Isis, Cabbage, and Viper:
New tools and strategies
for designing responsive media

by Stefan Panayiotis Agamanolis

B.A. Computer Science
Oberlin College, 1994

M.S. Media Arts and Sciences
Massachusetts Institute of Technology, 1996

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Media Arts and Sciences
at the Massachusetts Institute of Technology

June 2001

0 2001 Massachusetts Institute of Technology. All rights reserved.

Author:
Program in Media Arts and Sciences
May 4, 2001

Certified by:

VMlchae]Bove/]r ...
Principal Research Scientist

MIT Media Laboratory

Thesis Supervisor

Accepted by:

Stephen A. Benton

Chair, Departmental Committee on Graduate Students
Program in Media Arts and Sciences

Isis, Cabbage, and Viper:
New tools and strategies
for designing responsive media

by Stefan Panayiotis Agamanolis

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

on May 4, 2001,

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Media Arts and Sciences

ABSTRACT

Responsive media are media that can sense and react intelligently to factors like
presentation conditions or equipment, audience identity or profile, direct inter-
action, history or anticipation of involvement, and so on. The emergence of
modern computational devices and communication networks, with their power
to manipulate media signals and objects, has spurred the development of new
forms of responsive media. But a lack of a broad framework for understanding
the characteristics of and motivations for these media has resulted in computer-
based design tools that do not mirror the character of our projects and working
practices and, in turn, compromise our ability to communicate effectively with
these media.

This research strives to build such a framework and use it as a foundation for a
suite of three new tools that better reflect the multi-layered, multi-sensory, and
multi-person nature of responsive media. Aiming to rethink the principles un-
derlying one of the most primary building blocks in the design process, the cen-
terpiece of this suite, Isis, is a new programming language tailored to serve as a
basis for responsive media. The second tool, Cabbage, is an experiment in em-
ploying a purist form of case-based reasoning in a system for creating responsive
graphical layouts. Lastly, Viper is a new tool for making responsive video pro-
grams that can re-edit themselves to adapt to different viewing situations. These
tools seek to enable the development of complex and meaningful input-output
relationships through simple, elegant interfaces that emphasize visibility, acces-
sibility, and extensibility.

Thesis supervisor:

V. Michael Bove, Jr.
Principal Research Scientist
MIT Media Laboratory

Doctoral dissertation committee

Thesis Advisor:

VMlchae]Bove/]r ...
Principal Research Scientist

MIT Media Laboratory

Thesis Reader:
Glo r lanna Davenport ..

Principal Research Scientist
MIT Media Laboratory

Thesis Reader:

e] T
Dean of the School of Architecture and Planning

Massachusetts Institute of Technology

Acknowledgements

I want to thank a number of people who have assisted and supported me
throughout my time at the Media Lab.....

First and foremost, Mike Bove, for giving me the chance to study at the Media
Lab and for being the best advisor anyone could ever hope to have here.

Glorianna Davenport, who has in many ways been a second advisor and who
has been just as influential in shaping my ideas and research directions.

Bill Mitchell, whom I have known for less time, but whose insightful comments
from an outside point of view have been invaluable in honing my ideas.

Aisling Kelliher, Barbara Barry, Surj Patel, Bill Butera, Jacky Mallett, Alex
Westner, Freedom Baird, Jon Dakss, Shawn Becker, John Watlington, and the
many other Object-Based Media mavens and Interactive Cinema gurus of the
past and present, for being great collaborators on so much of this work, and for
being great friends.

My UROPs, Jeremy Lilley, Ann Bui, Christian Baekkelund, Matthew Palmer, and
Eric Syu, for their hard work and long hours.

Pat Turner, Michail Bletsas, Jane Wojcik, Matt Tragert, and the many other staff
people at the lab for keeping things running smoothly.

My officemates over the past 6 1/2 years, Chris Verplaetse, Steve Waldman, Dan
Gruhl, Kathy Blocher, and especially Bill Butera, for keeping things real.

Richard Salter, Rhys Price Jones, Bob Geitz, Garold Garrett, and the many other
figures from my educational past at Oberlin College and Copley High School for
challenging me to be my best.

Annette, for her love and for always showing me the way to a good heart.

And finally, my parents, my sister, my grandparents, and the rest of my
extended family, for their constant love and support throughout my life.

Table of Contents

OVEIVIBW ..ottt 13
INErOAUCHON ... 13
The PrODIEML........ouiiiiiiiciic s 13

Multi-sensory interfaces and materialsccccccovviviiiiinniinicinen, 14
Multi-person collaborations and experiencesccccoeeveceiniiciiinnnn 14
Multi-layered tasks and thinking processes..............ccccuvcucuvcuncuncuscuncunenn. 14
TRE JOUINEY ...t 15

Understanding responsive media..........cccooieiiiiiiniiniiiie s 17
TerminOIOZYcvviuimiiiiiiiiic s 17
A DIIEf RISTOTY ..o 18
MOIVAHONS ...ttt s 21

EdUCAtiON. ..ot 22
COMIMETCE ..ottt 22
EXPIOSSION ...ttt s 22
Communication and awWareness...........c.cooeuveiviininiininnens 23
The deSIGIN PIOCESScuuiuuiimiiuiiiiiiiiiicie e saes 23
Understanding the g0als ..o 23
Choosing the variables..........cccocuiiirininiiniiicic e 24
Building the Mappings ..o 26
Guiding ObServations.........cccciiiiniinii s 27
Survey of popular tOOScoiiiiiiiiiiii e 29

SIS ettt 31
Why a new 1anguage? ... sas 31
The ISiS StTAteGY ..ot 31

Multi-sensory interfaces and materialsc.ccccovviviiiiinniininnen, 32
Multi-person collaborations and experiencesc.ccoeevieiniicininnnn 32
Multi-layered tasks and thinking processes..............cccccuvcunciecuncuncuscuncunenn. 32
The SYNaX Of ISIS......cuuiuiuiiiiciciciiiieiicieie s saes 32
TYPES ottt s 33
EXPI@SSIONS ..ottt 34
Variables ... s 34
LISt vttt s 35
Native MeMmMOTIY ACCESScvveviirirrieieiiiictetee e 35
Conditionals.........coviiiiiiiiii s 35
Logical Operators ... 36
Sequential evaluation...........ccovviiiiiiiiiiii e 36
Local environments ..o 36
Procedures.........cvvimiiiiniiiiiiii s 36
Memory Management...........ocoeeerieieiniiieieseee s 37
Software LIDraries ... 38
Basic UHIHES ..o 38
Visual media.....ccocviiiiiii s 39
Aural Mmedia ..o 39
Databases.........ccoiiimiiiiiiiii s 40
Networks and distributed processingccccovevvvieiviiiiiiicniiniinn 40
Sensors and media I/ O deVICESo.evueeveieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e seeeenes 40
A feW eXAMPILES ... 41
USer COMMUNIEYvuieieciciiiccictc s 44
EVOIULION ..ot 45

EXPEIIOIICE ...ttt e 46

Object-Based Media..........ccoevuiriiiiiiiiiiiiiiiicc s 46
The MUSEUIML ... 46

The Yellow WallPapercccueiuiuiiiiiciiinieiicicciesisiessessessesess s sseseees 47
HYPEISO0AP ...ttt e 48
Interactive CINemMa.........c.occrueieiiiiccic e 50
Sashay /Sleep Depraved ... seeseees 50
JAYSIT@E. ...t 51

THE Birds.......ouieieiiciciiiiiii s 52
CINEMAT ...cooviiiiiniii s 53
Magic WINAOWS ..ot 55
TelePIESENCE ..ot 56
Reflection of PIeSeNnce ... 56
Vision TeleviSiOn........ccciiiiiiniiiii s 58
TCOML ettt e 58
OLher PIOJECESccuuiuniiciiiiiiicici e 60
Evaluation ... s 60
CADDAGE ..o s 63
ReAlIZAtIONSouviiiiiiiii s 63
Case-based reasoning.........c.cccocviriiiriiininiiii s 63
Case based reasoning in deSign ... 65
Related WOTK........ccoviiiiiiiiiicic s 65

The Cabbage Strategy ..o sassaens 66
Multi-layered tasks and thinking processes.............cceeverierinieniniesieniens 66
Application dOmMaiN.........ccvveviiiiiiiiiiii s 66
Visual iNteIface........covveviiiiiiiiiiii 67
The €ase lIDIATYcccuciriiiiiiiicic et 68

TRE CANVAS ..ot 69

The object manipulation CONLIOLSc.ccucuciicirierinininiseeieciescens 70

The deSig SPACEcuucuuiuieieiiiicici e 71
Case adaptation algorithm..........ccccoiiiiicinininiccccc e 71
Select NEATESE CASE........ccvviiiiiiii s 72
Combine Nearby Cases...........ccouviiiiiiniiiiiiniii s 72
Combine nearby unoccluded cases............coocviviiiiiiininiiiicis 73
Combine nearby unoccluded extrapolations of cases..........c.cccccourururinnnn 73
Refining and presenting the result.............cccocviiiiciciinininininccccs 74
EXample PrOJECt.......couviiiiiiiiiiiiiiic s 74
Evaluation ... 78
VAPCT ettt 81
ODSEIVALIONS ..ot 81
MOIVAONS ...ttt s 81
Automated and dynamic video editingccccccovviviniiiiniiiinics 82
The VIPEr SLEAtEZYccuruiuiuieiiiiiiiic et 84
Multi-sensory interfaces and materialsc.ccccovviviiiiiiniiniicnn, 84
Multi-person collaborations and experiencesc.ccoeeveieiiiinininnnn 84
Multi-layered tasks and thinking processes..............cococuvcuncuecuncuncuscuncunenn. 84

The Viper production ProCess..........ccucucuieiuiuniiniicicicisisisssessessssssssssssssesaes 85
Planning a production ... 85
Capturing Media ..o 85
Forming a database of Clips ..o 86
Making annotations.............ccvviniiiiiniies 88
Building editing guidelines...........ccccccooiviviiiiiiiniiiiinine 89
Database lookup primitives.........cccocciviiiiiiiiniiinieenes 90
Scoring and sorting primitives..........cccveviniiiiins 92
Preparation primitives..........cccoceeieiiiriciniinccc s 93
Editing primitives ..o 93

10

Inspecting and 1efining ..o 95

Presenting the reSult...........cccooiiiiiiiiiicc s 98
EXPEIIOIICE ...ttt s 99
Steer Roast documentary............cccccevviiiniiniiiicc s 100
Personalized research open-house...........cccccoeuvininininininininincnccnes 101
OLher PIOJECEScceuieniiiiciiiiecicie s 101

A responsive campaign advertisement ... 101
Viewer Profile L. 104
Viewer Profile 2. 106
Viewer Profile ... 109

Edit deciSion lists ... 111
Editing guidelines..........ccooiiiiiviiniiiniiic s 113
Possible improvements..........c..ccveeiiiiniiii s 118
Evaluation ..o 119
CONCIUSION .ot 121
CoNtrIDULIONS. ..ot 121
Multi-sensory interfaces and materialsccccccovviiiniciiiiniiicinnn, 121
Multi-person collaborations and experiencesccocoevievviineiiinnnn. 122
Multi-layered tasks and thinking processes............ccoeeuriririerieninienenn. 122
Other cONtrDUHONS ..o 123

The JOUTrNeY CONINUES..........cvuieieieiiiicic e 124
BIDLIOGIAPRY ..ot 127

11

Chapter 1
Overview

Introduction

Responsive media are media that have the ability to sense and react intelligently to
factors like presentation equipment or conditions, audience identity or profile,
direct interaction, history or anticipation of involvement, and so on. Unlike the
classic media model, responsive media systems consist of a two-way channel
between the audience or participants and the person or device generating or
controlling the delivery of the media. This channel, whether physical or con-
ceptual in nature, allows important data gathered at the delivery points to be
returned and used to alter the presentation in a suitable way based on the goals
of the experience.

Responsive media have existed since the beginning of civilization, in forms of
oral storytelling that incorporate listener feedback and interaction for example.
Thousands of years later, the emergence of modern computational devices and
communication networks has created tremendous opportunities for developing
new forms of responsive media. In the last quarter century alone we have seen
the rise of things like video games, virtual reality, electronic information kiosks,
interactive computer-based art, and the World Wide Web.

With their power to manipulate media signals and objects, computers make ef-
fective devices for mediating response behaviors, especially in cases where very
fine grain control or instantaneous reactivity are necessities, or in situations
where, for whatever reason, it is impossible or improper for a human to handle
response activity from an audience. The programmability of such devices en-
ables a creator to embed a sort of “philosophy of design” within a media pres-
entation such that it has a sense of its delivery context and can modify itself ap-
propriately to forge a richer connection with its audience. Advances in commu-
nication network technology have allowed the end points of a media experience
to be great distances apart while still maintaining the capability for immediate
feedback.

