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Abstract
This thesis will discuss the technical and artistic design of the Singing Tree, a novel interactive musical
interface which responds to vocal input with real-time aural and visual feedback. A participant interacts
with the Singing Tree by singing into a microphone. The participant's voice is analyzed for several char-
acteristic parameters: pitch, noisiness, brightness, volume, and formant frequencies. These parameters are
then interpreted and control a music generation engine and a video stream in real-time. This aural and
visual feedback is used actively to lead the participant to an established goal, providing a reward-oriented
relationship between the sounds one makes and the generated music and video stream one experiences. The
Singing Tree is an interesting musical experience for both amateur and professional singers. It is also versitile,
working well as a stand-alone interface or as part of a larger interactive experience.
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Chapter 1

Introduction

1.1 Motivation

As the scientist is gregarious with her research, so is the composer with his music. Indeed, the objective

of sharing one's musical experience with others is the premise of performance. And, be it research results

or a musical experience, the benefits are certainly not limited to the creator; distribution and exposure are

beneficial to all. The belief that more people should have exposure to the experience of music is not new.

Pythagoras and Plato considered music an integral component of education. Mozart bucked tradition to

have his operas performed in a truly public forum. Nonetheless, until early this century, performing music in

one's home for one's family and friends was not only social pastime, it was a person's primary contact with

music [1]. With the technological advances of this century, namely the phonograph, radio, and television,

music has become essentially ubiquitous. Whereas 100 years ago, I might have sung the same twelve hymns

with my family every night, today I can turn on my radio and listen to any style of music I choose. In this,

the technology has done a wonderful job at introducing me and the general public to music from a variety of

genres. However, the technology has also shifted the reality of a musical experience from active participation

to passive listening [2]. Most people would agree that attending a concert is a superior musical experience to

listening to a recording, even if it is a digitally recorded and mastered CD played on the latest system with

the well-marketed 'l-bit D/A'. In addition, I believe that musicians and composers would add that creating

the music oneself can be an even more rewarding experience.

The Opera of the Future and the Physics and Media groups at the MIT Media Laboratory are concerned

with using technology to bring the active musical experience to a greater number of people. Novel imple-

mentations using computer music algorithms, computer human interfaces, and sensor technologies have led

to successful applications such as Vox-Cubed [3], the Hyperstring Trilogy [4], Joystick Music [5], Drum-Boy

[6], and the Sensor Chair [7]. Most recently, the Brain Opera was an attempt to collectively involve large

numbers of people in the active musical experience from composition to performance. The Singing Tree was

developed as one part of the The Brain Opera experience [9].



1.2 The Brain Opera

The Singing Tree is one of six novel interfaces used in the Mind Forest of the Brain Opera, an interactive

opera composed and developed by Tod Machover and the Brain Opera Team at the MIT Media Laboratory.

The Brain Opera, based in part on Marvin Minsky's book, Society of Mind [8], is divided into three parts

[9]:

The Mind Forest: an interactive space in which the audience explores and creates music related to the

Brain Opera via six novel interfaces.

Net Music: a virtual interactive space in which Internet participants explore and create music related to

the Brain Opera via Java applets.

The Performance: the Brain Opera performance in which three performers use novel interfaces to simul-

taneously play written music and introduce the audience and Internet contributions to the piece.

Late last century and early this century, psychologists and psychiatrists hypothesized that the human

conscious is somehow 'managed' by one (or a small number of) highly intelligent 'control center(s)'. The

worlds of 'human thought' and 'consciousness' are so unlike any other phenomena in nature, that many

believed the mind to be scientifically unexplainable. In Society of Mind [8], Marvin Minsky proposes the

theory that the human mind has no such 'control center', but, rather, that intelligent thought is actually

an assembly or 'Society' of individually mindless 'agents'. Minsky creates a metaphor between the human

brain and forests of these agents, and herein lies the concept of the Brain Opera's Mind Forest and its

interfaces: the Singing Tree, the Speaking Tree, the Rhythm Tree, Harmonic Driving, the Melody Easel,

and the Gesture Wall. The participants are the agents who interact with the Brain Opera through these six

interfaces. Pictures of these interfaces are presented in Appendix A.

The Brain Opera debuted last July at the 1996 Lincoln Center Festival in New York City, and has since

been performed at Linz, Austria; Copenhagen, Denmark; Tokyo, Japan; and West Palm Beach, Florida. It

is scheduled to continue touring through 1998, at which time it will likely find a permanent home as an

installation in an interactive music center or science museum.

1.3 The Singing Tree

A participant interacts with the Singing Tree by singing any pitch into the Singing Tree microphone, as

illustrated in Figure 1-1. While singing, the voice is analyzed for several characteristic parameters. These

parameters are then interpreted as control parameters and mapped to the input variables of a music gen-

eration algorithm called Sharle and a video stream. In effect, the participant's vocal parameters determine

the musical and visual feedback in real-time. The participant is surrounded in a musical and visual 'aura'

which is designed to work as reward-oriented feedback, leading the participant to an established goal. In the



Figure 1-1: The Singing Tree in Tokyo

Brain Opera, the goal was determined to be a pure and steadily sung pitch. The aural and visual feedback

is designed to reward participants who can maintain such a pitch within an established tolerance [10].

In a larger sense, the Singing Tree is an attempt to design an interface which responds in real-time

to information contained in the human voice using algorithms that are computationally inexpensive [10].

Furthermore, the Singing Tree contributes to the efforts of Tod Machover's group in the fields of interpretation

and musical mapping. It attempts to identify and interpret musically meaningful information in the singing

voice for use in creating a meaningful musical and visual experience. In addition to the Brain Opera context,

The Singing Tree is also an example of a human-computer interface which can seamlessly extract useful

information from the human voice. These types of human-computer interfaces will play an increasingly

important role in 'smart' applications.

1.4 Review of the Literature and Research Activities

The Singing Tree and the Brain Opera are innovations based the works of many in the admittedly broad

fields of voice analysis and synthesis, music analysis and synthesis, computer music, computer human inter-

faces, and control systems. In this section, particularly relevant works which established the precedent for

interactive music projects, including the Singing Tree and the Brain Opera, are presented. The purpose is

to provide an introduction to the foundation and context of this work. Readers who wish to further research

these areas are referred to the appropriate references.

u ls*aaa-~ c 8uU- ~ cc~~4~ ~ e'iiY~"~aw,44 C -I-M , IMI WW .40 -eJ I ar- · ·-~~a --- j-~"-"--- ;---·i-- --;-- -·I-i~a·-·9~-



1.4.1 Voice Analysis and Synthesis

The Singing Tree derives its statistics for music generation from characteristics in the human singing voice

such as pitch period, brightness, and vowel formants. Much of the work in this field started in the 1950's, with

significant advances in the 1960's and 1970's paralleling the advancements in the computational efficiency

of computers [53]. The 1980's and 1990's have seen applications of these advances in the fields of medical

diagnostics, speech recognition systems, and voice identification. In particular, the works of Johan Sundberg

[11], Kenneth Stevens [14], Gerald Bennett [65], Xavier Rodet[15], and David Wessels [25] are fundamental

to the techniques used in the Singing Tree voice analysis algorithms.

Formant Analysis of the Speaking and Singing Voice

Johan Sundberg's research in the 1960's and 1970's on the analysis of the human singing voice has introduced

the concepts of 'singing formant' and its important role in operatic singing [11], [12],[13]. In short, opera

singers can significantly shift their vowel formant structure to make their words more comprehendible, tune

their pitch to the orchestra accompaniment, and 'cut through' the orchestra's sound. In addition, Kenneth

Stevens' research in the fundamentals of speech and vowel formation also introduced similar concepts of

formant shifting and tuning in his analysis of the unusual chanting modes of Tibetan Lamas [14]. The

Singing Tree utilized formant frequencies as a control parameter for music generation.

Voice Synthesis Using Formant Frequencies

The works of Xavier Rodet, Gerald Bennett, and Johan Sundberg in the field of singing voice synthesis include

examples of using formant frequencies to re-create a singing voice. In particular, the CHANT project at

IRCAM in Paris, France introduced a synthesis-by-rule technique to create a human singing voice from the

first five formant frequencies. The project is important to the Singing Tree, because it specifically used the

vocal apparatus as the physical model for speech production in its analysis. Furthermore, it is an example

of using this model as a the basis for generating sound. In the case of CHANT, the sound it generated was

the voice it was intending to model, while in the Singing Tree, the sound generated was literally music. The

music generation algorithm of the Singing Tree was controlled by mapping specific characteristics of the voice

as derived from a vocal model, and it included the formant frequencies as stated previously. CHANT also

was an introduction to the concept of rule-based knowledge structures and schemes, in which one represents

a formalization of a decision, a gesture, or musical organization in terms of 'rules' [15], [65].

Speech and Voice Therapy and Training

Much of the research in speech modeling and voice analysis was directed toward diagnostic applications

and speech therapy. Speech-language pathologists, otolaryngologists, voice teachers, and singers often use

software which can identify the acoustic features of sustained or sung vowels for clinical assessment or vocal

training. These programs allow one to view a time-domain or frequency-domain representation of one's voice



to characterize one's hoarseness, harshness, breathiness, formant structure, glottal attack, and fundamental

frequency contour to name a few [16]. This area of research takes voice parameter information and displays it

on a screen so that the user can adjust his vocal input to match a desired pattern. This feedback mechanism

is analogous to the feedback model used in the Singing Tree.

1.4.2 Computer Music, Electronic Instruments, and Interactive Music

Interactive music is often, by nature of the implementation, a 'computer-based music', but that does not

necessarily imply that it is 'computer music' in the traditional sense of the term. While much of the research

in computer music has focussed on providing compositional tools for the composer, the work in interactive

music has focussed heavily on the user (i.e., the interactive 'instrumentalist'), the user interface, and control

issues [17], [10]. In addition, while interactive music systems often use an 'electronically-based interface'

which creates a musical experience, that certainly does not qualify them as electronic instruments. Nor does

it imply any notion of interactivity in the functionality of an electronic instrument. Nonetheless, the three

fields do overlap in an evolutionary sense, and the present research directions and implementations found in

the field of interactive music systems are strongly rooted in the works of electronic instrument and computer

music pioneers. There are many examples of precedent to the Brain Opera and its instruments, at least in

motivation and methodology. These include the works of Leon Theremin [7], John Cage [18], Paul Lansky

[19], Max Mathews [20], Karlheinz Stockhausen [21], [22], Morton Subotnick [23], Pierre Boulez [24], David

Rokeby [25], George Lewis [26], Richard Teitelbaum [25], Barry Vercoe [25], Tod Machover [25], and Robert

Rowe [25]. In addition, although his contribution is not specifically in the fields of computer or interactive

music, Heinrich Schenker's contribution to music analysis carries implications in these fields.

The Theremin

The theremin was invented by Leon Theremin in 1920, and is an early example of a truly electronic instrument

[7]. The idea behind the theremin is that the frequency of an oscillator can be adjusted by changing the

value of the capacitance in a tank circuit. The theremin allows the user to change the capacitance by

moving her hands closer to or further from an antenna. In application, there are two frequencies, of which

the user can adjust one. The frequency of the beating between the two signals determines the pitch one

hears. Another antenna is used to control volume. The result is an instrument which is played without ever

touching anything. The user moves her arms to create a pitch of a certain volume. The Brain Opera uses

a similar technology in the Sensor Chair and the Gesture Wall [7]. The difference is in the role of the user.

In the theremin, the user acts as a capacitive shunt by moving closer to or further from the antenna, while

in the Sensor Chair and the Gesture Wall, the user is the antenna. Both the Sensor Chair and the Gesture

Wall have four receivers mounted in front of the user in the configuration of a square (one receiver in each

corner of the square). The user stands (Gesture Wall) or sits (Sensor Chair) on a metal transmitter which

couples a low-frequency RF signal into the body. The user then moves her hand (now an antenna) around



in front of her body, and a computer determines the spatial position of her hand by the differential signal

strengths at the receivers. Considering positions over time, velocity and acceleration metrics can also be

extracted. These measurements are then interpreted and mapped to a sampler (or other sound source) to

create music. In addition to the Brain Opera, the Sensor Chair technology has been used in performances

by Penn and Teller, the magicians, and by the artist formerly known as Prince [7].

"Imaginary Landscape No. 4"

John Cage's piece, "Imaginary Landscape No. 4" (for 12 Radios), is an early example of a musical perfor-

mance which combines human and a non-traditional electronic 'instrument'. The piece was scored for 12

radios and 24 people. For each radio, one person would control the volume and another would control the

frequency. The result was a musical piece in which one, several, or all radios would be playing different

stations at different volumes simultaneously. The word 'instrument' is in quotes above, because, despite the

fact that both radios and instruments play music, the radio is not an instrument in its functional sense. The

difference is the level of control and the variety of music that can be produced. A radio has a very high

level of control, but a wide variability in musical sound; while one cannot dictate the characteristics of the

specific piece of music being broadcast on any particular channel, one can certainly change channels and

hear remarkably different styles of music. On the other hand, an instrument allows its user to control every

nuance of the sound it produces, but cannot fundamentally changes its sound. The Brain Opera and the

Singing Tree attempt to fall somewhere in between these two models, allowing some lower-level control and

some higher-level control [18].

"Groove"

Groove is an early example of interactive music designed by Max Mathews and F. Moore at ATT Bell

Laboratories in the late 1960's. Groove allows a user to control 14 'functions of time' simultaneously in real

time. These 'functions of time' are used to control various parameters of a song such as speed, volume, and

waveform. The music one hears is the sensory feedback which closes the loop and allows the user to make

further adjustments in real-time [27]. In this, GROOVE is conceptually a predecessor to the Singing Tree

and other instruments used in the Brain Opera.

1.4.3 Performance-Driven Interactive Instruments

George Lewis, Richard Teitelbaum, and Tod Machover are examples of musicians/composers who have

used interactive music as a performance tool. This is typically accomplished by analyzing a metric of the

instrument, such as pitch, and using the information to drive a music generation algorithm, sampler, or

sequencer which augments the instruments sound. George Lewis' approach is to augment the music in an

improvisatory manner. For example, he uses a pitch follower to convert a trombone's pitch to MIDI, which

in turn drives a software algorithm designed to improvise with the trombone. As Lewis is a jazz trombonist,



the improvisatory style is typically a jazz style. Lewis' music generation algorithms are probabilistic, and

driven entirely by the player (i.e., there are no sequences) [25]. Richard Teitelbaum is a pianist, who uses a

MIDI interface on an acoustic piano to send MIDI note information to a computer. The computer acts as

a complex musical 'transformer', able to add delay, transposition, repetitions, and even play other solenoid-

driven pianos. An interesting concept in Teitelbaum's approach, is that the pianist has full control of the

computers functions; there is no ambiguity. The user tells the computer through a switch (not the piano) that

he wants a particular transposition, and the computer responds by implementing that transposition [25]. Tod

Machover has also designed and composed several pieces for interactive instrument, or 'hyperinstrument',

including the opera, Valis for piano, mallet percussion, and computer; Towards the Center, a piece for flute,

clarinet, violin, violon-cello, keyboard, percussion, and computer; Bug-Mudra, for acoustic guitar, electric

guitar, dextrous hand master (a hyper-conducting-glove which measures the angle of three joints on each

finger), and computer; and the Hyperstring Trilogy for hyperviolin, hyperviola, and hypercello, which are

described in greater detail in Section 1.4.3 [25].

Schenker Analysis

The music analysis technique developed by Heinrich Schenker takes a complex piece of music (or tonal

event) and, in stages, reduces it to a more structurally fundamental representation of the basic musical

(tonal) progression [28]. In this, there is an attempt to separate the fundamental musical idea from the

embellishment and ornamentation. The lower-level details of the music are represented in a compact, higher-

level notation. Thus, there is in music theory an analogy to the representation attempted in many of the Brain

Opera's interactive instruments; the user controls the interactive instruments by manipulating a higher-level

form of the music. What is heard, however, is the music in its detailed, lower-level form. The success or

failure of the experience lies, in part, in the designer's ability to make a meaningful connection between the

higher-level representation of the music and its actual, lower-level form. One finds a similar situation in

mathematics and physics, in which one tries to find an 'ideal' representation for a matrix or wavefunction

by projecting onto an appropriate set of basis vectors or basis functions. A judicious choice will lead to

a remarkable simplification, allowing one to easily manipulate (exactly or approximately, as the case may

be) the more complex version of the matrix or wavefunction by operating on its simplified form. Literature

offers an analogy describing the difference between a 'judicious representation' and a poorly chosen one. The

vocabulary of a Hemingway novel may be at the same reading-level as a modern day, 7th grade English text

on Shakespeare. However, the former is considered artistically ingenious for its simplicity in representing

the complexities of the human condition, while the latter is merely a 'dumbed-down' version of an English

classic, with much of the original work's complexity and meaning lost in the 'translation'. While interactive

music systems often present hardware and software implementation challenges which seemingly become the

obstacles to success, one should not underestimate the God-like intervention that an ill choice of musical

representation (and all that accompanies it, including parameter interpretation and mapping) can have on



a project's mortality.

1.4.4 Previous Work from the Media Laboratory

There are several predecessors to the Brain Opera and the Singing Tree from the Media Laboratory. Most

notable are the Hyperinstruments, Joystick Music, and Drum Boy. The Hyperinstruments Project began in

1986 as an attempt to provide virtuosi with added degrees of expressivity in their instruments by augmenting

the instruments' sounds. Of the many Hyperinstrument Projects described in Section 1.4.2, the author had

the opportunity to work on the Hyperstrings Trilogy Performance at the Lincoln Center Festival in July, 1996.

The specific instruments were a hypercello, hyperviola, and hyperviolin. The augmentation was accomplished

through the addition of sensors to the instrument to gather information on the player's performance and

technique. For example, bow position and bow pressure were measured. This information was analyzed to

determine musical meaning, and then mapped to a sequencer or sampler to play back additional sounds along

with the instrumentalist in real time. The result was a 'new' instrument. The virtuosi knew how to play

this instrument in the traditional sense, but had to experiment with it to learn how it would behave in its

augmented condition. Virtuosi, including Yo-Yo Ma, Paul Silverthorn, Ani Kavafian, and Matt Haimovitz,

have used these hyperinstruments to play Tod Machover's Hyperstrings Trilogy: Begin Again Again for

hypercello, Song of Penance for hyperviola, and Forever and Ever for hyperviolin.

Drum Boy and Joystick Music, on the other hand, are examples of an attempt to give enhanced musical

expressivity to amateur musicians. In Drum Boy, a user was able to control complex drum patterns using

relatively simple, higher-level controls such as 'complex vs. simple', 'energetic vs. calm', and 'mechanical vs.

graceful'. The control mechanisms were literally 'adjectival transformation functions', which would change

the drum pattern in a manner which was appropriate for the particular adjective. An extension of the

Drum Boy research was Joystick Music. In Joystick Music, the user would control the rhythmic and melodic

evolution of a simple musical motif, or 'seed', via two joysticks. The joysticks had higher-level controls

associated with each direction, and, typically, one joystick was used to control the rhythm while the other

controlled the melody [5]. A further extension of Joystick Music was the music generation algorithm used

in the Singing Tree called Sharle [36].

1.4.5 The Trouble with Bessel Functions

This brief review of the literature closes with a quote from Paul Lansky. Lansky was asked what he thought

the most unhealthy aspects of computer music are. His answer makes a strong point about priorities in creat-

ing computer music, and can be extended to those who create interactive musical experiences or instruments

[19].

I have trouble with Bessel functions at this point. I'm very impressed with how far it (frequency

modulation) can be extended. But very simple frequency modulation wears me down. ... It is

the extent to which there is an obsession with the machine rather than with what it produces.



I have heard too many discussions among computer music people who were only concerned

with software and hardware without even considering what kinds of pieces they were producing.

... Good machines and better software certainly make life easier, but there is not a one-to-one

correlation between the quality of pieces and the tools used to make them. Often, systems which

are too easy to use encourage thoughtlessness. Paul Lansky

Bessel functions represent the spectral envelope in frequency modulation, which was a major development

in the field of computer music. Lansky's point, however, is well taken. Be it computer music or interactive

music, the technology should drive the artistry to new areas. It is certainly interesting and fruitful to develop

new technologies in their own right, but one should not lose sight of the artistry. If the artistic goals are

maintained in the face of technological innovation, interactive music systems will not be 'thoughtless', nor

will they seem 'simplistic'.

1.5 Fundamental Questions

The Singing Tree project introduced several fundamental issues, many of which remain largely unresolved.

This is not a failure of the research necessarily, but a result of the fundamental and philosophical nature of

the issues at hand. They are mentioned here, because they are issues which remain a catalyst for debate

among the author, his colleagues, and the critics of interactive musical projects.

Why are we building a Singing Tree, or a Brain Opera for that matter? Indeed, the motivation behind

the projects is to introduce more people to the 'musical experience', but who is to dictate what that is? In

fact, some might say these efforts are rather arrogant and condescending. Does this imply an attempt to

bring the musical experience to those who cannot otherwise experience it? Others might argue that attempts

to take an instrument's natural control space and transform it into something easier that anyone can master

is, in effect, a 'dumbing down' of the instrument's capabilities and the music it plays. While the previous is

a rather harsh interpretation of the goals of the group's research, they are valid questions which should be

reviewed. To the author, this work is merely an attempt to develop new and interesting musical experiences.

Anyone can enjoy playing a musical instrument or singing without being a virtuoso. Musical prodigy or

otherwise, people understand their own musical tastes, the music to which they enjoy listening, and, simply

stated, what sounds good to them. If a person can design a musical experience which simply sounds good

and is enjoyable to use, then it is the author's belief that the work is a success.

Analysis of the singing voice singing one note is a particularly rich and, yet, tractable proposition, because

it poses the analysis problem in differential or perturbative reference to one note. The Singing Tree project is

an attempt to analyze a complex system, the singing voice, and measure or derive a finite number of statistics.

