ◦ g = g ◦ f

for each g ∈ G.

A.6 REPRESENTATIONS OF GROUP PRODUCTS ON TENSOR PRODUCTS

Remark 1. Let V ⊗ W be a finite-dimensional G × H-representations and Vi’s a complete list
of irreducible G-representations and Wj’s a complete list of irreducible H-representations, then
Vi ⊗Wj ’s is a complete list of irreducible (G ×H)-representations (See Sagan (2001) for proofs
in case G and H are finite). If mi is the multiplicity of Vi in V and nj is the multiplicity of Wj in W
then the multiplicity of Vi⊗Wj in V ⊗W is minj . This can be easily seen by writing the irreducible
decompositions of V and W and use the distributive property of tensor products and direct sums.
Note that the same is true if G and H are compact groups and the representations are continuous.
If S is an G-isotypic component of V × W of type ρ then it is H-invariant and each h ∈ H acts
as G-equivariant endomorphism of S. By Lemma 2, S = ρ ⊗ σ, which is

⊕
i ρ ⊗ σi, where σi are

irreducible H-representations. Iterating the decomposition if necessary and by the finite dimension
of V and W , we conclude.

Thanks to these observations we can prove Corollary 4
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Proof. Let us study SO(3)×Sn-equivariant linear layers. Irreducible representations of SO(3)×Sn

are the tensor products of irreducible representations of SO(3) and Sn as shown above. The natural
action of SO(3) on R3 is an irreducible representation and admissible irreducible representations are
invariant, i.e., the trivial action of SO(3) on R. Hence, the fist layer of an SO(3) × Sn-equivariant
network processing a geometric graph will be a linear layer from a direct sum of R3 ⊗ Sλ to a
direct sum of R ⊗ Sµ, where Sλ and Sµ indicate irreducible representations for Sn. But, due to
Schur’s Lemma, the only possible linear layer would be the null one, i.e., a layer without trainable
parameters.

A.7 PROOF OF THE STABILIZATION LEMMA

For convenience we restate Lemma 1.

Lemma 3. The group of matrices M′ = M(F(M)) is the largest group in GLn(R) for which
F(M′) = F(M), and F ′ = F(M(F)) is the largest family of functions in C(R) for which
M(F ′) = M(F).

In what follows we state and prove some results necessary for the proof of Lemma 1. The proof of
the next lemma is trivial.

Lemma 4. The two following statements are true.

1. For each group of matrices M1, M1 ⊆ M(F(M1)) and for each family of functions F1,
F1 ⊆ F(M(F1)),

2. For each inclusion M1 ⊆ M2 of groups of matrices, F(M2) ⊆ F(M1), similarly, for
families of activations F1 ⊆ F2, M(F2) ⊆ M(F1).

Lemma 5. For each family of functions F1, M(F1) = M(F(M(F1))). For each group of
matrices M1, F(M1) = F(M(F(M1))).

Proof. We prove the equality M1, M(F1) = M(F(M(F1))) first by proving M1, M(F1) ⊆
M(F(M(F1))), then we prove the opposite inclusion.

Substituting M1 with M(F1) in the first point of Lemma 4, we get M(F1) ⊆ M(F(M(F1))).

To prove the opposite inclusion, substitute F2 = F(M(F1)) in the second point of Lemma 4, we
obtain M(F(M(F1))) ⊆ M(F1). Implying M(F1) = M(F(M(F1))). In a similar way, we
can prove the other equality.

We are now ready to prove Lemma 1.

Proof. We only prove the first equality as the second have an analogous proof. By Lemma 5, we
know that F(M′) = F(M). Then, for each S ⊆ GLn(R) such that F(S) = F(M), we know
that S ⊆ M(F(S)) by Lemma 4. Moreover, S ⊆ M(F(S)) = M(F(M)) = M′. Hence each
S ⊆ GLn(R) such that F(S) = F(M) we have S ⊆ M′, therefore M′ = M(F(M)) is the
largest group in GLn(R) such that F(M′) = F(M).