It is not surprising, then, that scores of computer-based tools for designing vari-
ous kinds of responsive media have emerged in recent years. These tools vary in
scope from general-purpose development environments, able to handle many
forms of media, to tools tailored for very specific application domains, such as
computer-based training systems, hyperlinked video, or adventure games. They
also vary in user interface from completely textual programming languages to
graphical flowchart and timeline-based environments.

The problem

Over the years, with the introduction of modern operating systems and graphical
user interfaces, the sophistication and accessibility of responsive media design

13

tools has improved somewhat, but the state of the art is still quite primitive,
largely because we still lack a good understanding of the fundamental qualities
of and opportunities presented by responsive media and how we, as designers,
think about and work to create them. This lack has resulted in tools that exhibit a
number of difficulties, because they fail to reflect the observations that respon-
sive media consist of multi-sensory interfaces and materials, multi-person col-
laborations and experiences, and multi-layered tasks and thinking processes.
These difficulties present obstacles in our ability to communicate effectively with
responsive media and, in turn, stifle the enormous potential these media could
have in our world and in our lives.

Multi-sensory interfaces and materials

Responsive media are arguably at their best when they engage all of the senses
through a variety of interfaces. Unfortunately, many tools, especially those on
the commercial market, focus on mass consumption and concentrate support on
only the most standard interface and delivery devices. Keyboards and mice are
often the only options, which by their very form constrain many applications to a
single small screen and a muted sense of physicality at best. Non-standard de-
vices, if they are supported, are usually de-emphasized in different ways, espe-
cially in documentation. Additional constraints are imposed by the window
managers and graphical widget offerings of the current popular platforms. Such
tools foster an attitude that key presses and mouse movements are the only in-
teresting or practical things an application might respond to, discouraging the
use of sensing and display systems that may be more appropriate in situations
where mass consumption may not be a concern at all.

Further, responsive media generally incorporate a rich array of media types,
such as images, audio, video, and graphics, and applications frequently require
complex analysis and recognition systems as well as a high degree of distributed
processing, but tools are often not up to par in their ability to handle these de-
manding media types and operations, especially those that employ virtual ma-
chines or that require hefty overheads for data filtering and buffering, memory
management, or multi-threaded processing.

Multi-person collaborations and experiences

Responsive media projects often span multiple disciplines and involve many dif-
ferent kinds of people with many different kinds of expertise working in large
collaborations to realize a common goal. Yet the vast majority of computer-
based media tools are designed for a single user working at a single workstation
and do not foster encounters where several minds might work together on a
particular aspect simultaneously. This problem is compounded by the mere one-
person physical design of modern computer workstations. These issues in turn
discourage the creation of media experiences that might engage more than one
person at a time, or that might utilize the resources of more than one processing
node at a time.

Multi-layered tasks and thinking processes

Making responsive media involves working incrementally and innovating at
many different levels throughout the development process, from low-level mat-
ters like incorporating a new sensor or display technology to higher-level con-
cerns like structuring media objects and their behaviors and adjusting content
elements. Many tools offer more than one layer of abstraction, such as a graphi-

14

cal interface coupled with a textual scripting language, where each layer may
present a different kind or amount of functionality or a different way of describ-
ing operations. This multilevel approach works well if a unified scheme exists in
which the individual layers of a tool are consistent with and complement each
other, and if it is easy for users to shift between and harness the power of several
layers throughout the evolution of a project.

Unfortunately, this is often not the reality, especially with many of the most
popular tools, which evolved, in some cases haphazardly, over several years in
order to adapt to a new class of problems they were not originally designed to
handle. Assumptions made and expectations created in one layer are often over-
ruled and contradicted in the others, creating situations where designers must
unlearn knowledge gained from using one layer when it becomes necessary to
step into another in order to accomplish a task. These problems create additional
difficulties in group endeavors by hampering the abilities of collaborators to un-
derstand and merge individual contributions based in different layers of a tool.

In addition, our ways of thinking about responsive media are widely varied, and
whenever possible and appropriate, tools should provide interfaces that mirror
these often visual thinking strategies and our inherent ability to learn and de-
scribe processes by example, as well as the increased emphasis of space and
physicality in many responsive media domains. However, many tools instead
require designers to describe response behaviors within very rigid systems of
abstract rules and lists of instructions that usually don’t reflect their internal un-
derstanding of the problems they are trying to solve. Many interfaces are diffi-
cult to extend and reconfigure, discouraging designers from breaking new
ground by journeying beyond the bounds of what is offered by a tool. This of-
ten leaves designers with no choice but to base their efforts within the same gen-
eral-purpose programming languages created decades ago for developing com-
pilers and operating systems, before it was realized by most that the computer
would become such a major player in responsive media.

The journey

The research described in this dissertation uses these three basic observations
about the multi-sensory, multi-person, and multi-layered nature of responsive
media as the foundation for an approach for building a new genre of computer-
based tools, and for evaluating those tools.

To begin the journey, Chapter 2 takes a step back and presents a brief history of
responsive media forms and a discussion of some of the incentives for creating
responsive media in the first place. Drawing on examples from prior work in
diverse areas from interactive art to video games, this section also expounds on
the three main observations described above, first explicating some basic prop-
erties of responsive media and some of the issues and techniques involved in
creating them, and then presenting an evaluation of several current popular
authoring tools and programming languages, leading toward a coherent strategy
for constructing new tools.

The knowledge and insight gained from this exploration serves as the foundation
for a suite of three new design tools. Chapter 3 describes the centerpiece of this
suite, Isis, a new programming language, tailored to function as a basis for re-
sponsive media, that aims to rethink many of the principles underlying this per-
haps most basic yet powerful implement at our disposal in creating innovative
new media. Chapter 4 discusses Cabbage, an experimental visual tool, motivated
in part by some of the shortcomings of Isis, that employs a purist form of case-

15

based reasoning in a system for creating responsive graphical layouts. Chapter 5
describes Viper, a tool for making video programs that can re-edit themselves
during playback to adapt to different viewing situations and real-time audience
activity, whose design is informed by the lessons learned from building the pre-
vious two tools.

These tools all strive to provide simple, elegant interfaces that enable a creator, at
one level, to build complex and meaningful input-output relationships for con-
trolling media behaviors, but at another, to programmatically express a “phi-
losophy of design” that travels along with the media objects and dictates how
they are presented in response to whatever factors are of interest. A host of pro-
totype applications, including hyperlinked video dramas, telepresence environ-
ments, responsive television advertisements, ambient information displays, and
interactive artworks serve to test these tools and to support the validity of the
three basic observations about responsive media that form the basis of their de-
sign. Chapter 6 summarizes the contributions of this research and outlines sev-
eral directions for further investigation.

16

Chapter 2

Understanding
responsive media

Terminology

In their seminal book on the mathematical theory of communication, Shannon
and Weaver describe the symbolic components of a classic communication me-
dium, in which messages are conveyed from a transmitter to a receiver over a
communication channel [SW63]. Their definition implies that the channel is uni-
directional—that messages may pass from the transmitter to the receiver, but not
in the reverse direction.

A responsive communication medium, on the other hand, may be defined as a
system consisting of a two-way channel, over which messages may pass from the
transmitter to the receiver, but also from the receiver back to the transmitter. In
such a medium, the technological distinction between the transmitter and re-
ceiver vanishes, and any remaining difference is one of subjective function. In
many cases there is a clear distinction between the “originator” or “mediator” of
an experience and the “audience” or “spectators,” and in others the function of
each party is more or less equal.

The term responsive media can be defined broadly as the collection of media forms
in which there is any kind of response characteristic by which a presentation is
altered based on one or more factors, such as information gathered about the
audience, the type of presentation equipment in use, the physical or social con-
text of the presentation, direct interaction from the audience, knowledge of what
happened at previous points in time, or anticipation of what might happen in the
future. At the very least, all responsive media forms create a two-way relation-
ship between the parties in a media transaction that may involve physical sens-
ing apparatus, access to memory storage devices, and systems for processing and
analyzing that sensory and memory information.

The more familiar term interactive media has come to represent a large subset of
responsive media that depends primarily on responses that are actively willed by
participants. For example, arcade video games require the active and intentional
button presses and joystick movements of players, whereas traditional theater
productions often rely more on the passive and unwilled responses of audience
members, such as laughter, facial expression, other attention indicators, or a lack
thereof. Personalized media represents another subset that stresses situations
where information about the audience, such as personality, preferences, interests,
history, and so on, is utilized to alter a presentation accordingly.

17

A brief history

Some of the earliest instances of responsive media are likely related to forms of
oral storytelling that incorporate elements of listener involvement and feedback,
and these forms are still very much alive today. By taking notice of how much
an audience laughs, how attentive they seem, how disgusted they are, and so on,
oral storytellers can alter the way present their material in real-time in order to
tell the most engaging story possible. They can also respond to direct questions
from the audience and steer the content of the presentation to better suit interests
or preferences.

Addressing the reactions of an audience while simultaneously maintaining flow
and delivering a compelling experience with a rich sense of reciprocity is by no
means a trivial matter, as storyteller Rafe Martin stresses:

“The teller must be able to look within to the unique images and un-
derstandings of the tale arising in his or her own mind, even as he
looks outward to the needs, understandings, and rhythms of the audi-
ence. In the act of telling, the storyteller must be constantly gauging,
constantly modifying and reshaping the story. In the act of telling, the
teller is intuitively responding to such questions as: Are the listeners
getting it? Is the heat making them restless? Is the lighting too dim? Is
that noise too distracting? In the act of telling, the teller must work
with such inner and outer contingencies (and many more!) to bring the
story and its listeners onto the same wavelength and into a unified
realm of imagined experience.” [Mar96, p. 153]

Altering a media presentation while it is in progress is possible in oral storytel-
ling and other “live” forms by virtue of the fact that the media are being experi-
enced at the same time they are being generated, and the person generating them
is intelligent enough to sense certain response behaviors and use them to achieve
the goals of his media more effectively.

By contrast, in traditional theater and dance, performers serve more as “media-
tors” of content that is almost always generated in advance by someone else, but
they are still endowed with the ability to modify their delivery of that material to
a certain degree to engage the audience more effectively. Unless the piece in-
volves improvisation, performers are often not at liberty to change the lines they
deliver or create new movements in the middle of a performance, but they can
raise their voices, adjust their timing, or increase their energy level if, for exam-
ple, the audience seems bored or unresponsive.

The invention of written media, such as books, posters, letters, and newspapers,
created a more pronounced barrier between author and audience, most notably
because of the delay introduced in the processing of response activity. Marshall
McLuhan alludes to this phenomenon in his discussion of the effect of the writ-
ten word on society:

“Oral cultures act and react at the same time. Phonetic culture endows
men with the means of repressing their feelings and emotions when
engaged in action. To act without reacting, without involvement, is the
peculiar advantage of the Western literate man.” [McL94, p. 86]

In written media, the physical book or newspaper itself acts a mediator of the
content, and a fairly unintelligent one at that. A book has no means of, say, ad-

18

justing the words and the sentences on the page if the reader appears to be bored
or confused. Of course, it is not totally devoid of response behavior—readers can
turn the corners of pages, write notes in the margins, or spill extra coffee in cer-
tain chapters, altering the presentation of the media for future readings in a way
that will reflect a history of its use and the personalities of its previous readers.

However, for more complex forms of responsiveness, the reader must actively
invest time and energy to, say, write a letter to the editor or publisher. If re-
sponses do eventually reach the author of a book or newspaper article, it is only
long after the process of creating the media has been completed—after the book
has been published, after the newspaper has been printed. These delayed reac-
tions may affect how the author writes in the future, but it is too late to alter the
original piece to which the response was addressed.

The arrival of electronic communication media, such as telegraphy, telephony,
radio, and television, provided the capability for physically distant parties to ex-
perience near instantaneous responsiveness. In the case of telephony, for exam-
ple, two or more people separated by a great distance can speak and respond to
each other through an audio channel almost as they would in person, without
any noticeable time delay.

Although commercial television and radio broadcasting systems often incorpo-
rate very indirect forms of audience responsiveness (Nielsen ratings, complaints,
and so on), a great deal of their programming is mostly one-way in nature, con-
sisting of prerecorded shows or songs transmitted in sequence or at particular
times of day. A television receiver, like a book, is a fairly unintelligent mediator
of the content it carries. Viewers can make simple adjustments to sound volume,
picture contrast, color balance, and so on, but the television itself does not have
the ability to, say, increase the size of text captions, cut in extra close-ups, or
show a scene from a different angle if it senses the viewer is having trouble see-
ing something or if the screen is very small in size. Combining television or ra-
dio with another electronic medium acting as a “back channel” can enable a
richer form of responsiveness—for example, viewers can steer the content of a
live talk show by telephoning the studio and asking questions to the show’s
guests.

