Self-Supervised Learning of Face Representations for Video Face Clustering

Vivek Sharma, Makarand Tapaswi, Saquib Sarfraz, and Rainer Stiefelhagen

https://github.com/vivoutlaw/SSIAM

sharma.vivek@live.in

1

Motivation

- To learn discriminative face representation via self-supervision
 - Small intra-person-distance and large inter-person-distance.

- This will benefit potential applications in
 - Video understanding, video summarization, content-based indexing & retrieval
 - Automatic reasoning about multimedia content.

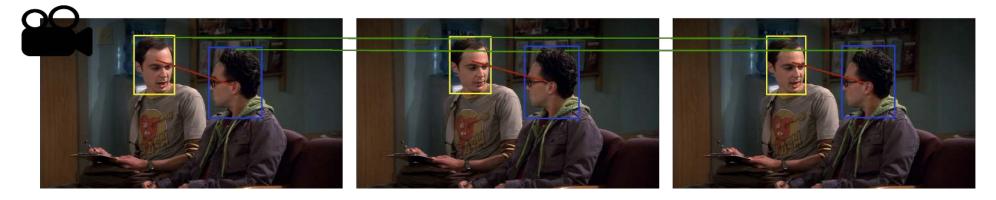
Introduction

- Video face clustering is hard.
 - Discriminative features help.

• Most prior works utilize: must-link and cannot-link information.

- Difficult to train from scratch (require lots of training data), typically handled by net surgery:
 - Fine-tuning
 - Use of additional embedding's on the features from the last layer
 - Both
- We propose two self-supervised discriminative methods.
 - Self-supervised Siamese network (SSiam)
 - Track-supervised Siamese network (TSiam)
- We evaluate on three video face clustering datasets.

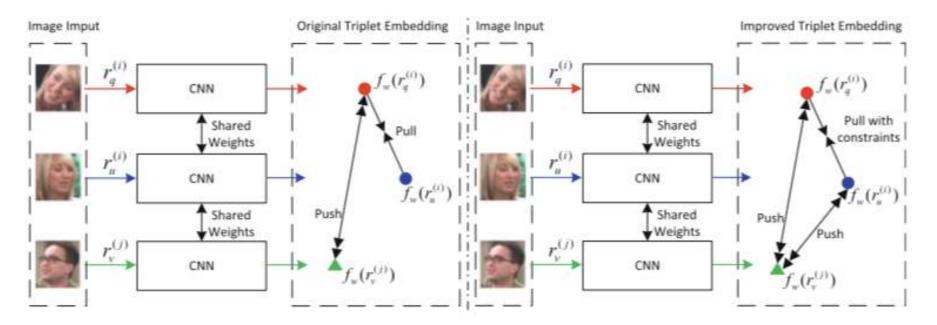
Temporal Constraints



Video constraints: must-link and cannot-not link.

Everingham et al.: "Hello! My name is ... Buffy" Automatic Naming of Characters in TV Video. In: BMVC. (2006) [**ULDML**] Cinbis et al.: Unsupervised Metric Learning for Face Identification in TV Video. In: ICCV. (2011) Tapaswi et al.: "Knock! Knock! Who is it?" Probabilistic Person Identification in TV-Series. In: CVPR. (2012)

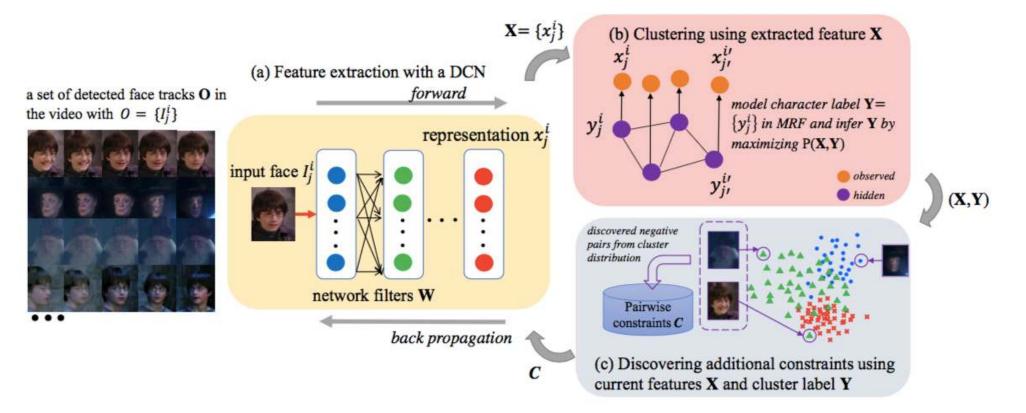
Related Work



• Link-constrained based improved triplet loss

[Imp-Triplet] Zhang et al.: "Deep metric learning with improved triplet loss for face clustering in videos." *Pacific Rim Conference on Multimedia*. Springer. (2016)