These statistics are used to drive a music generation algorithm, and in that, there is an implication that these

statistics somehow contain the musical intention of the participant. That is a rather difficult implication to

accept. The musical 'gesture' that one person uses to represent a musical intention may be very different



from the musical 'gesture' that another uses for the same intention. Are there orthogonal bases that span

the instrument space? What are the bases of a human voice? a cello? the world? [29] How many do we need

to be assured of 'the right answer'? These questions, of course, cannot be answered explicitly. While one can

only conjecture through experience, imagination, and experimentation which measurements are significant,

and how many are sufficient, there is reason to believe that a judicious choice of statistics or bases can do a

pretty good job without worrying too much about the details [29], [30].

The Singing Tree project is a prime example of a system whose behavior is best specified using linguistic

variables. In other words, it is much easier to describe in words how the Singing Tree output should behave

as a function of its input than it is to describe quantitatively. In fact, many of the projects in Tod Machover's

group are of this type. The methodology used in creating the music generation algorithm, Sharle, and the

musical mappings of the Singing Tree, is in principle similar to that used in fuzzy control and the fuzzy

interpretation of a linguistic variable [31]. The Singing Tree does not intentionally use fuzzy set theory, but

the author believes the circumstantial similarities to be compelling and further consideration should be given

to this area [32]. More on this topic will follow in Section 4.3.

1.6 Organization of this Thesis

After a brief introductory statement in Chapter 1, the foundation of the thesis begins in Chapter 2 with

a discussion of the Singing Tree at the system level. The design criteria, design approach, equipment, and

vocal sample preparation are covered from a 'phenomenological' perspective. Chapter 3 develops the physical

models and mathematical approaches used in the voice analysis, interpretation, and mapping algorithms.

While there are many equations and graphs, the exposition reveals the technology's role as a tool by which

the artistic goals of the Singing Tree project were realized. Chapter 4 discusses the author's observations of

the Singing Tree in use, and it includes relevant comments from notable users. The chapter continues with

a look at the next steps one could take in both research and development for the Singing Tree and other

interactive experiences. Finally, Chapter 5 summarizes the work.

The thesis is a full discussion of the Singing Tree's development and operation. This does not imply that

the author built the Singing Tree by himself. To the contrary, the Singing Tree project was a culmination of

the works and efforts of many. Those who made the most significant contributions are mentioned with their

work, while others are mentioned in the acknowledgments. There are research projects which focus on one

particular question in great detail, and then there are projects, such as the Singing Tree, which investigate

and incorporate concepts spanning a wide spectrum of disciplines. To the credit of all who were involved in

this project, the Singing Tree project proved to be an excellent learning experience for the author because

of its breadth.



Chapter 2

The Singing Tree System

2.1 Design Criteria

The Singing Tree design criteria are summarized in the following [9], [33].

Each singing-forest station will be for one person only. Each person will be close miked and

wearing headphones; maximum sound isolation. Each station (ca. 5 in all) will concentrate on

a single pitch (either this pitch is invariant and "user" adjusts to it, or we ask the person to

sing their "favorite" note which assumedly would be one comfortable in their range, and adjust

the rest to that....we will decide this later). The person is told to sing that note as calmly,

simply, and "concentratedly" as possible, and that computer will "reward" this: i.e. the calmer

the singing (on that one note) the more "beautiful" the aura; the more "nervous" the singing

the more "agitated" the aura. ... The goal is not to make a "control" instrument so that the

"performer" can consciously vary the sonic result by, for instance, producing a specific consonant

(which would be hard). Rather, we are designing a very sensitive analysis engine that does a

very reasonable job of recognizing changes in these parameters as reliably as possible, and with

the fewest possible "glitches" /discontinuities. ... Once we have experimented with measuring

all of these things, and tuning the sensitivity of our algorithms, we will decide how to combine

the parameters into higher-level mappings. ... We are working to produce a kind of rolling

arpeggiation spreading out above and below the reference pitch, and capable of moving from

very calm and harmonious to quite agitated and inharmonic. Individual notes will be faded in

and out very gracefully, so the result will never sound like arpeggios with accented notes, but

rather like light patterns constantly changing on the surface of rippling water. .. . I want it to

sound like a choir of 127 angels singing at the same time, reacting to every perturbation in the

voice. ... Tod Machover



Additional design criteria were later included. The musical interaction experience must be accessible to both

amateur and professional singers. The Singing Tree must work as a stand-alone interactive interface and

as part of a larger interactive experience. There will be a unique video stream [34] for each of the trees,

and these videos will also represent the state of the participant's ability to meet the established goal. The

software and design should be flexible, allowing new goals, new music, and new video to be incorporated

easily. Due to funding restrictions, a total of three Singing Tree systems were produced (rather than the

originally planned 5 systems). As described in the remainder of the thesis, the resulting Singing Trees closely

matched these design criteria. Differences will be specifically noted.

2.2 Modular Design

The first issue in designing a system is to determine how to divide the project into sub-systems. This was

particularly relevant in the case of the Singing Tree, because it was to be both a stand-alone interactive

interface and a component of a larger interactive experience. In addition, the other interactive interfaces and

the protocol by which to coordinate them were also in development at the same time as the Singing Tree.

The Singing Tree Team saw modularity as the means to organize our own efforts, while also minimizing the

amount of work that would be required later when coordination protocol was firmly established.

The Singing Tree was modularized into three categories:

1. Vocal Parameter Analysis

2. Interpretation and Mapping

3. Music Generation and Video Display

This was the most practical categorization for several reasons. First, Eric Metois had already developed

a DSP toolkit [30] for most of the vocal analysis that needed to be used. Learning how the algorithms work,

adding additional algorithms where needed, and porting the code from UNIX to the Windows platform [35]

was far better than 're-inventing the wheel'. Second, John Yu was nearly finished with his music generation

engine called Sharle [36]. By utilizing work already accomplished, development time was greatly reduced,

and more importantly, the remaining tasks to be completed were clearly defined. To complete the project

and meet the Lincoln Center deadline, a formant analyzer would need to be added to the DSP toolkit,

interpretation and mapping algorithms would need to be developed, the specific equipment and wiring

diagram would need to be established, the video would need to be created, the musical response needed to

be determined, and the specific vocal samples to be used as the chorus would need to be recorded [37] and

prepared.

One can make the argument that choosing to use established work or clearly defining tasks too early in

a project can stifle creativity. While the author acknowledges this line of reasoning, he is more compelled

to believe that a project subjected to this philosophy for too long would suffer from a lack of direction.



Table 2.1: Singing Tree Equipment List

Company Model Number Equipment

IBM PC750 computer, 133 Mhz Pentium, 64 Mb RAM
Kurzweil K2500 rack mount sampler, 64 Mb RAM, Fujitsu hard drive
Mackie 1202 12 channel audio mixer
ART SC2 2 channel compressor/limiter/gate
ART Effects Network effects processor
ART Pro MPA microphone preamplifier

Samson Servo 150 studio amplifier, 75W stereo
Samsung LCD screen and driver

ETA PD8C power conditioner, EMI/RFI spike surge protection
KRK 100W speaker
Sure 58 microphone

Creativity is not destroyed by establishing one's design parameters, rather, the creative arena is simply

clarified. In the case of the Singing Tree, the interpretation and mapping algorithms allowed a wide range

of artistic creativity in the aural design of the experience [10].

2.3 Equipment

The equipment used to create the Singing Tree can be categorized into two groups: equipment required to

make the Singing Tree function, and equipment used to manufacture the physical station used in the Brain

Opera. Equipment in the former group represents the equipment necessary for the Singing Tree to operate

and is listed in Table 2.1. Equipment in the latter group includes anything used to create the aesthetic

experience in the Mind Forest Space.

2.3.1 Operational Equipment

As shown in Figure 2-1, a participant sings into the microphone, the signal first travels to the preamplifier,

then on to the compressor/limiter which prevents clipping (level overload), and finally to the mixer. From

the mixer, the voice is channeled through the main output to the computer, and also through an auxilliary

output to the effects processor which returns processed voice to the mixer. The computer samples and

analyzes the voice, determines the music and video to be output, sends MIDI commands to the Kurtzweil

sampler to play music, and displays the correct video bitmap on the LCD screen. The Kurzweil audio out

is split with part going to the amplifier and the external speaker, and the other part going to the mixer.

Finally, the processed voice and Kurzweil are mixed and channeled to the headphones. The result is that the

participant will hear both her own singing voice and the musical accompaniment, while the public will hear

only the generated music. This design decision was intended to help alleviate feelings of insecurity regarding

public singing.



Figure 2-1: Cable Schematic of the Singing Tree

2.3.2 Aesthetic Equipment

Many decisions made during the physical design of the Brain Opera were a collaboration of ideas between

the technologists and the visual artists [34], [38], [39]. The Singing Tree, as one sees it today in the Brain

Opera Mind Forest, has the microphone, LCD screen, and headphones mounted inside an organic-looking,

white hood. The hood resembles an ear, and the participant enters this 'ear' to sing into the microphone.

The hood's height is adjustable, and it provides an enclosed surrounding to reduce the participants' feelings

of self-consciousness about public singing. The Singing Tree as a unit has the appearance of a tree, large

and round at the top with a slender set of three supports comprising the 'tree trunk'. The hardware for

the Singing Tree is located on a platform far above the experience and out of sight of the participant. The

reader is referred to Figure A-3 for a picture of the Mind Forest which contains several Singing Tree hoods.

The original design for the Singing Tree hood called for the use of a swinging microphone arm which would

come to the participant's head when she entered the hood. Small personal speakers would be mounted inside

the hood and aimed at the approximate position of the participant's ears. Headphones were not included

in the original design, because it was thought that, with the number of people using the Singing Tree, the

headphones would get greasy and participants would avoid the experience. There were two problems with

this design. First, there were the inherent mechanical difficulties in implementing such a system. Second,

it was projected that the Mind Forest would be a very loud space, and the small speakers in the hood

would have to compete with the sound entering the hood from the Mind Forest. It was suggested that the

microphone be mounted, and that headphones be used rather than small speakers. The headphones would

also be mounted, so that the participant would literally enter the headphones when she entered the hood.

While this new design was an improvement, the hood's shape turned out to be such that the microphone was

30cm from the participant's head. As stated previously, the Singing Tree was located in a loud interactive

space, and it was extremely important to have the participant as close to the microphone as possible. The



design was changed again, and, in the final version, the microphone is positioned about 5 cm from the

participant's mouth.

Two other designs did not make it to the Lincoln Center debut. The first was an additional umbrella

shaped hood which came down over the 'ear' shaped hood and the participant once he was inside. This was

another attempt at privacy and sound isolation. The problem was that the two-hooded system was large

and mechanically difficult to operate. In addition, the umbrella shaped hood was cut such that it had an

opening precisely at the point where the external speaker was located. Instead of isolating the microphone

from external sound sources, the hood acted to channel the Singing Tree's generated music back into the

microphone, creating an unwanted feedback. The umbrella hood was removed. The other design that did

not make it as a Singing Tree accessory because it was unnecessary, but was utilized as a Speaking Tree

accessory, was the Sensor Mat. The Sensor Mat was a flat on/off switch connected to an output pin held at

+5V and an input pin on the computer's serial port (DB9). When a participant stepped on the switch, the

input pin went to +5V and the computer detected that a person was standing on the mat at the experience.

Originally designed to accommodate the swinging microphone arm, the floor mat was instead used at the

Talking Tree stations to initiate those experiences. [40]

2.4 Kurzweil K2500 Sampler/Synthesizer

The K2500 sampler/synthesizer plays an extremely important role in the Singing Tree operation. In fact,

the K2500 plays an important role in the entire Brain Opera, which utilizes a total of 17 units in the Mind

Forest and Performance. The K2500 stores the instrument sounds and the recorded vocal samples used to

play the music generated by the computer. The work involved in preparing the K2500 for its use in the

Singing Tree and the preparation of the samples is described in this section. In addition, a brief introduction

to the Musical Instrument Digital Interface (MIDI) protocol is given.

2.4.1 K2500: Overview and Modifications

The K2500R (rack mount) version is used for the Singing Tree. It is a sampler with a proprietary Variable

Architecture Synthesis Technology (VAST) which allows one to use samples and internally generated wave-

forms. It includes several DSP functions to modify the samples, and it has an on-board effects processor.

The K2500R is 48-note polyphonic, which is of particular interest to the Singing Tree application, because

it requires a sampler with the ability to play many different instruments simultaneously. It comes with 200

preset sound patches and 2 Mb of RAM. It has 8 audio outs, SCSI ports, and MIDI in/out/thru [41].

As shipped, the K2500R did not have sufficient RAM, nor an internal hard drive. Both would be needed

for the Singing Tree experience. The author installed 64 Mb RAM and a Fujitsu 540 Mb internal hard

drive in each of the three Singing Tree K2500R units. An interesting implementation in the Kurzweil design

is that the SCSI connector pins on the internal SCSI board are backwards with respect to conventional



designs. In other words, attaching the internal hard drive via a conventional SCSI cable (SCSI1 cable for

internal applications) did not work. The design was likely implemented to require users to buy a proprietary

Kurzweil SCSI1 cable. Our solution was to cut off the guide key from a conventional cable such that it could

be inserted backwards.

2.4.2 Vocal Samples: Recording and Editing

The vocal samples used for the Singing Tree were performed by the Boston Camerata, who specialize in the

singing styles of Renaissance and pre-Renaissance music. If one listens to interpretations of the works of

Leonin and Perotin (ca. 1 lth-12th century), the singing style is a very pure tone with no vibrato. This was

the 'ideal' style of voice for the Singing Tree.

The vocal samples were to represent a chorus in the final version of the Singing Tree, and so a soprano,

alto, tenor, and bass were sampled to cover the range of pitches a choir would cover. The specific motifs

they sang were composed by Tod Machover and divided into three categories:

1. Basic Motif: one pitch held for approximately two measures; singing style is pure

2. Intermediate Motif: one to several pitches sung for approximately two measures, singing style to vary

from pure to slightly agitated, consistent vowel and rhythmic structure.

3. Frenetic Motif: one to several pitches sung for approximately two measures, singing style is agitated,

vowel is frenetically changing, inconsistent rhythmic structure

Conceptually, the Basic Motif represents the singing style of the chorus when the participant sings purely;

the Intermediate Motif represents the singing style when the participant is singing consistently the same pitch,

but not in a completely pure manner; the Frenetic Motif represents the singing style of the chorus when the

participant is not singing according to the established goals of the Singing Tree.

The six Boston Camerata singers were recorded by professional sound engineers from Erato Disques in

Weston, Massachusetts. Each motif had several versions, and each version was recorded at minor-third

intervals throughout the range of each singer for the vowels [ah] as in 'father', [ee] as in 'feet', [oo] as in

'pool', and [oh] as in 'so'. [42] The problem with recording in this manner is that the singers' pitch is not

perfect, and relative pitch from sample to sample and person to person varied significantly. In addition,

sample attacks and volumes varied greatly. The result was a very large number of samples which had to be

screened and edited.

Sample editing is a time consuming process. Although the K2500R has on-board sample editing options,

the samples were all recorded to computer, and there are several excellent sample editing software packages

available. It made a great deal of sense to edit first and then port to the K2500R only the samples to

be used in the Singing Tree, rather than port all the raw data first and then edit. The process required

two programs: Sound Designer and Alchemy. Using Sound Designer, the samples were first normalized in

amplitude. The next step was to clean up the attacks of the samples. After cutting the empty padding at



the start of a particular sample, an amplitude envelope with a sharp rise was applied at the beginning of the

sample. This eliminated any initial pre-attack noise and clicking that might have resulted from cutting too

little or too much empty padding. The next problem was the variance in sample lengths. Since each sample

was recorded separately, tempo varied considerably from sample to sample. Because the samples were to be

played together, the sample lengths had to be normalized to a consistent value for each of the three motifs.

The amplitude envelope was held constant after the attack, and a decay with a relatively slow decay rate

was applied at the end of the sample. The placement of the decay determined the length of the sample, and

the same amplitude envelope was used for all samples of a particular motif. Alchemy was used to change

the pitches of the samples, and this gave a rough tuning. The fine-tuning was done by ear, similar to the

way a piano is fine-tuned. Chords of vocal samples were played along with chords of instruments of known

pitch, and fine adjustments were made to create the final tuning. With this finished, the best samples were

selected and ported to the K2500R via SCSI2. Our budget allowed only 64 Mb RAM, and this was fully

utilized. Unfortunately, many good samples could not be used.

The next step in preparing the samples was to create a keymap for each of the classes of motif and vowel.

A keymap is an assignment of samples in the K2500R's memory to the keys on a 'keyboard'. The word

'keyboard' is in quotes, because the K2500R is a rack mount and does not have a keyboard. However, it does

use MIDI and can be operated like a keyboard via MIDI commands. For a given motif, the keyboard was

laid out from D1 to E5, running through the bass notes in the lowest register, through the tenor, alto, and

finally soprano at the highest register. Due to memory constraints, it was not feasible to have one sample for

each note on the keyboard, and so interpolation was used. The Singing Tree keymaps use approximately one

sample for every +/- two halfsteps. Although interpolated samples are literally played back at the 'wrong

speed', the effect is not noticeable over two halfsteps. The last step was to apply reverberation and delay

to the vocal samples to 'soften' them. The samples were recorded in a dry environment, and the addition

of effects made the choir sound much more realistic. These effects were K2500R local effects. They did not

change the sample data, but rather were applied to the audio before the output from the K2500R [43].

2.4.3 A Short Digression into MIDI

Thus far, I have been using the term MIDI without introducing what the acronym means. MIDI stands for

Musical Instrument Device Interface, and it is a communications protocol used primarily in music and video

production to link computers, electronic musical instruments, video equipment, and controllers [44]. MIDI

allows the transfer of messages or commands from one device to another. More specifically, a device such

as a computer can be used as a master to drive several other slave devices which are linked via MIDI. MIDI

utilizes 16 independent channels, and messages can be sent along all 16 channels. One of the advantages of

MIDI is that it was designed for real-time performance and has very low latency [45]. MIDI can be used to

control most functions of a musical instrument including, but not limited to [44],

* Over 10 octaves of discrete pitch control



* Velocity and pressure dynamics for each note

* Pitch bending

* A group of 95 real-time controllers such as volume, modulation, and sustain

* Instrument and/or program selection

* Sample data transfer

For each of the controllable parameters, a unique set of MIDI messages is defined. The message definitions

comprise the protocol which all MIDI instruments use when transmitting or receiving MIDI information.

Simply stated, the MIDI message is a stream of numbers which indicate which parameter is to be changed

and the value to which it is changed. For example, the MIDI message used to change an instrument is

a number (or set of numbers) referring to the location of the sound patch in the slave. The values for

parameters such as volume, on the other hand, typically run from 0-127 [44]. The Singing Tree's music is

generated at the computer, and it is via MIDI that the computer 'tells' the K2500R what to play. This will

be discussed in more detail in Section 3.3.



Chapter 3

Singing Tree Implementation:

Technical and Artistic Issues

3.1 Technical Decisions in an Artistic Context

This chapter will present the technology and artistry behind the Singing Tree. While these topics could

be discussed in separate chapters, I have decided to include them in the same chapter. In my opinion, the

Singing Tree project is an artistic project which is realized through the appropriate use of technology. While

the technology is what makes the Singing Tree function, it is the artistry which makes it interesting. After

all, it is the artistic content which makes the Singing Tree experience a success or a failure. Many of the

technical decisions, particularly the musical mappings, were intimately related to the artistic goals of the

project. As a result, the technology and artistry are presented together with their relationship clarified where

appropriate.

3.2 Voice Analysis

The voice analysis algorithms used in the Singing Tree measure pitch, noisiness (ambiguity), brightness,

energy, and vowel formant. These algorithms were written by Eric Metois, four of which were part of his

DSP toolkit used in several other projects and his Ph.D. thesis [30]. In this section, I will describe how these

algorithms work and the information they send to the Singing Tree. I will also discuss alternatives where

applicable.

3.2.1 Volume

The volume parameter used in the Singing Tree is the energy of the signal on a logarithmic scale [30].

This is not to say that loudness, as perceived by humans, matches this algorithmic estimate. While an



engineer's measuring devices are sensitive to energy in a direct manner, the ear and the microphone are

not [42]. This is the fundamental difference between the 'energy' of a sound, a physical parameter, and its

'loudness', a perceptual parameter. Ears and microphones operate by detecting differences in air pressure.

The fluctuations in air pressure above and below standard atmospheric pressure, at a rate which is within a

certain range of frequencies, lead to an audible sound. The human auditory system is extremely sensitive,

able to detect sounds corresponding to pressure changes as low as 3.53 billionths standard atmospheric

pressure, and as high as 1 million times that amount (threshold of pain) [42]. However, this enormous

variation in air pressure does not correspond to a variation in loudness of 1 million times. Thus, loudness is

considered a logarithmic function of signal amplitude. Using a dB scale, one can write the volume (energy)

of a signal relative to a standard, such as 1 mV in the dBmV scale, or 1 mW in the dBm(W) scale. Of course,

loudness is frequency dependent, while signal amplitude is not. The perceived loudness of a signal is highest

around 3000 Hz, and approaches indiscernible at 30 Hz and 20000 Hz [42]. In addition, although loudness is

logarithmic in nature, it is not strictly a logarithmic function. Thus, loudness is more typically measured in

units called sones which are defined as follows: A person with healthy hearing sits in an anechoic chamber

facing a distant loudspeaker, and she will hear a sound whose loudness is 1 sone when a source having a

frequency of 1000 Hz produces a sound pressure level of 40 dB at her ear. A rule of thumb is that a 10 dB

increase in sound pressure level corresponds to a doubling of the loudness in sones. However, it should be

noted that, especially in musical examples, loudness is typically additive while decibels are not. In other

words, a sound source of 2 sones played simultaneously with another of 3 sones will be perceived as a single

sound source of 5 sones. Figure 3-1 shows a loudness diagram measured in sones over the audible frequency

range.