The emergence of modern electronic computational devices enabled human me-
dia creators to embed knowledge about how to handle response behaviors in
computer programs that control the delivery of media presentations. This new
capability, coupled with advances in sensing and media display technology, has
paved the road for the development of several new and exciting forms of respon-
sive media in the past several years.

One of the most popular of these new forms is certainly the computer game. In-
teractive competitive play systems have existed since the early 1960s, most nota-
bly a game called Spacewar that was developed on a DEC PDP-1 mainframe at
MIT. However, Atari’s original arcade version of Pong is probably the most well-
known early computer video game. Pong simulated an interactive tennis match
in which two players paddle a tiny ball back and forth across a video screen. The
game, with its unbelievably primitive graphics by today’s standards, was an
overnight sensation when it was first displayed at a local bar in Sunnyvale, Cali-
fornia in 1972 and sparked the development of a huge industry for arcade and
home computer gaming systems that even today shows no signs of waning.
[Coh84]

Advances in video and audio storage and retrieval technology led to some early

experiments in interactive and personalized movies, perhaps most notably the
Aspen Movie Map project from the MIT Architecture Machine Group in the early

19

1980s [Moh82]. Users of the movie map could take a virtual “drive” around the
city of Aspen, with interactive control over where turns are made, speed, and
direction of view. Random-access videodisks held imagery of the entire city of
Aspen, and the use of multiple disk players, video mixers, and computer anima-
tion facilitated smooth transitions between the individual recorded elements.
Similar videodisk technology was later utilized to create the Movie Manual, a
prototype of an “electronic book” that incorporates video, audio, and hyper-
linking capability along with standard text [Gan83]. Two instructional manuals
were created with this framework, one for repairing automobile transmissions
and the other for servicing bicycles. Special attention was given to the ability of
the viewer to customize his learning process by navigating and annotating the
material in different ways.

The potential for computer-mediated responsiveness also spawned new devel-
opments in interactive expression. Frank Popper traces the roots of computer-
based interactive art back through other “technological” forms like video, laser,
holographic, and lumino-kinetic art, and further to the Futurism, Dadaism, and
Constructivism movements of the early 20th century [Pop93]. Margot Lovejoy
further traces the origins of interactive art to the new emphasis placed on the role
of the spectator with the advent of photographic art:

“Photographic reproduction and the cinema raised social questions
about the artist’s role, about the audience for art, about art as commu-
nication rather than art as object, and thus brought into focus the social
function of art.” [Lov97, p. 5]

In the past several years, many new computer-based responsive art forms have
emerged, from multilinear hypertext novels to large interactive installation
works. Artists working with these new forms have created many fascinating
pieces dealing with a wide variety of themes. To give a few examples, Michael
Naimark explores the recreation of “place” in his Be Here Now, a large installation
in which the spectator stands on a rotating platform and experiences three-
dimensional audio-visual recordings of several “endangered places” in the world
at different times of day [Nai97]. In Toni Dove’s Artificial Changelings, partici-
pants explore the thoughts, memories, and dreams of two characters, one a Vic-
torian-era kleptomaniac and the other an encryption hacker from the future, in a
multimedia installation that responds to physical body movements and hand
gestures [Dov97]. In his Video Place experiments, Myron Krueger creates respon-
sive environments in which the digitized silhouettes of spectators are trans-
formed into objects in a shared video space that can be manipulated through
body movement and gesture [Kru96].

The Media Lab has a history of pushing the boundaries of what Ricky Leacock
called “opera in the largest sense of the word” with such installation works as
Antenna Theater, Wheel of Life, Brain Opera, KidsRoom, and many others. In Wheel
of Life, participants become either explorers or guides who are separated from
each other and must collaborate through a variety of computational interfaces to
successfully travel through three large-scale physical story environments, one
each representing the traditional elements of earth, air, and water [DF95]. Brain
Opera presents its audience with an opportunity to play several new computa-
tionally-mediated musical instruments and have their contributions incorporated
into a multimedia performance inspired by the writings of Marvin Minsky
[Mac96]. In the KidsRoom, animated characters and voices respond to the move-
ments and gestures of children in a story environment fitted with computer vi-
sion technology [Bob99].

20

In many ways, these large-scale installation forms represent the pinnacle of com-
puter-mediated responsive media because of the way they attempt to engage all
the senses through a variety of interfaces to achieve the same rich feeling of re-
ciprocity found in oral storytelling, but many other interesting forms have
emerged over the years, too many to discuss in full detail in this brief document.
Some other examples are virtual reality environments, telepresence systems,
training simulators, and interactive television shows. Hypertext and other hy-
perlink-style forms have become especially popular for many different kinds of
content, from large commercial Web sites and computer-based training applica-
tions to personal Internet “home pages.”

Motivations

Why would we want to create responsive media in the first place? And why
would we be motivated to use computational devices to control the delivery of
that media? Bill Harley addresses the first of these concerns in the context of sto-
rytelling, underscoring the importance in any media endeavor of building a two-
way relationship between author and audience:

“Storytelling’s success depends upon the intimacy created between
teller and listener. When the teller is powerful and the story well told,
there is often the feeling in the audience that the teller is “speaking
only to me”—a palpable vulnerability is present. When storytelling
fails, the audience member feels she is closed off from the story—that
the performance would take place in the same exact manner whether
the audience were there or not. As a result, the listener doesn’t invest
in the story, and little is shared.” [Har96, p. 130]

Shannon and Weaver approach this issue from an information theoretic stand-
point in their explication of three different problem levels in communication
[SW63, p. 4], as follows:

* The technical problem: How accurately can the symbols of communica-
tion be transmitted?

* The semantic problem: How precisely do the transmitted symbols con-
vey the desired meaning?

* The effectiveness problem: How effectively does the received meaning af-
fect conduct in the desired way?

The discussion and mathematical theory presented in their book applies almost
entirely to only the technical problem of communication. It is in the last two of
these areas, the semantic and effectiveness problems, that designing responsive
behaviors into media can likely be of the most help.

Automating the control of responsive media with computers enables applica-
tions in which it is impossible or improper for a human to perform the response
tasks manually—for example, if human bias in responses would be undesirable,
or if the responses would be too complicated, too repetitive, or just too boringly
simple for a human to generate effectively. It also enables applications that re-
quire complex and instantaneous processing of the media signals and sensing
devices, as is needed in flight simulators or virtual reality systems for example.

21

Education

In the realm of education, the development of a one-on-one relationship in which
the teacher or professor understands the history, interests, and capabilities of
each student and can provide individualized attention is of central importance in
the learning process. Yet, much educational media is very unidirectional in na-
ture, consisting of no mechanism to adjust presentation based on these kinds of
factors. Furthermore, no teacher can have a specialized knowledge of every
subject a student might wish to learn about, nor can teachers or other experts be
physically present at every time a student is likely to ask questions or be inclined
to learn.

A tremendous opportunity exists to develop responsive educational media that
can gather or infer information about the student through a variety of means and
use it to maximize their interest and learning potential, in a manner much richer
than the branching teaching machines of the 1960s [Per64] and their more con-
temporary variants. In his discussion of the Movie Map and its aim to make the
student the “driver, not the passenger” in the learning process, Robert Mohl
points out such systems are “akin to a ping pong match.”

“It’s either the student’s turn or the computer’s turn. One is always
waiting for the other (and by implication not necessarily maintaining
attention). True interactivity requires either agent to be able to inter-
vene at any time deemed opportune.” [Moh82, p. 197]

Utilizing new sensing technologies and models for understanding human be-
havior, students could delve into subjects that interest them in great detail out-
side of the shared classroom environment in systems that can sense and respond
to subtle cues such as when a student is confused, bored, or overwhelmed, and
can grow to understand over time how a student learns most effectively.

Commerce

Responsive media also has enormous commercial potential, perhaps most nota-
bly in the domain of advertising, where the opportunity exists to create ads and
propaganda that have a sense of their audience and the context of their presenta-
tion. A television receiver might be programmed to not display an ad for a local
restaurant if the viewer has already eaten dinner, or more interestingly, to show
an extended version of the ad if it senses the viewer is hungry, with imagery of
food selections that might agree with the viewer’s taste. Responsive media also
has potential in other marketing applications, from responsive store windows
and displays to hyperlinked video product placement and home shopping, some
prototypes of which will be discussed later.

Expression

Computationally-mediated responsive media opens vast possibilities for creating
new forms of artistic expression. Advances in sensing and display technologies
enable situations in which the presence, movements, gestures, images, and other
aspects of spectators can be transformed and reflected by a work of art in a way
that contributes to the artist’s theme or message. Key elements of effective sto-
rytelling, such as mystery and identification, can be heightened and even directly
driven by the audience of an experience, as shown in several experiments from
the Media Lab’s Interactive Cinema group [Dav00]. Most stories consist of an
element of journey—a feeling of being on a road to discovery where there are

22

obstacles to overcome and where changes occur. Endowing audience members
with the power to control various aspects of how a journey unfolds or to embark
on their own journey through a complex story world can increase the audience’s
motivation to experience the story, thereby enhancing its emotional power and
memorability.

Communication and awareness

Building response behaviors into media can also change and improve the way
we communicate and collaborate with each other. A great potential exists for
developing new kinds of interpersonal communication environments that re-
spond to the activities of participants in a manner that enhances the effectiveness
of their communication even beyond what is possible in physical face-to-face
meetings [HS92]. Responsive telepresence applications can foster a sense of
community or connectedness among their users even though they may be physi-
cally separated, on opposite sides of a room or on opposite sides of the globe.
Such systems might serve a larger social or political role by providing responsive
forums for debate and consensus-building, markets for trade, and other means
for heightening awareness and collaboration between governmental or political
leaders and the common person. Other systems might aim to reflect aspects of
our own activities in a way that increases awareness of the long term effects of
our habits and practices on our lives and on the health of our communities. As
Marshall McLuhan points out,

“Electrical speed in bringing all social and political functions together
in a sudden implosion has heightened human awareness of responsi-
bility to an intense degree.” [McL94, p. 5]

The motivation for utilizing computational power in creating new kinds of re-
sponsive media is strong in many other domains as well, too many to be dis-
cussed in detail here. Many other areas of interest, including several prototype
applications, will be discussed in later chapters of this dissertation.

The design process

In a very basic sense, designing responsive media involves creating relationships
between “inputs” and “outputs”—between the factors and events that the media
will respond to and the actual media that are presented. But more than that, it
involves forming and embedding a “philosophy of design” in a presentation
such that it can modify itself appropriately based on the creator’s vision. Deter-
mining exactly what kinds of inputs and outputs the media should incorporate
and what the relationship between them should be is not a trivial process and
often involves an experimental trial-and-error strategy for finding configurations
that produce the desired result.

Understanding the goals

Whatever the exact approach, the initial and perhaps most important step in cre-
ating any kind of responsive media is to take a step back from the project and
develop a careful understanding of the goals of the message or experience. For
example, perhaps the intent is to sell cars, or to increase awareness about how air
pollution affects health, or to create an system in which children can collaborate
on making a movie. In addition to any high-level objectives, there may be sev-

23

eral secondary or auxiliary aims as well. Below is a list of some important issues
to consider at this stage:

» What information are you trying to convey?
» What behavior are you trying produce?
» What product are you trying to sell?
» What skills are you trying to develop?
» What feelings are you trying to induce?
» What thoughts are you trying to provoke?
* What memories are you trying to evoke?
Given the results of this analysis, the designer can begin to investigate how cer-

tain kinds of responsiveness might contribute to or detract from the fulfillment of
the goals, the effectiveness of the message, or the enhancement of the theme.

Choosing the variables

Conceivably, a presentation might be made to respond to almost anything that
can be observed or recorded in some way, but grasping the wide range of possi-
bilities and why they are meaningful can be a difficult and confusing matter.
Any kind of diagram that tries to express the vastness of this input space almost
always falls short, but below is one possible visualization of the many axes avail-
able to traverse:

Physical action

Physical observation

Profile
Internal state

AUDIENCE
Preferences

HISTORY

Temporal context External information

Physical context

Equipment

Social context

24

In this diagram, history and anticipation represent the “time” axis. The other
axes are in no particular order, besides that the upper portion represents vari-
ables about the audience, and the bottom represents variables about the envi-
ronment. Oral storytelling scores high on many of these scales, but that doesn’t
mean that all responsive media should aim to span all of these axes to their full-

est.

