RESPONSIVE TELEVISION

V. M. Bove, Jr. and S. Agamanolis

Massachusetts Institute of Technology Media Laboratory, USA

ABSTRACT

Responsive Television consists of a stream of media objects and procedural metadata that describes

responses to viewer actions, identity, context, and equipment.

Such a system enables providing

personalized or responsive content even given a broadcast or multicast environment, and doesn't require
potentially sensitive information about the viewer to be transmitted back to the source. A barrier to such

development has been the difficulty of authoring the associated metadata.

We are developing a

programming-by-example editing tool that allows the user to specify a few examples of variations associated
with variables known to the display; the system then can generate generalized rules and embody them in

software that accompanies the media objects.

INTRODUCTION

The Internet has brought the ability to provide
personalized content to the consumer, and indeed
Internet users have become accustomed to media
experiences that better match their needs and
circumstances. But what does this mean to
television? The Broadercasting project at the MIT
Media Laboratory raises several questions in
connection with the intersection of television and the
Internet:

e Scalability of the system: With very large
numbers of simultaneous viewers it may not be
practical for a server to provide an individual
stream for each, though distributed caching and
dynamic resource reallocation can alleviate this
problem.

 Rapid responsiveness: In some scenarios (e.g.
a program that adapts to the actions of
individual viewers) it is necessary for the
content to respond to rapidly changing
situations. This requirement may not be
compatible with latencies of up to several
seconds that can occur because of either very
long physical channels (such as satellite links)
or cascaded memory buffers throughout the
distribution system.

e Privacy concerns: Consumer preference or
even legislation may prevent transmission of
viewer information to a content server which
would permit useful personalization.

e Shared experience versus complete
personalization: To what degree will the viewers
of a personalized television program still have a
common experience, and who controls the
limits — the viewer or the content creator?

Our responsive television research notes that
significant computational inteligence now exists
throughout the chain from production to display, and
further that in many cases there is “extra” bandwidth
available to the viewer's receiver. Thus we consider
the possibility of client-side personalization or
responsiveness, in other words moving some of the
final editing process to the receiver and allowing for
adaptation of the content to a specific viewing
situation. We incur the cost of the added bandwidth
occupied by the material that any particular viewer
doesnt see, but we save complexity at the source
server. In this work we do not assume a particular
distribution channel, but we do target a broadcast
model, either standard digital television via
terrestrial/cable/satelite channels or broadband
Internet multicast.

Providing at least a coarse degree of
personalization such as advertisement targeting is
relatively easy given currently-deployed
infrastructure (1), but finer-grained personalization
or real-time responsiveness requires writing a fairly
complex piece of software describing mappings
between response states and the output video
sequences. Further, this approach does not match
well with the thinking and working styles of most
traditional video producers and editors, who are
used to manipulating audio and video source
material in a more direct and hands-on fashion.

Our model of a responsive television program
consists of a stream of media objects and
procedural metadata that describes how the
program should play out in different situations, in
response to a number of possible factors like the
profile or preferences of the viewer, the equipment
being used to display the program, or live feedback
from sensing devices in the presentation
environment. Adapting a program in these ways
can help to better achieve the goals of its creator
and can foster a richer connection with its viewers.
Such a system also enables providing personalized
or responsive content even given a broadcast or
multicast environment, and doesnt require
potentially sensitive information about the viewer to
be transmitted back to the source. Possible
applications include advertisements with different
versions for particular people or situations, news
programs that take into account a viewer’s
background, educational programs that adjust in
real time to a student's attention level and other
emotional responses, or environmentally responsive
video installations in public spaces.

Our Viper system is a tool for creating responsive
video programs. The system consists of three main
components, all of which incorporate a graphical
user interface where information is displayed or
manipulated visually. The first component provides
the ability to import source material and trim it into
individual clips in a fairly traditional way. The
second component provides an interface to allow
the producer to annotate each video clip with
important information that will be used to drive the
automatic editing portion of the system. The final
part of the system provides a means for building
and visualizing abstract editing guidelines that will
control how clips are selected and sequenced to
create full video programs. The author may create
several sets of editing guidelines for different
situations, and the system will attempt to generalize
from these specific cases to develop guidelines for
other situations not yet considered.

Our work thus sits in the middle ground between
standard editing tools (whether for linear or
interactive playback), and totally automated
generation of content (e.g. (2)).

In the following sections, we describe the
functionality offered by our tool, which is still under
development, and we describe a documentary video
program we were able to create with an early
version of the tool.

