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Abstract

This thesis will discuss the technical and artistic design of the Singing Tree, a novel interactive musical
interface which responds to vocal input with real-time aural and visual feedback. A participant interacts
with the Singing Tree by singing into a microphone. The participant’s voice is analyzed for several char-
acteristic parameters: pitch, noisiness, brightness, volume, and formant frequencies. These parameters are
then interpreted and control a music generation engine and a video stream in real-time. This aural and
visual feedback is used actively to lead the participant to an established goal, providing a reward-oriented
relationship between the sounds one makes and the generated music and video stream one experiences. The
Singing Tree is an interesting musical experience for both amateur and professional singers. It is also versitile,
working well as a stand-alone interface or as part of a larger interactive experience.
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Chapter 1

Introduction

1.1 Motivation

As the scientist is gregarious with her research, so is the composer with his music. Indeed, the objective
of sharing one’s musical experience with others is the premise of performance. And, be it research results
or a musical experience, the benefits are certainly not limited to the creator; distribution and exposure are
beneficial to all. The belief that more people should have exposure to the experience of music is not new.
Pythagoras and Plato considered music an integral component of education. Mozart bucked tradition to
have his operas performed in a truly public forum. Nonetheless, until early this century, performing music in
one’s home for one’s family and friends was not only social pastime, it was a person’s primary contact with
music [1]. With the technological advances of this century, namely the phonograph, radio, and television,
music has become essentially ubiquitous. Whereas 100 years ago, I might have sung the same twelve hymns
with my family every night, today I can turn on my radio and listen to any style of music I choose. In this,
the technology has done a wonderful job at introducing me and the general public to music from a variety of
genres. However, the technology has also shifted the reality of a musical experience from active participation
to passive listening [2]. Most people would agree that attending a concert is a superior musical experience to
listening to a recording, even if it is a digitally recorded and mastered CD played on the latest system with
the well-marketed ‘1-bit D/A’. In addition, I believe that musicians and composers would add that creating
the music oneself can be an even more rewarding experience.

The Opera of the Future and the Physics and Media groups at the MIT Media Laboratory are concerned
with using technology to bring the active musical experience to a greater number of people. Novel imple-
mentations using computer music algorithms, computer human interfaces, and sensor technologies have led
to successful applications such as Vox-Cubed [3], the Hyperstring Trilogy [4], Joystick Music [5], Drum-Boy
[6], and the Sensor Chair [7]. Most recently, the Brain Opera was an attempt to collectively involve large
numbers of people in the active musical experience from composition to performance. The Singing Tree was

developed as one part of the The Brain Opera experience [9].
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1.2 The Brain Opera

The Singing Tree is one of six novel interfaces used in the Mind Forest of the Brain Opera, an interactive
opera composed and developed by Tod Machover and the Brain Opera Team at the MIT Media Laboratory.
The Brain Opera, based in part on Marvin Minsky’s book, Society of Mind [8], is divided into three parts

[91:

The Mind Forest: an interactive space in which the audience explores and creates music related to the

Brain Opera via six novel interfaces.

Net Music: a virtual interactive space in which Internet participants explore and create music related to

the Brain Opera via Java applets.

The Performance: the Brain Opera performance in which three performers use novel interfaces to simul-

taneously play written music and introduce the audience and Internet contributions to the piece.

Late last century and early this century, psychologists and psychiatrists hypothesized that the human
conscious is somehow ‘managed’ by one (or a small number of) highly intelligent ‘control center(s)’. The
worlds of ‘human thought’ and ‘consciousness’ are so unlike any other phenomena in nature, that many
believed the mind to be scientifically unexplainable. In Society of Mind [8], Marvin Minsky proposes the
theory that the human mind has no such ‘control center’, but, rather, that intelligent thought is actually
an assembly or ‘Society’ of individually mindless ‘agents’. Minsky creates a metaphor between the human
brain and forests of these agents, and herein lies the concept of the Brain Opera’s Mind Forest and its
interfaces: the Singing Tree, the Speaking Tree, the Rhythm Tree, Harmonic Driving, the Melody Easel,
and the Gesture Wall. The participants are the agents who interact with the Brain Opera through these six
interfaces. Pictures of these interfaces are presented in Appendix A.

The Brain Opera debuted last July at the 1996 Lincoln Center Festival in New York City, and has since
been performed at Linz, Austria; Copenhagen, Denmark; Tokyo, Japan; and West Palm Beach, Florida. It
is scheduled to continue touring through 1998, at which time it will likely find a permanent home as an

installation in an interactive music center or science museum.

1.3 The Singing Tree

A participant interacts with the Singing Tree by singing any pitch into the Singing Tree microphone, as
illustrated in Figure 1-1. While singing, the voice is analyzed for several characteristic parameters. These
parameters are then interpreted as control parameters and mapped to the input variables of a music gen-
eration algorithm called Sharle and a video stream. In effect, the participant’s vocal parameters determine
the musical and visual feedback in real-time. The participant is surrounded in a musical and visual ‘aura’

which is designed to work as reward-oriented feedback, leading the participant to an established goal. In the
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Figure 1-1: The Singing Tree in Tokyo

Brain Opera, the goal was determined to be a pure and steadily sung pitch. The aural and visual feedback
is designed to reward participants who can maintain such a pitch within an established tolerance [10].

In a larger sense, the Singing Tree is an attempt to design an interface which responds in real-time
to information contained in the human voice using algorithms that are computationally inexpensive [10].
Furthermore, the Singing Tree contributes to the efforts of Tod Machover’s group in the fields of interpretation
and musical mapping. It attempts to identify and interpret musically meaningful information in the singing
voice for use in creating a meaningful musical and visual experience. In addition to the Brain Opera context,
The Singing Tree is also an example of a human-computer interface which can seamlessly extract useful
information from the human voice. These types of human-computer interfaces will play an increasingly

important role in ‘smart’ applications.

1.4 Review of the Literature and Research Activities

The Singing Tree and the Brain Opera are innovations based the works of many in the admittedly broad
fields of voice analysis and synthesis, music analysis and synthesis, computer music, computer human inter-
faces, and control systems. In this section, particularly relevant works which established the precedent for
interactive music projects, including the Singing Tree and the Brain Opera, are presented. The purpose is
to provide an introduction to the foundation and context of this work. Readers who wish to further research

these areas are referred to the appropriate references.
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1.4.1 Voice Analysis and Synthesis

The Singing Tree derives its statistics for music generation from characteristics in the human singing voice
such as pitch period, brightness, and vowel formants. Much of the work in this field started in the 1950’s, with
significant advances in the 1960’s and 1970’s paralleling the advancements in the computational efficiency
of computers [53]. The 1980’s and 1990’s have seen applications of these advances in the fields of medical
diagnostics, speech recognition systems, and voice identification. In particular, the works of Johan Sundberg
[11], Kenneth Stevens [14], Gerald Bennett [65], Xavier Rodet[15], and David Wessels [25] are fundamental

to the techniques used in the Singing Tree voice analysis algorithms.

Formant Analysis of the Speaking and Singing Voice

Johan Sundberg’s research in the 1960’s and 1970’s on the analysis of the human singing voice has introduced
the concepts of ‘singing formant’ and its important role in operatic singing [11], [12],[13]. In short, opera
singers can significantly shift their vowel formant structure to make their words more comprehendible, tune
their pitch to the orchestra accompaniment, and ‘cut through’ the orchestra’s sound. In addition, Kenneth
Stevens’ research in the fundamentals of speech and vowel formation also introduced similar concepts of
formant shifting and tuning in his analysis of the unusual chanting modes of Tibetan Lamas [14]. The

Singing Tree utilized formant frequencies as a control parameter for music generation.

Voice Synthesis Using Formant Frequencies

The works of Xavier Rodet, Gerald Bennett, and Johan Sundberg in the field of singing voice synthesis include
examples of using formant frequencies to re-create a singing voice. In particular, the CHANT project at
IRCAM in Paris, France introduced a synthesis-by-rule technique to create a human singing voice from the
first five formant frequencies. The project is important to the Singing Tree, because it specifically used the
vocal apparatus as the physical model for speech production in its analysis. Furthermore, it is an example
of using this model as a the basis for generating sound. In the case of CHANT, the sound it generated was
the voice it was intending to model, while in the Singing Tree, the sound generated was literally music. The
music generation algorithm of the Singing Tree was controlled by mapping specific characteristics of the voice
as derived from a vocal model, and it included the formant frequencies as stated previously. CHANT also
was an introduction to the concept of rule-based knowledge structures and schemes, in which one represents

a formalization of a decision, a gesture, or musical organization in terms of ‘rules’ [15], [65].

Speech and Voice Therapy and Training

Much of the research in speech modeling and voice analysis was directed toward diagnostic applications
and speech therapy. Speech-language pathologists, otolaryngologists, voice teachers, and singers often use
software which can identify the acoustic features of sustained or sung vowels for clinical assessment or vocal

training. These programs allow one to view a time-domain or frequency-domain representation of one’s voice
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to characterize one’s hoarseness, harshness, breathiness, formant structure, glottal attack, and fundamental
frequency contour to name a few [16]. This area of research takes voice parameter information and displays it
on a screen so that the user can adjust his vocal input to match a desired pattern. This feedback mechanism

is analogous to the feedback model used in the Singing Tree.

1.4.2 Computer Music, Electronic Instruments, and Interactive Music

Interactive music is often, by nature of the implementation, a ‘computer-based music’, but that does not
necessarily imply that it is ‘computer music’ in the traditional sense of the term. While much of the research
in computer music has focussed on providing compositional tools for the composer, the work in interactive
music has focussed heavily on the user (i.e., the interactive ‘instrumentalist’), the user interface, and control
issues [17], [10]. In addition, while interactive music systems often use an ’electronically-based interface’
which creates a musical experience, that certainly does not qualify them as electronic instruments. Nor does
it imply any notion of interactivity in the functionality of an electronic instrurﬁent. Nonetheless, the three
fields do overlap in an evolutionary sense, and the present research directions and implementations found in
the field of interactive music systems are strongly rooted in the works of electronic instrument and computer
music pioneers. There are many examples of precedent to the Brain Opera and its instruments, at least in
motivation and methodology. These include the works of Leon Theremin [7], John Cage [18], Paul Lansky
[19], Max Mathews [20], Karlheinz Stockhausen [21], [22], Morton Subotnick [23], Pierre Boulez [24], David
Rokeby [25], George Lewis [26], Richard Teitelbaum [25], Barry Vercoe [25], Tod Machover [25], and Robert
Rowe [25]. In addition, although his contribution is not specifically in the fields of computer or interactive

music, Heinrich Schenker’s contribution to music analysis carries implications in these fields.