More important than knowing all of the possibilities available is under-

standing what each of these categories of responsiveness can offer to an experi-
ence, and thereby which are the most important to consider incorporating in a
specific project.

Physical action: key presses, mouse clicks, joystick maneuvers, hand ges-
tures, body movements, other willed actions... Responsiveness of this
straightforward nature is often the most useful where viewers or audience
members are to be endowed with some direct control over how an experi-
ence unfolds—for example, to navigate among story elements or to directly
act upon and change the state of a story world.

Physical observation: facial expression, posture, laughter, crying, shirt color,
number of audience members, spectator positions or motion... Taking no-
tice and responding to passive or involuntary reactions of this sort can help
establish a sense of reciprocity without the spectator or audience member
having to actively initiate contact and thereby distract his mental immersion
in an experience.

Internal state: heart rate, breathing rate, body temperature, skin conductiv-
ity, stress level, sadness, confusion, fatigue, arousal, hunger, other emotions
and mental states... Mammals are capable of reading each other’s mental
states through a variety of instinctual means, and we unconsciously use
these cues to guide our interactions in a way that empathizes with the oth-
ers involved [LALOO, p. 52]. Because empathy is an important step in estab-
lishing a feeling of trust with audience members, some forms of responsive
media might benefit from the same close observation of bodily or mental
state.

Profile: name, age, height, weight, sex, race, home town, hair color, shoe
size, nose size, hobbies, IQ, SAT scores, grade point average, stubbornness,
sensitivity, restrictions, ailments, allergies, other physical or personal back-
ground information... Knowing your audience and tailoring the presenta-
tion accordingly shows you care about them, and they will in turn care more
about what you have to say. Alternatively, adjusting material based on in-
dividual background can be used to create a greater sense of shared experi-
ence over an entire population.

Preferences: favorite type of food, least-liked colors, favorite school subjects,
favorite movie genre, dreaded clothing styles, best-liked traits in friends or
love interests, other likes and dislikes... Taking into account preferences
can help avoid situations that may put off or offend an audience member
and can enhance the personal appeal of a message, making it more memo-
rable.

Temporal context: time of day, time of year, time zone, phase of the moon...
People react differently at different times of the day, the week, and the year,
and presentations can use this knowledge to match material to the prevail-
ing sensibilities at different points in these temporal cycles.

Physical context: location of presentation site, altitude, size and structure of

site, physical arrangement of objects at the site, kind of furniture, lighting
conditions, noise conditions, air currents... Oral storytellers and other per-

25

formers keep careful watch and adjust to lessen the impact of constraints
and distractions in their physical presentation environments, and computa-
tional media can benefit by accounting for these factors as well.

* Social context: social function of the room or presentation site, type of activi-
ties in progress, dominant social norms or political attitudes, principal lan-
guage spoken, local customs or restrictions... Taking into account these
context factors and adjusting accordingly can help avoid uncomfortable or
awkward elements that could drastically reduce the effectiveness of a mes-
sage or, even worse, cause the audience to turn against the producer of the
media.

» Equipment configuration: type of video projector, size of projection, number
and type of audio channels available, processor clock speed, amount of
memory, type of sensing devices in use, type of network connectivity, avail-
able bandwidth... Adjusting delivery based on these simple factors is an
easy way to increase the effectiveness of a message—for example, reducing
resolution to maintain the frame rate of a movie when less bandwidth or
processing is available, or including more close-ups or tighter cropping
when a video program is presented on a very small screen.

e External information: weather outside the presentation site, events in the
news, air pollution index, unemployment rate, the current price of gasoline,
the expiration date of the milk in your refrigerator, what tie David Letter-
man is wearing today... This category represents any other kind of external
information, not fitting into one of the other categories, that a presentation
may need to fulfill a particular goal.

* History: memory of physical actions and observations at previous points in
time... Recording, learning from, and incorporating elements of a viewer’s
history of interaction with a system enables a richer sense of a sustained
“conversation” and can increase a viewer’s motivation to return to an expe-
rience at later points in time.

* Anticipation: predictions, through intelligent processing of previously gath-
ered data, about what states and events may occur in the future... A sense
of “lookahead” humanizes a presentation, making it surprising and memo-
rable, and gives the impression that the system is listening to and learning
from its audience and cares about improving their experience.

The designer must give some thought to how the mediator of the presentation
will sense or otherwise obtain the selected response factors, considering tradeoffs
between privacy, invasiveness, security, cost, accuracy, resolution, automation,
and so on, with respect to the goals and constraints of the project.

Building the mappings

Defining the method by which responses will map to alterations of the media is
probably the most challenging aspect of designing responsive media. The gen-
eral problem of creating automated processes for transforming “inputs” to “out-
puts” is a central focus in the realms of algorithm design and computer science,
and much insight can be gained by examining some of the tools and techniques
used in these domains for solving various kinds of problems.

In classic rule-based systems, knowledge about how to map input to output is em-

bedded in a set of explicit rules or instructions. State machines combine sets of
rules with the concepts of memory to form more complex mappings. Case-based

26

reasoning offers a more concrete methodology for representing knowledge and
mappings that involves the notion of “reasoning from experience”—making de-
cisions based not on abstract rules but rather on similarities to previously gath-
ered cases [RS89]. This principle is a strong factor in systems for programming by
demonstration in which the designer presents examples of input data and the cor-
responding proper output for those situations, and the computer generalizes
from these examples to form a program that can handle other situations more
intelligently [Cyp93][Lie01].

Neither case-based nor rule-based systems are always appropriate for all kinds of
users and all kinds of projects, but these two complementary strategies serve as
useful starting points for developing more domain-specific tools for controlling
different kinds of response behaviors. Both styles will be explored in detail in
later chapters of this document, in the context of the three tools developed in this
research.

Guiding observations

If responsiveness is to be automated or otherwise mediated by a computational
device, the mapping must be described, through the use of one or more tools or
languages, in a form the machine can interpret or reason from. To be maximally
effective, the design of these tools must reflect the unique characteristics of re-
sponsive media and support the processes by which creators think about and
work to build these media. Given an awareness of the wide variety of forms and
the vast range of possibilities that exist, in addition to knowledge of how various
kinds of responsive media have been designed in the past, many of these char-
acteristics become more apparent and can lead to strategies for developing a new
generation of tools as well as standards against which to evaluate those tools.

First of all, as discussed earlier, automating responsive media behaviors entails
creating a programmatic relationship between inputs and outputs, a problem
area that is well understood in the realm of algorithm and programming lan-
guage design. Much thought has gone into understanding what constitutes a
good programming environment. As Abelson and Sussman observe,

“A powerful programming language is more than just a means for in-
structing a computer to perform tasks. The language also serves as a
framework within which we organize our ideas about processes.”
[ASS85, p. 4]

They continue by describing three mechanisms that powerful programming lan-
guages provide for describing and manipulating procedures and data:

* primitive expressions, which represent the simplest entities with which
the language is concerned

» means of combination, by which compound expressions are built from
simpler ones

* means of abstraction, by which compound expressions can be named and
manipulated as units

These guidelines form a set of standards against which we can evaluate the basic

expressive functionality and extensibility of programming tools and languages
used for responsive media.

27

In addition, many responsive media projects have a distinctly multi-layered
quality, requiring innovation at many different levels, from low-level concerns
like driving a new sensor technology or configuring processors and communica-
tion channels in particular ways, to higher-level matters like describing the ar-
rangement and behavior of visual objects in a video window or defining links in
a hypertext document. Tools must support this multi-layered quality by pro-
viding interfaces and mechanisms that operate at different levels of abstraction
yet complement and interoperate with each other. Designers must be able to
shift between and harness the power of several layers simultaneously through-
out the process of building an application.

For many, developing responsive media is a highly experimental process that
involves incremental changes and improvements and a seemingly never-ending
cycle of trial and error. Tools can foster this style of development and encourage
experimentation in a number of ways—for example, by making the range of of-
fered functionality more readily apparent and accessible, and by providing com-
ponents that can be easily swapped for others without requiring extensive revi-
sions. They should provide the ability to view results immediately as changes
and additions are made incrementally, and they must be efficiently reconfigur-
able and extensible in order to support endeavors that push beyond the prepack-
aged limits of the tool.

Responsive media projects often span multiple disciplines and involve collabo-
rations among many kinds of people, each of whom has their own strengths and
weaknesses and who are all working together to realize a common goal. Design
tools should reflect this reality by providing the means to elegantly and effi-
ciently merge the contributions of several collaborators, each of whom may be
working in a different layer of a tool. They should also supply a set of unchang-
ing primitive constructs or other mechanisms that might better enable collabo-
rators to comprehend and build upon each other’s contributions. These obser-
vations also call for rethinking the mere physical design of modern computer
workstations, which, considering the prevailing one-person form, can greatly
hamper efforts for several people to work on a particular aspect simultaneously.
Hiroshi Ishii’s Clearboard [IKA94] is an excellent model of a telecollaboration
system that allows more than one mind to participate in real-time in a particular
activity, in this case drawing. This and other similar systems serve as good
starting points for developing better tools for large collaborative ventures.

Finally, responsive media appeal to our senses, as do our ways of thinking about
their design. In addition to handling a variety of interface protocols and real-
time recognition and analysis engines, tools must be able to support the proc-
essing-intensive nature of images, video, audio, graphics, and the other complex
data types typically found in responsive media. Where appropriate, authoring
tools should emphasize the ability to display and manipulate media data in its
native visual or aural form rather than through textual commands. The process
of creating or demonstrating program elements and mappings should incorpo-
rate visual and gestural metaphors or other mechanisms that might better mirror
the working processes of designers.

In his trilogy of books, Edward Tufte introduces techniques for presenting many
different kinds of information, but the third of these books, Visual Explanations, is
especially enlightening as a starting point for developing systems that represent,
in his words, mechanism and motion, process and dynamics, causes and effects,
explanation and narrative [Tuf97]. Nan Shu highlights several potential motiva-
tions for visual styles of programming in his book, where he asserts that pictures,
when properly designed, can convey more meaning in a more concise unit of
expression [Shu88, p. 8]. At the Media Lab, the Visible Language Workshop and
more recently formed groups have focused on several aspects of visual informa-

28

tion design, including dynamic typography, methods for automating graphic
design, and techniques for visually navigating large bodies of information.
These and other projects, such as Marc Davis’ Media Streams language for video
annotation [DM95] and Henry Lieberman’s programming-by-demonstration
drawing editor Mondrian [Lie93], serve as important reference points for future
endeavors.

Together, all of these observations and realizations about the characteristics of
responsive media and the processes underlying their design can be summarized
in three compact bullets—that responsive media consist of:

» Multi-sensory interfaces and materials
* Multi-person collaborations and experiences
* Multi-layered tasks and thinking processes

These three basic yet vital observations about responsive media form the basis of
an approach for devising tools that meld more closely with the minds and bodies
of their users and the character of their projects. This approach informs the de-
sign of the three tools developed in this research, described in Chapters 3
through 5, and these three bullet points will be revisited in those chapters to mo-
tivate the design of these tools and to evaluate the success of those designs.

Survey of popular tools

There are several popular responsive media design tools worth examining more
closely at this point, with respect to the three design guidelines stated above.
Each of these tools offers a different range of functionality and a distinctive syn-
tax for describing processes and behaviors. One of the most popular is Macro-
media’s Director, which provides a high-level visual interface coupled with a
textual scripting language named Lingo. Its biggest weakness is that these two
layers do not complement each other. Lingo overrides several assumptions
made in the visual layer, forcing users to unlearn much of their expertise when it
becomes necessary to use Lingo and causing the visual layer to become more of
an encumbrance than an aid to the authoring process.

Another well-liked tool, especially in the music world, is Opcode’s Systems
MAX, which employs a flowchart-based graphical programming environment in
which box-shaped functional elements are connected with “wires” to express
various behaviors. However, it also suffers from many of the same problems
faced by other flowchart environments in general. Typical projects require many
more wires than higher-level conceptual process diagrams, and when building a
very large program with complex object connections, the wires that go between
objects can quickly overwhelm the screen and reduce readability, shifting the
focus of activity away from programming and more toward graphic design.

IncWell’s Supercard, Asymetrix’s Toolbook, and Quark’s mTropolis are similar to
Director in that they feature both a visual interface and a scripting language.
Pierian Spring’s Digital Chisel and Intersystem Concepts’ Summit authoring sys-
tem offer changeable “user expertise” settings, from novice to advanced, that
modify the authoring interface in order to ease the burden on beginners as they
learn how to use the tool. Pictorius’ Prograph is general-purpose visual pro-
gramming language that resembles MAX with its flowchart-driven interface, ex-
cept that connections in Prograph represent either data flow or synchronization
rather than message-passing.