3.2.2 Pitch Estimation

Pitch estimation appears to be a rather simple task on the surface, but there are many subtleties that need

to be kept in mind. While there are many successfully implemented pitch estimation algorithms, none work

without making certain assumptions about the sound being analyzed. Indeed, the notion of 'pitch' is rather

ill-defined. In the context of algorithmic estimation, finding the 'pitch' typically refers to estimating a sounds

fundamental frequency or period. However, humans can identify pitch in sounds which have a slightly varying

period, or even in ones which lack a fundamental frequency [30]. The human ear and nervous system can

make pitch estimations from complex sounds by finding patterns, seeking subsets of 'almost harmonically

related' components, and making 'best estimates' [42]. In fact, it has been shown that the manner in which

the brain operates on sensory data is oftentimes analogous to a 'maximum likelihood estimation' [47]. Some

examples of the ear's extraordinary ability to perceive pitch are noted below [42].

* Tuning Fork and Glockenspiel Bar: Striking either the tuning fork or the glockenspiel softly will excite

a single sinusoidal oscillation. However, striking either with a hard hammer will excite two or more

characteristic frequencies. There is no particular harmonic relationship between the characteristic



Figure 3-1: Perceived Loudness of Single-Component Sounds as a Function of Frequency

frequencies; they are far apart, and the human ear perceives two or more sounds with different pitches.

* Plucked or Struck Musical Strings: Plucking or striking a musical string provides a large number of

partials arranged in a nearly exact integer relationship, approximately matching the exact harmonic

prototype. Due to slight departures from the integer relationship, a mathematical calculation would

lead to a repetition frequency of 2-3 Hz. However, the human auditory system identifies the frequency

which most closely aligns with the harmonics as the fundamental frequency, and that is interpreted as

the pitch of the sound.

* Clock Chimes: There are several quasi-harmonic patterns in this complex sound. People hear the

pitch of the sound depending on which harmonic pattern they can derive. Once a person attaches a

particular pattern to the sound, changes in the relative amplitudes of the harmonic components do

not change the perceived pitch. In other words, even though the harmonics on which the pattern is

established are changing, the auditory system maintains its original pattern interpretation and pitch.

* Church Bells: Experiments with church bells confirm that humans do not discriminate harmonic

structure by the relative amplitudes of the components, but, rather, by the frequencies present and

the harmonic patterns they form.



* Suppressed Harmonic Components: Experiments [42] in which all but two or three harmonic compo-

nents were suppressed reveal that humans can perceive sound as an anticipated or implied pattern

projected onto the harmonic components. An analogous situation occurs with the human visual sys-

tem. A pattern can be reconstructed from an incomplete picture such that a person can visualize the

entire pattern.

In addition, humans have an amazing ability to extract patterns from extremely noisy sensory input. One

of the first signs of hearing loss is the loss of ability to differentiate the voice of an acquaintance from a large

crowd of people (i.e., the loss of ability to extract the desired pattern from the noisy input).

With these complexities in the human auditory system, one might assume that our ability to estimate

pitch is indeed faster than that of a computer. However, this is not necessarily true [30]. Both humans

and computers must analyze at least a full period of 'clean' sound (i.e., sound without distortion from the

attack) in order to detect the fundamental frequency. In this, there is ambiguity in pitch estimation. Both

humans and computers will make estimates of the pitch through the attack and during the first period,

with each successive guess, ideally, becoming more reliable. Thus, ambiguity in pitch becomes a parameter

or characteristic of the pitch estimation process. It is in this ambiguity parameter that a human auditory

system is superior to a computer. Humans possess the ability to incorporate new information over time into

the estimation process, knowing what to accumulate and what to throw away, whereas the computer may

not be able to do the same in real-time [30].

The pitch estimation algorithm used assumes a monophonic signal, such as a human voice. It follows

from this assumption that the signal has a periodicity corresponding to the fundamental frequency or pitch.

The algorithm, as derived below, is from [30] with minor additions for clarity, and the technique upon which

it is based, cross-correlation, is commonly used for pitch estimation. The advantage to the form used in [30]

is that it leads naturally to a definition for the ambiguity parameter.

Starting with a signal s(t) that is assumed to be periodic, or more precisely, quasi-periodic, it follows that

s(t) , as(t + T) where T is the quasi-period of the signal and the scalar a accounts for inevitable amplitude

changes. Considering a window of d samples of s(t) taken with a sampling period, r, one can define the

vector, v(t) = [s(t), s(t + ), ..., s(t + (d - 1)r)]T. Two such windows, v(t) and v(t + T'), are separated in

time by T'.

Using a Bayesian approach detailed in Appendix B, the best estimate for the quasi-period is the T which

maximizes the expression

v(t)Tv(t + T')(3.1)
II v(t) II v(t + T') II

which is a 'normalized' cross correlation between v(t) and v(t + T'). This is what one expects intuitively.

v(t) can be thought of as a fixed window and v(t + T') as a sliding window with the cross correlation of the

two windows a maximum at T' = T. Of course, the use of a sliding window in a computer algorithm implies



a discrete time implementation, which can be written

A[n, k] [n]v [n + k]
v[n] |v[n + k] (3.2)

This equation can be recast in a more compact notation by defining u _ v[n = 0] = [s[0], s[1], ..., s[d - 1]]T

to be the fixed window (the first sample in the fixed window is arbitrarily assigned to n = 0) and v[k]

v[n + k] In= = [s[k], s[k + 1], ..., s[k + d - 1]]T to be the sliding window. Equation (3.2) becomes

u1v[k]
II u II | v[k] I1'

and the best estimate for the pitch given this discrete cross-correlation is To = Nor, where 7 is the sampling

period and k = No is the smallest integer which maximizes equation (3.3).

It is not necessary to compute this function for every k. It is sufficient to align the fixed window u with a

local maximum of s(t) and then choose several candidates from the sliding windows v[ki], v[k 2],...etc., which

are aligned with local maxima within an amplitude range, 6, of the maximum associated with u. This works

very well and provides a relatively small set of candidates. The process for resolving local maxima is greatly

aided if the signal, s(t), is first low-pass filtered to reduce high-frequency anomalies [30].

As stated above, To is the closest estimate to the actual period, T, as calculated using the discrete

cross-correlation. In audio applications, To is typically not a sufficient estimate, because the error is too

large. Consider a pitch of frequency, f. It is known that the octave in an equally tempered tuning system

is divided into twelve semitones (also known as half-steps) which are logarithmically spaced by the factor

2'§ [42]. This implies that two frequencies, f and fl, which are separated by a semitone are related by the

expression,

fi = 21 f (3.4)

Where it is assumed that fi > f. Defining Af = fi - f and using equation (3.4) gives the expression,

f= 22 - 1 = 0.05946 (3.5)

Since To = Nor is the closest estimate to T, it is known that IT - Tol <; r. The error in the frequency

domain is given by [30],

Af I1T _ IT - To < _ Af 1
f = -• < - - < (3.6)f To -Nor f-No



This implies that for No 5 20 the error in frequency will approach that of a semitone! For reference, a

semitone is 100 cents (abbreviated by 'ct'), and humans can detect differences in pitch on the order of 10-20

ct. The integer estimate No will have to be further resolved by finding a 30 such that No + 30 lies between

the k = No and k = No + 1 samples and better approximates the actual period. In other words, the goal is to

interpolate between the window vectors at v[No] and v[No + 1] to find an interpolated vector, vinterp(No, /o),

such that

Amax = A(No, #) I=,o= uvinterp(No, 3o) 1 E [0, 1]. (3.7)
IIU U Vinterp(No, /o) I'

Interpolating to find a Po which maximizes equation (3.7) will lead to a best interpolated estimate for

the period, Tinerp. It was found that linear interpolation was not only a sufficient method, but also a

computationally inexpensive one, because it requires no further iteration on A(No, P). Considering a plane,

H, spanned by the vectors, vi = v[No] and v2 = v[No + 1], the best least-squares estimate for f3 o will

correspond to the projection, p, of u onto H [30],[48]. In other words,

P I vinterp(No,/3o), where vinterp(No,#fo) = (1 - o)v[No] + (#o)v[No + 1] (3.8)

= (1 - #o)Vl + (P0)V2

If one writes p = plv1 + p2 v 2, then it follows from equation (3.8) that pi and P2 are simply proportional to

(1 - f3o) and Po through the same proportionality constant. Thus, one can write

P -- P2 Po= P (3.9)
(1 -Po) 3o P1 + P2

The vector, p, is the least squares solution to Ap = u, where the column space of A spans the plane H.

[Pi1
p Pi =(ATA)-'ATu, where A= V V2 (3.10)

P2

This result for p yields a solution for Po via equation (3.9) [30], [48],

(vTu) II 11v 2 - (VVI)(V u)
Uo = 11 V,112_VTT112_VT(3.11)

#G (v u)[ II' v1 2 -- (vT V2)] + (Tu)[ 12 2 - V2)] (3.11)

With #o in terms of known parameters, the best estimate for the actual period, T, is written



T = Tintrp = (No + 30)r. (3.12)

The above method works assuming that No is the integer part (floor) of the discrete period. If it is not, then

/3 ý [0, 1] and the window must be shifted accordingly such that No is the integer part (floor) of the discrete

period. Specifically, for Po < 0, consider a new plane spanned by the vectors vi and v2 shifted down by

one sample (i.e., vl = v[No - 1] and v 2 = v[No] ) and project u onto this new plane to solve for a new /o.

Conversely, for fo > 1, consider a new plane spanned by the vectors vl and v 2 shifted up by one sample

(i.e., vi = v[No + 1] and v 2 = v[No + 2] ) and re-project u onto this new plane to solve for a new fo. If

there is still no fo E [0, 1] then, depending on the real-time constraints, this shifting should be continued, or

a fresh segment of signal should be analyzed [30],[50].

3.2.3 Noisiness

The pitch estimation technique used for the Singing Tree is an interesting implementation, because it natu-

rally leads to a definition of pitch ambiguity and noisiness. It is this point primarily which makes the above

technique preferable to alternative solutions, such as the chirp-z transform or the cepstrum which will also

give high frequency resolution. The ambiguity in pitch arises in both humans and computers because of the

real-time nature of pitch estimation and the inharmonic attack transients associated with most sounds.

It is shown in [30] that this ambiguity in pitch is directly related to the signal to noise ratio (SNR) and the

maximization of the cross-correlation used in the pitch estimation implementation. Specifically, considering

again a fixed window of the signal u, a sliding window of the signal v, the amplitude scaling factor a(t), and

introducing additive noise e(t), one can write

u = a(t)v(t) + e(t). (3.13)

The additive noise, e(t), is the error between the windows u and v(t) at time t, and it will decrease as t -- T,

the period of the signal [30]. Defining the signal to noise ratio,

|II u II2 II u II2 II 112SNR(t) - - = (3.14)N (t) e(t) 112 11 u - a(t)v(t) 112 II u 112 -2a(t)(u T v(t)) + a2(t) II v 112

one can maximize the signal to noise ratio with respect to a(t) (i.e., minimize the denominator) as demon-

strated in equation (B.2) with the results repeated here.

0 (11 u 112 -2a(t)(uTv(t)) + a 2 (t)11 U 112) = 0 a(t) -= v (t) (315)
Substitua(t, T) relation for a(t) i(t 112equation (3.14) yields,

Substituting this relation for a(t) into equation (3.14) yields,



1 1 1
SNR(t)= 1 1 (3.16)1 - IluT v(t)112  1- IluT [n]l 2= 1 - A2 [n]

1lull2 llv()u11 2  1 2 llv[n]112

which demonstrates the relationship between between maximization of the SNR and maximization of the

normalized cross-correlation. The maximization of the normalized cross-correlation will estimate the period

of the incoming signal, and the SNR will also be maximized at this value. In that sense, the evolution of

the SNR acts as a reliability measurement. However, the relationship is more intrinsic. The SNR is also

a measurement of timbre, in the sense that sounds with an identical pitch but different timbre will have

different values of SNR. For example, a lower SNR may imply additive noise in the pitched sound while

a higher SNR may correspond to more pure sound. Furthermore, consider an ideal noiseless channel from

the sound source to the computer. The implied additive noise from a low SNR measurement is strictly an

implication. The actual origin of the differences in SNR values in this ideal case are characteristics of the

various sounds. These characteristics are what make sounds different, and are therefore a measurement of

timbre. In fact, timbre is defined as the characteristics of a sound which allow humans to differentiate sounds

of identical pitch. It is thought that Metois is the first to use this notion of pitch noisiness or ambiguity as

a basic measurement for musical characterization [30].

3.2.4 Brightness

The concept of brightness as used in the Singing Tree is an algorithm based on the works of David Wessel

[30]. Simply stated, Wessel defines a sound's brightness in terms of the energy distribution of the signal's

harmonics. In other words, given that the fundamental frequency of the incoming monophonic signal has

been determined, the brightness can be parameterized in terms of the size of the frequency gap from the

signal's fundamental frequency to its center frequency. In this case, the signal's center frequency is the

weighted average of the frequencies present in the signal. In general, signals with a larger frequency gap will

sound 'brighter' than those with a smaller frequency gap.

A first approach might be to determine the DFT (discrete Fourier transform) and derive the center

frequency. After all, a standard method for determining a sampled signal's frequency representation is to

take the DFT via the FFT (fast Fourier transform) algorithm. However, as explained through example in

[30] and mathematically in [49], one can easily misinterpret the results of a DFT. Having misinterpreted a

DFT once or twice before, this is a subject to which the author has given much thought. The main source

of error is in assuming that the frequency response one calculates and a simple 'connect-the-dots' version

represent the same signal; they do not. The issue is frequency representation versus frequency estimation. To

give a more relevant example, if one is trying to find the period of a signal by peak-picking the fundamental

frequency from the DFT, one needs to remember that the DFT is merely a sampled version of the DTFT

(discrete time Fourier transform). This implies that an estimate based on the peak frequency point of the

DFT, fpeak, has a tolerance, A f, attached to it (as do all frequency points in the DFT) of



Af = F,/NFFT, = factual = fpeak ± Af (3.17)

where F, is the sampling frequency and NFFT is the number of points in the DFT. Note that the number

of points in the DFT is written NFFT in anticipation of calculating the DFT using the FFT algorithm.

As an example, consider the following scenario. A frequency analysis of the singing voice is to be done in

real-time using the FFT algorithm. In this case, assume that real-time implies a At window size of 15 ms.

In other words, a 15 ms chuck of signal is sampled, and while it is being analyzed, the next 15 ms chunk

of signal is being sampled to the buffer. This in turn constrains the computation time of the analysis to

15 ms. This constraint is chosen because the human ear also works in real-time on a time scale of - 15

ms [30],[42],[50]. The next constraint is the tolerance of error that is aurally allowed. In equation (3.5), a

semitone was shown to give a Af/f of 0.05946, and humans can distinguish changes in frequency on the

order of 0.1 - 0.2 semitones (10 - 20 ct). In addition, it is known that, in general, the range in pitch

frequency of human singers is approximately 60 - 1600 Hz [42]. Assuming the lowest possible pitch is 100

Hz, the highest possible pitch is 1500 Hz, and a 'loose' tolerance of 0.2 semitones, Af becomes,

f Af If=loHz = (100)(0.01162) - 1.2Hz
= 2 - 1 = 0.01162 -= (3.18)

f Af lf=1500Hz = (1500)(0.01162) z 17.4Hz

For each case, any error in frequency larger than Af is unacceptable. It is also known that the upper bound

on the frequency of the first three vowel formants is less than 5000 Hz [42]. Since one anticipates attempting

some sort of algorithm to determine vowel structure, the lower bound on the sampling frequency is about

10000 Hz. Considering this lower bound of F, = 10000Hz and the conventional 'upper bound' for audio, F,

= 44100 Hz (CD quality), one can demonstrate the need for caution in the direct application of a DFT. For

each of the four cases, the DFT lengths, NFFT, required to meet the established tolerances are,

NFFT IF,=10000Hz,f=100IHz = = 1 8300 points

NFFT IF|=1000OHz,f=150Hz - 10000 , 575 pointsf - 17.4 (3.19)
NFFT IF,=44100Hz,f=10OHz 44100 .2 36750 points

NFFT IF,=44100Hz,f=1500Hz = = 1 2600 points

Since this is a worst case analysis, the larger windows must be used at each sampling frequency.

worst case @ F, = 10000Hz: NFFT FlOO=100OOHz,f=lOOHz M 8300 points
z.e. (3.20)

worst case @ F, = 44100Hz : NFFT IF,=44100Hz,f=10Hz W 36750 points

Thus, depending on the sampling frequency one chooses to use, the DFT-size required to meet the established

tolerance would need to be in the range from 8300 points to 36750 points. In the first case, F, = 10000 Hz



implies a sampling period T, = 0.1 ms, and the number of samples in the At window is only N = 15/0.1 = 150.

In the second case, F, = 44100 Hz implies a sampling period, T, = 0.023 ms, and the number of samples

in the At window is N = 15/0.023 = 650. Thus, in both cases, the real-time condition will only give

approximately 1/50 the required number of points. Zero padding the signal and then determining the DFT

is a first step, but one must keep in mind the following:

* There is really only one type of transform that one is concerned with in real-time applications, the

FEFT (fast enough Fourier transform). Longer windows imply a need for faster hardware as one

approaches the established latency limit for real-time operation.

* The inherent trade-off is window size vs. upper frequency limit. A sampling frequency of 10000 Hz

yields not only the minimum window size, but also the minimum Nyquist frequency. While adequate

for the first three vowel formants, information on fricatives or other high frequency information is lost.

The more important the high frequency components of the signal become, the longer the DFT window

required.

* Luckily, the definition of 'real time' in this case is 15 ms; it takes a full 10 ms simply to get one period

of the 100 Hz signal. As one decreases the lower bound on frequency, one must be careful not to cut

off the signal before one period has arrived. Note that 60 Hz has a period of 16.6 ms, larger than the

established real-time constraint.

The situation is not hopeless, however, because the analysis was worst case. There are many options to

improve results from the choice of windowing function to a periodogram or chirp-Z transform method.

Nonetheless, in considering improvements, one must also consider the real-time nature of the problem and

make trade-offs accordingly. Alternatively, one can try to reduce the restrictions of the constraints, and

of all the constraints, the one that can be dramatically improved is Af. The largest values of Af occur

when the number of periods represented in the windowed signal on which the DFT is applied happens to

be non-integer. In other words, one can make the DFT samples fall on the fundamental frequency and its

integer ratios if one windows the signal such that an integer number of periods falls within the window.

Furthermore, doing so eliminates the need for a special (i.e., non-rectangular) windowing function. However,

it is a catch-22. One needs to know the pitch to apply the correct length window, but this algorithm is used

to determine several metrics, including pitch. Nonetheless, if one has a priori knowledge of the pitch, one

can greatly reduce the window size. This method is known as pitch-synchronous frequency analysis, an idea

first used in analysis of music by Michael Portnoff in a phase vocoder [30], but can be traced back much

earlier in the analysis of voiced sounds [51].

In the Singing Tree, the time-domain, cross-correlation algorithm was used to determine the pitch, avoid-

ing many of the issues associated with a frequency-domain pitch estimation. Once the pitch was determined,

the signal window size could be adjusted such that an integer number of periods fit within it, and a pitch-

synchronous frequency analysis performed. The pitch-synchronous frequency analysis was used primarily



to estimate the center frequency used in determining the brightness parameter. As described in [30] by

example, an 'asynchronous' estimate for the center frequency of an incoming signal can give widely varying

results, while a 'synchronous' estimate is far more accurate. The specific case considered was a signal with

pitch frequency f= 90 Hz, window size NFFT = 512, and sampling frequency F, = 44100 Hz. Note that

the window size does not represent an integer number of signal periods (an 'asynchronous' analysis). Several

DFT estimates of the center frequency were considered for several starting points of the window, each lagging

the previous by only 0.1 ms. The result was a range of center frequency estimates from 425 Hz to 640 Hz.

The actual center frequency, as determined by a long-term frequency analysis, was estimated to be 551 Hz.

As determined by a single, pitch-synchronous frequency analysis, the center frequency was estimated to be

542 Hz [30]. This simple example demonstrates the need for a long-term frequency analysis, or alternatively,

a pitch-synchronous short-term analysis to acquire accurate results.

3.2.5 Formant Estimation

Formant analysis can be traced back to the 1950's, and there are numerous techniques available, some more

exotic than others [53], [42]. Most of the early work can be regarded as frequency domain techniques,

such as 'peak-picking' spectral peaks in the short-time amplitude spectrum, or 'analysis by synthesis' in

which one generates a best match to the incoming signal. Later, techniques were developed to 'peak-pick'

a ceptrally-smoothed spectrum or a linear predictive coding (LPC) spectrum, or to find the roots of the

LPC polynomial. Other techniques that were reviewed included formant tracking using hidden Markov

models and vector quantization of LPC spectra, quasilinearization, Kalman filters, and energy separation

[54],[55],[56],[57],[58],[59]. In the end, we decided to use a formant estimation algorithm developed by Rabiner

and Schafer based on cepstrum analysis and the chirp-z transform [53]. This method was chosen primarily

for two reasons: First, it was feasible to implement in real-time given the other operations, particularly video,

that also had to occur within the latency window; second, the technique dealt with two topics, cepstrum

analysis and the chirp-z transform, in which the author was interested. To allow the algorithm to work

seamlessly with his DSP toolkit, Eric Metois coded the version used in the Singing Tree.

Modeling Human Speech

Speech production can be modeled as a lumped parameter, linear, quasi-time-invariant system. Given this

model, a speech waveform can be produced through an excitation of a series/parallel connection of resonators.

The complex natural frequencies of the resonators are assumed over short-time to be constant, but vary

slowly and continuously over long-time to approximate the time-varying eigenfrequencies of the vocal tract.