The Theremin

The theremin was invented by Leon Theremin in 1920, and is an early example of a truly electronic instrument
[7]. The idea behind the theremin is that the frequency of an oscillator can be adjusted by changing the
value of the capacitance in a tank circuit. The theremin allows the user to change the capacitance by
moving her hands closer to or further from an antenna. In application, there are two frequencies, of which
the user can adjust one. The frequency of the beating between the two signals determines the pitch one
hears. Another antenna is used to control volume. The result is an instrument which is played without ever
touching anything. The user moves her arms to create a pitch of a certain volume. The Brain Opera uses
a similar technology in the Sensor Chair and the Gesture Wall [7]. The difference is in the role of the user.
In the theremin, the user acts as a capacitive shunt by moving closer to or further from the antenna, while
in the Sensor Chair and the Gesture Wall, the user is the antenna. Both the Sensor Chair and the Gesture
Wall have four receivers mounted in front of the user in the configuration of a square (one receiver in each
corner of the square). The user stands (Gesture Wall) or sits (Sensor Chair) on a metal transmitter which

couples a low-frequency RF signal into the body. The user then moves her hand (now an antenna) around
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in front of her body, and a computer determines the spatial position of her hand by the differential signal
strengths at the receivers. Considering positions over time, velocity and acceleration metrics can also be
extracted. These measurements are then interpreted and mapped to a sampler (or other sound source) to
create music. In addition to the Brain Opera, the Sensor Chair technology has been used in performances

by Penn and Teller, the magicians, and by the artist formerly known as Prince [7].

“Imaginary Landscape No. 4”

John Cage’s piece, “Imaginary Landscape No. 4” (for 12 Radios), is an early example of a musical perfor-
mance which combines human and a non-traditional electronic ‘instrument’. The piece was scored for 12
radios and 24 people. For each radio, one person would control the volume and another would control the
frequency. The result was a musical piece in which one, several, or all radios would be playing different
stations at different volumes simultaneously. The word ‘instrument’ is in quotes above, because, despite the
fact that both radios and instruments play music, the radio is not an instrument in its functional sense. The
difference is the level of control and the variety of music that can be produced. A radio has a very high
level of control, but a wide variability in musical sound; while one cannot dictate the characteristics of the
specific piece of music being broadcast on any particular channel, one can certainly change channels and
hear remarkably different styles of music. On the other hand, an instrument allows its user to control every
nuance of the sound it produces, but cannot fundamentally changes its sound. The Brain Opera and the
Singing Tree attempt to fall somewhere in between these two models, allowing some lower-level control and

some higher-level control [18].

“Groove”

Groove is an early example of interactive music designed by Max Mathews and F. Moore at ATT Bell
Laboratories in the late 1960’s. Groove allows a user to control 14 ‘functions of time’ simultaneously in real
time. These ‘functions of time’ are used to control various parameters of a song such as speed, volume, and
waveform. The music one hears is the sensory feedback which closes the loop and allows the user to make
further adjustments in real-time [27]. In this, GROOVE is conceptually a predecessor to the Singing Tree

and other instruments used in the Brain Opera.

1.4.83 Performance-Driven Interactive Instruments

George Lewis, Richard Teitelbaum, and Tod Machover are examples of musicians/composers who have
used interactive music as a performance tool. This is typically accomplished by analyzing a metric of the
instrument, such as pitch, and using the information to drive a music generation algorithm, sampler, or
sequencer which augments the instruments sound. George Lewis’ approach is to augment the music in an
improvisatory manner. For example, he uses a pitch follower to convert a trombone’s pitch to MIDI, which

in turn drives a software algorithm designed to improvise with the trombone. As Lewis is a jazz trombonist,
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the improvisatory style is typically a jazz style. Lewis’ music generation algorithms are probabilistic, and
driven entirely by the player (i.e., there are no sequences) [25]. Richard Teitelbaum is a pianist, who uses a
MIDI interface on an acoustic piano to send MIDI note information to a computer. The computer acts as
a complex musical ‘transformer’, able to add delay, transposition, repetitions, and even play other solenoid-
driven pianos. An interesting concept in Teitelbaum’s approach, is that the pianist has full control of the
computers functions; there is no ambiguity. The user tells the computer through a switch (not the piano) that
he wants a particular transposition, and the computer responds by implementing that transposition [25]. Tod
Machover has also designed and composed several pieces for interactive instrument, or ‘hyperinstrument’,
including the opera, Valis for piano, mallet percussion, and computer; Towards the Center, a piece for flute,
clarinet, violin, violon-cello, keyboard, percussion, and computer; Bug-Mudra, for acoustic guitar, electric
guitar, dextrous hand master (a hyper-conducting-glove which measures the angle of three joints on each
finger), and computer; and the Hyperstring Trilogy for hyperviolin, hyperviola, and hypercello, which are
described in greater detail in Section 1.4.3 [25].

Schenker Analysis

The music analysis technique developed by Heinrich Schenker takes a complex piece of music (or tonal
event) and, in stages, reduces it to a more structurally fundamental representation of the basic musical
(tonal) progression [28]. In this, there is an attempt to separate the fundamental musical idea from the
embellishment and ornamentation. The lower-level details of the music are represented in a compact, higher-
level notation. Thus, there is in music theory an analogy to the representation attempted in many of the Brain
Opera’s interactive instruments; the user controls the interactive instruments by manipulating a higher-level
form of the music. What is heard, however, is the music in its detailed, lower-level form. The success or
failure of the experience lies, in part, in the designer’s ability to make a meaningful connection between the
higher-level representation of the music and its actual, lower-level form. One finds a similar situation in
mathematics and physics, in which one tries to find an ‘ideal’ representation for a matrix or wavefunction
by projecting onto an appropriate set of basis vectors or basis functions. A judicious choice will lead to
a remarkable simplification, allowing one to easily manipulate (exactly or approximately, as the case may
be) the more complex version of the matrix or wavefunction by operating on its simplified form. Literature
offers an analogy describing the difference between a ‘judicious representation’ and a poorly chosen one. The
vocabulary of a Hemingway novel may be at the same reading-level as a modern day, 7th grade English text
on Shakespeare. However, the former is considered artistically ingenious for its simplicity in representing
the complexities of the human condition, while the latter is merely a ‘dumbed-down’ version of an English
classic, with much of the original work’s complexity and meaning lost in the ‘translation’. While interactive
music systems often present hardware and software implementation challenges which seemingly become the
obstacles to success, one should not underestimate the God-like intervention that an ill choice of musical

representation (and all that accompanies it, including parameter interpretation and mapping) can have on
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a project’s mortality.

1.4.4 Previous Work from the Media Laboratory

There are several predecessors to the Brain Opera and the Singing Tree from the Media Laboratory. Most
notable are the Hyperinstruments, Joystick Music, and Drum Boy. The Hyperinstruments Project began in
1986 as an attempt to provide virtuosi with added degrees of expressivity in their instruments by augmenting
the instruments’ sounds. Of the many Hyperinstrument Projects described in Section 1.4.2, the author had
the opportunity to work on the Hyperstrings Trilogy Performance at the Lincoln Center Festival in July, 1996.
The specific instruments were a hypercello, hyperviola, and hyperviolin. The augmentation was accomplished
through the addition of sensors to the instrument to gather information on the player’s performance and
technique. For example, bow position and bow pressure were measured. This information was analyzed to
determine musical meaning, and then mapped to a sequencer or sampler to play back additional sounds along
with the instrumentalist in real time. The result was a ‘new’ instrument. The virtuosi knew how to play
this instrument in the traditional sense, but had to experiment with it to learn how it would behave in its
augmented condition. Virtuosi, including Yo-Yo Ma, Paul Silverthorn, Ani Kavafian, and Matt Haimovitz,
have used these hyperinstruments to play Tod Machover’s Hyperstrings Trilogy: Begin Again Again for
hypercello, Song of Penance for hyperviola, and Forever and Ever for hyperviolin.

Drum Boy and Joystick Music, on the other hand, are examples of an attempt to give enhanced musical
expressivity to amateur musicians. In Drum Boy, a user was able to control complex drum patterns using
relatively simple, higher-level controls such as ‘complex vs. simple’, ‘energetic vs. calm’, and ‘mechanical vs.
graceful’. The control mechanisms were literally ‘adjectival transformation functions’, which would change
the drum pattern in a manner which was appropriate for the particular adjective. An extension of the
Drum Boy research was Joystick Music. In Joystick Music, the user would control the rhythmic and melodic
evolution of a simple musical motif, or ‘seed’, via two joysticks. The joysticks had higher-level controls
associated with each direction, and, typically, one joystick was used to control the rhythm while the other
controlled the melody [5]. A further extension of Joystick Music was the music generation algorithm used

in the Singing Tree called Sharle [36].

1.4.5 The Trouble with Bessel Functions

This brief review of the literature closes with a quote from Paul Lansky. Lansky was asked what he thought
the most unhealthy aspects of computer music are. His answer makes a strong point about priorities in creat-

ing computer music, and can be extended to those who create interactive musical experiences or instruments

[19).

I have trouble with Bessel functions at this point. I’'m very impressed with how far it (frequency
modulation) can be extended. But very simple frequency modulation wears me down. ...It is

the extent to which there is an obsession with the machine rather than with what it produces.
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I have heard too many discussions among computer music people who were only concerned
with software and hardware without even considering what kinds of pieces they were producing.
...Good machines and better software certainly make life easier, but there is not a one-to-one
correlation between the quality of pieces and the tools used to make them. Often, systems which

are too easy to use encourage thoughtlessness. Paul Lansky

Bessel functions represent the spectral envelope in frequency modulation, which was a major development
in the field of computer music. Lansky’s point, however, is well taken. Be it computer music or interactive
music, the technology should drive the artistry to new areas. It is certainly interesting and fruitful to develop
new technologies in their own right, but one should not lose sight of the artistry. If the artistic goals are
maintained in the face of technological innovation, interactive music systems will not be ‘thoughtless’, nor

will they seem ‘simplistic’.

1.5 Fundamental Questions

The Singing Tree project introduced several fundamental issues, many of which remain largely unresolved.
This is not a failure of the research necessarily, but a result of the fundamental and philosophical nature of
the issues at hand. They are mentioned here, because they are issues which remain a catalyst for debate
among the author, his colleagues, and the critics of interactive musical projects.

Why are we building a Singing Tree, or a Brain Opera for that matter? Indeed, the motivation behind
the projects is to introduce more people to the ‘musical experience’, but who is to dictate what that is? In
fact, some might say these efforts are rather arrogant and condescending. Does this imply an attempt to
bring the musical experience to those who cannot otherwise experience 1t? Others might argue that attempts
to take an instrument’s natural control space and transform it into something easier that anyone can master
is, in effect, a ‘dumbing down’ of the instrument’s capabilities and the music it plays. While the previous is
a rather harsh interpretation of the goals of the group’s research, they are valid questions which should be
reviewed. To the author, this work is merely an attempt to develop new and interesting musical experiences.
Anyone can enjoy playing a musical instrument or singing without being a virtuoso. Musical prodigy or
otherwise, people understand their own musical tastes, the music to which they enjoy listening, and, simply
stated, what sounds good to them. If a person can design a musical experience which simply sounds good
and is enjoyable to use, then it is the author’s belief that the work is a success.