29

HTML, JavaScript, and Java form a multilevel suite of textual language tools for
authoring hypertext content for delivery chiefly on the World Wide Web. The
main issue working against this suite of languages is that there is no collective
design strategy that underlies all of them. JavaScript looks like Java in terms of
syntax, but completely different engines handle each language’s interpretation,
and manipulating Java objects from JavaScript, and vice versa, proves difficult.
HTML is effectively isolated from both.

When other tools are insufficient for the demands of a particular application,
writing a program in a general-purpose textual programming language like C is
often the only option. C certainly offers unrivaled expressive power and fine
control over all computational elements and I/O devices, but it also has tremen-
dous weaknesses, not the least of which it was originally conceived 30 years ago
not as a design environment for responsive media but rather as a platform for
systems programming—developing operating systems, device drivers, and other
heavy duty computing applications [Rit93]. Its syntax is complex and extremely
fragile, and small errors can often result in entirely non-functioning code. De-
signers must concern themselves with things like type declarations, function
prototypes, header files, pointers, and memory management in order to make
successful use of the language, even though these details focus more on machine
intricacies rather than the problems being solved.

Its object-oriented descendants (C++, Objective C, and so on) add an additional
layer of complication onto a language that many dedicated computer scientists
already find difficult to master. Java, which looks very much like C++ on the
surface, also suffers from many of the same concerns, although the programmer
is slightly more insulated from the internal complexities of the physical process-
ing equipment. But Java’s principle of platform independence can often be more
of a obstacle than a blessing since many Java implementations and libraries vary
slightly from machine to machine and version to version, and programmers end
up having to tailor their code to work with multiple platforms or versions any-
way, thus defeating the supposed purpose of using the language in the first
place.

30

Chapter 3
Isis

Why a new language?

As discussed in the previous chapter, because of the limitations of many of the
most popular commercial new media tools, designers of experimental and cut-
ting-edge responsive media are often left with no other option but to base their
development efforts within general-purpose programming languages. This is
really no surprise, since we have observed how, at its root, a central component
of the design process involves building programmatic relationships between in-
puts and outputs, and the mechanisms provided by these languages afford the
necessary expressive power and computational efficiency to handle the most
complex kinds of mappings a media creator might imagine.

However, even as we cannot deny that the functional elements provided by lan-
guages like C and Java are extremely useful, we have also observed how these
languages fail immeasurably as design environments for responsive media, due
in large part to their complex and problematic syntax that traces its roots back to
the days of early Unix systems programming, before it was even realized by
most that the computer could be a valuable tool in the mediation and delivery of
media content.

More recently conceived languages such as Lisp and Scheme possess many of the
same semantic constructs as their C-like counterparts (functions, block structure,
conditionals, loops), but a new ability to manipulate procedural expressions in
the same way as other data made these the languages of choice in the artificial
intelligence community, which found the concise and elegantly designed syntax
more amenable to formulating intricate algorithms. On the other hand, these
languages are substantially more divorced from the underlying hardware they
operate on, and they have often been criticized as inefficient and impractical for
serious applications programming. Strange names for common constructs and
operators (lambda, cons, car, cdr...) can make them difficult to learn. And
even though Scheme’s facility for modifying the language’s underlying syntax
can be helpful in adapting it to specific preferences or problem domains, it can
seriously compromise the ability of different programmers to understand and
share each other’s code.

The Isis strategy

Isis is a new programming language that has been expressly crafted to serve as a
basis for responsive media applications, and also as a foundation for more spe-
cialized media tools. It strives to support the unique characteristics of responsive
media by reflecting the three main guiding principles discussed earlier in its in-
herent design.

31

Multi-sensory interfaces and materials

Isis aims to support the performance requirements of the most complex real-time
responsive media endeavors in a number of different ways. Isis is a complete
language, in the same way that other general-purpose languages are complete,
enabling an author to express arbitrarily complex relationships between response
factors and presented media. As in Lisp and Scheme, procedures are first-class
in Isis, meaning the programmer may create and manipulate them like any other
data as a program executes, greatly extending the expressive capability of the
language.

Conceptually situated much closer to the hardware it runs on, Isis is designed
with a “lean and mean” attitude in mind, consisting of a small number of core
constructs and primitive operations, internal structures based on native machine
types and arrays rather than strings or linked lists, its own optimized memory
manager, and no extra overhead for security and platform independence, re-
sulting in a very small and fast interpreter compared to that of Scheme or Java.
Isis provides a number of libraries that support a wide variety of input and out-
put devices, as well as a way to efficiently interface to functionality written in
other languages.

Multi-person collaborations and experiences

Isis aims to be accessible to a much wider variety of people than typically use
other programming languages. The minimalist syntax of Isis consists of a few
basic types and constructs that cannot be changed or added to, thereby lessening
the burden on those with less programming expertise and allowing collaborators
to more readily understand at least the basic control flow of each other’s contri-
butions even if they are based in different layers of a software library. Yet while
small and fixed, the syntax still provides all of the constructs seasoned hackers
need to take full advantage of their skills. Isis is not object-oriented at its core,
greatly reducing the language’s complexity all around, although object-oriented
styles of programming may be simulated easily and efficiently if desired.

Multi-layered tasks and thinking processes

The software libraries developed for Isis strive to follow a multilevel design
strategy, consisting of multiple interoperable layers, each of which offers a dif-
ferent level of abstraction of a particular kind of functionality and that together
use the same language elements as a basis. In addition, Isis itself is an inter-
preted language, requiring no compilation phase, enabling the faster integration
of incremental improvements and modifications throughout the design process.

The following sections delve into more detail on all of these points, beginning
with a discussion of the syntax and internals of Isis, continuing with a descrip-
tion of the media functionality it offers along with several code examples and
comparisons, and culminating with an overview of several projects built using
Isis that demonstrate its viability and uniqueness as a platform to support re-
sponsive media.

The syntax of Isis

The syntax of a programming language is not just a set of rules by which state-
ments are formed. It is also a user interface that forms the basis for how authors

32

organize their thoughts about the problems they want to solve. The main goal of
the syntax of Isis is to support a wider variety of users—to make the language
accessible and easy to master by programming novices while at the same time
supporting experienced hackers. It also aims to provide a concise and elegant
means of formulating algorithms that minimizes extraneous details about ma-
chine intricacies.

Those familiar with the Scheme language will notice a few syntactical similarities
in Isis, although the internal operation and interpretation of the two languages is
quite different. The Scheme syntax was chosen as a model because the amount
of text spent on handling incidental machine or object details in typical programs
is qualitatively much lower compared to other languages like C and Java. How-
ever, the Isis syntax also differs greatly and addresses many of the difficulties of
the Scheme syntax, as will become evident in the next section. Mainly, Isis is
more of a minimalist language, consisting of a purposely small number of ex-
pressions, to reduce the number of things a novice has to learn to master the lan-
guage, while still preserving the expressive power of a general-purpose lan-

guage.

Isis is an interpreted language, which means it isn’t necessary to “compile” pro-
grams prior to executing them. This feature helps to better support an incre-
mental design process, since it is possible to add new instructions and change the
behavior of a program while it is running.

An Isis programmer may either type expressions directly into the Isis interpreter
on a command terminal, or he may write expressions in a file using a text editor
and execute the interpreter on the contents of that file. Either way, the inter-
preter reads expressions one by one and “evaluates” them to produce a resulting
“value,” which is either printed on the screen for the programmer to see or sup-
pressed if the interpreter is processing a file.

Types

There are only seven kinds of data values in Isis, otherwise known as types. Be-
low is a list of these types, along with some examples of constant expressions for
each type, which is how a constant of each kind of value would be entered into
or displayed by the interpreter.

* Integer 42, -5, 0b0110

* Real 3.14, 6.02e-23, 3e8
» Character ‘a’, “\n’

* Boolean True, False

» Address 0xF4E3D2

* Procedure

» List
Integers are written as numbers without a decimal point, or as a binary numeral
preceded by Ob. Real number constants must be entered with a decimal point or

using exponential notation. The range of possible values is dictated by the size
of the native integer and floating point types of the computational hardware.

33

Characters are entered as a single letter between single quotes, although C-like
control characters are also allowed. Boolean constants are expressed as either
True or False, with a capital T and F. Addresses, expressed as a hexadecimal
numeral preceded by 0x, represent a location in the computer’s memory, and
they are almost never entered directly as constants but rather used most often
internally to refer to raw data in memory.

Procedures represent an action that should be performed on a set of values that
has yet to be determined (the arguments). They are created using the proc con-
struct described later. Procedure values may refer to procedures written directly
in Isis or external C functions, but there is no difference in the way they are ma-
nipulated or invoked.

The first six of these types are called basic types because they cannot be subdi-
vided further. A list is the only compound type and is simply an ordered collec-
tion of values of any type, formed by enclosing a series of expressions in square
brackets []. Strings are represented as lists containing only characters, and they
can be expressed by enclosing characters in double quotes as a short cut.

There is also a special value, entered as Null, that represents the absence or non-
existence of a value. Null is commonly returned from procedures when a return
value doesn’t make sense or if there is an error.

Expressions entered into Isis may span multiple lines—the interpreter evaluates
the expression only when all opened brackets or parentheses have been closed.
Any text entered following a # character on a single line is treated as a comment
by the interpreter and not processed.

Expressions

The rest of this section describes the core language expressions in Isis. In each
definition, any italicized word may be replaced by any expression described here,
including the constant expressions discussed above. Any elements that are op-
tional are surrounded in curly brackets {}. Ellipses (...) indicate that an arbitrary
number of elements following the established pattern is allowed. Any normal
parentheses () or brackets [] and key words shown in boldface must be en-
tered exactly as shown. Finally, var represents a variable name, which must be
a sequence of characters that does not begin with a number, a period, or the
characters + or -.

Variables

(set var exp) variable binding
var variable reference
(bound? var) variable query

Like other languages, Isis allows the programmer to store values in variables,
except in Isis, to make things simpler, there is only one way to set a value into a
variable, and only one way to reference the value of that variable. The variable
binding expression sets the named variable to the result of evaluating exp. The
same value becomes the result of the entire expression. Entering the name of the
variable by itself returns the value referenced by it, or prints an error message
and returns Null if none has been stored. The third expression allows a pro-

34

grammer to check if a variable has been bound to a value or not, returning either
True or False.

Lists
[exp exp ...] list formation
(list index) list reference

As discussed earlier, lists are created by enclosing several expressions in square
brackets []. The results of the expressions become the members of the list. The
list reference expression retrieves a particular item in a list. list must evaluate to
a list value and index must evaluate to an integer, with numbering starting at 0.
Null is returned if the index is out of range. Because lists in Isis are internally
stored in array-based data structures, a list reference is constant time O(1) opera-
tion, not requiring any traversal of a linked list to obtain the result.

Native memory access
(addr desc) native memory retrieval
(addr desc val) native memory storage

These expressions allow the programmer to access and manipulate data directly
in the computer’s memory, bypassing the Isis internal memory manager. They
are most useful when dealing with large blocks of data, such as images or audio
samples, or to format data for communication with a non-Isis endpoint. addr
must evaluate to an address value, and desc must evaluate to a value that de-
scribes the native format of the data in memory. The result of the retrieval op-
erator is a value representing the native data translated into the most appropriate
Isis type. The result of the storage operator is simply the same value passed to it.
The Isis web site documentation contains more details on these expressions.

Conditionals

(if exp then lelse}) 2-way conditional
(cond (exp val) (exp wval) ...) N-way conditional
(while exp body) conditional loop
(switch exp (case val) (case val) ... {(else wval)})

match conditional

These four expressions provide different kinds of conditional evaluation. The
first is a standard 1if statement, common in many languages. If exp evaluates to
a logically true value, the result of the then expression is returned, otherwise the
result of the else expression is returned, or Null if it is not present. Isis considers
a value to be logically true if it is a non-zero number, character, or address, or if
the value is a procedure or a non-empty list, or if it is the boolean True. Any
other value, including Null, is considered logically false.

The cond expression is simply an N-way version of an if statement in which
each exp is evaluated in order until one results in a logically true value, and then

35

the result of its corresponding val expression is returned, or Null if no condition
was true. The while expression repeatedly evaluates the body expression as
long as exp evaluates to a logically true value, and returns the value of the body
the last time it was evaluated, or Null if it was never evaluated. Finally, in a
switch statement, exp is evaluated, and its value is compared in sequence to the
results of the case expressions until a match is found, and the result of the corre-
sponding val expression is returned. If no match is found, and a final default
case isn’t specified with the keyword else, Null is returned.

Logical operators
(and exp exp ...) logical and
(or exp exp ...) logical or

These expressions are the logical and and or operators. They return either True
or False, and only the necessary number of expressions are evaluated from left
to right to determine the result with certainty.