The excitation which drives the system can be random noise for unvoiced sounds, a quasi-periodic pulse

train for voiced sounds, or a combination of the two for voiced fricatives. In the Singing Tree, the analysis

assumes a quasi-periodic pulse train as the source of the excitation. The excited resonant frequencies are

the formant frequencies, and knowledge of their values can help one derive the formant structure of a signal
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Figure 3-2: Mechanical Model of Speech Production

and, subsequently, the vowel represented in the signal [42],[53].

A mechanical model of the pulse train source and resonant cavity is shown in Figure 3-2. In this model,

air from the lungs flows through a large diameter duct (the trachea), through a constriction (vocal cords),

and back into a larger resonant cavity (the vocal tract). The vocal cords can be further modeled as a mass

and spring system, in which the mass acts as a valve which constricts the size of the ducts and the spring

adjusts the position of the mass from outside the duct. As air passes by the vocal cords, two conflicting

forces are felt. The first is an inward force which tends to pull the mass into the duct, further constricting

the airflow. This is due to the increase in speed of the air and the subsequent drop in air pressure. As the

mass falls further into the duct, the speed of the air further increases, the air pressure further decreases,

and the mass is pulled further inward. Of course, this is a catastrophic situation, and the second force must

act to counter the first force. The second force results from the added frictional resistance produced in the

constricted opening. The frictional resistance tends to reduce the total volume of air which passes through

the constricted region, and thus, the flow-dependent pressure will not change in the manner described by

force one. This second force turns out to be oscillatory, and is called the oscillating Bernoulli Force. In this

simple model, changing the spring constant will change the frequency of oscillation. Analogously, changing

the supporting air pressure from the lungs, establishing an initial spacing of the vocal cords, and establishing

the tension of the vocal cords allows humans to produce sounds with differing pitch.

The vocal tract is a resonant cavity, and it extends from the larynx to the mouth and includes the nasal

cavity. Oscillations from the larynx excite vibrational modes in this cavity, transforming the simple airflow

spectrum which leaves the larynx into the acoustical patterns required for speech and music. Changes in the

position of the tongue, the mouth, and the throat can significantly change the vibrational modes and the
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Figure 3-3: Linear, Quasi-Time-Invariant System Model

resulting sound that leaves ones mouth.

There are two additional spectra which are not accounted for in the above model. The first is the glottal

source spectrum, which arises from the actual 'shape' of the air pulse which leaves the larynx. Above, this

air pulse was assumed to be sinusoidal, but it is actually more triangular, with a DC-offset (i.e., there is

always some air passing through the larynx). The second is the radiation load spectra, which occurs in the

coupling of the vocal tract to the outside world via the mouth and nostrils. Note that the above model

is limited to the physical source of the sound; it represents the physical characteristics of the sound which

enters the outside world, Modeling the sound as perceived by another who is in the room would require

additional spectral envelopes which model the human auditory system [42],[53],[55].

Linear, Quasi-Time-Invariant System Model

The model used in the Singing Tree for voiced waveforms includes the glottal source and radiational load

spectra as shown in Figure 3-3 and Figure 3-4. The impulse train has period, T, which is the pitch period

of the resulting signal. The impulse train is multiplied by a variable, A(t), which is the time-dependent

gain control of the system, although it will be assumed that A(t) is quasi-time invariant. The glottal-source

spectrum is approximated by,

1 - e
- a r

T

G(z) 1 - (3.21)
1 - z-le-aT,

where a is a constant which characterizes the speaker and T, is the sampling period to be used. A typical

value for a is a = 4007r [53].

The vocal tract is modeled as a cascade of resonators, each with a resonant frequency, Fi. The system

function due to the vocal tract can be written,



V(z)

Figure 3-4: Expanded View of the Vocal Tract Model
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V(z) = l Hi(z) P I Hi(z) (3.22)
i=1 i=l

where Hi is the system function for the i - th resonator. In this work, only the first three formants, modeled

by three resonators, will be considered. The fourth resonator will account for high-frequency components

to ensure proper spectral balance. It should be noted that an additional pole and zero are required in the

system model to account for nasal consonants, but are ignored in this analysis [53]. Each individual resonator

can be approximated as,

1 - 2e-aiTcos(wiT) + e- 2 aiT

1 - (2e-a'Tcos(wiT)) z - 1 + (e-2caT) z - 2 '

where wi = 2'rFi is the resonant frequency of the i - th resonator, and ai is the neper frequency. Note that

DC excitations will yield a gain of one, as one would expect physically. The poles associated with the i - th

formant frequency are located at,

z = (e-aiT)e +jwiT (3.24)

in the z-plane . Thus, one can approximate the bandwidth of the i - th formant frequency estimate on the

unit circle by 2ai. In addition, the peaks in the spectrum along the unit circle correspond very closely to

the formant frequencies. Although Fi and ai are time varying, they do so on a time scale which justifies the

quasi-time-invariant assumption of the system. Thus, for short-time analyses, the Fi are constant and will

give the correct formant frequencies of the signal.

The radiation load can be modeled by,

1 +-e - bT "

R(z) + b (3.25)
1 + z-le-bTe

-- H1(z) H2(z) H3(z) H4(z)



where b is a constant which characterizes the radiation load for a particular speaker, and T, is the sampling

period to be used. A typical value for b is b = 50007r [53].

The entire system can thus be written as,

4

Hsystem(z) = G(z)V(z)R(z) = (G(z)R(z)) Hi(z) (3.26)
i=1

where G(z) and R(z) are grouped together because they are speaker dependent, and thus can be approxi-

mated as constant for a particular user. Furthermore, it is assumed that they can be well approximated for

all users with the typical values of a and b. In other words, it is assumed that,

a = 4007r

1 - e- aTs 1+ e-bTs b = 50007r (3.27)

G(z)(z) - z-le - aT  1 + z-le -bT,  T = sampling period

f < 5000Hz

Thus, G(z)R(z) acts as an envelope which scales V as a function of z. The poles corresponding to the

formant frequencies are located inside the unit circle, and their associated frequencies are approximated by

the peaks in the spectral envelope, IHsyStem(eij)j. The approximation holds if the poles are relatively spread

in frequency and relatively close to the unit circle.

The system for determining the first three formants as described in [53] is asynchronous, and a priori

knowledge of the exact period is not required. In addition to the first three formants, the system also allows

a method for calculating the pitch period and the gain of the signal. As applied in the Singing Tree, the pitch

period was already determined through the normalized cross-correlation method described previously, and

thus a synchronous analysis was feasible and pitch detection was unnecessary. Nonetheless, both formant

and period estimation will be introduced, and the trade-offs between the two methods of pitch estimation

will be discussed.

Formant Estimation

A block diagram for the entire estimation algorithm is given in Figure 3-5. A segment of signal, s[n], is

first windowed using a Hanning window, w[n], yielding the signal z[n]. The DFT of z[n] is evaluated using

the FFT algorithm and yields X[k]. Next, the log of the magnitude of the samples in X[k] is calculated to

give, X[k], and then the IDFT is found using the FFT algorithm to finally give the real cepstrum i[k]. The

terminology, real cepstrum, simply refers to the fact that X [k] is a real sequence (i.e., magnitude of X[k] is

real, so use the real logarithm); it does NOT imply that the real cepstrum i[n] is a real sequence. However,

due to the DFT symmetry properties, it does imply that the real cepstrum i[n] is an even function. In
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Figure 3-5: Block Diagram of the Formant Estimation Algorithm

addition, since x[n] is a real sequence (i.e., the samples of a singer's voice), it is known that X[k] is an even

function, which in turn does imply that i[n] is a real sequence via the symmetry properties. The point,

nonetheless, is that the term real cepsirum does not imply a real-valued cepstrum. It is simply the subset of

cases for which the input signal is real that the cepstrum is real. For comparison, a complex cepstrum y[k]

refers to the sequence defined as the IDFT of the log of a complex sequence, Y[k] (i.e., one which uses the

complex logarithm).

Considering the model presented for speech production, and defining p[n] to be the impulse train which

drives hsystem[n] (the inverse z-transform of Hsystem(z)), one can write an expression for x[n] as,

x[n] = s[n]w[n] = (p[n] * h,sytem[n]) w[n]. (3.28)

It is assumed that the system is short-time time-invariant, which implies that for a suitably short windowing

function, hsystem[n] is time-invariant. Furthermore, w[n] varies on a much longer time scale than s[n] does.

Thus, the windowing function's role is two-fold: first, it greatly improves the approximation that a segment of

speech is well modeled by a convolution of a periodic impulse train with a time-invariant (constant formant

frequencies) hsystem[n], because it creates a signal segment on the time-invariant time scale; second, the

windowing function performs its traditional role of reducing the effects of a non-integer number of signal

periods in the signal segment [53]. Given these approximations, it is reasonable to write,

x[n] ; (p[n]w[n]) * hsystem[n] = pw[n] * hsystem[n], pw[n] - p[n]w[n]. (3.29)

Continuing with the block diagram, the following relations hold using equations (3.26) and (3.29). To

avoid ambiguous and occasionally incorrect notation, all transforms are written in terms of the z-transform



rather than the DFT. The discrete forms for the equations are then obtained by sampling the z-transform

expressions at the points z = ej -• k where N is the number of points in the DFT.

4

X(z) = Pw(z)Hsystem(Z) = Pw(z)(G(z)R(z)) JHi(z) (3.30)
i=1

4

IX(z)l = IPw(z) IHsystem(z)I = IP(z)l I(c(z)R(z))l IHi(z)l (3.31)
i=1

4

X(z) = loglX(z)I = loglPw(z)l + logl(G(z)R(z))| + logfHi(z)l (3.32)
i=1

&[n] = IDFT{loglX(z)|} = IDFT{logIPw(z)I + logl(G(z)R(z))I + E 4 loglHi(z)l} (3.33)

pw [n] + gr [7] + k=-1 hil[n]

When considering the DFT rather than the z-transform, the usual care must be taken to ensure that the

input, x[n], is sufficiently zero-padded such that the logarithm of the spectrum is sufficiently sampled and,

thus, the cepstrum has no aliasing. In the final expression for the cepstrum, i[n], the additive terms

pw[n], gr[n], E• 1 h[n] represent the cepstrum of each corresponding term (IDFT of the respective log-

magnitude spectra). Given this additive nature of the cepstrum, one can approximately separate i[n] into

{[n] r[n] + E4 h[n] nT, <T
[n] ;z (3.34)

PW [n] nTs > T

where T is the period of the signal. Assuming that the period of the signal is unknown (asynchronous

analysis), T in the above equation would have to be replaced with the lowest anticipated period, Tmin.

However, in the case of the Singing Tree, the period was known a priori and the actual pitch, T, minus a

small tolerance to account for error was used. Note that if the period of the signal was not already known,

it could be found from equation (3.34) by analyzing the cepstrum for nT, > Tmin. This alternative method

for finding the period is discussed in more detail in Section 3.2.6.

The task at hand is to determine the formant frequencies. The cepstrum has separated into two com-

ponents, one containing information about the period of the signal, and one containing information about

the formant frequencies, the glottal pulse, and the radiation load. Since this segment is located at times,

nT, < T, low-time filtering (LTF) this segment from the cepstrum will retain only the formant, glottal,



and radiational information, and also act to smooth X[k], the log magnitude of the DFT of the cepstrum.

The only problematic point left is the glottal pulse and radiation load. Assuming that these are both

approximated as per equation (3.27) evaluated at the unit circle, one can define

grest[n] - IDFT{log G(z)R(z) sampled unit circle }. (3.35)

Note that g"rest[n] in equation (3.35) is an estimate for the glottal and radiational cepstrum, because the

form of equation (3.27) and its values of a and b were approximations. In contrast, jr[n] from equation

(3.34) is the cepstrum of the actual glottal and radiation information contained in the input signal. Defining

XLTF[ln] as the filtered cepstrum and subtracting equation (3.35), one is approximately left with only the

formant cepstrum, f[n].

4 4

f[n] - 'LPF[n] - jr,t [n] = gjr[n] + hi[n] - g^re,, [n] z hi [n] (3.36)
k=1 i=1

Lastly, to find the formant spectrum, all that remains is to take the DFT of the formant cepstrum.

4

F[k] = DFT{f[n]}= Iii[k] (3.37)
k=1

Of course, greater computational efficiency can be achieved by subtracting off the glottal and radiational

spectra before the initial calculation of the cepstrum, or after one retakes the DFT of the filtered cepstrum.

Doing so eliminates the need to take the IDFT of logIG(z)R(z)Isampled unit circle. The derivation shown

above keeps the real glottal and radiation terms throughout simply for clarity of approach, but it is best to

remove them before initially calculating the cepstrum in equation (3.33).

At this point, the formant frequency information is contained in F[k], the cepstrally smoothed log spec-

trum (in the frequency domain). Assuming the poles corresponding to the formant frequencies are sufficiently

separated and near the unit circle, peaks will appear in the log spectrum corresponding to the formant fre-

quencies [53]. However, if the poles are located too close together, the peaks may smear together, making

it impossible to identify the individual formant frequencies from the unit circle. The solution is to leave the

unit circle by using the chirp-z transform. However, determining when to resort to the chirp-z transform is

what makes algorithmic peak-picking difficult. Assumptions regarding the frequency range of the formant

frequencies will help. As derived from [53], [64], and [42], it is assumed that the formant frequencies will fall

into the ranges shown in Table 3.1. In general, the formant frequencies for females and children are higher

than those of men. This is convenient, because women and children also tend to sing pitches with higher

frequency. Thus, a metric exists to approximate the frequency range based on the pitch of the signal. Given



Table 3.1: Formant Frequency Range

II Formant Frequency I Singer I Frequency Range (Hz), [Fmin - Fmax]

Fl men 200- 900
women and children 300 - 1050

F2 men 550- 2700

women and children 700 - 2900

F3 men 1100- 3100
women and children 1400 - 3500

an assumed frequency range, the issue at hand is to develop a peak-picking algorithm which can account for

indistinguishable formant frequencies. Paraphrasing the algorithm described in [53],

1. The first step is to find the maximum peak in the range 0 Hz - Flmax. Typically, this peak will

occur at the first formant frequency. However, occasionally the peak will occur at a frequency less

than Flmin, as a result of residual glottal pulse spectra. In this case, the first formant peak may

be indistinguishable from the glottal peak with no other peaks present in the first formant frequency

range, or another peak may be present, but it is unknown whether it corresponds to formant one

or formant two. If an additional peak occurs within the first formant frequency range, then it must

be less than 8 dB below the glottal peak to be considered the first formant. If not, it is the second

formant and the first formant is indistinguishable from the glottal peak. In the cases where there is an

indistinguishable peak or no peak is found, the chirp z-transform is used to expand and enhance the 0

Hz to Flmax region and the analysis is repeated. If still no peak can be determined, the first formant,

Fl, is arbitrarily set to Flmin. (due to real-time constraints, repeated iteration is computationally too

expensive.)

2. The second step is to search the second formant frequency range, provided F1 is less than F2min.

However, if Fl is determined to be larger than F2min, it could be that F2 has been mistaken for Fl.

In this case, the search occurs over the range Flmin to F2max. After a second peak has been found, it

is compared with the value of F1, and, the lower of the two is assigned to F1 and the higher is assigned

to F2. The second formant should be 8.7 to 24.3 dB below the first formant frequency. If only one

peak exists over both the first and second frequency ranges, then the chirp z-transform is again used

to enhance and expand the region. Once Fl and F2 have been determined, the difference in the height

of their peaks is compared to a threshold value (which is itself a function of frequency) to assure the

choices are legitimate.

3. Following a similar argument as for F2, the third formant frequency F3 is found.

4. Given the three estimates (Fl, F2, and F3), the calculation is repeated for new segments of signal.

The values of Fl, F2, and F3 are stored as running averages of several lag values, which slightly delays

__



convergence when a formant change occurs. However, this is necessary to account for erroneous data.

Another non-linear smoothing method would be to assume that changes in formant frequency are less

than A, and estimates which fall further than A from the previous point will be reassigned based

on previous points. For a critical number of consecutive points further than A away, a new formant

frequency trace is established.

Having estimated the first three formant frequencies, the next task is to derive the vowel. It is shown

in [64] that vowels can typically be determined by the first two formants as shown in Figure 3-6. In this

graph, the first formant frequency is displayed along the x-axis, and the second formant frequency is along

the y-axis. This result can also be displayed as a 'vowel triangle' as shown in Figure 3-7 also from [64].

In this graph, the axes are opposite to those in Figure 3-6 such that the y-axis corresponds to the 'up and

down' movement of the vowels. That is, as the first formant frequency increases, the 'position' of the vowel

in the mouth goes from low to high. As the second formant frequency increases, the 'position' of the vowel

moves from the back of the mouth to the front.
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Figure 3-6: Vowel as a Function of F1 and F2
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Table 3.2: Average Formant Frequencies for Several Vowel Sounds

Formant Frequency I Singer I /i/ I /I/ I // I /a/ I /a/ I /D /U/ /u/ I // I II
F1 men 270 390 530 660 730 570 440 300 640 490

(Hz) women 310 430 610 860 850 590 470 370 760 500

F2 men 2290 1990 1840 1720 1090 840 1020 870 1190 1350
(Hz) women 2790 2480 2330 2050 1220 920 1160 950 1400 1640

F3 men 3010 2550 2480 2410 2440 2410 2240 2240 2390 1690
(Hz) women 3310 3070 2900 2850 2810 2710 2680 2670 2780 1960

If the vowel is still unresolved from the first two formants, a comparison of the average third formant

frequencies may help determine the vowel. Table 3.2 (after O'Shaughnessy [64]) gives the average formant

frequencies for spoken English vowels. The vowel frequencies of both male and female children most closely

resemble those of women.

Chirp z-Transform

Up to this point, the chirp z-transform has been mentioned several times without formal introduction [53].

The chirp z-transform algorithm is a means by which one can determine samples of the z-transform equally

spaced along a contour in the z - plane. Strictly speaking, the 'chirp transform' finds these samples along

the unit circle, while the 'chirp z-transform' algorithm refers to samples along a general contour (which, of
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course, may be the unit circle) [49]. The advantage of the chirp z-transform is that it enables one to calculate

the samples of the z-transform equally spaced over an arc or a spiral contour with an arbitrary starting point

and arbitrary frequency range. In other words, if the formant frequency of interest is in the range 200 Hz

to 900 Hz, then samples of the z-transform may be calculated specifically in this region. In contrast, the

frequency range of the DFT is strictly related to the sampling frequency. Furthermore, the chirp z-transform

allows one to calculate an arbitrary number of samples along this contour, which arbitrarily reduces the

error in frequency representation. As discussed previously for the DFT case, if one requires a frequency

representation of higher resolution, the only recourse is to zero-pad the signal (i.e., the number of sample

points in the DFT is the same as the number of points in the signal). Lastly, the chirp z-transform allows

one to leave the unit circle and calculate samples in the z - plane, while the DFT is limited to the unit

circle. This is particularly useful for cases in which the frequencies corresponding to poles inside the unit

circle cannot be distinguished along the unit circle contour. One disadvantage of the chirp-z transform is

that it may be slower than the FFT algorithm, depending on the number of sample points. The following is

a derivation of the chirp z-transform from [49],[53],[60].

The z-transform of a sequence, x[n], is defined to be,

N-1

X(z) =_E x[n]z- (3.38)
n=O

where N is the number of samples in sequence x[n]. The goal is to sample the z-transform at equally spaced

points along a general contour in the z - plane. In general, one can define the points, zk, of an M-point

contour as

zk = AW - k , for k = 0,1,..., M - 1 (3.39)

where A is the starting point of the contour,

A = Aoe j wo, wo=2 200o (3.40)

and W determines the incremental evolution of the contour.

W = Woe j anw, Awo = 21r0o. (3.41)

Substituting equation 3.39 into equation 3.38 yields



N-1 N-1

X(zk) = ZE [n](AW-k)-n = z[n]A-"Wk (3.42)
n=O n=O

which apparently requires NM multiplies and adds to calculate. However, the expression can be re-written

as a convolution using the identity,

nk= [n 2 + k2 - (k - n) 2] (3.43)

to yield

N-12N- n2 (k-in)2

X(zk) = W2n WW )W 2 = 0,1,...,(M - 1). (3.44)
n=O

Switching the indices n and k such that X is indexed by n rather than k, and defining g[n] to be

g[n] - z[n]A-"W2, (3.45)

the convolution is simply the sequence g[n] convolved with the sequence W 2

N-1

X(z)= W g[k]W n = 0, 1,...,(M- 1) (3.46)
k=O

Evaluating the convolutional form of the equation will require approximately (N + M) log(N + M) multiplies

and additions if one uses the FFT algorithm. Of practical interest, the sequence W2 need only be evaluated

over the interval -(N - 1) < n < (M - 1) (and zero elsewhere), because g[n] is finite and of length N. This

implies that the size of the FFT required to evaluate the convolution must be at least N + M - 1, but may
.M

2

be arbitrarily larger than this, such as the next largest power of two. Also note that WT- is a complex

exponential with linearly increasing frequency, which is a 'chirp' and thus the name chirp z-transform. This

type of analysis is used in radar and sonar signal processing [49].

The chirp z-transform is used to resolve formant frequencies which are indistinguishable from the unit

circle. The method is to choose a contour inside the unit circle which is closer to the poles of the system, and

then evaluate the z-transform along this contour. Since the contour lies closer to the poles, the resolution

between poles will be greater. In [53], a circular contour of radius e-0.0 3 14 = 0.97 was used, and a similar

value was also adopted for the Singing Tree.

To give an example of how the chirp z-transform can help resolve formant frequencies, consider the

following (unrealistic) formant system with only two resonant frequencies (four complex conjugate poles).