Analysis of the singing voice singing one note is a particularly rich and, yet, tractable proposition, because
it poses the analysis problem in differential or perturbative reference to one note. The Singing Tree project is
an attempt to analyze a complex system, the singing voice, and measure or derive a finite number of statistics.
These statistics are used to drive a music generation algorithm, and in that, there is an implication that these
statistics somehow contain the musical intention of the participant. That is a rather difficult implication to

accept. The musical ‘gesture’ that one person uses to represent a musical intention may be very different

21



from the musical ‘gesture’ that another uses for the same intention. Are there orthogonal bases that span
the instrument space? What are the bases of a human voice? a cello? the world? [29] How many do we need
to be assured of ‘the right answer’? These questions, of course, cannot be answered explicitly. While one can
only conjecture through experience, imagination, and experimentation which measurements are significant,
and how many are sufficient, there is reason to believe that a judicious choice of statistics or bases can do a
pretty good job without worrying too much about the details [29], [30].

The Singing Tree project is a prime example of a system whose behavior is best specified using linguistic
variables. In other words, it is much easier to describe in words how the Singing Tree output should behave
as a function of its input than it is to describe quantitatively. In fact, many of the projects in Tod Machover’s
group are of this type. The methodology used in creating the music generation algorithm, Sharle, and the
musical mappings of the Singing Tree, is in principle similar to that used in fuzzy control and the fuzzy
interpretation of a linguistic variable [31]. The Singing Tree does not intentionally use fuzzy set theory, but
the author believes the circumstantial similarities to be compelling and further consideration should be given

to this area [32]. More on this topic will follow in Section 4.3.

1.6 Organization of this Thesis

After a brief introductory statement in Chapter 1, the foundation of the thesis begins in Chapter 2 with
a discussion of the Singing Tree at the system level. The design criteria, design approach, equipment, and
vocal sample preparation are covered from a ‘phenomenological’ perspective. Chapter 3 develops the physical
models and mathematical approaches used in the voice analysis, interpretation, and mapping algorithms.
While there are many equations and graphs, the exposition reveals the technology’s role as a tool by which
the artistic goals of the Singing Tree project were realized. Chapter 4 discusses the author’s observations of
the Singing Tree in use, and it includes relevant comments from notable users. The chapter continues with
a look at the next steps one could take in both research and development for the Singing Tree and other
interactive experiences. Finally, Chapter 5 summarizes the work.

The thesis is a full discussion of the Singing Tree’s development and operation. This does not imply that
the author built the Singing Tree by himself. To the contrary, the Singing Tree project was a culmination of
the works and efforts of many. Those who made the most significant contributions are mentioned with their
work, while others are mentioned in the acknowledgments. There are research projects which focus on one
particular question in great detail, and then there are projects, such as the Singing Tree, which investigate
and incorporate concepts spanning a wide spectrum of disciplines. To the credit of all who were involved in
this project, the Singing Tree project proved to be an excellent learning experience for the author because

of its breadth.
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Chapter 2
The Singing Tree System

2.1 Design Criteria

The Singing Tree design criteria are summarized in the following [9], [33].

Each singing-forest station will be for one person only. Each person will be close miked and
wearing headphones; maximum sound isolation. Each station (ca. 5 in all) will concentrate on
a single pitch (either this pitch is invariant and “user” adjusts to it, or we ask the person to
sing their “favorite” note which assumedly would be one comfortable in their range, and adjust
the rest to that....we will decide this later). The person is told to sing that note as calmly,
simply, and “concentratedly” as possible, and that computer will “reward” this: i.e. the calmer
the singing (on that one note) the more “beautiful” the aura; the more “nervous” the singing
the more “agitated” the aura. ... The goal is not to make a “control” instrument so that the
“performer” can consciously vary the sonic result by, for instance, producing a specific consonant
(which would be hard). Rather, we are designing a very sensitive analysis engine that does a
very reasonable job of recognizing changes in these parameters as reliably as possible, and with
the fewest possible “glitches” /discontinuities. ... Once we have experimented with measuring
all of these things, and tuning the sensitivity of our algorithms, we will decide how to combine
the parameters into higher-level mappings. ... We are working to produce a kind of rolling
arpeggiation spreading out above and below the reference pitch, and capable of moving from
very calm and harmonious to quite agitated and inharmonic. Individual notes will be faded in
and out very gracefully, so the result will never sound like arpeggios with accented notes, but
rather like light patterns constantly changing on the surface of rippling water. ... I want it to
sound like a choir of 127 angels singing at the same time, reacting to every perturbation in the

voice. ... Tod Machover
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Additional design criteria were later included. The musical interaction experience must be accessible to both
amateur and professional singers. The Singing Tree must work as a stand-alone interactive interface and
as part of a larger interactive experience. There will be a unique video stream [34] for each of the trees,
and these videos will also represent the state of the participant’s ability to meet the established goal. The
software and design should be flexible, allowing new goals, new music, and new video to be incorporated
easily. Due to funding restrictions, a total of three Singing Tree systems were produced (rather than the
originally planned 5 systems). As described in the remainder of the thesis, the resulting Singing Trees closely

matched these design criteria. Differences will be specifically noted.

2.2 Modular Design

The first issue in designing a system is to determine how to divide the project into sub-systems. This was
particularly relevant in the case of the Singing Tree, because it was to be both a stand-alone interactive
interface and a component of a larger interactive experience. In addition, the other interactive interfaces and
the protocol by which to coordinate them were also in development at the same time as the Singing Tree.
The Singing Tree Team saw modularity as the means to organize our own efforts, while also minimizing the
amount of work that would be required later when coordination protocol was firmly established.

The Singing Tree was modularized into three categories:

1. Vocal Parameter Analysis
2. Interpretation and Mapping
3. Music Generation and Video Display

This was the most practical categorization for several reasons. First, Eric Metois had already developed
a DSP toolkit [30] for most of the vocal analysis that needed to be used. Learning how the algorithms work,
adding additional algorithms where needed, and porting the code from UNIX to the Windows platform [35]
was far better than ‘re-inventing the wheel’. Second, John Yu was nearly finished with his music generation
engine called Sharle [36]. By utilizing work already accomplished, development time was greatly reduced,
and more importantly, the remaining tasks to be completed were clearly defined. To complete the project
and meet the Lincoln Center deadline, a formant analyzer would need to be added to the DSP toolkit,
interpretation and mapping algorithms would need to be developed, the specific equipment and wiring
diagram would need to be established, the video would need to be created, the musical response needed to
be determined, and the specific vocal samples to be used as the chorus would need to be recorded [37] and
prepared.

One can make the argument that choosing to use established work or clearly defining tasks too early in
a project can stifle creativity. While the author acknowledges this line of reasoning, he is more compelled

to believe that a project subjected to this philosophy for too long would suffer from a lack of direction.
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Table 2.1: Singing Tree Equipment List

[ Company | Model Number | Equipment |
IBM PC750 computer, 133 Mhz Pentium, 64 Mb RAM
Kurzweil K2500 rack mount sampler, 64 Mb RAM, Fujitsu hard drive
Mackie 1202 12 channel audio mixer
ART SC2 2 channel compressor/limiter/gate
ART Effects Network effects processor
ART Pro MPA microphone preamplifier
Samson Servo 150 studio amplifier, T5W stereo
Samsung LCD screen and driver
ETA PD8C power conditioner, EMI/RFI spike surge protection
KRK 100W speaker
Sure 58 microphone

Creativity is not destroyed by establishing one’s design parameters, rather, the creative arena is simply
clarified. In the case of the Singing Tree, the interpretation and mapping algorithms allowed a wide range

of artistic creativity in the aural design of the experience [10].

2.3 Equipment

The equipment used to create the Singing Tree can be categorized into two groups: equipment required to
make the Singing Tree function, and equipment used to manufacture the physical station used in the Brain
Opera. Equipment in the former group represents the equipment necessary for the Singing Tree to operate
and is listed in Table 2.1. Equipment in the latter group includes anything used to create the aesthetic

experience in the Mind Forest Space.

2.3.1 Operational Equipment

As shown in Figure 2-1, a participant sings into the microphone, the signal first travels to the preamplifier,
then on to the compressor/limiter which prevents clipping (level overload), and finally to the mixer. From
the mixer, the voice is channeled through the main output to the computer, and also through an auxilliary
output to the effects processor which returns processed voice to the mixer. The computer samples and
analyzes the voice, determines the music and video to be output, sends MIDI commands to the Kurtzweil
sampler to play music, and displays the correct video bitmap on the LCD screen. The Kurzweil audio out
is split with part going to the amplifier and the external speaker, and the other part going to the mixer.
Finally, the processed voice and Kurzweil are mixed and channeled to the headphones. The result is that the
participant will hear both her own singing voice and the musical accompaniment, while the public will hear
only the generated music. This design decision was intended to help alleviate feelings of insecurity regarding

public singing.
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Figure 2-1: Cable Schematic of the Singing Tree

2.3.2 Aesthetic Equipment

Many decisions made during the physical design of the Brain Opera were a collaboration of ideas between
the technologists and the visual artists [34], [38], [39]. The Singing Tree, as one sees it today in the Brain
Opera Mind Forest, has the microphone, LCD screen, and headphones mounted inside an organic-looking,
white hood. The hood resembles an ear, and the participant enters this ‘ear’ to sing into the microphone.
The hood’s height is adjustable, and it provides an enclosed surrounding to reduce the participants’ feelings
of self-consciousness about public singing. The Singing Tree as a unit has the appearance of a tree, large .
and round at the top with a slender set of three supports comprising the ‘tree trunk’. The hardware for
the Singing Tree is located on a platform far above the experience and out of sight of the participant. The
reader is referred to Figure A-3 for a picture of the Mind Forest which contains several Singing Tree hoods.

The original design for the Singing Tree hood called for the use of a swinging microphone arm which would
come to the participant’s head when she entered the hood. Small personal speakers would be mounted inside
the hood and aimed at the approximate position of the participant’s ears. Headphones were not included
in the original design, because it was thought that, with the number of people using the Singing Tree, the
headphones would get greasy and participants would avoid the experience. There were two problems with
this design. First, there were the inherent mechanical difficulties in implementing such a system. Second,
it was projected that the Mind Forest would be a very loud space, and the small speakers in the hood
would have to compete with the sound entering the hood from the Mind Forest. It was suggested that the
microphone be mounted, and that headphones be used rather than small speakers. The headphones would
also be mounted, so that the participant would literally enter the headphones when she entered the hood.
While this new design was an improvement, the hood’s shape turned out to be such that the microphone was
30cm from the participant’s head. As stated previously, the Singing Tree was located in a loud interactive

space, and it was extremely important to have the participant as close to the microphone as possible. The
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design was changed again, and, in the final version, the microphone is positioned about 5 cm from the
participant’s mouth.