Sequential evaluation
(begin exp exp ...) sequential evaluation

The begin statement allows several expressions to be evaluated in the place of
one. The expressions are evaluated in order, and the value of the final expression
becomes the result of the entire begin statement.

Local environments
(local (var var ...) body) local environment

The local expression allows the programmer to specify a local environment,
which is a collection of variables that will be accessible only from within the
body of the local statement. Local environments are useful for specifying vari-
ables that are only needed temporarily, or for creating procedural “objects” that
have their own private storage space. The interpreter gives an initial value of
Null to each variable prior to processing the body expression, the value of which
becomes the value of the entire 1ocal statement. Since the local variable names
may duplicate those in the external environment, variable references in the body
are resolved by first looking in the local environment, and if not found, the par-
ent environment is consulted.

Procedures

(proc (var var ...) body) procedure definition, fixed # args
(proc var body) procedure definition, variable # args
(proc exp exp ...) procedure application

The programmer may define procedures in one of two ways—by giving specific
variable names for a fixed number of arguments, or by giving a single variable
name which will hold a list of arguments passed to the procedure, which may
vary in length. When a procedure is created, it remembers the environment

36

within which it was defined, and when it is invoked, the interpreter creates a
new local environment on top of this environment in which the procedure’s ar-
gument variable names are bound to the values passed to it. The body expression
is evaluated in the context of this new environment, with variable references be-
ing resolved in a similar fashion to that of the 1ocal statement.

The result of a procedure definition is a procedure value. Procedures are first-
class in Isis, which means they can be created within, passed to, and returned
from other procedures as a program executes, just like the other basic data types.
The user invokes a procedure using the procedure application construct, in
which the proc expression must evaluate to a procedure value. The interpreter
applies the procedure to the values of the remaining expressions, and the result
is returned.

A few additional details about the operation of these constructs has been omitted
from this document for the sake of brevity, but more information is available in
the Isis web site documentation, which will be described later.

Memory management

The main goal of the internal design of Isis is to provide the level of performance
required to support the most demanding and complex real-time responsive me-
dia projects. One of the most unique features of Isis that differentiates it from
other similar languages is how internal memory structures are handled by the
interpreter in an effort to provide this support.

Relatively few kinds of data structures are needed during the execution of a pro-
gram, although quite many of these structures may be required, and speed of
execution depends to a large degree on how quickly these structures can be allo-
cated and deallocated. Isis benefits greatly by employing its own memory man-
ager that bypasses the standard C or C++ dynamic memory allocation mecha-
nisms, which often become seriously inefficient in this kind of high turnover sce-
nario. Additional speed gains are obtained by handling lists in array-based data
constructs, and by storing values using native machine types (not as strings, as in
languages like TCL and Perl), thus virtually eliminating any cost of data transla-
tion when invoking native routines from within Isis.

The Isis memory manager provides O(1) allocation and deallocation of all inter-
preter data structures and oversees a reference count system that tracks how
many references there are to every structure instance dealt by it. When an in-
stance’s count drops to zero, it is deallocated and placed back in a pool of avail-
able instances. The manager is able to achieve O(1) efficiency by pre-allocating
large blocks of memory to be used for particular kinds of structures, and by
maintaining a database of pointers to available and outstanding instances such
that obtaining a new instance or reclaiming an old one does not require travers-
ing any lists. If space runs out in a pre-allocated block, another large block is
added to the pool. This slight extra cost in memory usage results in a significant
improvement in execution speed.

An important issue in language design is the system by which memory struc-
tures are reclaimed and reused when no longer needed or referenced. Lan-
guages like C provide no such system, requiring the programmer to manually
keep track of outstanding memory and deallocate each block before the last ref-
erence to it is broken. As in Isis, languages like Java and Scheme employ a more
sophisticated reference count mechanism that automatically deallocates struc-
tures when no longer needed. However, the underlying syntax of these other

37

languages is such that circularities will develop—where one or more structures
refer to each other, keeping their reference counts above zero, but cannot actually
be reached by any other structure in the active interpreter environment. If left
unchecked, these circularities will accumulate and overwhelm the system’s
memory resources.

To avoid this situation, Java and Scheme have a “garbage collector” that periodi-
cally scans and marks every structure that can be reached from the top-level in-
terpreter environment and deallocates any piece of memory that was not trav-
ersed. Such a system eliminates the programmer from having to do any memory
management on his own, but it can also cause substantial interruptions and “hic-
cups” in program execution—a highly undesirable behavior in real-time media
applications. Furthermore, because these languages allow circularities to arise
without the knowledge or concern of the programmer, they can encourage styles
of programming that result in extremely poor performance.

Isis avoids these problems because, unlike Java and Scheme, its core syntax does
not consist of operators that modify internal value structures after they are dealt
by the memory manager. Without these operators, known as mutators (such as
set!, set-car! and set-cdr! in Scheme, and most assignment operators in
Java), it is impossible to create a circularity among basic value structures, and
therefore, a garbage collection phase is not needed. The language is no less pow-
erful without mutators, which are merely programming conveniences that can
become serious liabilities when overused. Thus, Isis is able achieve a level of
performance suitable for demanding real-time media while remaining friendly to
developers who do not want to be overly concerned about memory manage-
ment.

There are other types of circularities that Isis permits to arise when procedures
are defined within local environments, but these are of a much less serious na-
ture and almost never result in memory overruns in typical programs. An auto-
mated collection scheme for these kinds of circularities could be developed, but
they may be dealt with much more efficiently by adhering to a few simple pro-
gramming style guidelines.

Software libraries

The previous sections presented the basic syntax of Isis, which is quite general-
purpose in nature. The full Isis development environment also consists of sev-
eral “libraries” of software that provide many specialized kinds of media ma-
nipulation functionality as well as other basic utilities expected of good pro-
gramming languages. Many of these libraries are designed with multiple layers
of abstraction to support different levels of authoring complexity. The goal in
each case is for these layers to interoperate with each other in the most seamless
way possible, allowing the programmer to more easily shift between layers and
use more than one at the same time to accomplish a task.

Many of these libraries have evolved to a point of stability, although each is still

open to changes and improvement. For the sake of brevity, this section will only
survey the various offerings, highlighting a few particular innovations.

Basic utilities

Isis provides a full complement of mathematical and comparison operators, as
well as utilities for manipulating lists and text in various ways. It also provides

38

several debugging facilities, including a system to track the values of specific
variables and to trace the execution of particular procedures. There are also a
number of utilities for accessing and working directly with system memory, by-
passing the Isis memory manager, that are useful for handling raw image and
audio data or for communicating with foreign protocols.

Visual media

At the lowest level, Isis provides a library of optimized image processing primi-
tives, such as composition, scaling, gain/bias, arithmetic, statistics, and so on.
There are also some more complex operators available such as chromakey, noise
removal, edge and feature detection, color balancing, and background segmen-
tation. In addition, Isis has access to all of the routines in the OpenGL graphics
rendering library.

At the mid-level, Isis provides an image buffer protocol so that all of the lower-
level functionality described above may interface more cleanly and elegantly.
This protocol handles the allocation and deallocation of memory space for im-
ages and simplifies isolating specific parts or channels of images for an opera-
tion. Within this protocol, all of the information about an image (size, format,
memory addresses, and so on) is stored together in a self-contained list object.

At the highest level of image manipulation are Amazon and Macaroni, two dif-
ferent packages of scripted objects for handling complex compositions of images
and video. Both these systems provide satisfactory support for experiments in
the use of model-based representations as a basis for digital media [Bov95]. The
two libraries provide similar functionality, the only difference being that Ama-
zon employs in-house image processing routines whereas Macaroni uses
OpenGL.

In both of these packages, the programmer creates a hierarchy of visual media
“actors” placed in a three-dimensional space along with a “camera” that repre-
sents the viewer. These actors may be images, movies, video capture sources,
text boxes, shapes, lines, and so on. Various transformations may be applied to a
single actor or collection of actors to produce special effects. The view attained by
the virtual camera is rendered on an output device. Each actor or transformation
object contains parameters that the program can update between each rendering
cycle to create animation. In the spirit of multi-layered functionality, these li-
braries aim to separate the programmer as much as possible from the internal
details of how the media for each actor is obtained and rendered, but they also
provide hooks to access actor “images” that can be processed with the lower-
level routines.

Aural media

Isis includes a similar multi-level set of operations for handling audio. There are
several basic low-level audio processing routines available, as well as higher
level “audio player” objects that insulate the programmer from the details of
how that audio is handled on different platforms and with different audio inter-
faces. These objects enable the playback of several differently-filtered streams of
audio simultaneously and the exact synchronization of that audio to other sys-
tem events.

39

Databases

The simplest way to create databases is with Isis lists, which internally are based
on arrays rather than linked lists for speed in access. There are also a number of
higher-level storage constructs available that use lists as their foundation—for
example, the Isis structure construct (not to be confused with a C structure) is
useful for storing arbitrary collections of key-value pairs.

Another useful construct, called the timeline, might be thought of as an array with
real-number indices. Values of any type may be placed at real-numbered points
along a one-dimensional “line.” The programmer also specifies if and how the
timeline should interpolate between each successive pair of points. Once cre-
ated, a timeline may be queried at arbitrary real-numbered points, with a value
being returned that depends on what type of interpolation was requested—none,
linear, cubic, or a custom routine.

Timelines are valuable for multimedia purposes since they are helpful for coor-
dinating time-dependent activities and expressing multi-dimensional spatial
variations (or variations in any other analogous domain). Timelines can aid in
creating complex animations by controlling the parameters of Amazon or Maca-
roni actors. Dynamic behaviors are possible since points on a timeline may be
added, changed, or removed at will during execution.

Networks and distributed processing

Many responsive media experiments require the power of several processes run-
ning on several machines simultaneously, all synchronized with each other and
communicating in the most seamless manner possible. Isis has TCP/IP net-
working capabilities to support distributed processing. To ensure a high degree
of interoperability, the same input and output primitives support reading and
writing coded Isis values or raw data to disk files, network connections, serial
ports, message pipes, and so on. Programmers may synchronize timers running
in separate Isis processes or on multiple machines as well.

The low level I/O primitives, coupled with the memory manipulation operators,
enable Isis to communicate with foreign network protocols with relative ease.
High-level procedures that send email and retrieve documents and images di-
rectly from the Internet are among the most commonly used in many projects.
Amazon and Macaroni both allow the programmer to reference images and
movies by URL. Isis can also read and evaluate language expressions directly
from any I/O port, allowing a single interpreter process to serve several concur-
rent command pipelines.

Sensors and media I/ O devices

Since the primary platform for Isis development thus far has been Unix-based
workstations, Isis currently includes support for both the X window system and
the Simple DirectMedia Layer (SDL) for video output, as well as certain raw
video display cards. The goal has been to provide the simplest and most efficient
environment for displaying images and video and receiving events, in order to
enable typical kinds of window-based applications. Each of these output
mechanisms has a separate interface that may be accessed either directly, for
maximum efficiency, or through the use of a higher-level “video display” library
that provides the same services in a platform non-specific form.

40

A “video capture” library is also available, which returns data in the image
buffer protocol format described above. The programmer may alternatively
choose to use lower-level direct interfaces to Video for Linux Two (V4L2) or the
Compaq Tru64 MME video services. The situation is similar for audio, where
Isis currently supports the Compaq Tru64 MME audio services, ALSA (Ad-
vanced Linux Sound Architecture), and the SGI Irix digital audio library.

Like with network protocols, a programmer can harness the Isis I/O primitives
and memory manipulation operators to communicate with a variety of sensing
devices, typically connected on a serial port of the computer. A number of useful
libraries have been developed over the past several years for controlling many
kinds of devices, such as MIDI synthesizers, lighting controllers, joysticks, video
tape recorders, sonar and radar sensors, motion detectors, floor switches, electric
field sensors, infrared transceivers, and eye tracking systems.

A few examples

To illustrate the use of the language in a few different situations, this section pre-
sents a number of examples of Isis code, beginning with a simple one-line pro-
gram that prints “Hello world!” on the terminal.

(print “Hello, world!” newline)

For comparison, below is the same “hello world” program written in C.

#include <stdio.h>

main ()
{

printf (“Hello, world!\n”);
}

The following is a recursive factorial function written in Isis.

(set fact
(proc (x)
(if (< x 2) 1 (* x (fact (- x 1)))))

41

The indentation of each line is not required and will not change the meaning of
the program—it is merely a visual aid that helps a programmer keep track of the
placement of nested expressions. Most text editors, such as Emacs, provide utili-
ties that automatically indent each line of a program to the appropriate level
based on the locations of unclosed parentheses and brackets. But the same pro-
gram could be written on a single line, or on more than three lines with no
change in meaning.