Assume that the poles are located at



F(z) from r. (DTFT)
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Figure 3-8: Pole-Zero Plot and the DFT in the z-plane

a = 0.7e a* = 0.7e3 .

b = 0.7e4 b* = 0.7e (3.47)

with formant frequencies approximately equal to

f f/4 F, F.
2w= = (3.48)

A r /3 F, FL

for some appropriate sampling frequency F,. Thus, the system function can be written,

Fz) (z-a)z(z-a*) (z-b)z(z-b*) (3.49)
(1-2R{a}z-1+|a2z-2 1-2R{b}z-!+I|b2z-2) (4

The system's pole-zero plot, a three dimensional representation of the discrete Fourier transform (DFT)

along the unit circle in the z-plane, and the DFT are shown in Figure 3-8. The DFT is interpolated in this

example for clarity.

It is clear to see from the plot of F(e jW) that the two poles are indistinguishable from the unit circle.

However, using the chirp z-transform (CZT) method, one can choose a contour closer to the poles, giving a

higher resolution. Choosing a constant radius of r = 0.75 and sweeping through 0 < w < 27r yield the two

graphs of the CZT in Figure 3-9.

The chirp z-transform method reveals that there are indeed two distinct poles, and that they occur at

radial frequencies w = 7r/3 and w = 7r/4 as expected. Furthermore, the Aw in equation (3.41) can be made

arbitrarily small with the CZT algorithm by either increasing the number of points in the CZT or decreasing

the frequency range of observation. In this example, the CZT was calculated at 200 points along the circle

of r = 0.75. This corresponds to an angular frequency resolution of AWCZT = 27r/200 ; 0.0314. The

""' "



F(z) tom r.0.75 (CZT)
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Figure 3-9: Pole-Zero Plot and the CZT along r=0.75 in the z-plane

Figure 3-10: Chirp z-Transform over a Smaller Frequency Range for Higher Resolution

DFT of 200 points also has an angular frequency resolution of AWDFT = 27r/200 ; 0.0314. However, the

resolution for the CZT can be greatly improved by reducing the frequency range of analysis such that it

covers only those frequencies in which we expect to find formants. Without changing the number of points,

a CZT calculated over the frequency range 0.21r < w < 0.41r will have an angular frequency resolution of

AwczT = 0.21r/200 a 0.00314, which is a factor of 10 better. Figure 3-10 shows the CZT along the smaller

frequency range. The DFT in this example would require a 10-fold increase in the number of points to

achieve the same frequency resolution.

Formant Estimation Example

The following is an example of formant frequency estimation using data directly from the Singing Tree. The

author sang into the Singing Tree and saved his voice samples for the vowels 'aah', 'ee', and 'ooh'. The

complete results for the vowel 'aah' at a pitch f=290 Hz are shown below, with graphs and results for the

other vowels in Appendix C.

Referring to Figure 3-5, the first step is to window a segment of the voice for analysis. Given the real-time

F(z) from r-0.75 (CZT)

.... .....



"aah" at f.290 Hz n10s FFT Magnitude Squared of Filtered X
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Figure 3-11: Segment of Voice Singing 'aah' and its Power Spectrum,

Real Capstrum of x (xhat)

Radian Frequency (Normalized to pi) Time. nTs (ms)

Figure 3-12: Log-Magnitude and Real Cepstrum

constraints of the system, this is approximately a 15 ms window. Since it is assumed in this example that

the pitch has already been determined via the normalized cross-correlation algorithm, a pitch synchronous

approach is taken. Thus, an integer number of periods is selected for analysis as shown in Figure 3-11 along

with its power spectrum (DFT magnitude squared). Note that if the pitch is not already known, a windowing

function such as the Hanning window should be used to select a 10-15 ms section of voice. The next two

graphs in Figure 3-12 show the log magnitude of the DFT and the real cepstrum of the signal. Although it

is difficult to discern from this graph, the cepstrum has a large, negative impulse near n = 0 corresponding

to the glottal pulse and radiational load.

Since an approximation is made for the form of the glottal pulse and radiational load, these can be

effectively removed from the signal as explained previously. The approximation given in equation (3.27) is

assumed to be valid over the region f=[0,5000] Hz, and equal to its value at 5000 Hz for frequencies greater

than 5000 Hz. Figure 3-13 shows the spectrum of G(z)R(z) evaluated along the unit circle and its real

cepstrum. It is further assumed that the spectrum of G(z)R(z) evaluated along contours near the unit circle

are approximately the same as the spectrum of G(z)R(z) evaluated along the unit circle. This allows the
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Log Magnitude of Approximated G(z)R(z) on Unit Circlde (in d(B)

Radan Frequency (Normalized to pi)
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Time = nTs (ms)

Figure 3-13: Log-Magnitude and Real Cepstrum of the Glottal and Radiational Component

Cepstrum of x (xhat) with Formant and Fundamental Intormation Only

5 10
Time = nTs (ms)

Figure 3-14: Approximation of the Real Cepstrum with no Glottal and Radiational Component

following analysis to progress without the need to recalculate the G(z)R(z) spectrum for differing values

of the radius used in the chirp z-transform. Note that since G(z)R(z) is assumed to be known, several

potential chirp z-transform radii could be determined in advance, allowing the computer to calculate each

spectrum off-line. Thus, calculation of the G(z)R(z) spectrum (or its cepstrum, or its cepstrally smoothed

version) is not a concern for real-time analysis. However, each chirp z-transform iteration will require the

G(z)R(z) spectrum (or its cepstrum or its cepstrally smoothed version) to be subtracted from the actual

signal, and in this, there is a marginal delay due to the retrieval of the G(z)R(z) spectrum from memory

and its subtraction from the real cepstrum. Putting these issues aside, the G(z)R(z) spectrum is assumed

equal to its values along the unit circle for contours near the unit circle. Although difficult to discern from

the graph, the cepstrum of the glottal and radiational component (approximated g-r cepstrum) also has a

large, negative impulse near n = 0 similar to that in the real cepstrum of the signal. Subtracting the glottal

and radiational component from the signal yields the graph in Figure 3-14.

As per equation (3.34), the formant frequency information is contained in the cepstrum at times less than

the period of the signal. A simple cosine window is used to low-time filter out the samples of the cepstrum
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Cepstllly Smoothed Plot of Formant Peaks tom the UNl Cilde

Figure 3-15: Cepstrally Smoothed Log Spectrum

(with no g-r component) for small times,

1 nT, < 7r

lpf[n] = cos[r(nT, -r 7)/Ar] r71  nT, < 7-2 (3.50)

0 nT, > 72

where 72 is less than the period of the signal and 71 determines how quickly the window will cut-off. In this

example, r1 = 1.15 ms (i.e., n - 50) and 72 = 1.58 ms (i.e., n ; 70). Note that for the general case, the

higher the pitch frequency, the lower the pitch period and the lower the values of r1 and 7-2. Multiplying

equation (3.50) with the cepstrum (with no g-r component) yields the cepstrally smoothed log spectrum

shown in Figure 3-15.

What remains is to determine the formant frequencies using the previously described algorithm of [53].

Figure 3-16 shows a close up of frequency regions one and two. Considering the frequency range of the first

formant, there are two peaks: one at approximately 450 Hz and one at approximately 940 Hz. The peak at

935.5 Hz is larger, and so it is designated the first formant frequency. Recall that it has been shown through

experiment that the second formant should be lower than the first formant by between 8 and 27 dB [53].

Considering the second formant frequency region, the largest peak is also at 935.5 Hz, with no other obvious

peak. However, there appears to be a plateau near 1600 Hz. Thus, the frequency will have to be resolved

using the chirp z-transform, which is shown for all regions and regions 1 and 2 in figure 3-17. The CZT has

shown that the plateau is indeed a peak corresponding to the second formant frequency, f2=1686 Hz. Plots

for the third region from the unit circle and the chirp z-transform contour are shown in Figure 3-18. The

third frequency region has a very broad bump at around f=3074 Hz. However, a chirp z-transform analysis

shows this to be a double-peak. The third formant frequency is the lower of the two peaks, at f=2709 Hz.

The estimated formant frequencies are shown in Table 3.3.

Referring to Figure 3-6, the formant frequencies correspond to the vowel sound /A/ which is an 'aah'
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Table 3.3: Estimated Formant Frequencies

Formant Frequency I Frequency (Hz)
1 936
2 1686
3 2709

sound. The first and third formants are rather high, though, and this may indicate that the vowel has some

/a/ quality. There are several difficulties in determining a vowel based on formant structure which should

be noted. First, the correlation between formant frequencies and vowel sounds is approximate. Second,

the formant frequencies vary between age, gender, and pitch frequency. Third, singers can manipulate

their formant frequencies significantly while singing. Professional singers, in particular, can arrange their

formant frequencies such that the words they are singing become recognizable over a wide range of pitch.

It is known that, regardless of the particular piece of music being performed, the long-term average sound

pressure (LTAS) of an orchestra rises quickly from low frequencies to a peak at f=450 Hz, and then falls at

about 9 dB/octave thereafter. Speech and non-operatic singing styles have a similar LTAS to an orchestra.

When singing with an orchestra, many of the formants in the singer's voice may be covered or masked by

the frequency components of the orchestra. Thus, trained singers will often add or emphasize the higher

frequency partials in the 2000-3000 Hz range to 'cut through' the sound of the orchestra. In addition, singers

will often 'tune' their vowel formants by moving them up and down to match the harmonics of the music

being played. There are many such formant alterations commonly employed by singers which make vowel

estimation rather difficult in the Singing Tree application. In the end, changes in formant structure were

used in the musical mappings rather than the specific vowel. In other words, whatever the formant structure

of the participant at any time, if it stays relatively constant, then the participant is maintaining her vowel. If

not, then the vowel is assumed to be changing. These vowel dynamics proved useful in creating the musical

mapping algorithms.

3.2.6 Alternative Methods of Pitch Estimation

The normalized cross-correlation algorithm used for pitch estimation in the Singing Tree is an efficient and

reliable means to extract the pitch from a monophonic signal. It also naturally leads to the concept of

noisiness/pitch ambiguity and timbre. However, there are other methods to determine the pitch frequency

of a signal, two of which are described below. While these methods are not explicitly used in the Singing

Tree, they are based on the CZT and the cepstrum, and therefore could be implemented without significantly

changing the system architecture.



Pitch Estimation via the Chirp z-Transform

The two interesting characteristics of the chirp z-transform discussed thus far are its utility to calculate

the z-transform along an arbitrary circular or spiral contour anywhere in the z-plane, and to do so at an

arbitrarily large number of points. While the former allowed the resolution of formant frequencies which were

indistinguishable from the unit circle, the latter allows one to effectively calculate the DFT of a signal along

a segment of the unit circle using an arbitrarily large number of points. In the discussion of the benefits of

pitch-synchronous analysis, the issue of frequency tolerance between samples was the major factor that led to

unreliable results when peak-picking the DFT of a signal to determine a frequency in real-time applications.

Since the DFT implies a full-spectrum of equally spaced samples of the DTFT, the only option one has to

reduce the inter-sample frequency tolerance is to increase the number of sample points. The CZT, on the

other hand, has an additional degree of freedom; the CZT allows one to shorten the frequency spectrum over

which one samples the DTFT in addition to increasing the number of sample points, offering two means be

which to reduce the frequency error associated with peak-picking.

The method for pitch estimation using the CZT is to first define the desired frequency accuracy required

in the estimation and the anticipated frequency range of the incoming signal. In the case of the Singing Tree,

the the frequency range is simply that of the human voice, or approximately 60 Hz to 1600 Hz. Equation

(3.18) showed that a frequency error of approximately 1 Hz is marginally perceptible at a pitch of 100 Hz.

Thus, a tolerance less than 1 Hz is a reasonable goal. It was shown that DFT's with a very large number

of point would be required meet the 1 Hz goal, let alone a tighter constraint. The solution there was to use

pitch-synchronous frequency analysis, but that assumes the pitch was known a priori . The solution here is

to use the CZT.

Defining f2 and f, to be the fmax and fmin of the frequency range respectively and m to be the number

of sample points, one can write the incremental evolution of the contour given in equation (3.41) as

W = WoeWo = WoeJ f2- , Awo =f2-fl (3.51)

which emphasizes the advantage of the CZT over the DFT. Comparing the CZT and the DFT (i.e., setting

Wo = 1), the incremental frequency of the CZT compared to the DFT can be written

(2_r ff2 -fl'\ (f2 - fl) (f2 - f l) E[0,1]
AwczT = js ) = AWDFT FE [, 1] (3.52)(m) F, F, F,

which shows that, for a given number of sample points, the CZT will always have a smaller frequency

tolerance than the DFT. The trade-off is that the CZT covers a smaller frequency domain. For the f2 and

fi over the assumed vocal frequency range, the number of points necessary to achieve a frequency tolerance

Af of 1 Hz or less is



(f2 - fl)m > ( - fl) m 1540pts. (3.53)
Af

Thus, choosing 1600 points, or the next power-of-2 at 2048 is reasonable. Remembering that the real-time

constraint implies an input signal segment no longer than 15 ms, a signal of sampling frequency 44100 Hz

will have fewer than 661 points. To compare the DFT to the CZT under the condition of an equal number

of sample points, the remainder must be zero-padded in the DFT case. Using a 660 point Hanning window

to extract three back-to-back sections of 660 samples of the signal shown in Figure 3-11 (and not assuming

pitch-synchronous analysis), the plots in Figure 3-19 compare the DFT and CZT for three sections of signal.

The frequency estimates of the three sections are 288.6 Hz, 289.3 Hz, and 291.1 Hz. It is clear that the

author does not have perfectly consistent pitch, but the running average of the CZT pitch frequency estimate

is f=289.7 Hz, which is within tolerance of the long-time estimate of 289.9 Hz. As a comparison, the running

average of the DFT pitch frequency estimate is f=287.1 Hz, which is an error of about 20 cents: This is a

marginally detectable frequency error for most people. The fact that 290 Hz falls approximately halfway

between the DFT sample points of 279.9 Hz and 301.5 Hz helps the DFT approximation. Since most people

will naturally shift frequency slightly around their desired pitch when they sing, this 'frequency dithering'

between the two nearest DFT sample points yields a result which is nearly correct for this case. However,

for frequencies away from the mid-point between DFT samples, for example, a pitch of 285 Hz in this case,

the DFT estimate will be very close to 279.9 Hz, which is a large error (about 35 cents). Thus, the CZT

consistently gives precise frequency estimates, which makes it a valuable tool for determining the pitch of a

signal over short time (i.e., real-time) scales.

Pitch Estimation via the Cepstrum

Equation (3.34) revealed that the cepstrum can be separated into two components: a short-time component

which contains the formant frequency, glottal pulse, and radiational load information; and a long-time

component which contains period information. Referring to Figure 3-20, there are peaks located at the

fundamental period of the signal and multiples of the period thereafter with decreasing amplitude. So long

as the the log magnitude of the DFT of the signal is sufficiently sampled, the cepstrum will not have any

aliasing over these first few periods. Picking the peak or peaks of the first few periods and estimating a

fundamental period is another method of estimating the fundamental frequency of the signal.

Figure 3-20 displays the cepstra of the three sections of the signal shown in Figure 3-19 and considered

in the CZT example. The estimated frequencies for the three sections are 288.2 Hz, 290.1 Hz, and 292.1 Hz

respectively. The running average of the three sections is 290.1 Hz. The precision of the cepstral estimation

is similar to that of the CZT.
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3.3 Music Generation, Interpretation, and Mappings

The next topic presented is the music generation algorithm, Sharle, developed by John Yu [36]. Although

Sharle is the final component in the Singing Tree architecture (voice is analyzed, then the parameters are

interpreted and mapped, then Sharle is driven using these mappings), it is presented before interpretation and

mappings, because its fundamentals must be understood before the mapping algorithms can be developed.

3.3.1 Sharle

Sharle is a sophisticated MIDI generation algorithm written in C++ which composes music in real-time. It

is an expert-based system, which simply means that it follows a set rules which are established by an 'expert'

and assumed to summarize the fundamental operation of the system [36]. The rules are applied to musical

seeds through several levels of data hierarchy. Musical decisions are made randomly, but the set of musical

options from which Sharle can choose are constrained through probabilistic weighting. Readers interested

in the specifics are referred to [36]. What follows is a summary of the pertinent concepts that were required

to design the Singing Tree.

Sharle was first introduced as a user-controllable music generation application. The user would adjust

various musical parameters, and the software would generate music with these user-defined characteristics.

In [36], the algorithm is described as a cross between an instrument and a radio. An instrument is described

as any interactive system which generates or transforms music via a constant input from the user. It is an

example of a complicated control system in which the user is typically highly skilled. While an instrument

offers very precise control of its output, it cannot fundamentally change its functionality. A piano will, for

the most part, sound like a piano whether the user is playing jazz or classical. On the other hand, the radio

is essentially independent of the user. The user merely turns it on and selects the music from the various

stations available. In this, there is a style parameter that the user controls. The user does not have low-level

control of what is broadcast on a particular station, but she can change stations. Sharle is an attempt to

bridge these two extremes. It offers high-level control, similar to a radio, but also allows control of certain

lower level functions. In addition, Sharle allows one to shift, to an extent, the emphasis of control between

the two extremes. The Singing Tree takes vocal parameter information and interprets it such that it can be

used to meaningfully control the music generation parameters.

Data Hierarchy and Music Generation Parameters

Sharle's main objective is straightforward: for a particular instrument, decide which notes to play and which

notes to stop playing at any given moment [36]. To make this decision, there is a hierarchy of data objects

which reflect various characteristics of the music from lowest level objects (such as notes) to the highest level

objects (such as sections).

The lowest level object is the MIDI Note, and it is controlled by the duration parameter. The next level

is the Line. This is simply a list of notes in the order they are to be played. At the same level as Line is



the Rhythm object. This is a sequence of note-on events to be played by a given line. While not required

of a Rhythm object, periodicity within and between rhythm objects creates a sense of continuity. Rhythm

is controlled using the tempo, density, length, and consistency parameters. Also at the same level, is the

Layer object. A Layer is analogous to a specific instrument in an ensemble. It contains the characteristics of

the instrument's player, and determines how successive lines will be played. The parameters which control

Layer are consonance, direction, pitch center, and instrument. The next higher level is the Compound Line,

which represents the vertical arrangement of individual lines (cf., Layer represents the horizontal or temporal

arrangement of lines). Next highest in the hierarchy is the Stanza, which is a collection of related compound

lines. Within a Stanza, compound lines are repeated for unity, and are only re-generated for a new Stanza.

This degree of unity is controlled by the cohesion parameter. The highest level object is the Section, which

contains the Stanzas and is controlled by the scale, key, cohesion, and change parameters. In addition,

there are other designations, such as cadence, which act to incorporate conventional musical trends and

associations into the algorithm by working within one of the levels of the hierarchy. For example, cadence

will slow the tempo, increase the velocity of each note attack, and end on a tonic note to indicate the end of

a musical idea.

The parameters which control Sharle are listed below with a brief description of their function. This

represents the 'palette' of musical controls that were available for use in designing the mapping algorithms

[36]. The parameters are divided into two groups: general parameters and Layer-specific parameters. The

general parameters are:

Cohesion Cohesion regulates unity vs. variety at the Line level. Increasing cohesion favors unity, while

decreasing cohesion favors variety. It is used in controlling the Line repetition, Line choice, pitch offset

between Lines, amount actually copied when a Line is copied, rhythm adjustment, and Stanza length.

Scale Scale is a discrete control. There are six scales which can be selected: 2 Major Scales, 2 Minor Scales.

and 2 Pentatonic Scales which define the 12 tones in the particular scaling. The tones of each scaling

are weighted 1-5 according to the likelihood of interval consonance as measured relative to the tonic.

The relationships are: 1 = Tonic, 2 = Frequent, 3 = Common, 4 = Occasional, and 5 = Chromatically

Related.

Tempo Tempo is the speed at which notes are produced.

Rhythm Consistency The higher the consistency, the more likely it is that the note attacks will fall at

regular intervals. The lower the consistency, the less likely this will happen.

Rhythm Density Density determines the likelihood that a given attack is inserted at an available interval.

As density increases, the probability that an attack is inserted increases. As density decreases, this

probability goes down.

Rhythm Length Rhythm Length determines the number of available slots in a Line. Longer Lines slow



down the rate of musical progression given a constant Tempo. Rhythm Density and Rhythm Length

determine how many notes are played for a given Line.

Change Change is the rate of self-mutation. As change increases, the probability that the current Stanza

will end in a cadence and a new set of parameters will be used for the next cadence increases.

The Layer-specific parameters are:

Consonance Consonance determines the probability of hearing inharmonic notes. As Consonance increases,

the probability of hearing inharmonic notes decreases. As Consonance decreases, this probability

increases.

Pitch Center Pitch Center is the 'center note' around which most notes will be generated. It affects the

pitch range of the generated music, helps determine the note at the end of a Line, and also helps

determine the starting note of the next Line.

Instrument Sets the particular instrument that is played by a particular Layer.

Rhythm Modification Rhythm Modification modifies the primary rhythms generated using the general

parameters: consistency, density, and length. There are four modifications of primary rhythm. The

first is the primary rhythm as generated. The second modification inserts new attacks in the interval

between the original attacks of the primary rhythm. The third modification is a mathematical beat

representation, which results in a regular beat pattern, and the fourth modification is a deterministic

pattern which affects periodicity of the primary rhythm.

Sharle is a superior music generation algorithm, comparable in quality to Microsoft's recently released

Microsoft Music Producer [61]. Sharle's strengths lie in its approach to composition; Sharle starts with

the most fundamental musical elements, the melodic and rhythmic 'seed', and incrementally builds the

music from motif to musical piece. There are numerous parameters which allow control of the composition

at the various hierarchical levels. Furthermore, the algorithm uses 'expert' rules, which help to maintain

musicality in the face of sudden changes in control inputs. A weakness of Sharle, in its original form, was

the interface. One used a computer mouse to adjust parameters, one at a time. With such a large number

of control parameters, musically interesting changes in composition can only occur when several parameters

are adjusted simultaneously in an organized and interdependent manner. The Singing Tree allows a means

by which participants can adjust multiple control parameters in Sharle simultaneously.