Two other designs did not make it to the Lincoln Center debut. The first was an additional umbrella
shaped hood which came down over the ‘ear’ shaped hood and the participant once he was inside. This was
another attempt at privacy and sound isolation. The problem was that the two-hooded system was large
and mechanically difficult to operate. In addition, the umbrella shaped hood was cut such that it had an
opening precisely at the point where the external speaker was located. Instead of isolating the microphone
from external sound sources, the hood acted to channel the Singing Tree’s generated music back into the
microphone, creating an unwanted feedback. The umbrella hood was removed. The other design that did
not make it as a Singing Tree accessory because it was unnecessary, but was utilized as a Speaking Tree
accessory, was the Sensor Mat. The Sensor Mat was a flat on/off switch connected to an output pin held at
+5V and an input pin on the computer’s serial port (DB9). When a participant stepped on the switch, the
input pin went to +5V and the computer detected that a person was standing on the mat at the experience.
Originally designed to accommodate the swinging microphone arm, the floor mat was instead used at the

Talking Tree stations to initiate those experiences. [40]

2.4 Kurzweil K2500 Sampler/Synthesizer

The K2500 sampler/synthesizer plays an extremely important role in the Singing Tree operation. In fact,
the K2500 plays an important role in the entire Brain Opera, which utilizes a total of 17 units in the Mind
Forest and Performance. The K2500 stores the instrument sounds and the recorded vocal samples used to
play the music generated by the computer. The work involved in preparing the K2500 for its use in the
Singing Tree and the preparation of the samples is described in this section. In addition, a brief introduction

to the Musical Instrument Digital Interface (MIDI) protocol is given.

2.4.1 K2500: Overview and Modifications

The K2500R (rack mount) version is used for the Singing Tree. It is a sampler with a proprietary Variable
Architecture Synthesis Technology (VAST) which allows one to use samples and internally generated wave-
forms. It includes several DSP functions to modify the samples, and it has an on-board effects processor.
The K2500R is 48-note polyphonic, which is of particular interest to the Singing Tree application, because
it requires a sampler with the ability to play many different instruments simultaneously. It comes with 200
preset sound patches and 2 Mb of RAM. It has 8 audio outs, SCSI ports, and MIDI in/out/thru [41].

As shipped, the K2500R did not have sufficient RAM, nor an internal hard drive. Both would be needed
for the Singing Tree experience. The author installed 64 Mb RAM and a Fujitsu 540 Mb internal hard
drive in each of the three Singing Tree K2500R units. An interesting implementation in the Kurzweil design

is that the SCSI connector pins on the internal SCSI board are backwards with respect to conventional
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designs. In other words, attaching the internal hard drive via a conventional SCSI cable (SCSI1 cable for
internal applications) did not work. The design was likely implemented to require users to buy a proprietary
Kurzweil SCSI1 cable. Our solution was to cut off the guide key from a conventional cable such that it could

be inserted backwards.

2.4.2 Vocal Samples: Recording and Editing

The vocal samples used for the Singing Tree were performed by the Boston Camerata, who specialize in the
singing styles of Renaissance and pre-Renaissance music. If one listens to interpretations of the works of
Leonin and Perotin (ca. 11th-12th century), the singing style is a very pure tone with no vibrato. This was
the ‘ideal’ style of voice for the Singing Tree.

The vocal samples were to represent a chorus in the final version of the Singing Tree, and so a soprano,
alto, tenor, and bass were sampled to cover the range of pitches a choir would cover. The specific motifs

they sang were composed by Tod Machover and divided into three categories:
1. Basic Motif: one pitch held for approximately two measures; singing style is pure

2. Intermediate Motif: one to several pitches sung for approximately two measures, singing style to vary

from pure to slightly agitated, consistent vowel and rhythmic structure.

3. Frenetic Motif: one to several pitches sung for approximately two measures, singing style is agitated,

vowel is frenetically changing, inconsistent rhythmic structure

Conceptually, the Basic Motif represents the singing style of the chorus when the participant sings purely;
the Intermediate Motif represents the singing style when the participant is singing consistently the same pitch,
but not in a completely pure manner; the Frenetic Motif represents the singing style of the chorus when the
participant is not singing according to the established goals of the Singing Tree.

The six Boston Camerata singers were recorded by professional sound engineers from Erato Disques in
Weston, Massachusetts. Each motif had several versions, and each version was recorded at minor-third
intervals throughout the range of each singer for the vowels [ah] as in ‘father’, [ee] as in ‘feet’, [00] as in
‘pool’, and [oh] as in ‘so’. [42] The problem with recording in this manner is that the singers’ pitch is not
perfect, and relative pitch from sample to sample and person to person varied significantly. In addition,
sample attacks and volumes varied greatly. The result was a very large number of samples which had to be
screened and edited.

Sample editing is a time consuming process. Although the K2500R has on-board sample editing options,
the samples were all recorded to computer, and there are several excellent sample editing software packages
available. It made a great deal of sense to edit first and then port to the K2500R only the samples to
be used in the Singing Tree, rather than port all the raw data first and then edit. The process required
two programs: Sound Designer and Alchemy. Using Sound Designer, the samples were first normalized in

amplitude. The next step was to clean up the attacks of the samples. After cutting the empty padding at
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the start of a particular sample, an amplitude envelope with a sharp rise was applied at the beginning of the
sample. This eliminated any initial pre-attack noise and clicking that might have resulted from cutting too
little or too much empty padding. The next problem was the variance in sample lengths. Since each sample
was recorded separately, tempo varied considerably from sample to sample. Because the samples were to be
played together, the sample lengths had to be normalized to a consistent value for each of the three motifs.
The amplitude envelope was held constant after the attack, and a decay with a relatively slow decay rate
was applied at the end of the sample. The placement of the decay determined the length of the sample, and
the same amplitude envelope was used for all samples of a particular motif. Alchemy was used to change
the pitches of the samples, and this gave a rough tuning. The fine-tuning was done by ear, similar to the
way a piano is fine-tuned. Chords of vocal samples were played along with chords of instruments of known
pitch, and fine adjustments were made to create the final tuning. With this finished, the best samples were
selected and ported to the K2500R via SCSI2. Our budget allowed only 64 Mb RAM, and this was fully
utilized. Unfortunately, many good samples could not be used.

The next step in preparing the samples was to create a keymap for each of the classes of motif and vowel.
A keymap is an assignment of samples in the K2500R’s memory to the keys on a ‘keyboard’. The word
‘keyboard’ is in quotes, because the K2500R is a rack mount and does not have a keyboard. However, it does
use MIDI and can be operated like a keyboard via MIDI commands. For a given motif, the keyboard was
laid out from D1 to E35, running through the bass notes in the lowest register, through the tenor, alto, and
finally soprano at the highest register. Due to memory constraints, it was not feasible to have one sample for
each note on the keyboard, and so interpolation was used. The Singing Tree keymaps use approximately one
sample for every +/- two halfsteps. Although interpolated samples are literally played back at the ‘wrong
speed’, the effect is not noticeable over two halfsteps. The last step was to apply reverberation and delay
to the vocal samples to ‘soften’ them. The samples were recorded in a dry environment, and the addition
of effects made the choir sound much more realistic. These effects were K2500R local effects. They did not

change the sample data, but rather were applied to the audio before the output from the K2500R [43].

2.4.3 A Short Digression into MIDI

Thus far, I have been using the term MIDI without introducing what the acronym means. MIDI stands for
Musical Instrument Device Interface, and it is a communications protocol used primarily in music and video
production to link computers, electronic musical instruments, video equipment, and controllers [44]. MIDI
allows the transfer of messages or commands from one device to another. More specifically, a device such
as a computer can be used as a master to drive several other slave devices which are linked via MIDI. MIDI
utilizes 16 independent channels, and messages can be sent along all 16 channels. One of the advantages of
MIDI is that it was designed for real-time performance and has very low latency [45]. MIDI can be used to

control most functions of a musical instrument including, but not limited to [44],
e Over 10 octaves of discrete pitch control
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e Velocity and pressure dynamics for each note

[ ]

Pitch bending

A group of 95 real-time controllers such as volume, modulation, and sustain
e Instrument and/or program selection

Sample data transfer

For each of the controllable parameters, a unique set of MIDI messages is defined. The message definitions
comprise the protocol which all MIDI instruments use when transmitting or receiving MIDI information.
Simply stated, the MIDI message is a stream of numbers which indicate which parameter is to be changed
and the value to which it is changed. For example, the MIDI message used to change an instrument is
a number (or set of numbers) referring to the location of the sound patch in the slave. The values for
parameters such as volume, on the other hand, typically run from 0-127 [44]. The Singing Tree’s music is
generated at the computer, and it is via MIDI that the computer ‘tells’ the K2500R what to play. This will

be discussed in more detail in Section 3.3.
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Chapter 3

Singing Tree Implementation:

Technical and Artistic Issues

3.1 Technical Decisions in an Artistic Context

This chapter will present the technology and artistry behind the Singing Tree. While these topics could
be discussed in separate chapters, I have decided to include them in the same chapter. In my opinion, the
Singing Tree project is an artistic project which is realized through the appropriate use of technology. While
the technology is what makes the Singing Tree function, it is the artistry which makes it interesting. After
all, it is the artistic content which makes the Singing Tree experience a success or a failure. Many of the
technical decisions, particularly the musical mappings, were intimately related to the artistic goals of the
project. As a result, the technology and artistry are presented together with their relationship clarified where

appropriate.

3.2 Voice Analysis

The voice analysis algorithms used in the Singing Tree measure pitch, noisiness (ambiguity), brightness,
energy, and vowel formant. These algorithms were written by Eric Metois, four of which were part of his
DSP toolkit used in several other projects and his Ph.D. thesis [30]. In this section, I will describe how these
algorithms work and the information they send to the Singing Tree. I will also discuss alternatives where

applicable.

3.2.1 Volume

The volume parameter used in the Singing Tree is the energy of the signal on a logarithmic scale [30].

