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Problem Statement

2Domain: Scene Analysis for Safe-Human-Robot-Collaboration 
This work builds on top of our previous work (Sharma et al., 2015) and (Dittrich et al., 2014).



Schematic Layout
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Figure 1: Schematic layout of the pixelwise object class segmentation system.
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Collection of Data
• Synthetic Data Generated: 
● Depth Image with additive white Gaussian noise. 
● RGB Image (groundtruth). 
● Data Instances: Background, human(head, body, upper-arm, lower-arm, 

hands, legs), chair, plant ,same class (table and storage) 
● Unlimited amount of data can be generated. 

● 640X480{1(Depth,Float),3(RGB,Integer)}
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Figure 2: Synthetic generated depth data and it‘s corresponding ground truth image.



Robot Simulator 

5

● V-REP 
● Virtual Robot Experimentation Platform (Fresse et al., 2010) 

● Integrated Development Environment (IDE) 
● Distributed Control Architecture 
● Remote API Client 
● Supports: C/C++, Python, Lua, Java, Matlab, Octave or Urbi 
● Free for academic and research purposes 



Human Multicolor Data
•  
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Setup

7
Figure 3: KINECT skeleton tracking setup.  
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Training Data: Human

Figure 4: Left: KINECT skeleton tracking. Center: Coarse approximation of the human body, modeled 
by small set of spheres arraged along the skeleton estimate. Right: Finer sphere approximation of the 
human body, modeled on the spheres in the V-REP environment. 



Training Data: Human

9Figure 5:  Synthetic depth data generated with a snythetic KINECT sensor of human, 
groundtruth(left) and synthetic depth frame with additive white Gaussian Noise(right). 



Training Data: Chairs

10Figure 6:  Synthetic depth data generated with a snythetic KINECT sensor of chairs, 
groundtruth(left) and synthetic depth frame with additive white Gaussian Noise(right). 



Training Data : Tables
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Figure 7:  Synthetic depth data generated with a snythetic KINECT sensor of tables, 
groundtruth(left) and synthetic depth frame with additive white Gaussian Noise(right). 



Training Data: Storages

12Figure 8:  Synthetic depth data generated with a snythetic KINECT sensor of storages, 
groundtruth(left) and synthetic depth frame with additive white Gaussian Noise(right). 



Testing Data: Plants

13Figure 9:  Synthetic depth data generated with a snythetic KINECT sensor of plants, 
groundtruth(left) and synthetic depth frame with additive white Gaussian Noise(right). 



Training Data Model
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(b): Non Occluded Data

Figure 10:  Synthetic depth data generated with a synthetic KINECT sensor of all objects, 
synthetic depth frame with additive white Gaussian Noise. 

(a): Occluded Data (Sharma et al., 2015)



Scene Modeling using a Density 
Function
• The density function capturing the context of human-object and 

object-object relationships in a scene is defined as: 

ψ(S) = ψ(H, O; θ)ψ(O, O; θ) 

ψ(H, O; θ) = ψ(Hh)ψ(Hp)ψ(Hpos)ψ(Hori)ψ(Oh) ψ(Opos)ψ(Oori)ψ((H,O)θ)ψ((H, O)rel)  

ψ(O, O; θ) = ψ(Oh)ψ(Opos)ψ(Oori)ψ((O, O)θ) ψ((O, O)rel)  

Notation: Scene (S), Human (H), Industrial grade-component (O), Threshold (θ), 
Pose (p), Height (h), Position (pos), Orientation (ori), and  Relationship (rel) 
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Testing Data
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Figure 11: Real world depth 
data with all objects.



Selection & Definition of Feature
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Figure 12: Feature Extraction of object class using a rectangular patch, parallel to the image 
coordinate system and centred at the same position. 



Training and Testing Approach
• Classification Approach: Random Decision Forest (RDF) (Criminisi et al., 2013) 
●Why RDF only? 
● Provides higher accuracy on previous unseen data 

● An ensemble of n binary decision trees is  called as Forest. 
● Bagging and randomized node optimization  
●Multi-Class Classification, fast training, high generalization,  easy implemetation, 

predictions can be understood as empirical distribution and high classification  
performance

18Figure 13: Structure of decision tree with root node, internal nodes and leaf nodes, along with 
decision criteria to split.



RDF- Training 
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(a): Number of decision tree =1 
in a forest.

(b): Number of decision tree=T in a forest

Figure 14: RDF training with variable trees in a forest, with each 
tree having different dataset because of bagging.



Figure 15: An example of a simple pixelwise object class labeling using RDF 
classifier: a query test pixel (v′) routes through each trained decision tree in a 
forest. Each test pixel traverses the tree through several decision nodes until it 
reaches the leaf node and is assigned a stored leaf statistics of the leaf node 
P(c|v′), where c is the class label. The forest class posterior is obtained by 
averaging individual tree posteriors. 