(set fact (proc (x) (if (< x 2) 1 (* x (fact (- x 1)))))
(set fact
(proc (x)
(if (< x 2)
1
(* x (fact (- x 1)))))

Here is a procedure that computes the distance between two points. Notice the
use of a local environment to declare two temporary variables.

(set distance
(proc (pl p2)
(local (dx dy)

(begin
(set dx (- (pl 0) (p2 0)))
(set dy (= (pl 1) (p2 1)))

(sqrt (+ (* dx dx) (* dy dy)))
)

However, these temporary variables are not strictly needed, as the entire proce-
dure could be collapsed into a single slightly longer expression that makes use of
the map and apply primitives.

(set distance
(proc (pl p2)
(sgrt (apply + (map (proc (x) (pow x 2))
(- pl p2))))))

map is a useful operator that applies a procedure several times, once to each item
in a list, and returns a list of the results. apply does the converse—it invokes a
given procedure a single time on all of the items in a list together.

42

Here is a procedure that utilizes the TCP networking routines to communicate
with an SMTP server and send a piece of email. It accepts the sender and re-
ceiver email addresses and the message text as arguments.

(set sendmail
(proc (sender receiver message)

(local (tcp)
(if (!= Null (set tcp (tcp-open "outgoing.media.mit.edu" 25)))
(begin
(write-string tcp "mail from: " sender newline)
(write-string tcp "rcpt to: " receiver newline)
(write-string tcp "data" newline)
(write-string tcp message newline "." newline)

(write-string tcp "quit" newline)
(close tcp))
(print “Could not send that mail.” newline)))))

The following uses high level library routines to retrieve and display an image in
a window.

(set image (retrieve-url-image "http://www.bisquit.com/nana.jpg"))
(set win (easywin-create image "Nana"))

This program uses a few of the mid-level image processing routines to draw a
colored cross shape on a red background. isolate-sub-image creates a sepa-
rate reference to a rectangular portion of a larger image, while isolate-
channels creates a reference to particular color channels of an image as speci-
fied. image-fill-constant fills an entire specified image with a specified
pixel value.

(set image (new-standard-image 3 [400 400]))
(image-fill-constant 255 image)

(image-fill-constant 255 (isolate-channel 0 image))
(image-fill-constant 0 (isolate-channels 1 2 image))

(set vertpart (isolate-sub-image [150 50] [100 300] image))
(set horizpart (isolate-sub-image [50 150] [300 100] image))

(image-fill-constant 255 (isolate-channel 1 vertpart))
(image-fill-constant 255 (isolate-channel 2 horizpart))

(easywin-create image)

(read-string)

43

This example makes use of the video capture library to display live video in a
window. The last line sets up an infinite loop to repeatedly capture frames and
send them to the display.

(set framesize [320 2401])

(set vc (video-capture-init [vc-framesize framesize]
[vc-streaming True]))

(set win (win-create [win-size framesizel]))

(while True (win [win-put (vc [vc-read-frame])] [win-output]))

Below is a simple example that utilizes the Macaroni object-based media library
to create a rotating graphic. Macaroni represents media actors and transforms as
procedural objects with internal parameters that the programmer changes by
invoking the procedure with arguments in a special message format.

(load "macaroni.isis")

(macaroni-initialize "Rotating image")
(set macwin (macaroni-create-window "Nana" [300 300] [100 100] True))

(set iobj (mac-new-image [mac-url "http://www.bisquit.com/nana.jpg"]))

(set itrans (mac-new-transform [mac-object iobj]
[mac-position [150.0 150.07]]
[mac-scale [0.5 0.5]11]))

(set rot 0.0)

(macaroni-start
(proc ()
(begin
(set rot (mod (+ rot 1.0) 360.0))
(itrans [mac-rotation rot])
(macaroni-update-window macwin itrans True))))

User community

A language needs much more than a syntax and a collection of software libraries
to be successful. The Isis web site (http://www.media.mit.edu/isis) has been a
central component of the complete Isis development environment since its in-
ception, and has been crafted over several years to provide concise yet accessible
documentation of every aspect of the language. The web site includes a
“primer” that helps new users learn Isis as quickly as possible, as well as pro-
gram examples and information about all the media manipulation functionality.

But more than a simple storehouse of documentation, the Isis web site aims to
provide a support structure for a growing community of Isis programmers. It
includes links to projects built with Isis, a mailing list archive, and information
on how individual users can add their own Isis functions and libraries to a cen-
tral repository available to all others in the community. The web site seeks to
foster a cooperative development attitude in which everyone using the language
is encouraged to add new capabilities or contribute to the Isis environment in a
way that sustains the “lean and mean” minimalist spirit with which it was cre-
ated.

44

ttp: //isis.www.media.mit.edu/

Home

Projects

News

Mail archive
Getting started
Isis primer
Software libraries
Development
Feedback

buffer protocol
coding

MIT Media Laboratory - Stefan Agamanolis
Jon Dakss

DAT files
Undocumented

The Isis web site

Evolution

Isis has been in development for more than five years, and over that time its face
has changed greatly. In the beginning, it was meant to be replacement for an
overly restrictive “scripting language” developed by Brett Granger and John
Watlington for creating object-based media presentations on the Cheops image
processing system [BW95]. In the course of its conception however, it became
clear that any true basis for responsive media would have to include the capa-
bilities of a full programming language, in order to support the widest possible
range of mappings that a creator might imagine.

The earliest version of the Isis interpreter was implemented on Cheops, but the

core system was soon ported to standard C, which enabled it to operate on a va-
riety of standard Unix platforms. Isis also at first employed a much more struc-

45

tured type system, requiring programmers to explicitly declare the types of val-
ues and define new compound types prior to their use. But these and many
other constructs and restrictions have been gradually dropped from the lan-
guage, in the spirit of creating a minimalist language with the lowest possible
interpretation overhead. Although it has reached a point of stability over the
past year or two, further refinement is not out of the question.

Experience

Over the years of its development, Isis has been used by many in the Media Lab
community, including several sponsors, in the process of making new prototypes
and demonstrations, and these experiences perhaps serve as the best indication
of the viability of Isis, not just as a useful tool for creating responsive media, but
as a platform for thinking differently about these kinds of media as well.

The knowledge and experience gained through creating these projects is in many
ways the basis of the three guiding observations of this research pointed out ear-
lier—that responsive media consist of multi-sensory interfaces and materials,
multi-person collaborations and experiences, and multi-layered tasks and
thinking processes. The following sections describe several of these projects in
more detail, collected into three main categories: object-based media, interactive
cinema, and telepresence.

Object-Based Media

Isis has been used in several interactive and digital television experiments over
the past 6 years. Many of these prototypes involved complex object-based repre-
sentations of video and consequently put Isis to the test in its ability to handle
this computationally-demanding type of media in real-time situations. Three
such projects are described below.

The Museum

David Tamés, David Kung, Stefan Agamanolis, Shawn Becker, Brett Granger,
V. Michael Bove, Jr., Glorianna Davenport

One of the earliest experiments produced in Isis, The Museum explored ways of
better capturing the director’s intent in video programs that will be viewed
across a broad range of display sizes and aspect ratios. The goal here was to
maintain recognizable actor expressions across a broad range of image sizes
while also preserving a sense of the broader setting. Rather than simply scale or
crop the image differently, the presentation incorporated an object-based repre-
sentation of video that enabled changing the distance and focal length of a vir-
tual camera as a function of the display size. The production ran on the Cheops
computer and made extensive use of Isis Amazon objects and timelines to de-
scribe the variations in the camera and scene elements under the different view-
ing conditions.

46

Below are three images from The Museum that illustrate the difference in shot
composition based on screen size at one moment during the movie:

\

|
y

The Yellow Wallpaper

David Tamés, Stefan Agamanolis, Shawn Becker, Araz Inguilizian,
V. Michael Bove, Jr., Glorianna Davenport

The Yellow Wallpaper was a more ambitious interactive television production that
enabled the viewer to explore a story from different camera angles as well as
from different subjective points of view. The ultimate goal was not to take con-
trol away from the director, but instead to give the director more power over
how a story is told in different circumstances and what freedom the viewer is
afforded to explore that story in different ways.

Based on the short story by Charlotte Perkins Gilman, the program presents a
“knob” that the viewer can turn to shift between the subjective points of view of
the two characters, John and Kathy, even while it is in progress. The system ren-
ders changes in the point of view by altering aspects of the narration, such as
editing, shot composition, background imagery, music, and sound effects, of an
underlying story that remains constant. These images show a John-biased, neu-
tral, and Kathy-biased composition at one point in the story:

47

The program also allows the viewer to take a virtual “walk” along a constrained
path in the setting at the same time the action is proceeding. This is enabled by
representing the scene as a three-dimensional computer model, and by having
shot the actors separately from several camera angles on a blue-screen stage such
that the most appropriate views can be layered into the model during playout.
Here are four of the many spatial views possible at one moment in the playout:

As in The Museum, Isis timelines and Amazon objects were invaluable in de-
scribing the scene elements and variations in the playout in a way that enabled a
smooth interpolation between the two characters subjective viewpoints. Isis’s
multi-layered authoring characteristics were put to the test, as this was a collabo-
ration between several researchers of different expertise, some working on low-
level audio and image processing and others developing the scene structure and
behaviors. Isis provided a common design environment for everyone involved
and enabled the latest research from several groups to be combined into a single
piece.

HyperSoap

Jon Dakss, Stefan Agamanolis, Edmond Chalom, V. Michael Bove, Jr.

HyperSoap is a four-minute interactive television soap opera in which the viewer
can click objects with a pointing device and find out how to buy them [Bov00].
Nearly everything that appears in the program is clickable, from the clothes and
jewelry on the actors to the furniture and props in the background. In one mode,
clicking an object displays a box with purchasing information while the program
continues, and in another scenario, the program pauses at a natural point after an
object is selected, allowing more detailed information to be presented, and then
resumes in a fashion that maintains the flow of the story. The project, developed
in collaboration with JCPenney, utilized a new system developed in the Object

48

Based Media group at the Media Lab for detecting and tracking objects in video
using multiple feature attributes, such as color, texture, and motion [CB96].

$10 e

JCPeﬂ”ey’

HyperSoap

Isis was the development platform for not only the playback software but also
the authoring tool that allows the video producer to digitize video clips, input
training data needed by the object tracking algorithm, and correlate objects be-
tween different shots in the movie. The playback program uses the Isis Amazon
library to combine the movie image with object highlights and information
boxes. The language also supported drivers for a number of interaction devices,
including a trackball, a touchscreen, and a system for detecting a laser pointer on
a projection screen.

Another more recent production, An Interactive Dinner at Julia’s, is a cooking
show that allows a viewer to click on food and utensils and see video clips with
more information about the selected objects. Created by Jon Dakss, the program
features clips from old Julia Child cooking shows from the WGBH archive.

Chop horseradish roots, pickle in
cold pint jar using 1 tsp. salt and
| white vinegar

An Interactive Dinner at Julia’s

49

Interactive Cinema

Isis has also been used extensively in several story installation experiments, pri-
marily developed in Glorianna Davenport’s Interactive Cinema group at the Me-
dia Lab. An interesting feature of all of these projects is that they rely heavily on
the ability to instantly and randomly access and edit together video clips and
objects in a way that’s driven by the audience or spectator in each case, in addi-
tion to some very complex sensing and gesture recognition systems. These pro-
jects also illustrate another key observation about responsive media—that it in-
volves many different kinds of people, not just computer scientists, often work-
ing together in large collaborations. The five endeavors described below served
as excellent experiments testing the accessibility of Isis in these respects.

Sashay /Sleep Depraved

Freedom Baird, Glorianna Davenport

Sashay/Sleep Depraved, an installation conceived by Freedom Baird, lets a partici-
pant interact with a female video character, the Sleeper, through gesture [Bai97].
Each gesture causes animated sprites to appear on a wall-sized screen facing the
viewer. As more gestures are performed, the animations accrue and play simul-
taneously. Depending on the number and type of gestures made, the multilay-
ered animated “dream” constructed by the viewer affects the wakefulness and
agitation of the Sleeper in different ways. The participant can build a peaceful
animation that soothes the character to sleep, one that produces nightmares, or
perhaps one that induces a calm insomnia. The system selects video and sound
clips from a database and edits them together on the fly, in a manner that pre-
serves continuity, to dynamically convey the Sleeper’s current state.