This is not to say that loudness, as perceived by humans, matches this algorithmic estimate. While an
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engineer’s measuring devices are sensitive to energy in a direct manner, the ear and the microphone are
not [42]. This is the fundamental difference between the ‘energy’ of a sound, a physical parameter, and its
‘loudness’, a perceptual parameter. Ears and microphones operate by detecting differences in air pressure.
The fluctuations in air pressure above and below standard atmospheric pressure, at a rate which is within a
certain range of frequencies, lead to an audible sound. The human auditory system is extremely sensitive,
able to detect sounds corresponding to pressure changes as low as 3.53 billionths standard atmospheric
pressure, and as high as 1 million times that amount (threshold of pain) [42]. However, this enormous
variation in air pressure does not correspond to a variation in loudness of 1 million times. Thus, loudness is
considered a logarithmic function of signal amplitude. Using a dB scale, one can write the volume (energy)
of a signal relative to a standard, such as 1 mV in the dBmV scale, or 1 mW in the dBm(W) scale. Of course,
loudness is frequency dependent, while signal amplitude is not. The perceived loudness of a signal is highest
around 3000 Hz, and approaches indiscernible at 30 Hz and 20000 Hz [42]. In addition, although loudness is
logarithmic in nature, it is not strictly a logarithmic function. Thus, loudness is more typically measured in
units called sones which are defined as follows: A person with healthy hearing sits in an anechoic chamber
facing a distant loudspeaker, and she will hear a sound whose loudness is 1 sone when a source having a
frequency of 1000 Hz produces a sound pressure level of 40 dB at her ear. A rule of thumb is that a 10 dB
increase in sound pressure level corresponds to a doubling of the loudness in sones. However, it should be
noted that, especially in musical examples, loudness is typically additive while decibels are not. In other
words, a sound source of 2 sones played simultaneously with another of 3 sones will be perceived as a single
sound source of 5 sones. Figure 3-1 shows a loudness diagram measured in sones over the audible frequency

range.

3.2.2 Pitch Estimation

Pitch estimation appears to be a rather simple task on the surface, but there are many subtleties that need
to be kept in mind. While there are many successfully implemented pitch estimation algorithms, none work
without making certain assumptions about the sound being analyzed. Indeed, the notion of ‘pitch’ is rather
ill-defined. In the context of algorithmic estimation, finding the ‘pitch’ typically refers to estimating a sounds
fundamental frequency or period. However, humans can identify pitch in sounds which have a slightly varying
period, or even in ones which lack a fundamental frequency [30]. The human ear and nervous system can
make pitch estimations from complex sounds by finding patterns, seeking subsets of ‘almost harmonically
related’ components, and making ‘best estimates’ [42]. In fact, it has been shown that the manner in which
the brain operates on sensory data is oftentimes analogous to a ‘maximum likelihood estimation’ [47]. Some

examples of the ear’s extraordinary ability to perceive pitch are noted below [42].

e Tuning Fork and Glockenspiel Bar: Striking either the tuning fork or the glockenspiel softly will excite
a single sinusoidal oscillation. However, striking either with a hard hammer will excite two or more

characteristic frequencies. There is no particular harmonic relationship between the characteristic

32



SPL 100 ¢B

$

(SONES}
$

¢

2048

LOUDMESS
g
-r

N
(]

1000
FREQUENCY (Hz)

Figure 3-1: Perceived Loudness of Single-Component Sounds as a Function of Frequency

frequencies; they are far apart, and the human ear perceives two or more sounds with different pitches.

o Plucked or Struck Musical Strings: Plucking or striking a musical string provides a large number of
partials arranged in a nearly exact integer relationship, approximately matching the exact harmonic
prototype. Due to slight departures from the integer relationship, a mathematical calculation would
lead to a repetition frequency of 2-3 Hz. However, the human auditory system identifies the frequency
which most closely aligns with the harmonics as the fundamental frequency, and that is interpreted as

the pitch of the sound.

e Clock Chimes: There are several quasi-harmonic patterns in this complex sound. People hear the
pitch of the sound depending on which harmonic pattern they can derive. Once a person attaches a
particular pattern to the sound, changes in the relative amplitudes of the harmonic components do
not change the perceived pitch. In other words, even though the harmonics on which the pattern is

established are changing, the auditory system maintains its original pattern interpretation and pitch.

e Church Bells: Experiments with church bells confirm that humans do not discriminate harmonic
structure by the relative amplitudes of the components, but, rather, by the frequencies present and

the harmonic patterns they form.
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e Suppressed Harmonic Components: Experiments [42] in which all but two or three harmonic compo-
nents were suppressed reveal that humans can perceive sound as an anticipated or implied pattern
projected onto the harmonic components. An analogous situation occurs with the human visual sys-
tem. A pattern can be reconstructed from an incomplete picture such that a person can visualize the

entire pattern.

In addition, humans have an amazing ability to extract patterns from extremely noisy sensory input. One
of the first signs of hearing loss is the loss of ability to differentiate the voice of an acquaintance from a large
crowd of people (i.e., the loss of ability to extract the desired pattern from the noisy input).

With these complexities in the human auditory system, one might assume that our ability to estimate
pitch is indeed faster than that of a computer. However, this is not necessarily true [30]. Both humans
and computers must analyze at least a full period of ‘clean’ sound (i.e., sound without distortion from the
attack) in order to detect the fundamental frequency. In this, there is ambiguity in pitch estimation. Both
humans and computers will make estimates of the pitch through the attack and during the first period,
with each successive guess, ideally, becoming more reliable. Thus, ambiguity in pitch becomes a parameter
or characteristic of the pitch estimation process. It is in this ambiguity parameter that a human auditory
system is superior to a computer. Humans possess the ability to incorporate new information over time into
the estimation process, knowing what to accumulate and what to throw away, whereas the computer may
not be able to do the same in real-time [30].

The pitch estimation algorithm used assumes a monophonic signal, such as a human voice. It follows
from this assumption that the signal has a periodicity corresponding to the fundamental frequency or pitch.
The algorithm, as derived below, is from [30] with minor additions for clarity, and the technique upon which
it is based, cross-correlation, is commonly used for pitch estimation. The advantage to the form used in [30]
is that it leads naturally to a definition for the ambiguity parameter.

Starting with a signal s(¢) that is assumed to be periodic, or more precisely, quasi-periodic, it follows that
s(t) = as(t + T') where T is the quasi-period of the signal and the scalar a accounts for inevitable amplitude
changes. Considering a window of d samples of s(t) taken with a sampling period, 7, one can define the
vector, v(t) = [s(t),s(t + 7), ..., s(t + (d — 1)7)]T. Two such windows, v(¢) and v(¢ + T"), are separated in
time by T".

Using a Bayesian approach detailed in Appendix B, the best estimate for the quasi-period is the 7" which

maximizes the expression

v(it)Tv(t+T')

AT = I T~ T T 3.1)

which is a ‘normalized’ cross correlation between v(t) and v(t + T'). This is what one expects intuitively.
v(t) can be thought of as a fixed window and v(t +T") as a sliding window with the cross correlation of the

two windows a maximum at 7Y = T'. Of course, the use of a sliding window in a computer algorithm implies
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a discrete time implementation, which can be written

v[n]Tv[n + k]

M E = ST T v+ AT

(3.2)

This equation can be recast in a more compact notation by defining u = v[n = 0] = [s[0], s[1], ..., s[d — 1]]7
to be the fixed window (the first sample in the fixed window is arbitrarily assigned to n = 0) and v[k] =
v[n + k]|n=0 = [s[k], s[k + 1], ..., s[k + d — 1]]T to be the sliding window. Equation (3.2) becomes

uTv(k]

M= T

(3.3)

and the best estimate for the pitch given this discrete cross-correlation is To = No7, where 7 is the sampling
period and k = Ng is the smallest integer which maximizes equation (3.3).

It is not necessary to compute this function for every k. It is sufficient to align the fixed window u with a
local maximum of s(t) and then choose several candidates from the sliding windows v[k1], v[k3], ...ete., which
are aligned with local maxima within an amplitude range, é, of the maximum associated with u. This works
very well and provides a relatively small set of candidates. The process for resolving local maxima is greatly
aided if the signal, s(t), is first low-pass filtered to reduce high-frequency anomalies [30].

As stated above, Ty is the closest estimate to the actual period, T, as calculated using the discrete
cross-correlation. In audio applications, Tg is typically not a sufficient estimate, because the error is too
large. Consider a pitch of frequency, f. It is known that the octave in an equally tempered tuning system
is divided into twelve semitones (also known as half-steps) which are logarithmically spaced by the factor
275 [42]. This implies that two frequencies, f and f;, which are separated by a semitone are related by the

expression,

-

fi=21f (3.4)

Where it is assumed that f; > f. Defining Af = fi — f and using equation (3.4) gives the expression,

% = 2% — 1 = 0.05946 (3.5)

Since Ty = Nor is the closest estimate to T', it is known that |T'— Ty| < 7. The error in the frequency

domain is given by [30],

IT-Ty| Af 1
= = < == — < — 3.6
f % To = Nort f - Ny ( )




This implies that for Ny < 20 the error in frequency will approach that of a semitone! For reference, a
semitone is 100 cents (abbreviated by ‘ct’), and humans can detect differences in pitch on the order of 10-20
ct. The integer estimate Ny will have to be further resolved by finding a Gy such that Ny + (o lies between
the k = Ny and k = Ny + 1 samples and better approximates the actual period. In other words, the goal is to
interpolate between the window vectors at v[No] and v[Ng+1] to find an interpolated vector, vinterp(No, Bo),

such that

uTVinterp(NO ) ,80)

’\maa: = /\(NO;/B) |ﬁ=ﬁo= ” - ll “ VinteTP(No’ﬂo) “

, Beo,1]. 3.7)

Interpolating to find a ( which maximizes equation (3.7) will lead to a best interpolated estimate for
the period, Tinterp. It was found that linear interpolation was not only a sufficient method, but also a
computationally inexpensive one, because it requires no further iteration on A(Ng, ). Considering a plane,
II, spanned by the vectors, vi = v[Ng] and vg = v[Ng + 1], the best least-squares estimate for Gy will

correspond to the projection, p, of u onto IT [30],[48]. In other words,

P || Vinterp(No, Bo), where  Vinterp(No, Bo) (1 = Bo)v[No] + (Bo)v[No + 1] (3-8)

= (1= PBo)vi+ (Bo)va

If one writes p = p1Vv1 + paVa, then it follows from equation (3.8) that p; and p, are simply proportional to

(1 — Bo) and By through the same proportionality constant. Thus, one can write

P1 _ P2 R 4
(1-50) ~ Bo = A= pL+p2 (39

The vector, p, is the least squares solution to Ap = u, where the column space of A spans the plane II.