3.3.2 General Interpretation and Mapping Objectives

Given the full 'palette' of control parameters, there are two philosophies of approach to address the mapping

and interpretation control problem. One could try to control each individual parameter, directly or indirectly,

analogous to putting a machine together part-by-part. This was determined to be a far too difficult method



for a number of reasons. First, and foremost, the musical 'gesture' or 'intention' contained in the human voice

is not obvious in any context other than singing. Subtle analogies between vocal volume, pitch direction, etc.,

and meaningful musicality could be (and ultimately were) made, but the amount of information contained

in the voice was not deemed sufficient to, for example, compose a piece of music from the ground up.

Furthermore, developing a mapping for each control parameter would be very complicated. The author

believes that the Singing Tree is not a case in which 'the more the merrier' applies. As it turned out, a few

vocal interpretations gave a great deal of control information and, thereby, an identifiable and interesting

experience. Had too many parameters been used, the control of the system would likely have been bogged

down in conflicting arguments, resulting in a rather bland and mediocre musical response. Analogously,

in mathematics, an over-determined system of equations will often have no explicit solution, and the only

recourse is to use approximation methods. The second philosophy is to initiate Sharle into a certain playback

mode, modify its output in a coarse manner to match the state of the singing, and then perturb the output

in a fine manner to reveal the subtle changes in the vocal quality. This was a successful approach, because

it constrained the objectives of the mappings. The potential pitfalls were 'discontinuities' in the musical

experience due to flipping between coarse adjustments. Keeping this problem in mind, the interpretation

and mapping algorithms were successfully designed to control Sharle in a way that would eliminate these

'discontinuities'.

The goal of the Singing Tree, as used in the Brain Opera, was to sing a single note as purely as possible.

Doing so was to result in a beautiful 'aura' of arpeggiation, and failure to do so was to result in a gradually

more chaotic, inharmonic response. Technically, the response was intimately related to the state of the singing

voice, and the first objective was to determine what 'states' were meaningful. Artistically, the response was,

again, intimately related to the state of the voice, but the first objective was to determine what instruments

would play what type of music given the particular 'state' of the voice. Thus, interpretation can be considered

a technical issue, and mapping an artistic issue, even though the two are truly inseparable.

Starting with the interpretation issues, the DSP toolkit [30] provided pitch, noisiness, brightness, ampli-

tude, and, later, formant information. The interpretation of pitch was simple; the first pitch a participant

sings is the intended pitch, hereafter referred to as the 'basic pitch' or 'tonic pitch'. Every subsequent mea-

surement of pitch would be compared to the basic pitch to determine the pitch stability. It was found that

throwing away a small At time interval at the beginning of a participant's initial vocal sample greatly im-

proved the experience by accounting for odd transients or slides into the intended pitch. The fact that pitch

changes over time, even when a person is intending to sing purely, was shown in Figure 3-19 for the author's

vocal sample. While one could strictly map every variation in pitch to a control parameter, this is a rather

naive approach. Algorithmic pitch estimation always involves a tolerance, or error. Thus, a small variation

of Af around the basic pitch was allowed. However, the manner in which pitch was changing around the

basic pitch was deemed very interesting. Thus, the change in pitch, or 'pitch instability', the change in pitch

over time, or 'pitch velocity', and the change in pitch velocity over time, or 'pitch acceleration', were used



as an interpretation of musical meaning. For example, if the pitch instability changes in a periodic manner,

then the participant is likely singing with vibrato, which, although contrary to the goal of constant pitch,

should not be treated in the same manner as a person who's pitch instability is erratic. Or, if pitch velocity

averages to zero and is of relatively small magnitude at any given time, the participant is likely doing a good

job at maintaining pitch; she is simply wavering naturally. The noisiness parameter was considered to be

a measurement of how well the Singing Tree knew the participant's pitch at any given time. Thresholding

the noisiness parameter allowed the Singing Tree to know when to start mapping. Otherwise, it would be

acting on erroneous information. Brightness was a parameter that was not used individually. Rather, it was

considered a supplement to the formant information. In the end, Brightness was measured, but not mapped.

Amplitude was used to dictate the volume of the response. Finally, the change in formant frequencies fl and

f2 was assumed to be an indication of change in vowel structure. It should be noted that most parameters

were defined over the range of MIDI values, i.e., [0,127].

The mappings that were developed were based largely on intuition and supposition. A model would

be established a priori for each individual parameter-interpretation matching, but it was experimentation

which dictated the manner in which the mappings would be utilized. Starting with energy, the Singing Tree

was either being used, or it was not. When nobody was using the Singing Tree, it was set in an incoherent,

'sleeping' state meant to resemble a sleeping brain with random thoughts passing about; quiet sounds, but

with no clear musical goal. Artistically, the author believed it was very important to have the Singing Tree

always singing. Many people consider interactivity as an on-off switch: I sing to you and you sing to me.

However, the Singing Tree successfully demonstrated that an interactive experience can and should interact

with its environment, even if no particular participant is the focus of that interaction. The artistic goals of

the sleeping state are

* Instrumentation should be bizarre, synthesized, 'spacey'.

* Voices from the chorus should sing the frenetic motifs.

* Tempo should be slow, with little consistency in rhythm; it should sound as if instruments are playing

at random, but in a sporadic manner (i.e., not in a dense manner).

* Pitch should be inharmonic, or better stated, there is no tonic for reference. However, the choice of

instrumentation is such that many instruments are not pitched in any real sense. Those that are, such

as the voices, are fundamentally inharmonic.

* All video should be in the initial state (front view of a sleeping woman's head, side view of a sleeping

woman's head, side view of a hand holding a flower bulb).

When there was an energy value, the Singing Tree was put into the 'awake' state, at which time it would await

further mappings. Assuming the participant is singing her pitch purely, it was decided that the following

response should happen.



* A string should quietly hold the base pitch behind all other musical events.

* Another string should always match the present pitch the participant was singing (which is essentially

the same as the base pitch in this case).

* Bassy strings should round out the low-end of the sound in tonal consonance.

* Woodwinds and flutes should arpeggiate up and down the register in tonal consonance with a pulsating

and consistent rhythm.

* Voices from the chorus should sing the basic motifs (defined in Section 2.4.2) in consonance with the

participant.

* Video should progress forward through the video frames at the standard 30 frames/second.

The higher timbre of the woodwinds and the bassy strings give a broad, expansive feel to this musical

experience. It is angelic and calm. Finally, if the participant's pitch varied outside the allowable range, the

following response was in order.

* A string should quietly hold the base pitch behind all musical events.

* A string should always match the present pitch the participant was singing (which is now different

than the base pitch).

* Instrumentation should gradually change to brassier, more percussive sounds.

* Rhythm and tonality should gradually become more loose and less coherent.

* Voices should sing the intermediate motifs with gradually less coherence.

* Video should regress through the video frames.

Given the above phenomenological outline of how the interpretation and mappings worked, the following

contains the specific implementations for the most important mappings.

3.3.3 Defining Pitch Instability

The pitch instability is a measurement of how poorly the participant is maintaining the desired goal of the

system, a steadily sung pitch. The first note a participant sings into the Singing Tree is the basic pitch.

Thereafter, all deviations in pitch are measured with reference to the basic pitch. Pitch instability is the

difference between the current pitch the participant is singing and the basic pitch (i.e., delta pitch). The

farther one is from the basic pitch, the larger his pitch instability. The basic pitch is maintained until the

energy of the signal drops below a small threshold level for approximately two seconds. This means that

the participant has stopped singing for a reason other than to take a breath. In other words, the two second

pause was included to allow a participant to take a breath without the Singing Tree 'resetting'. Even if the



Table 3.4: Instrument Groups Used in the Singing Tree

Group Name Program Number and Instrument Name

Airy Sounds 26 Synth Caliope 32 Fluty Lead
Ins-group 1 123 Baroque Flute 139 Horn and Flute with String
Airy Vocals 200 I-OO 203 V-3
Vox-group 1 206 I-OO Reverb 209 V-2 Reverb

212 I-OO Reverb-lots 213 I-Ahh Reverb-lots
Percussive Sounds 10 Dyna E-Piano 171 Multi Marimba

Ins-group 2 176 Mallatoo
Miscellaneous Sounds 29 Hyper Guitar 132 Trumpet Section

Ins-group 3 153 Fuzz Lite 156 Timer Shift
Miscellaneous Vocals 210 VI-1 Reverb 211 VI-2 Reverb

Vox-group 3 216 VI- Reverb-lots 217 VI-2 Reverb-lots
Harsh Sounds 15 Big PWM 21 New Shaper

Ins-group 4 45 Prophet Sync 67 Mark Tree
93 Cee Tuar 129 Almost Muted

153 Fuzz Lite 161 PPG 4
197 Doomsday

Effects 62 Rhythmatic 157 Aurora
Ins-group 5 164 Spaced 172 Wave Power

192 A No Way CS 193 Environments
194 Gremlin Group

Brass Instruments 127 Miles Unmuted 131 Sfz Bone
Ins-group 6 135 Orchestral Brass 143 W Tell Orchestra

participant takes a deep breath which lasts longer than two seconds, she will very likely commence singing

once again on the same note, again, if the intention was simply to take a breath. Regardless of intentions, if

the two second limit is up and the participant sings a new pitch, then this becomes the new basic pitch and

all pitch instability is measure with reference to this basic pitch.

3.3.4 Instrumentation

The instrumentation of the Singing Tree is divided into seven groups, representing the various styles and

timbre of instrument to be utilized. A summary of the instruments along with their K2500R program

numbers (as used in the Singing Tree) is given in Table 3.4. Each group name characterizes the type of

instrument within the particular group.

These instruments were chosen by the author considering the various modes of the Singing Tree. For

example, to the author, the response for singing purely (i.e., no pitch instability and no noisiness) should

consist of strings and woodwinds mostly. The reason for this is, simply stated, that these instruments best

fit the description of 'angelic feedback'. Listening to all the sounds on the K2500, the Synth Caliope, Fluty

Lead, Baroque Flute, and Horn and Flute with String provided an 'angelic instrumentation'. Originally, the

horn sound was not included, but the response without the horn proved to lack a 'majestic' character that



the author felt should be there. However, horn alone was too up-front. The Horn with Flute and String

was an appropriate balance between 'majesty' and 'reserve'. Similarly, the remaining seven categories of

instrument were chosen by the author, considering the desired instrumentation of the playback. The Airy

Sounds and Airy Vocal groups were chosen primarily for the 'angelic' playback. The Percussive Sounds,

Miscellaneous Sounds, and Miscellaneous Vocals were chosen as 'transition' instruments. Instruments from

these groups would be included in the playback 'gradually' as the pitch instability became greater. The

Harsh Sounds, Brass Instruments, and Effects were used for significant deviation from the basic pitch (i.e.,

the most chaotic and agitated response). The sleeping state uses the Effects and the Frenetic Vocals. Note

that the Frenetic Vocals are not listed above, because they are only used in the sleeping state, and therefore

are not mapped by the voice (but, rather, by the absence of voice).

The selection of an instrument group for playback was dependent on the selected tolerance of the system.

There were four levels at which one could use the Singing Tree. Each level defined the meaning of pitch

stability differently, resulting in a difficulty level that ranged from easy to most difficult. Given a pitch-

instability (PI) for a given vocal signal which is defined over the range of MIDI values [0,127], one can define

an initial pitch stability measurement, W.

W = 127 - PI (3.54)

Based on this initial measurement of the pitch stability, and defining f to be the reliability based on a running

average of the noisiness parameter normalized to values [0,1], the following mapping algorithm scaled the

pitch stability depending on the difficulty level.

(3.55)

In Difficulty 1, the bonus variable is scalable to make the mapping easier or harder. In Difficulty 2, the

reliability f is itself scaled before it is used to scale the pitch stability W. Given this new value for the pitch

stability, W', the instrumentation can be determined via the following algorithm. First, the instruments and

vocal channels are considered separately. Considering the dynamic instrument channels, increment through

each channel number, c, which is using a dynamically selected instrument. In the Singing Tree, channels

1-2 were dedicated to the two string sounds Big Strings (#163) and Big Strings with reverb (#218). These

Difficulty 0 W' = 127 always perfect

int 10.5127W bonus = a number
Difficulty 1 W' = int[ +127 -bonus] bnus = a number easy

S127 if W' > 127

Difficulty 2 f' 1.0 
f > 0.25

4f otherwise

W' = f'W difficult

Difficulty 3 W' = fW most difficult



are used respectively to hold the basic pitch and follow the participant's pitch via pitch bend. Channels 3-9

were used for instruments which could be dynamically updated. Using a random generator, establish a 75

percent probability that an instrument on this channel will be re-assigned via the first algorithm, and a 25

percent probability that the algorithm will be re-assigned via the second algorithm. Then, increment to the

next channel.

75% if (W' + 2c) < 64 then Ins-group = 4 Harsh Sounds

else if (W'+ 2c) < 108 then Ins-group = 3 Miscellaneous Sounds

else Ins-group - 1 Airy Sounds

25% if (W' + 2c) < 50 then Ins-group = 5 Effect

else if (W' + 2c) < 70 then Ins-group = 2 Percussive Sounds

else Ins-group = 1 Airy Sounds

(3.56)

The vocal instruments are all set using the same algorithm. Here, d is a number defined such that 9 + d

is the channel on which the voice is played. The algorithm allows voices on channels 10-16, but, due to voice

stealing phenomena, typically channels 12-16 are turned off at the K2500R.

if (W' + 2d) < 108 then Vox-group = 3 (Miscellaneous Vocals)

else Vox-group = 1 (Airy Vocals)
(3.57)

A synopsis of the instrumentation algorithm is as follows. Channels 1-2 are dedicated to the strings which

hold the basic pitch and follow the participant's voice; these are never changed. Channels 3-9 are assigned

instruments dynamically, based on the stability of the participant's pitch and the difficulty level (which is a

function of reliability). The instrument on each channel has a 75% chance of being assigned via one algorithm,

and a 25% chance of assignment via the other algorithm. The assignment is a function of channel increment,

c, and so each channel has a slightly different assignment range. This helps to prevent discontinuities between

instruments of different groups, which may have markedly different timbre and styles. The vocal channels

are all changed via the same algorithm, and are a function of d, where d + 9 is the channel on which the

voice is found.

3.3.5 Dynamic Parameter Mapping and Control

Having assigned the instruments, the algorithms playback instruments can be assigned using information

from the voice. However, the style of music does not change. The next mapping is designed to change the

consonance (as defined in Section 3.3.1) of the playback as a function of the pitch stability. Continuing

with W', the pitch instability as defined by the difficulty level, the following mapping is used to assign the

consonance parameter C over the range [0,127].



if W' < 64 then C = 0

else if W' > 110 then C = 100

else C = int 127 W-64110-64)

(3.58)

An interesting implementation here is that C is a maximum at W' = 110. The background to this decision

lies in the following logic. Originally, the consonance was scaled linearly to 127. However, for very high

consonance, the playback becomes rather dull; it is far too consonant. Scaling linearly to some maximum

value would be one solution, but consider the following. The goal of the participant is to sing purely at the

basic pitch. No instructions are included with the Singing Tree, and, except for a brief introduction, most

participants are discovering the experience as they sing into the Singing Tree. Thus, it is a 'responsibility'

of the instrument to lead the participants to the basic pitch, or at least clarify the goal. The reason that the

consonance is not linearly scaled to 100 as W approaches 127 is to help the participant identify the goal. As

a participant starts to deviate from the basic pitch, the consonance will actually rise to help her hear the

basic pitch more clearly. With her bearings straight again, she begins to slide back towards the basic pitch,

much like a damped pendulum returns to its equilibrium position. This, in turn, causes the consonance

to drop slightly and provide a richer musical experience. The participant hears the richer response and

maintains the basic pitch. This is one of the more subtle examples of the reward-oriented response provided

by the Singing Tree. One might question why the participant does not stay at the pitch which causes a

consonance of C = 127. The answer lies in the use of the Big Strings to both follow the participant's voice

and, simultaneously, play the basic pitch. If the participant does sit on the pitch which is far enough from

the basic pitch to result in a consonance of C = 127, the result is a sound in which most instruments, the

voices, and one of the Big Strings are played back on the basic pitch, while the participant and the other

Big Strings are at a pitch which is slightly out of tune. Thus, it is easy to hear the dissonance, and yet the

overwhelming majority of instruments are playing the basic note, 'calling' the participant to return. In other

words, C = 127 stops the harmonic embellishment and accentuates the pitch discrepancy between the basic

pitch and the participant's pitch.

The next mappings are those relating pitch velocity, scale, and rhythm consistency. Given the pitch

velocity (PV) and rhythm consistency (RC) scaled over [0,127], a tight constraint of PV < 5 matched well

the concept of a purely sung pitch. Thus, the following algorithm was used to in cases in which PS > 5.

if PV > 5 then scale = minor/pentatonic

RC = 127/PV (3.59)

else scale = major

RC = 127

In other words, for pitch velocities greater than 5, the scale would change to either minor or pentatonic, and

the rhythm consistency would decrease. Thus, even if a person is hovering close to the basic pitch, if she is



moving around with a high pitch velocity, the response will change key and have a less consistent rhythmic

structure. An analogous mapping was made for formant velocity, defined as the change in formant frequency

over time. Surpassing a formant velocity threshold would cause a new scale to be played and a decrease in

rhythm consistency.

The formant structure was interpreted in a simple manner: if the ratio f2/f 1 were high, then voices

singing an 'ooh'; if the ratio were low, then the voices would sing an 'aah'. While this is a dramatic

simplification of formant analysis, the goal is not particularly to match the vowel of the singer. In reality,

one often hears a chorus singing 'aah' behind a soloist who may be singing any number of vowels. Rather, the

objective here is to simply recognize variation in the participant's vowel structure and respond accordingly.

Thus, when the participant changes vowel structure significantly, the chorus will change as well. Note that

the formant frequencies are maintained as running averages (as are many of the vocal parameters) to prevent

instantaneous changes from creating discontinuous flip-flops between the chorus singing 'aah' and 'ooh'. The

algorithm is as follows.

if f2/fl > 70 then chorus vowel = ooh

else if f2/fl < 58 then chorus vowel = aah

else no change

(3.60)

Another mapping was based on the thresholding of the running average of the pitch. If the pitch stayed

constant within a small threshold A, then the Layer object was told not to change. However, once this A

was surpassed, a call is made to the Layer object instructing a new layer to be generated.

The Singing Tree was originally designed to supply vocal samples to the performance space. Unfor-

tunately, this function was never realized. This was actually a blessing in disguise. By requiring vocal

submissions from the Singing Tree, the Singing Tree could only send samples of voices that were singing at a

MIDI note number pitch (i.e., a key on the piano). Since most people do not have perfect pitch, this meant

that a participant would not be able to sing any note into the microphone and expect a perfect match. In

other words, a participant could, of course, sing any note, but the Singing Tree would have to select the

closest MIDI note to the participant's pitch as the basic pitch. The consonance algorithm would lead the

participant to the MIDI note, but a participant with a good sense of pitch would be able to realize that the

basic pitch was slightly different than the initial pitch she had sung. However, this constraint was removed

before the Lincoln Center debut, and the Singing Tree was adjusted accordingly. To allow any pitch to be

sung, Sharle kept account of how far the initial pitch (i.e., the basic pitch, but not a MIDI note number)

was from the nearest MIDI note number. Sharle then sent out MIDI commands to the K2500 to pitch

bend the playback music up or down the difference. Another consideration was the modulo nature of pitch;

considering semitones, octaves are modulo 12. Thus, people were rewarded for singing not only the basic

pitch, but any integer octave away from the basic pitch.



The Role of Probability

Sharle is a music generation algorithm which uses randomly generated numbers to achieve probabilistic

playback. This means that the mapping algorithms put Sharle into a specific 'probabilistic' state, but its

behavior once it is in that state is random. This serves to present a consistent, yet non-deterministic response.

Considering an example, singing purely (with no pitch instability and no noisiness) will put Sharle into a

state in which the consonance is C = 100. This means that the highest probability for playback note is

assigned to the Tonic Relationship, with a smaller, but still significant, probability assigned to the Frequent

Relationship and the Common Relationship, marginal probabilities assigned to the Occasional Relationship,

and nearly zero probability assigned to the Chromatic Relationship (see 'Scale' in Section 3.3.1). First, Sharle

will randomly (probabilistically) choose the type of Relationship that will be played. Sharle then randomly

chooses the particular note from the set of notes within that particular Relationship. For example, if the

Tonic Relationship is selected and the playback scale is the major scale, then only the tonic of the particular

scale and its octaves can be selected. For the Frequent Relationship, the 3rd, the 5th, and their octaves are

candidates for selection. Note that the 'expert knowledge' of the system and other control parameters may

further constrain the selection of the particular notes within a given Relationship set, which is yet another

layer of probabilities. What the example demonstrates, is that the role of the mapping algorithms is truly

perturbative, making explicit determination of an output as a function of its input impossible. One could

construct an instantaneous stochastic representation for the output of the system at some time, t, if and

only if one knew all the inputs and the current state of the system.

3.3.6 Examples of Operation

The following are examples of the Singing Tree's operation in three modes: the sleeping mode (high pitch

instability), the pure pitch (no pitch instability and no noisiness), and the harsh mode (marginal to moderate

pitch instability). Be advised: the description of any mode can only indicate the parameter values and the

likely behavior of the system, since, ultimately, the music Sharle plays is randomly generated.

Sleeping Mode Example

The sleeping mode is completely 'composed'. Since nobody is singing into the microphone, Sharle is put

into a particular mode, characterized by the control parameters being set to certain values, and allowed to

randomly generate music. The cohesion parameter is set to zero, which makes the output sound inharmonic.

Density is also set to a very low value of five, and the rhythm length is set to a moderately high 32. The

volume is set to 45. The instrumentation is selected randomly from the Effects and Frenetic Voices. The

result is the desired 'sleeping brain' mode in which strange voices are played sporadically at random times

with low volume.