A.8 PROOF OF THE MAIN THEOREM

We can now state our main result, which shows that, under mild assumptions, there are only a very
limited number of maximal groups (or equivalently, of maximal function classes). Moreover, for
each of these we provide the exact correspondence between M and F , thus providing an exhaustive
classification of all possible admissible pairs of M and F .

A class of functions fundamental for the understating of what follows will be T -multiplicative func-
tions which we define as follows.

Definition 18. Let T be a multiplicative subgroup of R. We say that a continuous function f is
T -multiplicative if f(tx) = tf(x) for each t ∈ T and x ∈ R. We write FT to indicate the set of all
continuous T -multiplicative functions.
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Note that if T = ⟨bn⟩n∈Z, the notion of T -multiplicativity reduces to the notion of b-multiplicativity
provided in Section 4. Similarly, for T = ⟨±bn⟩n∈Z and ±b-multiplicativity.

We are now ready to state Theorem 9, one of the two key results fundamental to prove Theorem 1. In
particular, Theorem 9 characterizes admissible pairs indexing them as the multiplicative subgroups
of R but does not provide a constructive description of their families of activation functions, this
description is given by Lemma 10. In what follows we will write Rn for the set of all unit row
invertible matrices.

Theorem 9. Maximal admissible pairs for T = T (M) are

• (M,Aff(R,R)) for each group of non-monomial matrices M in Rn(R) and
(GLn(R),Hom(R,R)) if T is dense,

• (Mn(T ),FT ) otherwise.

Let us denote R∗ as the set of non-zero reals and note that it is a multiplicative group. In the
following, we will use the following characterization of the multiplicative subgroups of R∗ that we
need to prove Lemma 10.

Lemma 6. Multiplicative subgroups of R>0 are the trivial group ⟨1⟩, discrete unbounded groups
⟨bn⟩n∈Z, and dense subgroups of R>0. Multiplicative subgroups of R∗ are the trivial one, ⟨1⟩, the
other finite one, ⟨±1⟩, discrete positive ones, ⟨bn⟩n∈Z, the other discrete ones, ⟨±bn⟩n∈Z, the ones
dense on R>0, and dense ones.

Proof. Multiplicative subgroups of R>0 and additive subgroups of R are linked by the exponential
map which is an isomorphism. Additive subgroups of R are divided into three different type: finite
(⟨0⟩), unbounded and discrete (αZ for each α ∈ R>0) and dense. They map through into R>0 as
finite (⟨1⟩), unbounded and discrete ({bn = enα}n∈Z ∼= Z) and dense. We can get the multiplicative
subgroups of R∗ noticing that R∗ ∼= Z2 × R>0.

The following technical lemmas will be necessary to prove Lemma 10.

Lemma 7. Let b a real number, b > 1, and T = ⟨bn⟩n∈Z. For each positive real number x there
exist a unique decomposition x = bny such that y ∈ [1, b) and n ∈ Z.

Proof. Choose n such that x ∈ [bn, bn+1), we have that x = bny where we define y = x
bn ∈ [1, b).

Sets {[bn, bn+1)}n∈Z are a collection of disjoint intervals covering R. Hence x belongs only to
one of those, say x ∈ [bn, bn+1), we have the uniqueness of the decomposition x = bny such that
y ∈ [1, b).

Note that Lemma 7 implies that for each x ∈ R>0 there exist a unique n ∈ Z such that x
bn ∈ [1, b).

This observation grants the following notion to be well-defined. Let η : [1, b] → R be the function
such that η(b) = bη(1). Define fη : R>0 → R as the function fη(x) = bnη( x

bn ) where n is the
only integer such that x

bn ∈ [1, b). Clearly fη is T -multiplicative for T = ⟨bn⟩n∈Z where b is a
real number greater than 1. We now state and prove Lemma 8 which gives a complete description
of T -multiplicative functions for T = ⟨bn⟩n∈Z. Furthermore, it provides a constructive procedure
offering a computational implementation of such functions.