(I
P= Prl2 (ATA) 'ATu, where A= | v; wy (3.10)
p2 | |

This result for p yields a solution for §y via equation (3.9) [30], [48],

_ (viw) |l vi [I* = (vivi)(viu)
(Wl ve [ =(viv2) ]+ (V)] vz 12 =(v]'v2) ]

Bo

(3.11)

With £ in terms of known parameters, the best estimate for the actual period, T, is written
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T= Tintcrp = (NO + ﬂO)T- (312)

The above method works assuming that Ny is the integer part (floor) of the discrete period. If it is not, then
B ¢ [0, 1] and the window must be shifted accordingly such that Nj is the integer part (floor) of the discrete
period. Specifically, for By < 0, consider a new plane spanned by the vectors v; and vs shifted down by
one sample (i.e., vi = v[Ng — 1] and v = v[Ny] ) and project u onto this new plane to solve for a new fo.

Jonversely, for By > 1, consider a new plane spanned by the vectors v; and v, shifted up by one sample
(i-e., vi = v[Ng + 1] and vy = v[Ny + 2] ) and re-project u onto this new plane to solve for a new g5. If
there is still no By € [0, 1] then, depending on the real-time constraints, this shifting should be continued, or

a fresh segment of signal should be analyzed [30],[50].

3.2.3 Noisiness

The pitch estimation technique used for the Singing Tree is an interesting implementation, because it natu-
rally leads to a definition of pitch ambiguity and noisiness. It is this point primarily which makes the above
technique preferable to alternative solutions, such as the chirp-z transform or the cepstrum which will also
give high frequency resolution. The ambiguity in pitch arises in both humans and computers because of the
real-time nature of pitch estimation and the inharmonic attack transients associated with most sounds.

It is shown in [30] that this ambiguity in pitch is directly related to the signal to noise ratio (SNR) and the
maximization of the cross-correlation used in the pitch estimation implementation. Specifically, considering
again a fixed window of the signal u, a sliding window of the signal v, the amplitude scaling factor a(t), and

introducing additive noise e(¢), one can write

u = a(t)v(t) + e(t). (3.13)

The additive noise, e(t), is the error between the windows u and v(t) at time ¢, and it will decrease as t — T,
the period of the signal [30]. Defining the signal to noise ratio,
lull® _ [l [ |?

Te® T ~ Tu—a@v® P~ TulP 2e@@™~@)+ @O v [P 319

SNR(t) =

one can maximize the signal to noise ratio with respect to a(t) (i.e., minimize the denominator) as demon-

strated in equation (B.2) with the results repeated here.

uTv(t)

_9 uv(t)
v 11?

saq ) (e I —20@O"v@) +a* @) 1w ) =0 = a(t) =

(3.15)

Substituting this relation for a(t) into equation (3.14) yields,
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which demonstrates the relationship between between maximization of the SNR and maximization of the
normalized cross-correlation. The maximization of the normalized cross-correlation will estimate the period
of the incoming signal, and the SNR will also be maximized at this value. In that sense, the evolution of
the SNR acts as a reliability measurement. However, the relationship is more intrinsic. The SNR is also
a measurement of timbre, in the sense that sounds with an identical pitch but different timbre will have
different values of SNR. For example, a lower SNR may imply additive noise in the pitched sound while
a higher SNR may correspond to more pure sound. Furthermore, consider an ideal noiseless channel from
the sound source to the computer. The implied additive noise from a low SNR measurement is strictly an
implication. The actual origin of the differences in SNR values in this ideal case are characteristics of the
various sounds. These characteristics are what make sounds different, and are therefore a measurement of
timbre. In fact, timbre is defined as the characteristics of a sound which allow humans to differentiate sounds
of identical pitch. It is thought that Metois is the first to use this notion of pitch noisiness or ambiguity as

a basic measurement for musical characterization [30].

3.2.4 Brightness

The concept of brightness as used in the Singing Tree is an algorithm based on the works of David Wessel
[30]. Simply stated, Wessel defines a sound’s brightness in terms of the energy distribution of the signal’s
harmonics. In other words, given that the fundamental frequency of the incoming monophonic signal has
been determined, the brightness can be parameterized in terms of the size of the frequency gap from the
signal’s fundamental frequency to its center frequency. In this case, the signal’s center frequency is the
weighted average of the frequencies present in the signal. In general, signals with a larger frequency gap will
sound ‘brighter’ than those with a smaller frequency gap.

A first approach might be to determine the DFT (discrete Fourier transform) and derive the center
frequency. After all, a standard method for determining a sampled signal’s frequency representation is to
take the DFT via the FFT (fast Fourier transform) algorithm. However, as explained through example in
[30] and mathematically in [49], one can easily misinterpret the results of a DFT. Having misinterpreted a
DFT once or twice before, this is a subject to which the author has given much thought. The main source
of error is in assuming that the frequency response one calculates and a simple ‘connect-the-dots’ version
represent the same signal; they do not. The issue is frequency representation versus frequency estimation. To
give a more relevant example, if one is trying to find the period of a signal by peak-picking the fundamental
frequency from the DFT, one needs to remember that the DFT is merely a sampled version of the DTFT
(discrete time Fourier transform). This implies that an estimate based on the peak frequency point of the

DFT, fyeak, has a tolerance, Af, attached to it (as do all frequency points in the DFT) of
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Af = FS/NFFT) == factual = fpeak + Af (317)

where F; is the sampling frequency and Nppr is the number of points in the DFT. Note that the number
of points in the DFT is written Npp7 in anticipation of calculating the DFT using the FFT algorithm.

As an example, consider the following scenario. A frequency analysis of the singing voice is to be done in
real-time using the FFT algorithm. In this case, assume that real-time implies a At window size of 15 ms.
In other words, a 15 ms chuck of signal is sampled, and while it is being analyzed, the next 15 ms chunk
of signal is being sampled to the buffer. This in turn constrains the computation time of the analysis to
15 ms. This constraint is chosen because the human ear also works in real-time on a time scale of ~ 15
ms [30],[42],[50]. The next constraint is the tolerance of error that is aurally allowed. In equation (3.5), a
semitone was shown to give a Af/f of 0.05946, and humans can distinguish changes in frequency on the
order of 0.1 ~ 0.2 semitones (10 ~ 20 ct). In addition, it is known that, in general, the range in pitch
frequency of human singers is approximately 60 ~ 1600 Hz [42]. Assuming the lowest possible pitch is 100
Hz, the highest possible pitch is 1500 Hz, and a ‘loose’ tolerance of 0.2 semitones, Af becomes,

. Afls=100m: = (100)(0.01162) =~ 1.2H
Af 9% _1ogottee — O l=ier (100)( : ¢ (3.18)
f Af |j=1500H2 (1500)(0.01162) ~ 17.4Hz

For each case, any error in frequency larger than Af is unacceptable. It is also known that the upper bound
on the frequency of the first three vowel formants is less than 5000 Hz [42]. Since one anticipates attempting
some sort of algorithm to determine vowel structure, the lower bound on the sampling frequency is about
10000 Hz. Considering this lower bound of F; = 10000H z and the conventional ‘upper bound’ for audio, F,
= 44100 Hz (CD quality), one can demonstrate the need for caution in the direct application of a DFT. For

each of the four cases, the DFT lengths, Nppr, required to meet the established tolerances are,

= 18%0 ~ 8300 points

Nrrr |F,=10000H2,7=100H~

0 ~ 2600 points

£
Ay 1.
_ F o 10000 -

NFFT |F,=10000H2,f=15000: = 3% e ~ 575 points (3.19)

F, ) ~
NFFT |F.=44100Hz2,§=100H: AF #10 36750 points

Fo _ 4410

af :

NFFT |F,=44100H2,5=1500H2

Since this is a worst case analysis, the larger windows must be used at each sampling frequency.

. worst case @ F, = 10000H2: Nppr |F,=10000H2,f=100H: =~ 8300 points (3.20)
t.e. 3.2
worst case @ F, = 44100H2: Nppr |F,=44100Hz,f=1000: ~ 36750 points

Thus, depending on the sampling frequency one chooses to use, the DFT-size required to meet the established

tolerance would need to be in the range from 8300 points to 36750 points. In the first case, F, = 10000 Hz
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implies a sampling period T; = 0.1 ms, and the number of samples in the At window is only N = 15/0.1 = 150.
In the second case, F;, = 44100 Hz implies a sampling period, T, = 0.023 ms, énd the number of samples
in the At window is N = 15/0.023 = 650. Thus, in both cases, the real-time condition will only give
approximately 1/50 the required number of points. Zero padding the signal and then determining the DFT

is a first step, but one must keep in mind the following:

o There is really only one type of transform that one is concerned with in real-time applications, the
FEFT (fast enough Fourier transform). Longer windows imply a need for faster hardware as one

approaches the established latency limit for real-time operation.

o The inherent trade-off is window size vs. upper frequency limit. A sampling frequency of 10000 Hz
yields not only the minimum window size, but also the minimum Nyquist frequency. While adequate
for the first three vowel formants, information on fricatives or other high frequency information is lost.
The more important the high frequency components of the signal become, the longer the DFT window

required.

o Luckily, the definition of ‘real time’ in this case is 15 ms; it takes a full 10 ms simply to get one period
of the 100 Hz signal. As one decreases the lower bound on frequency, one must be careful not to cut
off the signal before one period has arrived. Note that 60 Hz has a period of 16.6 ms, larger than the

established real-time constraint.

The situation is not hopeless, however, because the analysis was worst case. There are many options to
improve results from the choice of windowing function to a periodogram or chirp-Z transform method.
Nonetheless, in considering improvements, one must also consider the real-time nature of the problem and
make trade-offs accordingly. Alternatively, one can try to reduce the restrictions of the constraints, and
of all the constraints, the one that can be dramatically improved is Af. The largest values of Af occur
when the number of periods represented in the windowed signal on which the DFT is applied happens to
be non-integer. In other words, one can make the DFT samples fall on the fundamental frequency and its
integer ratios if one windows the signal such that an integer number of periods falls within the window.
Furthermore, doing so eliminates the need for a special (i.e., non-rectangular) windowing function. However,
it is a catch-22. One needs to know the pitch to apply the correct length window, but this algorithm is used
to determine several metrics, including pitch. Nonetheless, if one has a priori knowledge of the pitch, one
can greatly reduce the window size. This method is known as pitch-synchronous frequency analysis, an idea
first used in analysis of music by Michael Portnoff in a phase vocoder [30], but can be traced back much
earlier in the analysis of voiced sounds [51].