CREATING CLIPS

The first component of our tool allows the video
editor to import source video footage and split it into
individual video clips. The graphical user interface
for this component is much like a traditional
interface for setting in and out points in a video
sequence and maintaining a database of clips.
However, the clips are not manually assembled into
complete programs, as they would be in a traditional
editing system. The goal of this stage is simply to
create a large database of video clip objects,
different subsets of which will be included in
different versions of the final program. The author
can also indicate a “critical section” for each clip that
may be shorter than its full duration, allowing the
system appropriately to vary the length of the clip if
it is later selected for inclusion in the program.

ANNOTATING CLIPS

After creating a database of video clips, the author
uses the second component of the tool to annotate
each clip with information that will be needed by the
system later to generate full edits of a program. This
process happens in another graphical interface in
which several types of annotations may be added to
clips. Each clip may be rated on one or more
arbitrary user-defined scales, such as “importance”,
“energy”, or “closeup”, to indicate the degree to
which each clip reflects a certain characteristic.
Clips may also be annotated with key words or other
user-defined boolean variables. Another interface
allows ordered or unordered groupings of clips to be
expressed more explicitly. Yet another interface
permits the author to create relationships among
specific video clips, such as clip A “is a reaction to”
clip B, or clip A “provides additional detail to” clip B.

The goal is to annotate the database of clips not
with exhaustive or generic pieces of information (3)
but with specific kinds of information that might be
most helpful to generate meaningful results in the
automatic editing stage. Some of this information
might be generated automatically, by analyzing the
video clip to detect certain features (4), but much of
what is likely to be useful may be too content-
specific or subjective to sensed by automatic
means. The MPEG-7 standard outlines a format in
which these annotations might be stored along with
each clip, although the current version of the tool
does not use the MPEG-7 format.

MAKING EDITING GUIDELINES

The third and most important part of our tool
provides a means for building abstract editing
guidelines that control how clips are chosen from
the database and ordered to form a full video

program. The interface allows the user to create a
hierarchy of program “atoms”. Each atom
represents a selection of one or more clips from the
database, or an ordering of one or more atoms to
form a sequence.

Clips are selected from the database by specifying
properties and constraints, based on the
annotations made in the previous stage, that should
hold for whatever is chosen (“not yet selected”,
“high importance”, “is a reaction to the previous
clip”). Collections of clips or other atoms are put
into a certain order by specifying similar sorts of
rules and constraints (“increasing energy”,
“chronological order”, “alternate closeups with wide-
angles”). The selection and ordering guidelines can
range from being somewhat fuzzy and abstract,
giving the system a wide berth in how it makes its
decisions, to being very rigid and explicit, calling for
particular clips or arrangements by name.

It is at this stage that the actual responsiveness of
the program is established. A set of parameters
which will be known at the time of viewing must be
declared. These can correspond to any number of
response factors, such as viewer profile, equipment,
or sensor outputs, and will drive the editing of the
program. The author creates a template for a full
program by assembling program atoms for an
example set of parameter settings. Several
templates of different structures may be created,
each for a different presentation situation.
Alternatively, a single template can be established,
the parameters of which can change for different
situations.

The system can generalize from a set of templates
for specific situations to create new templates for
other situations not yet considered. Since a group of
templates defined for a particular program may
contain many internal structural similarities, it is
possible to formulate an algorithm that can
appropriately interpolate among the tree structures
to generate new templates. These system-
generated templates incorporate, to different
degrees, elements of the other author-defined
templates, based on the “nearness” of the new
situation to those that are already known. If the
response variables for the presentation are modeled
as real-valued continua, the system can detect
numerical trends in their values over a group of
templates and appropriately interpolate and
extrapolate those values when considering a new
situation.

PLAYBACK

In the playback phase, the system assembles a
program based on the information in the chosen or
generated template, attempting best to satisfy all of

the constraints specified therein, and presents it to
the viewer. If the situation incorporates live
feedback mechanisms, the system can update the
parameters (and thus the template) while the
program is in progress, allowing real-time responses
to be reflected immediately in the playout.

This automated assembly process could happen on
the server side, where the response data needed to
generate the program would be provided by the
client through a back-channel mechanism, and final
edited material would be streamed to the receiver
using a standard delivery method. However, in
situations where enough computational power and
bandwidth are available, it is possible to perform the
final assembly and personalization of the content
entirely on the client side, thereby eliminating the
need for any information to be released from the
household or other viewing area. This ensures the
protection of personal preferences, viewing habits,
and other privacy-sensitive data from unauthorized
use, and it lessens the need for complex on-
demand video server architectures.