Lemma 8. Let b > 1 be a real number, and let T = ⟨bn⟩n∈Z. A continuous function f is T -
multiplicative if and only if there exist two continuous functions η± : [1, b] → R such that η±(b) =
bη±(1) and

f(x) =


fη+(x) x > 0

0 x = 0

fη−(−x) x < 0

. (3)

Proof. (⇒) Define η± = f|[±1,±b]. Multiplicativity and continuity of f implies all the required
properties of η±.
(⇐) We only need to prove that f constructed in this way is continuous on R. We will prove the

18



Published as a conference paper at ICLR 2024

continuity of f on R>0 and R<0, and in 0. The two former cases boil down to proving continuity of
fη± respectively. As those proofs are analogous, we only present the one for fη+

. Note that for each
x ∈ R>0 \T , there exists an interval x ∈ I ⊆ R>0 \T and an integer n such that fη+

(x) = bnη( x
bn )

for each x ∈ I . Hence fη+
is continuous on R>0 \ T . Now see that

lim
x→bn+

fη+
(x) = lim

x→1+
bnη(x) = lim

x→b−
bn−1η(x) = lim

x→bn−
fη+

(x)

because η+(b) = bη+(1). It remains to prove continuity of f in 0, i.e.,

lim
x→0−

fη+
(x) = lim

x→0+
fη−(x).

Note that η+ is continuous and limited as it is defined on a compact subset of R, hence we can define
m = minx∈[1,b] η+(x) and M = maxx∈[1,b] η+(x), note that fm·1[1,b] ≤ fη+

≤ fM ·1[1,b] where
1[1,b] is the constant function with value 1 defined on [1, b]. It is easy to see that limx→0+ fm·1[1,b] =
limx→0+ fM ·1[1,b] = 0.

We now state Lemma 9 whose proof will essentially contain the proof of Lemma 10.

Lemma 9. Each T -multiplicative continuous function is linear if and only if T is dense in R.

Proof. Note that if f is T -multiplicative, by definition, f(t) = tf(1) for each t ∈ T . As T is dense
in R, f is linear on its entire domain R by continuous extension. If T is dense in R>0, f(t) = tf(1)
and f(−t) = tf(−1) for each t > 0, hence f is semilinear. On the other hand, if T is not dense,
suppose T is ⟨1⟩ or ⟨±1⟩, then FT are C(R) and odd functions respectively, which contain non-
linear functions. If T = ⟨bn⟩n∈Z. Let us now proceed with the construction of a function that is
continuous, T -multiplicative, and non-linear. Let η± : [1, b] → R be two continuous bump function
and let f be a continuous function as defined in Equation 3, this function is multiplicative and non-
linear. This concludes the proof as we have listed all the possible cases of T presented in Lemma
6.

Thanks to Lemmas 6 and 8, the presented proof of Lemma 9 gives a complete characterization of
T -multiplicative functions with respect to multiplicative subgroups T of R which we can state as in
the following Lemma 10.

Lemma 10. If T = ⟨1⟩, then FT = C(R). If T = ⟨±1⟩, then FT = O(R), the odd continuous
functions. If T = ⟨bn⟩n∈Z for b > 1, then FT are all the continuous functions described in Equation
3 arising from two continuous η± : [1, b] → R such that η±(b) = bη±(1). If T = ⟨±bn⟩n∈Z for
b > 1, then FT are all the continuous functions defined as in the previous case but η+ = η−. If T
is dense on R>0, then FT are all the semilinear functions. Finally, if T is dense on R, then FT are
all the linear functions on R.

To prove Theorem 9 we need to state and prove the two following lemmas. The main ideas behind
their proofs are primarily due to Wood & Shawe-Taylor (1996).