In the Singing Tree, the time-domain, cross-correlation algorithm was used to determine the pitch, avoid-
ing many of the issues associated with a frequency-domain pitch estimation. Once the pitch was determined,
the signal window size could be adjusted such that an integer number of periods fit within it, and a pitch-

synchronous frequency analysis performed. The pitch-synchronous frequency analysis was used primarily
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to estimate the center frequency used in determining the brightness parameter. As described in [30] by
example, an ‘asynchronous’ estimate for the center frequency of an incoming signal can give widely varying
results, while a ‘synchronous’ estimate is far more accurate. The specific case considered was a signal with
pitch frequency f= 90 Hz, window size Nppr = 512, and sampling frequency F, = 44100 Hz. Note that
the window size does not represent an integer number of signal periods (an ‘asynchronous’ analysis). Several
DFT estimates of the center frequency were considered for several starting points of the window, each lagging
the previous by only 0.1 ms. The result was a range of center frequency estimates from 425 Hz to 640 Hz.
The actual center frequency, as determined by a long-term frequency analysis, was estimated to be 551 Hz.
As determined by a single, pitch-synchronous frequency analysis, the center frequency was estimated to be
542 Hz [30]. This simple example demonstrates the need for a long-term frequency analysis, or alternatively,

a pitch-synchronous short-term analysis to acquire accurate results.

3.2.5 Formant Estimation

Formant analysis can be traced back to the 1950’s, and there are numerous techniques available, some more
exotic than others [53], [42]. Most of the early work can be regarded as frequency domain techniques,
such as ‘peak-picking’ spectral peaks in the short-time amplitude spectrum, or ‘analysis by synthesis’ in
which one generates a best match to the incoming signal. Later, techniques were developed to ‘peak-pick’
a ceptrally-smoothed spectrum or a linear predictive coding (LPC) spectrum, or to find the roots of the
LPC polynomial. Other techniques that were reviewed included formant tracking using hidden Markov
models and vector quantization of LPC spectra, quasilinearization, Kalman filters, and energy separation
[54],[55],[56],[57],[58],[69]. In the end, we decided to use a formant estimation algorithm developed by Rabiner
and Schafer based on cepstrum analysis and the chirp-z transform [53]. This method was chosen primarily
for two reasons: First, it was feasible to implement in real-time given the other operations, particularly video,
that also had to occur within the latency window; second, the technique dealt with two topics, cepstrum
analysis and the chirp-z transform, in which the author was interested. To allow the algorithm to work

seamlessly with his DSP toolkit, Eric Metois coded the version used in the Singing Tree.

Modeling Human Speech

Speech production can be modeled as a lumped parameter, linear, quasi-time-invariant system. Given this
model, a speech waveform can be produced through an excitation of a series/parallel connection of resonators.
The complex natural frequencies of the resonators are assumed over short-time to be constant, but vary
slowly and continuously over long-time to approximate the time-varying eigenfrequencies of the vocal tract.
The excitation which drives the system can be random noise for unvoiced sounds, a quasi-periodic pulse
train for voiced sounds, or a combination of the two for voiced fricatives. In the Singing Tree, the analysis
assumes a quasi-periodic pulse train as the source of the excitation. The excited resonant frequencies are

the formant frequencies, and knowledge of their values can help one derive the formant structure of a signal
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Figure 3-2: Mechanical Model of Speech Production

and, subsequently, the vowel represented in the signal [42],[53].

A mechanical model of the pulse train source and resonant cavity is shown in Figure 3-2. In this model,
air from the lungs flows through a large diameter duct (the trachea), through a constriction (vocal cords),
and back into a larger resonant cavity (the vocal tract). The vocal cords can be further modeled as a mass
and spring system, in which the mass acts as a valve which constricts the size of the ducts and the spring
adjusts the position of the mass from outside the duct. As air passes by the vocal cords, two conflicting
forces are felt. The first is an inward force which tends to pull the mass into the duct, further constricting
the airflow. This is due to the increase in speed of the air and the subsequent drop in air pressure. As the
mass falls further into the duct, the speed of the air further increases, the air pressure further decreases,
and the mass is pulled further inward. Of course, this is a catastrophic situation, and the second force must
act to counter the first force. The second force results from the added frictional resistance produced in the
constricted opening. The frictional resistance tends to reduce the total volume of air which passes through
the constricted region, and thus, the flow-dependent pressure will not change in the manner described by
force one. This second force turns out to be oscillatory, and is called the oscillating Bernoulli Force. In this
simple model, changing the spring constant will change the frequency of oscillation. Analogously, changing
the supporting air pressure from the lungs, establishing an initial spacing of the vocal cords, and establishing
the tension of the vocal cords allows humans to produce sounds with differing pitch.

The vocal tract is a resonant cavity, and it extends from the larynx to the mouth and includes the nasal
cavity. Oscillations from the larynx excite vibrational modes in this cavity, transforming the simple airflow
spectrum which leaves the larynx into the acoustical patterns required for speech and music. Changes in the

position of the tongue, the mouth, and the throat can significantly change the vibrational modes and the
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Figure 3-3: Linear, Quasi-Time-Invariant System Model

resulting sound that leaves ones mouth.

There are two additional spectra which are not accounted for in the above model. The first is the glottal
source spectrum, which arises from the actual ‘shape’ of the air pulse which leaves the larynx. Above, this
air pulse was assumed to be sinusoidal, but it is actually more triangular, with a DC-offset (i.e., there is
always some air passing through the larynx). The second is the radiation load spectra, which occurs in the
coupling of the vocal tract to the outside world via the mouth and nostrils. Note that the above model
is limited to the physical source of the sound; it represents the physical characteristics of the sound which
enters the outside world, Modeling the sound as perceived by another who is in the room would require

additional spectral envelopes which model the human auditory system [42],[53],[55].

Linear, Quasi-Time-Invariant System Model

The model used in the Singing Tree for voiced waveforms includes the glottal source and radiational load
spectra as shown in Figure 3-3 and Figure 3-4. The impulse train has period, T, which is the pitch period
of the resulting signal. The impulse train is multiplied by a variable, A(¢), which is the time-dependent
gain control of the system, although it will be assumed that A(t) is quasi-time invariant. The glottal-source

spectrum is approximated by,

1— e—aT,

G(2) = I (3.21)

_ Z—le—aT,

where a is a constant which characterizes the speaker and T is the sampling period to be used. A typical
value for a is a = 4007 [53).
The vocal tract is modeled as a cascade of resonators, each with a resonant frequency, F;. The system

function due to the vocal tract can be written,
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Figure 3-4: Expanded View of the Vocal Tract Model

V(z) = [[ Hi(2) = ][ Hi(2) (3.22)
i=1 i=1

where H; is the system function for the ¢ —th resonator. In this work, only the first three formants, modeled
by three resonators, will be considered. The fourth resonator will account for high-frequency components
to ensure proper spectral balance. It should be noted that an additional pole and zero are required in the
system model to account for nasal consonants, but are ignored in this analysis [53]. Each individual resonator

can be approximated as,

1 —2e~*Tcos(w;T) 4 e~ 2T
1 — (2e=*Tcos(w;T)) 2~ 1 + (e~2xT) z=2’

H,(z) = o; € [0, 00) (3.23)

where w; = 27F; is the resonant frequency of the i — th resonator, and «; is the neper frequency. Note that
DC excitations will yield a gain of one, as one would expect physically. The poles associated with the i — th

formant frequency are located at,

z = (e~ *T)etiwiT (3.24)

in the z-plane . Thus, one can approximate the bandwidth of the i — th formant frequency estimate on the
unit circle by 2«¢;. In addition, the peaks in the spectrum along the unit circle correspond very closely to
the formant frequencies. Although F; and «; are time varying, they do so on a time scale which justifies the
quasi-time-invariant assumption of the system. Thus, for short-time analyses, the F; are constant and will
give the correct formant frequencies of the signal.

The radiation load can be modeled by,

R(z) = ——— (3.25)



where b is a constant which characterizes the radiation load for a particular speaker, and T, is the sampling
period to be used. A typical value for b is b = 50007 [53].

The entire system can thus be written as,
4
Hyysiem(2) = G(2)V(2)R(2) = (G(2)R(2)) [ ] Hi(2) (3-26)
i=1

where G(2) and R(z) are grouped together because they are speaker dependent, and thus can be approxi-
mated as constant for a particular user. Furthermore, it is assumed that they can be well approximated for

all users with the typical values of @ and b. In other words, it is assumed that,

a = 4007
1 — ¢~aTs —bT, b 50007
G)R(z)= ——& —__1te (3.27)
1—2z-1e=aTs 1 4 =1 bTs T, = sampling period
f < 5000H =

Thus, G(2)R(z) acts as an envelope which scales V as a function of z. The poles corresponding to the
formant frequencies are located inside the unit circle, and their associated frequencies are approximated by
the peaks in the spectral envelope, |H ,ystem(ej “}|. The approximation holds if the poles are relatively spread
in frequency and relatively close to the unit circle.

The system for determining the first three formants as described in [53] is asynchronous, and a priori
knowledge of the exact period is not required. In addition to the first three formants, the system also allows
a method for calculating the pitch period and the gain of the signal. As applied in the Singing Tree, the pitch
period was already determined through the normalized cross-correlation method described previously, and
thus a synchronous analysis was feasible and pitch detection was unnecessary. Nonetheless, both formant
and period estimation will be introduced, and the trade-offs between the two methods of pitch estimation

will be discussed.

Formant Estimation

A block diagram for the entire estimation algorithm is given in Figure 3-5. A segment of signal, s[n], is
first windowed using a Hanning window, w[n], yielding the signal z[n]. The DFT of z[n] is evaluated using
the FFT algorithm and yields X[k]. Next, the log of the magnitude of the samples in X[k] is calculated to
give, X[k], and then the IDFT is found using the FFT algorithm to finally give the real cepstrum &[k]. The
terminology, real cepstrum, simply refers to the fact that X[k] is a real sequence (i.e., magnitude of X[k] is
real, so use the real logarithm); it does NOT imply that the real cepstrum &[n] is a real sequence. However,

due to the DFT symmetry properties, it does imply that the real cepstrum #[n] is an even function. In
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Figure 3-5: Block Diagram of the Formant Estimation Algorithm

addition, since z[n] is a real sequence (i.e., the samples of a singer’s voice), it is known that X[k] is an even
function, which in turn does imply that #[n] is a real sequence via the symmetry properties. The point,
nonetheless, is that the term real cepstrum does not imply a real-valued cepstrum. It is simply the subset of
cases for which the input signal is real that the cepstrum is real. For comparison, a complez cepstrum j[k]
refers to the sequence defined as the IDFT of the log of a complex sequence, Y[k] (i.e., one which uses the
complex logarithm).

Considering the model presented for speech production, and defining p[n] to be the impulse train which

drives h,ystem[n] (the inverse z-transform of H,ystem(2)), one can write an expression for z[n] as,

z[n] = s[n]w[n] = (p[n] * hsystem[n]) w(n]. (3.28)

It is assumed that the system is short-time time-invariant, which implies that for a suitably short windowing
function, hsystem(n] is time-invariant. Furthermore, w(n] varies on a much longer time scale than s[n] does.
Thus, the windowing function’s role is two-fold: first, it greatly improves the approximation that a segment of
speech is well modeled by a convolution of a periodic impulse train with a time-invariant (constant formant
frequencies) h,ystem[n], because it creates a signal segment on the time-invariant time scale; second, the
windowing function performs its traditional role of reducing the effects of a non-integer number of signal

periods in the signal segment [53]. Given these approximations, it is reasonable to write,

z[n] = (p[n]w(n]) * hsystem[n] = pwln] * hyystem[n], pw[n] = p[n]w[n]. (3.29)

Continuing with the block diagram, the following relations hold using equations (3.26) and (3.29). To

avoid ambiguous and occasionally incorrect notation, all transforms are written in terms of the z-transform
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rather than the DFT. The discrete forms for the equations are then obtained by sampling the z-transform

expressions at the points z = el ¥ where N is the number of points in the DFT.