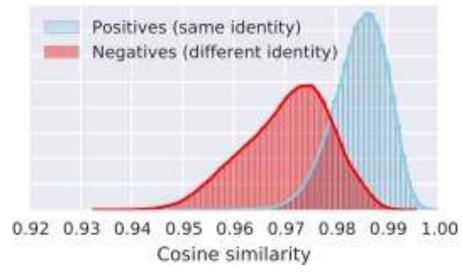
Related Work



Based on loss function or MRF modeling.

[JFAC] Zhang et al.: "Joint face representation adaptation and clustering in videos." In *European conference on computer vision*, pp. 236-251. Springer. (2016)

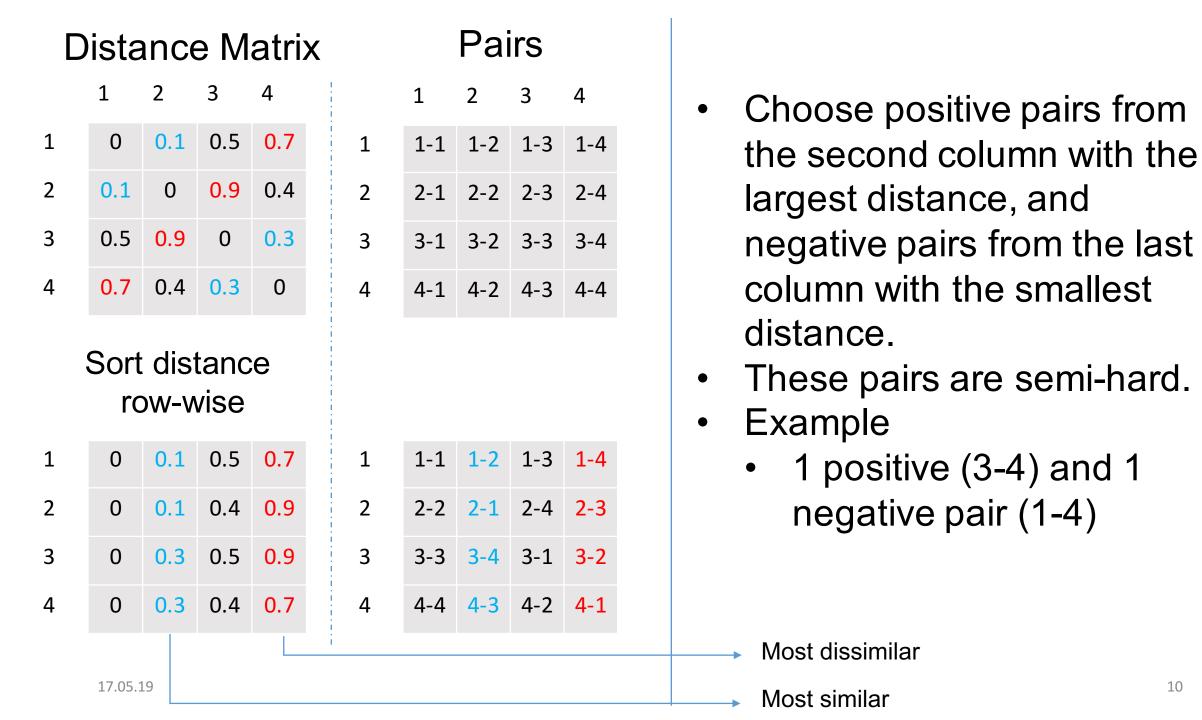
Related Work: Pseudo-RF



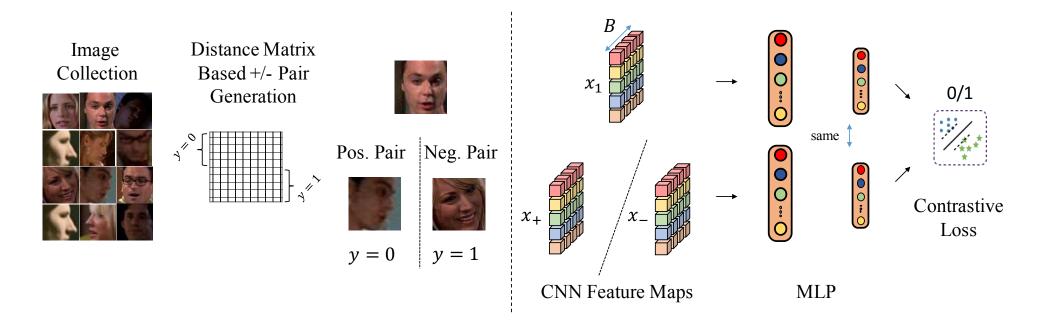
- This is especially in light of CNN face representations that are very similar even across different identities.
- We see a large overlap between the cosine similarity distributions of positive (same id) and negative (across id) track pairs.

Self-supervised Siamese network (SSiam)

- Does not need tracks or temporal information.
- Mechanism for mining positive and negative examples automatically.
- Compute a distance matrix (i.e. ranking) over random subset per iteration
 - Use the farthest positives and closest negatives pairs sets as labels.



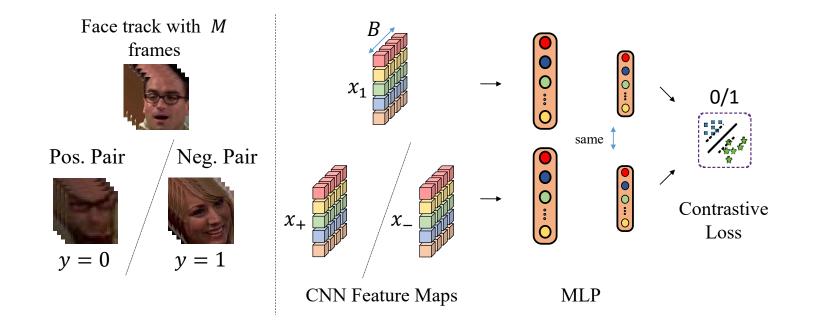
SSiam



SSiam selects hard pairs: farthest positives and closest negatives using a ranked list based on distance matrix. *B* corresponds to batch.

Track-supervised Siamese networks (TSiam)

- Use temporal information (must-link/cannot-link).