Lemma 11. Define the multiplicative group T (M) = ⟨
∑

j∈S Mij : S ⊆ [n],M ∈ M,∈ [n]⟩\{0}
and f̃0(x) = f̃(x) − f̃(0). Note that f̃ is M-equivariant if and only if f̃0 is M-equivariant and
f̃0(0) is a M-invariant vector. In particular, if f̃ is M-equivariant then f0 is T (M)-multiplicative
and f(0) = 0 or M ⊆ Rn.

Proof. Note that f̃(Mx) = Mf̃(x) for each x ∈ Rn if and only if f̃0(Mx) = f̃(Mx)− f̃(M0) =

Mf̃(x) −Mf̃(0) = Mf̃0(x) for each x ∈ Rn if and only if f̃0(Mx) = Mf̃0(x) for each x ∈ Rn

and Mf̃0(0) = f̃0(0). In particular, Mf̃(0) = f̃(0) if and only if M1f(0) = 1f(0), where 1 is the
vector with all ones, if and only if f(0) = 0 or M ∈ Rn. For each S ⊆ [n] and each x ∈ R we
have that f0(

∑
j∈S Mrjx) =

∑
j∈S Mrjf0(x) for each r ∈ [n], hence f0 is T (M)-multiplicative

as f0(Mix) = Mif0(x) for each x ∈ R and i = 1, 2 then f0(M1M2x) = M1M2f0(x).

Lemma 12. Let T = T (M) be a non-dense subset of R∗. Then F(M) contains non-affine func-
tions if and only if matrices in M are T -monomial.
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Proof. (⇒) For each f ∈ F(M), f0 = f − f(0) is T -multiplicative and f̃0 is M-equivariant
by Lemma 11. Suppose M contains a matrix M which fails to be T -monomial, without loss of
generality we may assume M11 = t1 and M12 = t2 not zero. Hence, f0 is additive. Indeed, for
each x1, x2 ∈ R, we have that

f0(x1 + x2) = ⟨f̃0(M(t−1
1 x1e1 + t−1

2 x2e2)), e1⟩ =

⟨Mf̃0(t
−1
1 x1e1 + t−1

2 x2e2), e1⟩ = t1f0(t
−1
1 x1) + t2f0(t

−1
2 x2) = f0(x1) + f0(x2)

Therefore f0 is linear, being both additive and continuous, this implies f to be affine which contra-
dicts the hypothesis.
(⇐) If M contains only T -monomial matrices, it is easy to check that each T -multiplicative func-
tion induces an equivariant activation, which are not all affine by Lemma 9.

Now we are ready to present the proof of Theorem 9. For convenience in what follows we will write
as Pn, the group of n× n permutation matrices.

Proof. We will study which are the groups of matrices M such that T (M) = T as T varies between
subgroups of R∗. If T is a dense subgroup of R∗, Lemma 9 and Lemma 11 implies F(M) =
Aff(R,R) if M ⊆ Rn or F(M) = Hom(R,R) otherwise. In those cases, M(Aff(R,R)) ⊆
Rn(R) and M(Hom(R,R)) = GLn(R). For dense T , Lemma 1 implies that admissible maximal
pairs are (M ⊆ Rn,Aff(R,R)) and (GLn(R),Hom(R,R)), whose family of activations only
contains affine functions.

If T is non-dense and non-trivial, by Lemma 12 we have two cases: if F(M) only contains
affine functions we reduce to the maximal admissible pairs (M ⊆ Rn(R),Aff(R,R)) and
(GLn(R),Hom(R,R)), otherwise, due to Lemma 12, M < Mn(T ) and F(M) = FT by Lemma
11 and M(FT ) = Mn(T ) because the inclusion Mn(T ) ⊆ M(FT ) is obvious and if M(FT )
contains non-monomial matrices, Lemma 12 would contradict FT containing non-affine functions.

Applying Lemma 1, we get the admissible maximal pairs (Mn(T ),FT ). Finally, if T is trivial,
M = Pn hence we obtain the maximal admissible pair (Pn, C(R)) as verifying F(Pn) = C(R) is
trivial and Lemma 12 implies M(C(R)) = Mn({1}) = Pn.