Pure Mode Example

In the Pure case, the pitch instability (PI) and noisiness of the signal are zero. As a result, the scaled pitch

stability, W', is equal to 127 and is independent of the difficulty level. This implies that all instrumentation

will use the Airy Sounds and Airy Vocals. The Consonance parameter, C, is equal to 100. As described in

Section 3.3.4, C = 100 implies a high probability of hearing notes from the Tonic, Frequent, and Common

Relationship sets, with lower probabilities of hearing notes from the Occasional and Chromatic Relationship

sets. The pitch velocity is zero, implying the scale is major and the rhythm consistency, RC, is 127. Thus,

the rhythm has a very high probability of falling at regular intervals, and generated rhythm patterns will tend

to be repeated. For example, an arpeggiating phrase may contain 8 sixteenth notes, and this same phrase

is repeated several times before being regenerated. Depending on ratio of the two formant frequencies, the

vocal samples would be either 'aah' or 'ooh'.

The parameters mentioned up to this point perturb Sharle in its Pure Mode setting. In other words, the

remaining parameters are set to appropriate values and held constant. These include a rhythm length of 20,

which constrains the length of the Line. The rhythm modification parameter is set to one, which merely

takes the primary rhythm as generated (i.e., no modification). Rhythm density is set at an established level,

which is slightly different for the various MIDI channels as a source of variety. Note that while the density

remains the same for a given channel, the instrumentation on that channel can change.

Harsh Mode Example

In this mode, the changes in perturbation parameters are few, but significant. The PI and noisiness have

values now such that, depending on the difficult level, scale W'. This implies that the instrumentation

will be selected from the Miscellaneous Sounds, Miscellaneous Vocals, Harsh Sounds, Effects, Percussive

Sounds, and possible the Airy Sounds. The Consonance parameter, C, is likely to be less than 100, and the

probability begins to even out among notes of all Relationships. If the participant is changing pitch as well,

then the pitch velocity will likely exceed 5, and the scale will change, along with the rhythm consistency.

The result is a sound characterized by inconsistent rhythms, increasingly likely inharmonicity, and agitated

instrumentation.

3.3.7 Discussion of Design Methodology

At the risk of repetition, the author summarizes the design methodology of the Singing Tree mappings and

the results. The design of the Singing Tree mappings was largely experimental in nature. This does not

imply, however, that the author and John Yu made wild trial-and-error guesses that eventually paid off.

Rather, like an experimental scientist, the 'black-box' hypothesize, test, re-hypothesize methodology was

employed. The fundamental assumption was that the various control parameters were independent of each

other, and their effects on the output were also independent. While there is really no formal justification

for this approximation, intuitively it is reasonable to assume. For example, the notion that changing the



volume parameter will affect the volume and not the pitch of the output is obvious. The issue becomes

sketchy, however, when choosing instruments of different instrument sets. The Harsh set instruments, on

the whole, tend to be louder than those of the Airy set. Thus, this illustrates a case in which instrument

selection changes both the instrument (which it should do) and the output volume (which it should not do).

It is merely a case given for the purpose of counterexample to the assumption of independence, and it is not

intended to make a significant impact on the reader. Independence was assumed.

Given independence of control parameters, one can analyze and adjust them individually. Considering a

particular mode of the Singing Tree, the Pure Mode, and a parameter to investigate, Consonance, one can

first form a hypothesis and then experiment. For example, hypothesize that Consonance values greater than

110 are acceptable for the Pure Mode, while they are increasingly unacceptable as Consonance drops from

110 to 0. The hypothesis regarding the behavior of Consonance follows directly from its definition in Section

3.3.1. However, its specific effect on Sharle's output, what it sounds like, how quickly the output changes

with changes in C, etc., are only clarified through experiment. One listens to Sharle's output for many

different trial values of C, and based on the results, discovers that the unacceptable range is actually for

values below 90. The next hypothesis that must be made requires both an artistic and technical fluency with

the goals and nature of the system. The question is, 'what vocal parameter should control the consonance?',

and it is highly dependent on one's knowledge of the voice, the vocal parameters available, the creative

interpretation of what they might mean, the artistic goals of the system, and how Sharle might respond to a

control parameter manipulated in such a way. Since the Singing Tree should provide a less tonally coherent

response as one leaves the basic pitch, one hypothesizes that C should be linearly scaled to the pitch stability

(i.e., if the person is right on the basic pitch, pitch stability and C are 127, and they both decrease together

to 0). Testing the Singing Tree with this mapping results in an output which is less tonally coherent as

one leaves the basic pitch. Note that the notion of independence is still important. No other parameters

are being changed. Thus, the instrumentation in this case is always the Airy Sounds and Airy Vocals, the

volume is constant, the scale is constant, etc. The only perceptible change in the output is the change in

tonal coherence. Continuing with this example, the designer listens to the output, and determines that a

coherence of 127 when a participant is singing the basic pitch is not desirable, because the output is not

interesting. At C = 127, the output is almost entirely octave and 5th intervals. C = 100 offers more variety

while maintaining the 'angelic' sense, and so the hypothesis is to map a pitch stability of 127 (right on the

basic pitch) to C = 100 and scale linearly to zero. Testing again reveals that this is acceptable. However,

at certain difficulty levels, this mapping may make the experience too difficult for some to enjoy. New

hypotheses are formed and tested for the various difficulty levels. This process is repeated for each control

parameter that one decides to use. Since independence is assumed, each one can be adjusted individually

and results in the same output trends when implemented simultaneously.

An important issue is deciding which parameters to adjust and which to hold constant. In the Singing

Tree, this was particularly relevant because of the large number of control parameters on the 'palette'. It is



the author's opinion that one should hypothesize which parameters will be the most significant, and adjust

those first. One should only use the parameters necessary to adequately model the desired response. This

does not mean that one should ignore the more subtle effects, but one should certainly test the parameter

mappings for relevance. If a particular mapping makes an artistically important difference and benefits the

experience, then it should be used; otherwise it should not. Note that 'artistically important' does not imply

'obvious'. The results may be very subtle, yet profound. The Singing Tree worked using only a fraction of the

possible control parameters, and, yet, the ones that it did use provided a unique and rewarding experience.

3.3.8 The Issues of Algorithm, Constraint, and Composition

In its native form, Sharle is an algorithm. When one uses Sharle, one constrains the algorithm with the

various control parameters. In Sharle's original interface, this was accomplished with a mouse by adjusting

one parameter at a time. In the Singing Tree, multiple constraints were adjusted simultaneously. However,

a fundamental and largely philosophical question left for the reader to ponder is, 'Is this composition?' The

author believes that the answer is really 'yes' and 'no', depending on one's notion of composition.

Consider a composer who is also a software engineer. The composer is not really all that good, and writes

a mediocre piece of music. He decides to program his computer to play it exactly as written. It is certainly

a piece of algorithmic music, albeit a very simple algorithm. Did the computer compose this music? Did it

generate this music? Our composer has a friend, Mr. Expert, who is both an expert composer and an expert

software engineer. He programs the computer with rules based on his expert knowledge of composition to

'fix' the mediocre composer's piece of music, which it does. The result is a very 'nice' piece of music that is

certainly better than before. Yet, the best that can be said for it is that there is nothing technically wrong

with it. The computer has modified it, but did it compose the music? Did it generate the music? Mr.

Expert decides that he wants his computer to 'compose' music in his own aural image, and programs the

computer to generate a piece using his expert rule-base. The result is a rather plain example of Mr. Expert's

music. Now is the computer a composer?

It reminds the author of composition classes in music school. One is assigned to write a piece of music

in the Baroque Style (the style of Bach), which has very strict rules regarding the interval relationships of

adjacent notes. He first writes a piece that he finds very interesting and profound, and then puts it through

the 'Bach Filter'. This changes all the notes which did not follow the rules, as established by Bach, and spits

out a piece which sounds a lot like bad Bach and is neither very interesting nor profound. Who composed

this piece of music?

Disgruntled with this approach to music education, the author quits music school and decides to become

a rock star. He furiously writes 101 pieces and presents it to Sony Entertainment for evaluation. Sony tells

him that one of the songs is OK, but the remainder sound exactly like the 100 CD's (of famous, expert

musicians) he has at home. Since the author did not grow up in a musical vacuum, in a sense, his 'expert

rule-base' has been largely determined by his musical environment. Did he compose all 101 songs?



To give a last example, anyone who has listened to the background music of a TV show has been

introduced to 'algorithmic music' as produced by a human. Is this composition? These philosophical

questions can continue indefinitely. The point one should remember is that Sharle can compose music better

than most people, simply because most people do not write music. In this sense, Sharle is a 'composer'.

However, Sharle is simply an algorithm, however complicated, which probabilistically follows an expert rule-

base. It is not cognizant of its creation, and in this respect, is not even a musician, let alone a 'composer'.

In the author's opinion, as long as computers lack the ability to be affected by their music, their music will

lack the ability to affect others. They are not 'composers' in the sense that Bach, Beethoven, and Mozart

were. However, as generational algorithms incorporate larger and more sophisticated expert rule-bases, the

degree to which they can mimic composition will increase. In this respect, computers will become excellent

'composers'. Finally, the issue of constraint will also become increasingly important in generational music.

It is the author's opinion that knowing which music not to write can be as important to the composer as

knowing which notes to place on the staff. Cage has taught us the value of silence. Constraining generational

algorithms may make their slight of hand all the more believable.

3.3.9 Visual Feedback Control

While most of the attention of this thesis has been directed toward the aural issues of implementing the

Singing Tree, another fundamental part the Singing Tree experience is the visual feedback. Three video

streams were designed and produced by the Brain Opera Visual Designer, Sharon Daniel [34], with support

from Chris Dodge [62]. A brief description of each video stream is as follows:

The Dancer This video stream starts with frontal view of a sleeping woman's face. As the video progresses,

the woman's eye opens and the camera zooms into the pupil to find a spinning dancer dressed in white.

The Singer The Singer is a side shot of a sleeping woman's face. As the video progresses, the woman

wakes, opens her mouth, and begins to sing. A visual 'aura' meant to represent the singing voice swirls

out of her mouth and begins to get brighter. When the 'aura' is at its brightest point, the face is no

longer visible.

The Flower The third video stream is a shot of cupped hands cradling a flower bulb. As the video

progresses, the hands close, and then reopen to reveal a rose. The rose then explodes in a bright

light and flower petals shower down the screen.

The three videos are common in that they start in a sleeping state, and 'wake' to progress through a series

of events which leads to an obvious ending or goal. The mapping used to drive the video was based on

pitch instability. If the pitch instability was low, then the video would progress forward. Otherwise, the

video would regress back to the 'sleeping' state. The video clips were successful because of their simplicity

of purpose; it was easy to identify when the video was rewarding one's singing and when it was not. In two

of the three clips, it was possible to hold the final scene indefinitely. This was an interesting design, because



it meant that the experience was indefinite in these two cases. For example, when a participant sang purely

for a long period, the camera zoomed into the eye, and the dancer continued to spin until the pitch changed.

The Flower, on the other hand, repeated after the petal shower. Having seen all three video clips used at

many venues, it is the author's opinion that the indefinite experience was better received. Of course, the

best implementation would have been an interactive video, in which the color, brightness, contrast, focus, or

other algorithmic distortion was controlled by the user's ability to sing the desired note. This approach was

not used in the Singing Tree, because the real-time latency limit had already been reached simply by putting

the bitmap on the LCD screen. Any further algorithmic operations on the video would have compromised

the real-time nature of the interface.
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Chapter 4

Results, Observations, and Future

Directions

4.1 Observations of The Singing Tree in Various Venues

The Singing Tree was successful as a stand-alone interface and as part of the larger interactive experience

called the Brain Opera. The author made a point to ask many participants their thoughts and comments on

the Singing Tree experience. Most were positive, some were negative, but many were insightful. The notable

feedback along with the author's own observations and evaluations are discussed below.

4.1.1 The Singing Tree as a Stand-Alone Interface

During development and testing of the Singing Tree, the author and his colleagues had more than ample

opportunity to demo their interactive instruments as stand-alone interfaces to the sponsors and visitors of

the Media Laboratory. Alan Alda was the first person from outside the Media Laboratory to try the Singing

Tree, as part of a Scientific American Explorer Documentary on the lab. Although famous for his acting,

Alan Alda is also an accomplished singer. Singing with a full operatic voice, he easily held the pitch steadily

and was able to hold the angelic aura consistently. After he became accustomed to its operation, he began to

deliberately leave the pitch to discover the instrument's behavior. Eventually, he was talking and laughing

into the Singing Tree. In talking with him a few months later at the New York City debut, he mentioned

that he liked the instrument, that it felt comfortable, intuitive, and fun to experiment with. At the other end

of the spectrum, some people are very intimidated with the idea of singing into the microphone. Many are

unsure what the response will be, and thus are afraid to sing into the microphone. Others are intimidated

by the goal (to sing one note purely), thinking that only a virtuoso could make it work. Some simply think,

'Am I supposed to sing into this thing?' However, most agree afterwards that it is a very meditative and

rewarding experience. It is easy to forget one's surroundings when using the interface, because the feedback



is both aural and visual. Because of the Singing Tree's high degree of sensitivity, the participants are well

aware that they are an integral part of the feedback loop.

4.1.2 The Singing Tree as Part of the Mind Forest

One of the author's favorite experiences was to walk into the Mind Forest, shown in Figure A-3, when

nobody was present and listen to the Singing Trees in their 'sleeping' state. The atmosphere was, in the

author's opinion, that of a sleeping brain; 40 interactive 'agents' in a well-designed, organic/industrial-

looking structure with three Singing Trees quietly humming with an occasional chatter from a rhythm tree.

When participants arrived, often in groups of 100 or more, the Mind Forest would 'wake'. With 40 interactive

musical instruments in close proximity to each other, the sound level in the room would increase dramatically.

Oftentimes, it was too high to hear the 'sleeping state' of the Singing Trees without wearing the headphones.

This was part of a broader problem with the Mind Forest audio levels in general. Increasing the volume of

the 'sleeping state' would solve the problem in the packed Mind Forest environment, but the 'sleeping state'

levels would then be far too loud once the audio levels in the Mind Forest had dropped back to quieter levels.

Another criticism of the Singing Tree related to high audio levels in the Mind Forest, was the occasional

feedback into the microphone from surrounding experiences. To prevent this, the microphone was gated.

However, this in turn required people to sing louder and be closer to the microphone. Participants who

were shy or intimidated might have been disappointed if their attempts to sing into the Singing Tree were

apparently rejected, simply because they weren't singing loud enough to overcome the gate. The solution lies

somewhere in the sticky issue of sound isolation in small spaces, which the author defers to another thesis.

An interesting observation, which was not solely a Singing Tree phenomenon, was that the very young

and the very old enjoyed tremendously the Mind Forest experiences. In particular, lines would often form at

the Singing Tree because a child, completely unaware that 10-20 others were waiting for him to finish, would

be completely involved in the experience. Children, in particular, would hold the note purely for as long as

possible. Many would continue for minutes, intently listening to the response. Somewhat surprisingly, the

elderly readily accepted and enjoyed the Mind Forest experiences. Although they knew the experiences were

computerized, most were not intimidated. The Brain Opera visual designers did a great job keeping the

computer out of the experience, and making the instruments approachable, interesting, and user-friendly. In

addition, many of the elderly did not have any preconceptions as to what an interactive experience should

be. In this, they were more open-minded to the Brain Opera than many others who, for whatever reason,

did not take the time to discover what the instruments were and how they worked.

As a last comment, I found great pleasure in watching and listening to participants who were initially

singing quietly because they were self-conscious, only to later be singing quite loudly and wildly in an attempt

to get unique and interesting responses. One could say that the responses that the Singing Tree evoked from

the participants were as interesting as the ones the Singing Tree generated.



4.2 Critical Evaluation of the Singing Tree

The Singing Tree was a very successful and engaging musical interface. It worked as per the established design

criteria, and many participant's commented on how much they enjoyed the experience. In a WYSIWYG(

consumer report, the Singing Tree would likely do quite well. Nonetheless, it is often the designer who can

offer the most reliable criticisms and analysis of the research. The designer is thoroughly familiar with the

system, and he knows all its strengths and weaknesses. What follows is the author's critical evaluation of

the Singing Tree.

4.2.1 Strengths of the Singing Tree System

In the author's opinion, the most successful aspects of the Singing Tree are as follows.

* The Singing Tree always sings.

* There were no discontinuities or 'glitches' in the musical experience.

* The Singing Tree was accessible to people of all ages and musical abilities.

* The Singing Tree-human feedback mechanism worked remarkably well at leading participants to the

established goal.

* The physical design removed the computer completely.

* The video streams of indefinite length worked well.

Perhaps the most successful and significant contribution that the author made to the group was the

concept of continuous interactivity. The Singing Tree always interacts with its environment, whether that

environment is a specific participant or simply the empty Mind Forest. The previous model for musical

instruments, interactive or otherwise, was contingent upon the presence of a user. The participant provides

some sort of input, and then (and only then) the instrument provides a response. While background music

in restaurants, elevators, and stores are examples of continuous musical output, they obviously lack the

interactive component. Previous applications of interactive instruments have typically been from the point

of view of a participant interacting with the instrument and receiving feedback. The Singing Tree is an

example of an instrument which interacts with the participant . Although one may dismiss this point as

merely an arbitrary, cerebral fixation of the author, consider the following. The Singing Tree is always

singing; it inputs stimuli into its environment. This evokes a response in passers-by to use the Singing Tree.

Their response is to sing into the tree. The Singing Tree, in turn, leads the participant to the established goal.

If a participant behaves in an ideal manner and always tries to reach the goal, then the roles of participant

and interactive instrument are interchangeable. The difference, of course, is free will. The participant will

not always act in such an ideal manner. Nonetheless, it is the author's opinion that the concept of continuous

interactivity is an important distinction between previous works and the Singing Tree. Furthermore, it is



one of the most significant reasons that the Singing Tree was considered such an engaging experience. The

Singing Tree began to break down the boundary between participant and instrument.

Another significant success was the continuity of the musical experience over wide variations in instru-

mentation and musical style. A participant who quickly changed between the basic pitch and other pitches

heard the music style and instrumentation change significantly without ever losing a sense of musical conti-

nuity. There were no glitches, discontinuities, or obvious stops. In addition, the changes were real-time. The

primary reasons for this success were the musical mappings and Sharle's multi-layered approach to sound

generation [36]. While control parameters would change the internal state of Sharle, Sharle's allegiance was

to the expert rule-base. One of the ways this expert rule-base manifested itself was the multi-layered ap-

proach to implementation. Since the melodic and rhythmic 'seeds' were generated and embellished through

several layers under the guidance of rules, instantaneously changing control parameters would not result in

an instantaneous change in output if it broke an expert rule. In other words, the rules often dictated how a

transition would occur. For example, if the participant were to suddenly leave the basic pitch and sing with a

high pitch instability, the control parameter would say, 'change to the harsh and chaotic state immediately',

while the rule-base would respond, 'yes, but only after a cadence to finish the current musical thought'.

Another major success was the musical response itself; the instrumentation and musical style for each

type of vocal input were appropriate and, simply stated, sounded good. This also was a direct result of

the musical mappings and Sharle [36]. The experimental approach to developing the musical mappings and

determining the best coordination with the vocal parameters was time well spent.

4.2.2 Weaknesses of the Singing Tree System

While a marketing report would never publicize the following, the author certainly acknowledges the many

shortcomings and weaknesses of the Singing Tree which include, but are not limited to, the following.

* The musical goal was not identifiable for all participants without prior instruction.

* The Singing Tree was not programmed to reward multiple pitches.

* The musical mappings did not specifically target random inputs such as yelling, talking, or making

noises.

* The vowel formant estimation was not precise.

* The sleeping state of the Singing Tree was too quiet to be heard when large numbers of people were

in the Mind Forest.

Most of these weaknesses are self-explanatory. A few participants who used the Singing Tree without

instruction did not grasp the musical goal. The word 'singing' implies that one should sing multiple pitches,

and many people would first try to sing a song into the tree. While most people would proceed to discover

that it was a single pitch which would provide the best response, a few people could not. In this, the tree



failed to be a completely intuitive interface; some instruction was necessary. Furthermore, many samples

retrieved from the 12 Speaking Tree were of people singing or humming one note. People were mistaking

the Speaking Trees, in which Marvin Minsky asks a question and participants respond, for Singing Trees.

Another problem stemmed from the fact that the basic pitch was determined to be the first pitch sung. A

participant would have to stop singing, allow a short time (approximately 2 seconds which accounted for

breath) to elapse, and allow the Singing Tree to reset before being able to establish a new pitch. A more

'intelligent' method for determining when the participant intended to sing a new pitch would have been

desirable. This method would be intimately related to the concept of rewarding multiple pitches.

The vowel formant recognition works quite well in Matlab simulations, but is rather imprecise in applica-

tion. There are many reasons for this, but the most significant are the variability in participants and the fact

that they are singing, not speaking. The Singing Tree catered to men, women, and children of all ages. The

formant frequencies for specific vowels vary considerably for people of different sex and age. Furthermore,

the formant structures of singers tend to be differ from those of people who are speaking. The Singing Tree

could only reliably detect the corners of the formant triangle, and, as a result, relied heavily on the changes

in formant frequencies, rather than a specific determination of vowel, in the mapping algorithms.

4.3 Future Directions for Applications and Research

This sections outlines possibilities for future developments and applications of the Singing Tree to interactive

karaoke. Future research directions are also discussed. The research has potential to improve both the Singing

Tree and interactive musical mappings and interpretations in general.