RDF- Testing

20



Discrete Energy Minimization (CRF 
Extension)
• Energy Minimization methods refers to the problem of finding global minimum of a 

function. It is solved using α-Expansion built on Graph Cuts (Boykov et al., 2001). 

• Assign a label from a discrete set of labels to each pixel in an image, the models 
are modeled on pairwise CRF and are natually formulated as  Energy 
Minimization Problem. 

• The labeling(x) one aims to find a label assignment to a pixel which minimizes the 
energy and gives the most optimal labeling, defined as  

Where ν is the vertex (or node or pixel) and  η is the neighbouring vertices.
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Evaluation
• For the evaluation of the overall segmentation approach, we use fixed parameter 

setup with 
● Forest size T = 5 
● Fixed patch size (w,h) = (64,64) 
●Maximum tree depth D = 19 
● For the randomization (Ro) in the training process 100 thresholds and 100 

feaure functions 
● Training is based on synthetic depth frames with additive white Gaussian  

noise using a std of 15 cm 
● In total 5000 depth frames were generated , 1600 depth frames (F) were 

chosen in random for training (Data), 300 pixel positions per object class 
(PC) were chosen uniform in random. 

• PC with Intel i7 CPU with 4 core processor, 250GB SSD and 4 GB RAM, pixel 
prediction for a frame with 640 X 480 pixels.
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Quality Measure
• Confusion Matrix 

• Precision: Fraction of retrieved pixel based class labels, that are relevant to the 
actual object class labels. Mean average precision (mAP). 

• Recall: Fraction of relevant object class labels in segmentation that are retrieved. 
Mean average recall (mAR).
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Number of Frames and Tree Depth

24Figure 16: Confusion matrix based quality measures over an average of 65 
synthetic testing frames, for variable # of training frames and tree depth
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Training Time

25Figure 17: Training time of RDF classification tree based on # of synthetic 
testing frames, with type occluded data with all objects.



Comparison between RDF and  CRF 
Extension predictions.
• Training Data = Synthetic depth data with all object classes 

• Testing Data = Real world Data 

• Fixed Parameters 
● F=1600 
● PC=300 (pixel positions per object class) 
● D=19 
● T=5 
● Ro=200 (i.e. feature function sample count=100 and thresholds=100) 
● Feat=Linear 
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Non-Modeled ModeledReal-World Scene

Real-World Scene - 1

Real-World Scene - 2 Modeled - CRF - 2 Modeled - RDF - 2

Modeled - CRF - 1Modeled - RDF - 1

Figure 18: Prediction results based on synthetic and real- world test depth data. The first row is based on 
synthetic test data, the second and third rows are based on real-world test data.  



28

Table 1: Confusion matrix based mean average recall, precision, and F1-measures
Avg Head Body UArm LArm Hand Legs Chair Plant Storage Table

SOA�RDF

mAR

0.816 0.931 0.795 0.718 0.612 0.699 0.972 0.705 0.970 0.930 0.930
SOA�RDF

mAP

0.620 0.971 0.632 0.718 0.709 0.639 0.238 0.941 0.413 0.948 0.948
Ours�CRFextension

mAR

0.885 0.946 0.835 0.849 0.651 0.791 0.987 0.960 0.974 1.0 1.0
Ours�CRFextension

mAP

0.819 0.975 0.849 0.741 0.777 0.802 0.361 0.919 0.846 0.977 0.944
SOA�RDF

F1�measure

0.734 0.950 0.704 0.718 0.656 0.667 0.382 0.806 0.579 0.938 0.938
Ours�CRF

F1�measure

0.842 0.960 0.841 0.791 0.708 0.796 0.528 0.939 0.905 0.988 0.971

1



Comparison with SOA
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Figure 19: Comparison with (Shotton et al., 2013), (Ganapathi et al., 2010) and (Dittrich et al., 2014). Our 
approach is sufficient for producing almost comparable results for localizing the joints of the human body-
parts. Setups are different. 



Conclusion
• We propose a generic classification for pixelwise object class labeling framework. 

• The work is applied to real-time labeling (or segmentation) in RGB-D data from a 
KINECT sensor mounted on a ceiling placed at the height of 3.5 meters.  

• The CRF extension improves the performance measures by approximately 6.9% in 
mAR, 19.9% in mAP, and 10.8% in F1-measure over the RDF performance 
measures.  

• In (Shotton et al., 2013), the authors “fail to distinguish subtle changes in the depth 
image such as crossed arms”, this is solved by using our training dataset based on 
“top-view”. 
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