X(z) = Pw(z)Hsystem(z) = Pw(z)(G(Z)R(Z))HHz(Z) (3.30)

i=1
1X(2)| = [Pu(2)] [Hsystem(2)] = |Pu(2)] [(G(2)R(2))] Hle‘(Z)l (3.31)
X(z) = log|X(2)| = log|Pw(z)|+log|(G(z)R(z))|+Zlog|Hi(z)| (3.32)

z[n] = IDFT{log|X(2)|} IDFT{log|Py(2)] + log|(G(2)R(2))| + E?:llog|Hi(z)|} (3.33)

puln] + grln] + Yoy hiln]

When considering the DFT rather than the z-transform, the usual care must be taken to ensure that the
input, z[n], is sufficiently zero-padded such that the logarithm of the spectrum is sufficiently sampled and,
thus, the cepstrum has no aliasing. In the final expression for the cepstrum, Z[n], the additive terms
Buw(n], gr[n], Yi_; hi[n] represent the cepstrum of each corresponding term (IDFT of the respective log-

magnitude spectra). Given this additive nature of the cepstrum, one can approximately separate &[n] into

. 4 3
+ F_ ]i TS <T
&[n] & grinl+ Lizy hiln] (3.34)
Pw[n] nTy >T

where T is the period of the signal. Assuming that the period of the signal is unknown (asynchronous
analysis), T in the above equation would have to be replaced with the lowest anticipated period, Tpnin.
However, in the case of the Singing Tree, the period was known a priori and the actual pitch, 7', minus a
small tolerance to account for error was used. Note that if the period of the signal was not already known,
it could be found from equation (3.34) by analyzing the cepstrum for nT; > T;,;,. This alternative method
for finding the period is discussed in more detail in Section 3.2.6.

The task at hand is to determine the formant frequencies. The cepstrum has separated into two com-
ponents, one containing information about the period of the signal, and one containing information about
the formant frequencies, the glottal pulse, and the radiation load. Since this segment is located at times,

nTy < T, low-time filtering (LTF) this segment from the cepstrum will retain only the formant, glottal,
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and radiational information, and also act to smooth X [£], the log magnitude of the DFT of the cepstrum.
The only problematic point left is the glottal pulse and radiation load. Assuming that these are both

approximated as per equation (3.27) evaluated at the unit circle, one can define
gArest[n] = IDFT{IOylG(Z)R(Z)Isampled unit cz’rcle}- (335)

Note that gr,,,[n] in equation (3.35) is an estimate for the glottal and radiational cepstrum, because the
form of equation (3.27) and its values of a and b were approximations. In contrast, gr[n] from equation
(3.34) is the cepstrum of the actual glottal and radiation information contained in the input signal. Defining
2rrr[n] as the filtered cepstrum and subtracting equation (3.35), one is approximately left with only the

formant cepstrum, f[n].

i=1

4 4
fInl = sLpr(n] — groa[n] = grin]+ Y hiln] - groulnl ~ Y hiln] (3.36)
k=1

Lastly, to find the formant spectrum, all that remains is to take the DFT of the formant cepstrum.

4
Flk]= DFT{f[n]} = _ Hi[k] (3.37)
k=1

Of course, greater computational efficiency can be achieved by subtracting off the glottal and radiational
spectra before the initial calculation of the cepstrum, or after one retakes the DFT of the filtered cepstrum.
Doing so eliminates the need to take the IDFT of log|G(z)R(2)|sampled unit circte. The derivation shown
above keeps the real glottal and radiation terms throughout simply for clarity of approach, but it is best to
remove them before initially calculating the cepstrum in equation (3.33).

At this point, the formant frequency information is contained in F [k], the cepstrally smoothed log spec-
trum (in the frequency domain). Assuming the poles corresponding to the formant frequencies are sufficiently
separated and near the unit circle, peaks will appear in the log spectrum corresponding to the formant fre-
quencies [53]. However, if the poles are located too close together, the peaks may smear together, making
it impossible to identify the individual formant frequencies from the unit circle. The solution is to leave the
unit circle by using the chirp-z transform. However, determining when to resort to the chirp-z transform is
what makes algorithmic peak-picking difficult. Assumptions regarding the frequency range of the formant
frequencies will help. As derived from [53], [64], and [42], it is assumed that the formant frequencies will fall
into the ranges shown in Table 3.1. In general, the formant frequencies for females and children are higher
than those of men. This is convenient, because women and children also tend to sing pitches with higher

frequency. Thus, a metric exists to approximate the frequency range based on the pitch of the signal. Given
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Table 3.1: Formant Frequency Range

(| Formant Frequency | Singer | Frequency Range (Hz), [Fmin - Fmax] ||
F1 men 200 - 900
women and children 300 - 1050
F2 men 550 - 2700
women and children 700 - 2900
F3 men 1100 - 3100
women and children 1400 - 3500

an assumed frequency range, the issue at hand is to develop a peak-picking algorithm which can account for

indistinguishable formant frequencies. Paraphrasing the algorithm described in [53],

1.

The first step is to find the maximum peak in the range 0 Hz - Flmax. Typically, this peak will
occur at the first formant frequency. However, occasionally the peak will occur at a frequency less
than Flmin, as a result of residual glottal pulse spectra. In this case, the first formant peak may
be indistinguishable from the glottal peak with no other peaks present in the first formant frequency
range, or another peak may be present, but it is unknown whether it corresponds to formant one
or formant two. If an additional peak occurs within the first formant frequency range, then it must
be less than 8 dB below the glottal peak to be considered the first formant. If not, it is the second
formant and the first formant is indistinguishable from the glottal peak. In the cases where there is an
indistinguishable peak or no peak is found, the chirp z-transform is used to expand and enhance the 0
Hz to Flmax region and the analysis is repeated. If still no peak can be determined, the first formant,
F1, is arbitrarily set to Flmin. (due to real-time constraints, repeated iteration is computationally too

expensive.)

. The second step is to search the second formant frequency range, provided F1 is less than F2min.

However, if F1 is determined to be larger than F2min, it could be that F2 has been mistaken for F1.
In this case, the search occurs over the range Flmin to F2max. After a second peak has been found, it
is compared with the value of F1, and, the lower of the two is assigned to F1 and the higher is assigned
to F2. The second formant should be 8.7 to 24.3 dB below the first formant frequency. If only one
peak exists over both the first and second frequency ranges, then the chirp z-transform is again used
to enhance and expand the region. Once F1 and F2 have been determined, the difference in the height
of their peaks is compared to a threshold value (which is itself a function of frequency) to assure the

choices are legitimate.

. Following a similar argument as for F2, the third formant frequency F3 is found.

. Given the three estimates (F1, F2, and F3), the calculation is repeated for new segments of signal.

The values of F1, F2, and F3 are stored as running averages of several lag values, which slightly delays
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convergence when a formant change occurs. However, this is necessary to ‘account for erroneous data.
Another non-linear smoothing method would be to assume that changes in formant frequency are less
than A, and estimates which fall further than A from the previous point will be reassigned based
on previous points. For a critical number of consecutive points further than A away, a new formant

frequency trace is established.

Having estimated the first three formant frequencies, the next task is to derive the vowel. It is shown
in [64] that vowels can typically be determined by the first two formants as shown in Figure 3-6. In this
graph, the first formant frequency is displayed along the x-axis, and the second formant frequency is along
the y-axis. This result can also be displayed as a ‘vowel triangle’ as shown in Figure 3-7 also from [64].
In this graph, the axes are opposite to those in Figure 3-6 such that the y-axis corresponds to the ‘up and
down’ movement of the vowels. That is, as the first formant frequency increases, the ‘position’ of the vowel
in the mouth goes from low to high. As the second formant frequency increases, the ‘position’ of the vowel

moves from the back of the mouth to the front.
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Figure 3-6: Vowel as a Function of F1 and F2
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Figure 3-7: The Vowel Triangle

Table 3.2: Average Formant Frequencies for Several Vowel Sounds

[ Formant Frequency | Singer | /i/ [ /I/ [ [e/ [ [/ [ /a/ [ /> 1 /U/ 1T W/ T/NT /S |

F1 men 270 | 390 | 530 | 660 | 730 | 570 | 440 | 300 | 640 [ 490
(Hz) women | 310 | 430 [ 610 | 860 | 850 [ 590 | 470 | 370 | 760 [ 500

F2 men | 2290 | 1990 | 1840 | 1720 | 1090 | 840 |} 1020 | 870 | 1190 | 1350
(Hz) women | 2790 | 2480 | 2330 | 2050 | 1220 | 920 | 1160 [ 950 | 1400 | 1640

F3 men | 3010 | 2550 | 2480 | 2410 | 2440 | 2410 | 2240 | 2240 | 2390 | 1690
(Hz) women | 3310 | 3070 | 2900 | 2850 | 2810 | 2710 | 2680 | 2670 | 2780 | 1960

If the vowel is still unresolved from the first two formants, a comparison of the average third formant
frequencies may help determine the vowel. Table 3.2 (after O’Shaughnessy [64]) gives the average formant

frequencies for spoken English vowels. The vowel frequencies of both male and female children most closely

resemble those of women.

Chirp z-Transform

Up to this point, the chirp z-transform has been mentioned several times without formal introduction [53].
The chirp z-transform algorithm is a means by which one can determine samples of the z-transform equally
spaced along a contour in the z — plane. Strictly speaking, the ‘chirp transform’ finds these samples along

the unit circle, while the ‘chirp z-transform’ algorithm refers to samples along a general contour (which, of
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course, may be the unit circle) [49]. The advantage of the chirp z-transform is that it enables one to calculate
the samples of the z-transform equally spaced over an arc or a spiral contour with an arbitrary starting point
and arbitrary frequency range. In other words, if the formant frequency of interest is in the range 200 Hz
to 900 Hz, then samples of the z-transform may be calculated specifically in this region. In contrast, the
frequency range of the DFT is strictly related to the sampling frequency. Furthermore, the chirp z-transform
allows one to calculate an arbitrary number of samples along this contour, which arbitrarily reduces the
error in frequency representation. As discussed previously for the DFT case, if one requires a frequency
representation of higher res