4.3.1 Interactive Karaoke

While developing the Singing Tree, many additional mappings were considered. The most compelling ex-

tension was to allow the participant to sing multiple pitches. The idea was to maintain the concept of basic

pitch, but then allow the participant to sing notes of different intervals relative to the basic pitch. The

Singing Tree did have a degenerate case of this more general situation, in that the participants could sing

octave intervals from the basic pitch. However, in expanding one's notion of an interactive singing experi-

ence, one of the first concepts to be explored was singing multiple pitches. Briefly stated, the concept was

to weight each interval, much in the way Sharle weights each interval for playback. Considering which pitch

the person was singing, its interval relationship to the basic pitch, and the associated weight as a function of

the playback scale/key, a new dimension of playback control was invented on the white-board of the author's

office. Although not yet realized, the concept has recently surfaced again in discussions with the Brother

Corporation regarding interactive karaoke.

Brother is the largest maker of karaoke systems in Japan, a country in which karaoke plays an important

cultural role, in addition to being a source of entertainment. The big karaoke boom of the late 1980's and



early 1990's continued even after Japan went into economic recession. In an attempt to explore new karaoke

markets, Brother has proposed the idea of using an interactive component analogous to the Singing Tree

in conjunction with their existing system. The objectives are three fold: first, improve the experience and

enjoyment of present users; second, improve the experience to attract new people who do not currently use

karaoke; improve the experience for listeners.

The issues are straightforward. One should first develop a weighting system for the intervals of the various

chord structures found in the music used in karaoke systems. The next issue is to make this weighting system

dynamic, which implies knowing the music score. Brother's system uses MIDI sequencers and a synthesizer

to reproduce the karaoke music, which is a big advantage. This means that all of the music, including the

chord structure and melody, are in a MIDI format. It is not difficult to imagine the interval weighting

following the score. The challenging issue is the type of interactivity desired.

Simply stated, there are two types of interactivity of interest in karaoke systems: non-generational and

generational. Non-generational interactivity includes modifying the singer's voice with dynamic vocal effects

such as reverb and delay to maintain pitch consonance, pitch shifting the voice to maintain pitch consonance,

and self-harmonization by pitch shifting the voice to create harmony parts. Other non-generational modifi-

cations include dynamic mixing, in which the instruments and lines in a piece are mixed up or down to match

the style of singing; dynamic instrumentation, in which the instrumentation of a particular line of music is

changed; and dynamic global amplification, in which the volume of the accompaniment and the singer's voice

is regulated to maintain consistency. More difficult, and potentially more interesting, are the generational

modifications to the music. These would work in a manner similar to the Singing Tree operation. A score

of music is being played as written. As the voice parameters change, interpretation and mappings work to

embellish an existing part through perturbation and ornamentation rather than re-composition.

If an interactive karaoke system were developed which could intelligently map vocal parameters to mu-

sically meaningful changes in the karaoke experience, the result could revolutionize the karaoke industry. It

would also be an incremental step toward the concept of interactive social events, such as interactive clubs.

4.3.2 Fuzzy Systems, Linguistic Variables, and Interactive Systems

There were two major issues in designing the Singing Tree which made the author consider Fuzzy Systems.

First was the interpretation and mapping of complex concepts. The second was the use of instrument sets

and nested layers of probabilities to make instrumentation decisions. The following is a brief discussion of

the reasoning behind the author's assertion that a fuzzy systems approach to interactive systems is sensible.

The author refuses to become muddled in the controversy over whether fuzzy set theory is a new branch

of mathematics or simply another perspective. Honestly, he does not have the mathematical background

to be making claims one way or the other. However, he does see potential for application, and he believes

that more attention should be given to the subject of interactivity and fuzzy systems. For more information

regarding fuzzy systems, the reader is referred to [31], [32].



The Singing Tree is far easier to describe in words than it is in mathematical terms. For example, it is

rather clear to understand the Singing Tree's behavior simply by reading the design criteria given in Chapter

2. However, it is not entirely clear at all how it will behave by reading the mapping algorithms given in

Chapter 3. Nonetheless, interactive systems which utilize computers must somehow translate a linguistic

expression into a mathematical concept. This is, in essence, the function of interpretation and mapping

algorithms. Given the linguistic description of a system, take available input parameters and map them in

such a way that the output matches this description. In reviewing the work done by [36] in implementing

the music generation algorithm, Sharle, and the work done on the interpretation and mapping algorithms

in the Singing Tree and elsewhere, the author came to the conclusion that many of the solutions attempted

in the Singing Tree resemble, in principle, a fuzzy systems approach. The two primary examples are the

use of instrument sets and probabilistic selection, and the use of mathematical functions to approximate a

linguistic expression. While neither of these in their own right are examples of a fuzzy implementation, they

both have compelling similarities to the fundamentals of a fuzzy system.

The instrumentation of the Singing Tree was accomplished by defining sets of instruments with similar

timbre qualities. Deciding which instruments would go into which sets was made based on the description

of how the Singing Tree was supposed to operate. For example, the airy sounds are made by instruments

that the author thought had a high degree of 'angelic' quality. The harsh instruments were those which

had a high degree of 'agitation.' The sets from which the instruments were chosen were largely determined

by the pitch instability parameter. However, in the case of dynamic instrument assignment, there was a

75% chance of using one algorithm, and a 25% chance of using another. The idea led the author to explore

other implementations using probability and set theory in decision making, which led to a book on fuzzy

set theory [32], and finally a book on fuzzy sets [31]. The most interesting result of this research is that,

given the option to build the Singing Tree again from scratch, the author would be inclined to try using

concepts such as fuzzy sets. Briefly described, a system described by fuzzy sets differs from that described

using classical sets in that all its elements (the universal set) have a degree of membership in all other fuzzy

sets. For example, from a classical set perspective, the author would determine the airy set of instruments

exactly in the manner that was used for the Singing Tree. He would listen to all the instrument timbres

available to him on the K2500R, decide if they are angelic or not, and if they were, include them in the set.

In this approach, the sets are broadly defined concepts, such as 'instruments with angelic sound', and each

instrument is given a crisp label: 'angelic' or 'not angelic'. Of course, one might try to derive some statistical

justification for his choice (i.e., based on a survey of 560 men, women and children, 53% of those surveyed,

on average, say instrument A is angelic, and this estimate has a variance, skewness, and kurtosis that can

be calculated). But, in the end, the sound is either classified as angelic, or it is not. The fuzzy approach, on

the other hand, is to define the meaning of the sets in a crisp manner, and assign a degree of membership

to all the instruments. For example, a set is defined as the 'Set of Angelic Instruments'. Now, the author

flips through all the instruments on the K2500R, and, based on his long experience and 'expert' knowledge



of all types of instruments, he assigns a degree of membership to each of the instruments. This number

is in the range [0,1], and it indicates an instrument's degree of 'angelic characteristic'. When it is time to

playback instruments which are angelic, the crisp set has a fixed number of equally weighted possibilities

from which to choose. The fuzzy set, on the other hand, has all the instruments on the K2500R available

for playback, each weighted by its membership function. What are the options for playback? In the fuzzy

case, selecting an instrument using a random number generator or probabilistically will give a consistently

angelic playback without a deterministic response. The crisp set, on the other hand, will always have

the same instruments. Admittedly, this is a very simple case in which one could easily imagine assigning

probabilities to the instruments in the crisp set and then using a random number generator to select an

playback instrument. In effect, this is the approach utilized in the Singing Tree and Sharle. Nonetheless,

the fuzzy set description is quite elegant at taking the knowledge of an 'expert' about an abstract concept

and creating a rule which governs all elements with which one is working. This concept generalizes to the

definition of linguistic variables, the fuzzy IF-THEN statement, and the fuzzy rule-base. The theory of fuzzy

sets defines how these sets, IF-THEN statements, and rule base interact mathematically. In addition, the

concept of defining a mathematical function to represent the condition of abstract ideas is the premise of

the Takagi-Sugeno-Kong Fuzzy System. The Singing Tree made such mathematical representations on an

independent basis. Fuzzy set theory provides a mathematical framework for their interaction. These are all

areas in which the author would like to see more work done, especially in interactive applications.

4.3.3 Higher-Order Spectra Analysis

In following the work of his colleague Beth Gerstein [66], the author was introduced to the use of higher

order cumulants in the analysis of heart-rate time series. In short, these higher-order cumulants can remove

linearities such as additive white Gaussian noise, reveal non-linearities, extract low amplitude periodicities

from the time series, and ideally be used as a diagnostic tool. The issue that the author did not have time

to sufficiently address is the concept of musical intention versus musical gesture, and the possibility of using

higher order spectra analysis tools to detect or differentiate them.

Much work has been done in the field of gesture recognition [63], [67]. In general, the idea is to recognize

a pattern of movement or a pattern in a picture and reference it to a library of primitives. The point the

author raises, however, is that there is a distinct difference between gesture and intention. Granted, the

primitives are established based on some notion of universality, but the extension to musical gesture may

be difficult. Given several people with an identical musical intention, the gesture each uses to represent this

intention may be remarkably different. The author's basis for such a statement is his observations of people

using the many musical interfaces of the Mind Forest. For example, the gestures used to make music at the

Gesture Wall, an interface in which one's hand and arm movements change a musical stream, were as unique

as the participants who made them. As a proposal for future work, the author would suggest looking for

intentional cues in the time series of some indicative metric. Even having the knowledge that one's intention



is to maintain or change a gesture could be useful. While the higher-order spectra analysis techniques are

quite computationally intensive, the author thinks such investigation would be very interesting in its own

right.

4.3.4 Beyond the Singing Tree

There are numerous applications for a Singing-Tree-type technology. Perhaps the most promising is in the

field of 'smart' applications. Making a 'smart' automobile interior or a 'smart' room which responds to voice

is currently a hot research topic. Admittedly, many such applications would benefit from full-blown speech

recognition. However, there are applications which could use information contained in the voice without

resorting to these relatively expensive algorithms. For example, a person could be humming a piece of music

in her car or at home, and a computer could identify the piece, or find a station which is currently playing it.

Or, a system which monitors events occurring within the room or automobile could be in a stand-by mode,

in which a Singing-Tree-type technology is listening for specific cues and turns on the appropriate, more

powerful recognition system as a situation warrants it. This would be particularly useful in band-limited,

shared systems in which the use of more powerful recognition systems is necessary, but not everyone can

use them simultaneously. The educational applications of the Singing Tree are also compelling. The Singing

Tree is an excellent educational tool which allows children to experience computer music without having

years of experience. The benefits are a greater appreciation for music and, hopefully, a stimulated interest

in music.





Chapter 5

Conclusions

5.1 Synopsis of the Singing Tree

The Singing Tree is a novel, interactive musical interface which responds to vocal input with real-time aural

and visual feedback. A participant interacts with the Singing Tree by singing into a microphone. Her voice

is analyzed for pitch frequency, noisiness, energy, brightness, and the first three formant frequencies. Based

on these metrics, musically meaningful mapping algorithms are developed to control both a music generation

algorithm named Sharle and a video stream in real-time. The aural and visual feedback are designed to lead

the participant to an established goal. In the current version of the Singing Tree, this goal is to sing one

note as purely and steadily as possible. Maintaining such a pitch is rewarded with an angelic, meditative

response of bassy strings and arpeggiating woodwinds. Deviations from the goal result in a harsher, more

agitated response of brass and percussion. The result is a reward-oriented relationship between the sounds

one makes and the video and music one experiences.

The Singing Tree has been presented in conjunction with the Brain Opera at the Lincoln Center Festival in

New York City, U.S.A.; the Ars Elektronica Festival in Linz, Austria; The Electronic Cafe International (with

sponsorship from TeleDanmark) in Copenhagen, Denmark; the Yebisu Garden Center (with sponsorship from

NTT Data) in Tokyo, Japan; and at the Kravitz Center (with sponsorship from the Kravitz Center) in West

Palm Beach, U.S.A. In addition, it is scheduled to be presented at the Japan Applied Mathematics Society's

1997 International Student Conference in Colorado, and the Design of Interactive Systems (DIS) Conference

in Amsterdam, The Netherlands. It will also be presented at future Brain Opera venues.

Based on observations and user feedback, the Singing Tree has been a particularly successful interactive

interface. It is an interesting musical interaction experience for both professional and amateur singers, and

people of all ages can enjoy the musicality of the Singing Tree. The Singing Tree successfully identified

musically meaningful vocal parameters from the singing voice. Furthermore, a methodology for mapping

these parameters was developed which can be extended to other interactive music systems. These algorithms

provided a musical experience which was intuitive, responsive, and engaging. The music was appropriate



and consistent with the participant's quality of singing, without being deterministic. Although the music

was based on randomly generated MIDI information, it contained no discontinuous behavior. The interface

was seamless, and the computer was successfully 'removed' from the participant's experience. This work

introduced the concept of continuous interactivity, in which the Singing Tree interacts continuously with its

environment, regardless of the presence or absence of the user. In this, the Singing Tree and the participant

often exchanged roles; the Singing Tree elicited a desired response from the participant. This creates a

new perspective and direction for the 'inter-active' instrument and 'inter-active' music. Succinctly stated,

the Singing Tree achieved its fundamental design specification: to provide users with a new and interesting

means by which to make and discover a musical experience.

In the future, the Singing Tree technology will find applications in interactive karaoke systems, educational

environment, and 'smart' rooms and automobile interiors. Further research into the use of fuzzy set theory

in interactive systems will likely prove fruitful, the benefits of which would include the development of

a 'language' which could more adequately translate linguistic concepts into mathematical representations.

In addition, it is the hope of the author that more designers of interactive systems take the 'continuous

interactivity' approach; designing a system which interacts with its environment, rather than simply an

interactive system which is initiated by and responds to a human user, will lead to more meaningful, realistic,

and truly 'inter-active' experiences.



Appendix A

The Novel Interactive Instruments of
the Brain Opera

The Singing Tree is but one of eight interactive interfaces used in the Mind Forest and the Performance.
The Mind Forest Interfaces are: the Singing Tree, the Speaking Tree, the Rhythm Tree, Harmonic Driving,
the Melody Easel, and the Gesture Wall. Through these instruments, participants can create music while
exploring the themes of the Brain Opera music they will hear in the Brain Opera Performance. The instru-
ments used in the Performance include a combination Gesture Wall/Rhythm Tree, a Digital Baton, and the
Sensor Chair.

Figure A-1: The Singing Tree (left) and the Rhythm Tree (right) in Tokyo



Figure A-2: Harmonic Driving (left) and the Melody Easel (right)

Figure A-3: The Gesture Wall (left) and the Mind Forest (right)

Figure A-4: The Brain Opera Performance in Tokyo



Appendix B

Bayesian Approach to Deriving the
Pitch Period Estimator

The cross-correlation of two windows of a periodic signal is maximized when the windows are separated
by a period or multiple of the period. While this is an intuitive method for estimating the pitch period
of a signal, generalizing the concept to quasi-periodic cases may require justification. Below is one such
justification from [30] using a Beysian approach [46].

Starting with a signal s(t) that is assumed to be periodic, or more precisely, quasi-periodic, it follows that
s(t) ; as(t + T) where T is the quasi-period of the signal and the scalar a accounts for inevitable amplitude
changes. Considering a window of d samples of s(t) taken with a sampling period, r, one can define the
vector, v(t) = [s(t), s(t + r), ..., s(t + (d - 1)r)]T. Two such windows, v(t) and v(t + T'), are separated
in time by T'. Using a Bayesian approach, all parameters are considered to be random variables, which
can be described by probability density functions [46]. Conditioning on the hypothesis, HT, that T is the
quasi-period, one expects the conditional probability that T' is the best estimate for the quasi-period will
be a maximum for the case T = T. Furthermore, the conditional probability should decrease as T' leaves
T from the left and the right. Therefore, temporarily side-stepping the issue of multiple periodicity and
dropping the prime from T', it is reasonable to postulate the d-dimensional conditional probability density
function

1 ( II v(t) - a(t, T)v(t + T)12 (B.1)
PVIHT(V(t)IHT) = (2•,r2) d/2 exp 2oa2

where o is a 'tolerance' and a(t, T) minimizes the expression in the exponent.
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The best estimate for the pseudo-period is simply the choice of hypothesis which will maximize the a posteriori
probability density function, PHTv(HTIv(t)) [30]. Using Bayes' rule [46], the goal is to find the T which will
maximize

PHTIv(HTlV(t)) = (vIH(v(t)HT) HT( (HT) (B.3)

where PH, (HT) is the a priori probability density function that T is the period of the signal, and pv(t)(v(t))
is the probability density function for v(t). Assuming an equal a priori probability that the signal has



a pitch T across all possible periods and recognizing that pv(t)(v(t)) is independent of T, finding the T
which maximizes equation (B.3) is equivalent to finding the T which maximizes pv(t)IHT(v(t)IHT). This is
equivalent to finding the T which minimizes

- = II v(t) - a(t, T)v(t + T) 112 (B.4)

where 7 is simply defined as the T-dependent part of the argument of the exponential in equation (B.1).
Substituting the expression for a(t, T) from equation (B.2) into equation (B.4) yields,

1 = II v(t) 112 -2( v() V Q) Tv(t + T) + (\Iv(t+T)) i v(t + T) 112 (B.5)
= V(t) 112 2  ( v(t)T Vt(t+iT) )2)

-- ()Iv(t)ll II V(t+T)II

II V(t) 112 (1 - (t, T)) .

Since 11 v(t) 112 is not a function of T, minimizing y is equivalent to maximizing A. Thus, the best estimate
for the quasi-period is now the T which maximizes the expression

A(t, T)= v(t)Tv(t+T) (B.6)
IIv(t) II I v(t + T) II

which is a 'normalized' cross correlation between v(t) and v(t + T).



Appendix C

Additional Examples of Formant

Frequency Estimation

The following are examples taken directly from the Singing Tree. The author sang the vowels 'aah', 'ee',
and 'ooh' into the Singing Tree and saved the sampled voice data.

The first example shown is 'aah' with a pitch frequency of 139.5 Hz. The signal and cepstrum (no glottal
or radiational (g-r) component) are shown in the upper half of Figure C-1. The cepstrally smoothed log
spectrum is the plot on the bottom-left. The peak in region one is fl=883 Hz, the frequencies at 1800 Hz
are not distinguishable, and the large peak at 3100 Hz is out of range for the third formant frequency. The
chirp z-transform (CZT) log spectrum is the plot on the bottom-right in FigureC-1. It resolves the bump at
1800 Hz into two formant frequencies: f2=1691 Hz and f3=2205 Hz. This corresponds to a borderline case
between vowel sounds /A/ and /ae/. The third formant frequency is closer to /A/, and the vowel sound is
therefore estimated to be /A/.

Table C.1: Estimated Formant Frequencies for the 'aah' Signal at f=139.5 Hz

Formant Frequency Frequency (Hz) Vowel

1 936
2 1686 /A/
3 2709

The second example is an 'ee' at a pitch frequency of 296 Hz. The signal and cepstrum (no glottal
or radiational (g-r) component) are shown in Figure C-2. The cepstrally smoothed log spectrum appears
sufficient in this case to determine all three formant frequencies. As shown in Figure C.2, fl=341 Hz,
f2=2045, and f3=2704. If this is the case, the vowel sound corresponding to these formant frequencies is
correct, an /i/ or 'ee' sound. However, the algorithm would notice that the estimate for the second formant
is not 8 dB below the first formant. Thus, it would run the CZT analysis and find that the second formant
is actually f2=1379 Hz and that leaves the third formant at f3=2704 Hz. Thus, the vowel sound estimated
is in between an /i/ and an /u/, indicating that my sung /i/ is very dark (in the back of the mouth). Using
the third formant to resolve the vowel, f3 is closer to the average /i/ value than the average /u/ value, and
thus /i/ is the estimated vowel sound.

The remaining examples of another 'ee' at a pitch frequency of 149 Hz, an 'ooh' at f=290 Hz, and another
'ooh' at f=145 Hz are presented in as similar fashion without discussion.



"aah" at f=139.5 H

n

Cepstrally Smoothed Plot of Formant Peaks kom ihe Unit Circle

S l =883.4Hz =13=3999Hz()

12 2115 HZ (?)

0

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Frequency (Hz)

Figure C-1: 'aah' Signal at f=139.5
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and Relevant Formant Estimation Plots

encies for the 'ee' Signal at f=296 Hz

Formant Frequency Frequency (Hz) Vowel

1 341
2 1379 /i/
3 2704

Table C.3: Estimated Formant Frequencies for the 'ee' Signal at f=149 Hz

Formant Frequency Frequency (Hz) Vowel
1 347
2 969 /i/
3 3157
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"ea" at f-296 Hz

T
Time. nTs (ms)

Frequency (Hz) Frequency (Hz)

Figure C-2: 'ee' Signal at f=296 Hz and Relevant Formant Estimation Plots

Table C.4: Estimated Formant Frequencies for the 'ooh' Signal at f=290 Hz

Formant Frequency Frequency (Hz) Vowel

1 942
2 2165 /i/
3 2706

Table C.5: Estimated Formant Frequencies for the 'ooh' Signal at f=145 Hz

Formant Frequency Frequency (Hz) Vowel
1 508
2 1570 /i/
3 2537
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Cepstrum of x (hat) avth Formant and Fundamental hformation Only

Cepsrally Smoothed Plot of Formant Peaks rom ihe Unit Circle
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Capstrally Smoothed Plot of Formant Peaks. CZT. All Regions

Frequency (Hz)

Figure C-3: 'ee' Signal at f=149 Hz and Relevant Formant Estimation Plots
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Capstrdly Smoothed Plot of Formant Peaks kom tie Unit Circle

Cepslrum of x (dat) with Formant and Fundamental Inlormation Only

0 10
5 10

Time = nTs (ms)

Cepstfally Smoothed Plot of Formant Peaks. CZT. All Regions

Figure C-4: 'ooh' Signal at f=290 Hz and Relevant Formant Estimation Plots
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Cepstrum of x (txat) with Formant and Fundamental Information Only

n

Cepslrally Smoolthd Plot of Formant Peaks kom the Unit Circle
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Figure C-5: 'ooh' Signal at f=145 Hz and Relevant Formant Estimation Plots
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