Currently, the playback system (like the authoring
tool itself) runs on an interpreter for our Isis
programming language (5), but the same basic
engine could be used to generate output for other
playback platforms.

AN EXAMPLE

Although it is still under development as of this
writing, an early version of the tool has already been
tested with moderate success in making a
documentary program about a popular annual
festival at an MIT dormitory. This event has been
the subject of controversy throughout the MIT
community in recent years because of the outre
nature of some of the activities that are traditionally
part of it (very loud music, mud wrestling, et cetera).
The subject matter presented many opportunities to
experiment with different forms of responsiveness.

We had several goals in developing a responsive
video program about the event. First of all, we
wanted to be able to tell the story in a suitable
manner for different audiences (age ratings,
preferences about emphasis on music versus
action). We also wanted to be able to vary the
duration of the show, from a quick summary to
something very long and detailed, a feature that
might become particularly useful for receivers
equipped with disk-based personal video recorders
(PVRs).

Given the range of situations we wished to explore,
we decided to cover the event as exhaustively as
possible with a single camera, paying special
attention to the behaviors and reactions of the many

different attendees: organizers, students, campus
police officers, performers. We digitized this source
material into our tool and formed individual clips
from anything that we thought might be useful in any
possible final cut of the program. In the annotation
phase, we rated each clip on various scales that we
thought would be useful later, such as “importance”
(to help in later deciding what to include in longer or
shorter editions) and “close-up” (to help in
controlling the level of intimacy and the balance of
different kinds of shots). We also rated the clips for
content and other subjective features like sex,
energy, and so on.

While our tool does not yet provide functionality for
more complex elements like L-cuts or transitions of
different sorts, the editing guidelines we developed
for the program outline a basic framework upon
which clips are selectively added or trimmed to
generate programs with different durations and
different levels (for example) of sex, violence, and
music.

Using various versions of these editing guidelines,
we could experiment with many different
presentation scenarios. For example, we could give
the viewer manual control over the length and detail
of the program, or we might use some kind of affect
recognition system (6) to detect the viewer's
attentiveness and involvement, appropriately
controlling the amount of detaill shown in each
section of the program. We could take into account
preferences of the viewer and censor material that
might offend. We could also create versions that
exhibit different behavior based on equipment
factors like the size or aspect ratio of the screen (7).

In any of these cases, two key points are important
to keep in mind. First, it is the author of the program,
not the viewer or a third party, who maintains the
control in deciding how and to what extent the
program will be assembled differently for different
situations and what freedoms the viewers will have
to interact with and personalize the program to suit
their desires. Secondly, no information about the
viewer's preferences or interaction habits ever
needs to be transmitted outside of the viewing area
in order to accomplish the personalization and final
assembly of the video program.

Several productions, including advertising,
informational programming, and entertainment, are
in the planning stages so that we can further test the
tool and refine the direction of its development. For
more information and the latest results, go to
http://isis.www.media.mit.edu and click on
“projects.”

REFERENCES

1. Simons, D., 2000. Digital TV Wins. Forbes. 28
June 2000.

2. Dalal, M. et al., 1996. Negotiation for Automated
Generation of Temporal Multimedia Presentations.
Proc. ACM Multimedia 96. pp. 55 to 64.

3. Davis, M., 1993. Media Streams: An Iconic Visual
Language for Video Annotation. Telektronikk, 4.93.
August 1993. pp. 59 to 71.

4. Vasconcelos, N., 2000. A Probabilistic
Architecture for Content-based Image Retrieval.
Proc. CVPR '00.

5. Agamanolis, S. and Bove Jr.,, V. M., 1997.
Multilevel Scripting for Responsive Multimedia.
IEEE Multimedia. 4:4. October-December 1997. pp.
40 to 50.

6. Picard, R., 2000. Toward Computers that
Recognize and Respond to User Emotion. |IBM
Systems Journal. 39:3-4. To appear.

7. Bove Jr., V. M., 1995. Object-Oriented Television.
SMPTE Journal. 104. December 1995. pp. 803 to
807.

ACKNOWLEDGMENTS

We wish to thank Matthew Palmer for assisting in
the video production and helping to test the tool.
The research described in this paper has been
supported by the Digital Life Consortium and the
Broadercasting Special Interest Group at the MIT
Media Laboratory.

Figure 1: A screen from the annotation mode of the Viper tool, showing parameters associated with the shot.