We are now ready to prove Theorem 1.

Proof. Theorem 9 classifies admissible pairs whose relevant families of activations are FT where
T varies on the multiplicative subgroups of R. Thanks to the complete classification of T -
multiplicative functions, FT , provided by Lemma 10, we can substitute them with their concrete
counterparts enumerated in the statement.

In what follows we restate Theorem 2 and prove it.
Theorem 10. Let G be a compact group and let us restrict to families of activations containing
some non-affine functions. The only two maximal admissible pairs up to isomorphism of groups of
matrices are

• Continuous functions and permutation matrices,

• Odd continuous functions and signed permutation matrices.

Proof. At first, we want to prove that each admissible representation of G is isomorphic either to
a permutation representation or to a sign-permutation representation. We split the proof into two
parts. In the first part, G is represented by non-negative monomial matrices and, in the second, G
is represented by arbitrary monomial matrices. Thanks to Theorem 1, those two cases covers all the
admissible cases for families of activations containing at least one non-affine function.

By Flor (1969), each bounded non-negative group of matrices is isomorphic to a permutation group
of matrices by a positive scaling of basis. Hence, the image of a compact group in Mn(T ) with
T ⊆ R>0 can be written as a group of permutation matrices after a positive scaling of basis. Hence,
all the considered group of matrices are isomorphic to Pn, therefore reducing to the pair (Pn, C(R)).
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Now consider T an arbitrary non-dense multiplicative subgroup of R. Each monomial matrix can
be written as the product SDP , where S is a diagonal matrix containing only ±1, D a positive
diagonal matrix, and P is a permutation matrix. Consider the map ϕ : SDP 7→ DP . Note that
ϕ is a continuous group homomorphism and that its image is a compact group of non-negative
matrices. Indeed, ϕ is just the absolute value function defined on all the elements of the matrices,
hence it is continuous. Then, let S1D1Pσ and S2D2Pτ be two monomial matrices as before, where
Pσ and Pτ are permutation matrices respectively representing permutations σ and τ . Then their
composition S1D1PσS2D2Pτ = S1σ(S2)D1PσD2Pτ where σ(S2) is the diagonal matrix obtained
by permuting the diagonal elements through σ, i.e. σ(S2) = P t

σS2Pσ , which commutes with D1

being both diagonal matrices. This proves that ϕ is an homomorphism.

For what we proved at the beginning of the proof, there exists a positive scaling, represented by a
positive diagonal matrix B, such that BDPB−1 = P ′ is a permutation matrix for each DP in the
image of ϕ. Note that for each SDP , after scaling by B, we obtain BSDPB−1 = SBDPB−1 =
SP ′ a signed permutation matrix. This is true because S and B commute being both diagonal
matrices. Hence, all the considered groups of matrices are isomorphic to the group of signed per-
mutation matrices, therefore, therefore reducing to the pair of odd continuous functions and signed
permutation matrices.

Now that we have proven that there are only two isomorphism classes of admissible representations
for G, we want to show that there is only one representation in each class with maximal family of
activation functions. Let M be the image of a positive monomial matrices representation of G. By
Lemma 11, each admissible group of matrices M′ isomorphic to M commutes with F(M′) = FT

for some T . The maximal family FT is C(R) and it happens when T = ⟨1⟩ and M′ are permutation
matrices. Note that the isomorphism between M and some group of permutation matrices is always
possible as shown at the beginning of this proof. An analogous argument applies to groups of
arbitrary monomial matrices.

We conclude by noticing that in general permutation representations and signed-permutation repre-
sentations are not isomorphic, e.g. the trivial representation and the sign representation of Sn. This
proves that the two presented pairs are in general disjoint.

Note that compactness is a required condition. Indeed, given b > 1, consider the following one-
dimensional representation representation ρ : Z → GL1(R) = R∗ such that ρ(n)x = bnx. The
image ρ(Z) is not bounded and hence is not compact. This means that ρ cannot be isomorphic to a
permutation representation whose image is compact.
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