- Also include negative pairs for singleton tracks
 - based on track-level distances (computed on base features)
 - randomly sample frames from the farthest F = 25 tracks.



Evaluation

- We present our evaluation on three challenging datasets.
 - Buffy the Vampire Slayer (BF) (season 5, episodes 1 to 6)
 - Big Bang Theory (BBT) (season 1, episodes 1 to 6)
 - Harry Potter 1 Movie (ACCIO)

		This work		Previous work
Datasets	#Cast	$\#TR \ (\#FR)$	LC/SC (%)	#TR (#FR)
BBT0101	5	644 (41220)	37.2 / 4.1	182 (11525)
BF0502	6	$568 \ (39263)$	$36.2 \ / \ 5.0$	$229\ (17337)$
ACCIO	36	3243 (166885)	30.93/0.05	3243 (166885)

- Metrics
 - Clustering acc. for BBT, BF
 - BCubed, P, R, F1 for ACCIO

Implementation details

- We extract VGGFace2 features. The features are of 2048 Dimensions.
- Siamese network. Fully-connected neural network (2048 \rightarrow 512 \rightarrow 2). We extract the feature representations of 512D for clustering.

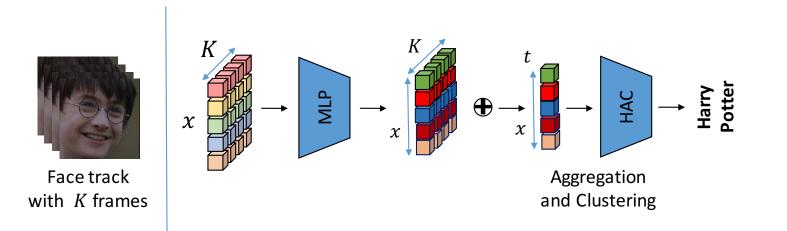
SSiam and TSiam labels mining

• For SSiam,

- We use a random subset of size B = 3000
- Choose 2K: positive and negative pairs, K = 64.
- Higher values of B did not improve.
- For TSiam, we mine 2 positive and 4 negative pairs for each frame.

Testing Setup

- Extract features from base network and trained MLP: SSiam or TSiam.
- Perform clustering via HAC



TSiam, impact of singleton tracks

	TSiam # Tracks			S	
Dataset	w/o Single (FG_Best)	Ours	Total	Single	Co-oc
BBT-0101	0.936	0.964	644	331	313
BF-0502	0.849	0.893	568	395	173

- Ignoring singleton tracks leads to significant performance drop.
- Approx. 50-70% tracks are singleton and ignoring them lowers accuracy by 4%.

SSiam, comparison to pseudo-RF

- In Pseudo-RF, all samples are treated independent of each other.
- A pair of samples closest in distance are chosen as positive, and farthest as negative.
- SSiam that involves sorting a batch of queries is much more efficient over pseudo-RF

Method	BBT-0101	BF-0502
Pseudo-RF	0.930	0.814
SSiam	0.962	0.909

Performance on training videos.

Train/Test	Base	TSiam	SSiam			#cluster=36	ĵ
				Methods	Р	\mathbf{R}	\mathbf{F}
BBT-0101	0.932	0.964	0.962	JFAC (ECCV '	16) 0.690	0.350	0.460
BF-0502	0.836	0.893	0.909		Ours (with	HAC)	
				TSiam SSiam	$\begin{array}{c} 0.749 \\ 0.766 \end{array}$	$\begin{array}{c} 0.382 \\ 0.386 \end{array}$	$\begin{array}{c} 0.506 \\ 0.514 \end{array}$

- Training is done at frame-level information.
- Testing is done at track-level i.e. mean representation.

Comparison with the SOTA at Frame-Level

Method	BBT-0101	BF-0502
ULDML (ICCV '11)	57.00	41.62
HMRF (CVPR '13)	59.61	50.30
HMRF2 (ICCV '13)	66.77	_
WBSLRR (ECCV '14)	72.00	62.76
VDF (CVPR '17)	89.62	87.46
Imp-Triplet (PacRim '16)	96.00	_
JFAC (ECCV '16)	_	92.13
Ours (with HAC)		
TSiam	98.58	92.46
SSiam	99.04	90.87

 Training the SSiam for about 15 epochs on BBT-0101 requires less than 25 minutes.

[HMRF] Wu et al.: Constrained Clustering and its Application to Face Clustering in Videos. In: CVPR. (2013)
[HMRF2] Wu et al.: Simultaneous Clustering and Tracklet Linking for Multi-face Tracking in Videos. In: ICCV. (2013)
[WBSLRR] Xiao et al.: Weighted Block-sparse Low Rank Representation for Face Clustering in Videos. In: ECCV. (2014)
[McAFC] Zhou et al.: Multi-cue augmented face clustering. In: ACM'MM. (2015)
[CMVFC] Cao et al.: Constrained Multi-view Video Face Clustering. IEEE TIP (2015)
[VDF] Sharma et al.. A simple and effective technique for face clustering in tv series. In CVPR: Workshops (2017)

Comparison with SOTA on ACCIO

		# clusters=4	0
Methods	Р	R	\mathbf{F}
K-means-DeepID2 ⁺ (ECCV '16)	0.543	0.201	0.293
DIFFRAC-DeepID 2^+ (ICCV '11)	0.557	0.213	0.301
WBSLRR-DeepID2 ⁺ (ECCV '14)	0.502	0.206	0.292
HMRF-DeepID 2^+ (CVPR '13)	0.599	0.23.0	0.332
$DeepID2^+ \cdot C0 \cdot Intra (ECCV '16)$	0.657	0.312	0.423
JFAC (ECCV '16)	0.711	0.352	0.471
Ours (wit	h HAC)		
TSiam	0.763	0.362	0.491
SSiam	0.777	0.371	0.502

Conclusion

- Presented two variants of discriminative methods to learn strong face representations
 - Self-supervised Siamese network (SSiam)
 - Track-supervised Siamese network (TSiam)
- State-of-the-art representation learning approach on BBT, BF and ACCIO.

Thank you!

https://vivoutlaw.github.io/

sharma.vivek@live.in