Sashay/Sleep Depraved

Sashay/Sleep Depraved was collaboration among a small but diverse group of peo-
ple. Baird created the design, content, and physical structure for the piece, in-
cluding high-level animation behaviors. She also directed two assistants, one
who worked on the low-level sensor interface, and the other who made the

50

Amazon scene structure and video editing system. Isis played an instrumental
role in fostering the collaboration by successfully supporting all three of these
efforts. The language was efficient enough to support a complex pattern-based
gesture recognizer using in-house sensing technology, and it allowed Baird to
build animations and integrate them into the piece with a minimum of effort and
without undue worry about exactly how the rest of the system was implemented.

Jayshree

Stefan Agamanolis, Glorianna Davenport

In early 1997, the Interactive Cinema group began working on a collaborative
experiment in “very distributed storytelling” called the Dream Machine, which
was meant to incorporate audience experiences on the World Wide Web, wire-
less devices, and in physical installations in casual architectural spaces [Dav97].
Several transcultural characters were envisioned as inhabiting a story environ-
ment spanning these venues. One such character was Jayshree, a skilled tradi-
tional Indian dancer, around whom a public video art piece was created.

The piece consists of a large video projection situated in a public passageway, in
addition to sonar sensors capable of discerning when someone is standing near
the screen. When nobody is nearby, the dancer peers out into the space, beck-
oning passers-by to come over and take a closer look:

If someone does approach, the dancer puts on her makeup and begins to perform
a dance:

51

If, however, the spectator loses interest and begins to walk away, she will stop
and glare angrily, turn her back, and retreat:

It is at this point that the character becomes a dynamic entity, one whose feelings
the spectator has hurt. The effect is startling and invokes a sense of guilt in many
who experience the piece. The story environment takes on a new reality as well,
one in which the spectator’s actions have consequences, possibly far beyond this
particular venue.

The Birds

Sammy Spitzer, Glorianna Davenport

In the spirit of the Jayshree piece, members of Glorianna Davenport’s Fall 1997
Workshop in Elastic Movie Time course at the Media Lab used Isis to create sev-
eral interactive art installations, each incorporating a large screen video projec-
tion situated in a hallway and sonar sensors to detect the activity of passers-by.
Four groups of students each worked together to build their own projects, which
were exhibited publicly at the conclusion of the course. Isis was an effective de-
velopment platform because of the video and custom sensor functionality it of-
fered, and because it presented a shallower learning curve to the time-pressed
students, many of whom had little prior programming experience.

One student, Sammy Spitzer, created a simple piece called The Birds in which the
video projection shows pigeons pecking at food on a brick sidewalk. When
someone walks down the hallway past the screen, the pigeons are startled and
fly away, just as they would in real life. Several seconds later they reappear and
the cycle begins again. The effect is surprising and humorous, transforming the
unsuspecting passer-by into an imposter capable of disrupting a computational
story environment.

52

The Birds

CINEMAT

Glorianna Davenport, Stefan Agamanolis, Barbara Barry, Brian Bradley

The CINEMAT is a collection of three interactive installation pieces, created as
part of the Dream Machine project, each incorporating a large screen projection
and a special piezoelectric sensing carpet capable of detecting footsteps [Dav00].
They were exhibited at both the 1998 Rotterdam International Film Festival and
the Televisa-sponsored Espacio ‘98 convention in Mexico City. Isis was utilized
at every step of the production process. The language supported a special tool
for capturing and annotating video content for the project as well as an efficient
real-time footstep tracking system.

53

In the first piece, spectators edit a movie by simply walking across or dancing on
the carpet—each step or stomp causing a cut to a new video clip. Different kinds
of video material appear depending on the location and weight of each step. The
video clips, chosen by the system based on a complex set of rules, represent the
dreams and memories of two characters, a girl and a boy, whose lives cross in a
playful flirtation. Since it is highly uncommon to see the same series of clips
twice, participants were encouraged to write about their individual experiences
with the piece on a special web site in a process of coming to a collective under-
standing of the story greater than any single encounter on the CINEMAT could
convey alone.

In the second piece, the participant becomes the victim of a sandwich thief and
must chase a video character through the corridors and tunnels of MIT by run-
ning on the carpet. Running faster or slower changes the speed of the chase.

And in the final piece, the participant must step carefully and quietly around the
carpet to sneak to the top of a stairway and look through a keyhole to spy on the
events behind a door. If the participant fails and is discovered, he is driven away
by the inhabitants of the room without any reward.

54

Magic Windows

Stefan Agamanolis, Barbara Barry

One more interactive installation to note is Magic Windows, which utilized a La-
zyFish electric field sensor [Smi%6] deployed in a unique fashion to detect a
spectator’s proximity to a small video frame suspended in mid-air. When no-
body is nearby, the screen presents a still image from the beginning of one of
several short video clips developed for the piece. When a spectator approaches,
the clip plays forward in time to a point proportional to his proximity. If the
spectator retreats, the clip plays backward in a similar fashion. The content of
the clips is such that moving closer and farther increases and decreases the ten-
sion conveyed in the image. For example, one clip shows a man slowly inflating
a balloon such that when the spectator moves closer, the balloon becomes larger
and larger, increasing the chances it will rupture. If the spectator tests the limits
of the piece by approaching as close as possible to the video frame, a hand with a
pin suddenly appears and pops the balloon, resolving the tension, and the rest of
the clip plays and brings the story to a conclusion.

Magic Windows

55

Telepresence

Isis has also served as the foundation for a number of extremely demanding
prototypes relating to telepresence and video communities, three of which are
described below. The most important aspect to note about these projects is that
they all incorporate a very high degree of distributed processing, in some cases
involving six or seven separate machines each running several Isis processes that
all have to communicate with each other in the most seamless way possible.

Reflection of Presence

Stefan Agamanolis, Alex Westner, V. Michael Bove, Jr.

Reflection of Presence is a teleconferencing prototype that creates a “magic mirror”
in which one not only sees a reflection of oneself, but also the reflections of other
participants from other locations, just as if everyone is standing in the same room
looking at each other through a real mirror [AWB97]. The system detects speech
and movement and uses these cues to dynamically vary the transparency, posi-
tion and scale of each participant in a manner that reflects who the center of at-
tention is at any moment. The participants use colored objects to interact with
and customize the shared space in various ways, like selecting options from a
menu, manipulating documents in the background, or controlling the playback
of movies.

Reflection of Presence is one of the most computationally challenging projects ever
written in Isis, incorporating over 10 processes running in synchrony on at least
four separate workstations situated on a local area network. Client processes
digitize camera images, extract participants from their backgrounds in real-time,
and send the segmented images to a central server for layering, which in turn
sends the composited image back to each of the clients to be displayed. Audio is
handled by a separate set of processes that communicate directly between each
other in a pseudo-multicast fashion rather than through the central server. Isis
enabled rapid experimental changes to the behavior of the prototype as com-
pared to a compiled language, without noticeably compromising efficiency. The
system typically performed at full video rates on mid-range Unix workstations.

56

Reflection of Presence

57

Vision Television

Stefan Agamanolis, Chris McEniry, Jacky Mallett, Bill Butera, V. Michael Bove, Jr.

The Vision Television employs a neural-network face detection algorithm [RBK98]
to find and track the faces of its viewers. Once found, these faces are layered into
the video image, together with faces of others viewing the same program from
other locations, creating a visual community of television watchers. A two-way
audio channel allows the viewers to communicate with each other. The robust
face detection algorithm enables the system to operate in a much less controlled
environment compared to that of Reflection of Presence, which requires a static
background and controlled lighting to achieve good results. Additional analysis
can be performed on the faces to recognize emotional responses or even the
viewer’s identity, and this information could be used to modify the video pro-
gram in a useful way. Isis supported a distributed processing scheme that sepa-
rated the video layering and playback part of the system from the face detection
component, which ran at a slower rate.

Vision Television

iCom
Stefan Agamanolis, V. Michael Bove, Jr.

The iCom is a multi-point awareness portal and video communication device that
connects the MIT Media Lab with MediaLabEurope in Dublin. The most unique
aspect of the system is its dual foreground /background design. It is meant to be
turned on 24 hours a day to provide continuous ambient awareness between
every station, but at any time, it can instantly morph into a dedicated foreground
video conference system. The system synchronizes the screen projections at each
station, ensuring that all participants see exactly the same thing. It also functions
as a bulletin board for community messages and announcements, sent via email.

58

The iCom is probably the most complex distributed processing prototype created
in Isis to date. The system must deal gracefully with the widely differing band-
widths available between the computing nodes at each station, from internal gi-
gabit LANs to congested transoceanic links, while still providing low latency
audio and video delivery and synchronized screen displays. The Isis Macaroni
library serves as a basis for rendering these displays, which include images from
every camera at every station. The system analyzes audio and video and adjusts
transmission rates to conserve bandwidth when no activity is detected.

Click Me

Siorles clvc;”s“é and not so
Acoustic Phonetics

LEGO building workshop

FW: Ericcson and ICOM E

participants needed P

do you own a late model turbog.*
!

A

5(‘ Wanted: car game/simulation
From: Korrinn Fu <korrir redia.mit.edu:
/‘ I'm looking 'for a car game or simulation that runs on

' the computer if any of you has one lying around collecting

dust and are willing to lend it out for a couple of months ?;
please contact me directly. Thanks very much. Ak
b= |

paiticipatis needed

do you own a late model turbo pors

iCom

59

Other projects

Isis has played a role in many other projects besides those discussed above.
Christian Baekkelund used it to develop a touchscreen-based demonstration ki-
osk for The Garden at the Media Lab. Bill Butera used Isis to support an experi-
mental model-based video codec that employs a collection of programmatic “ex-
perts” that make “bids” to encode regions of an image in as few bits as possible
[BBOO]. Surj Patel and Jacky Mallett utilize Isis to support interactive quiz shows
and television programs that enhance their impact by controlling the behavior of
objects in the viewing environment. Florian Mueller and Edison Thomaz har-
nessed the real-time image analysis components of Isis to create Impact TV, a
unique television remote control in which viewers simply throw objects at the
screen to change channels. The other two tools described in this dissertation,
Cabbage and Viper, are written entirely in Isis as well.

Evaluation

One of the problems in evaluating the success of a new programming language is
the bias introduced by those with prior experience using and thinking in terms of
other languages, and what they come to expect from new environments. There-
fore, one of the best means to understand the viability of a language is to study
how well novices and complete newcomers to programming can grasp the basic
concepts of the language and use it to create something. In addition, we can
study the extent to which a language changes working practices and supports a
new and clearer way of thinking about problems within its intended domain,
which in this case is responsive media.

In both of these respects, and with regard to the three basic design guidelines
presented in earlier chapters, Isis has enjoyed a great amount of success, as illus-
trated by many of the project experiences described above. The technological
design of the language and its interpreter has been able to support the demand-
ing multi-sensory media materials and interfaces needed in these endeavors. But
more importantly, the human interface design of the language—its syntax, li-
braries, and documentation thereof—has enabled its users to think about these
complex and multi-layered design problems in a more organized, concise, and
elegant fashion, and with better inherent support for collaboration. Anecdotal
evidence suggests that it is much easier to master than its counterparts of compa-
rable power. Many have successfully learned Isis on very short notice, days or
even hours before an important demonstration or class project was due.

In its current form, Isis is not without a few weaknesses as well, and these lead to
several initial ideas for further research. Although the usefulness of multi-
threaded processing is often questionable, the memory management scheme em-
ployed by Isis would need significant changes to efficiently support a scenario
where multiple Isis interpreter threads would execute within the memory
bounds of a single machine process. Also, even though the Isis web site provides
a good set of basic community support components, many improvements are
needed, such as a search function and a more example-based approach to ex-
plaining the features of the language. In addition, Isis should have its own dedi-
cated text program editor, one that could better incorporate the documentation,
debugging, and community support tools directly into the coding process and
include graphical organizational elements to assist in making programs easier to
read and manipulate.

However, even if these weaknesses were dealt with, Isis would still be a primar-
ily textual functional programming language, requiring its users to think about

60

and implement programs in terms of abstract rules and lists of instructions,
which is not always the way many people think best about what they want to
accomplish. To truly break new ground would require a reassessment of the
usefulness of the rule-based design strategy inherent in virtually every widely
used programming language ever invented. In this spirit, the next chapter de-
scribes an experiment that aims to push the boundaries of visual interface design
and to explore the usefulness of employing a strictly case-based authoring ap-
proach in a tool for a specific subdomain of responsive media.

61

Chapter 4

Cabbage

Realizations

The previous chapter describes a new programming language that, in its inher-
ent design, aims to rethink many of the principles long taken for granted in tra-
ditional languages in order to provide a more appropriate platform for staging
responsive media enterprises. However, its successes notwithstanding, Isis is
still firmly rooted within the paradigm of rule-based thinking along with virtually
every other programming language in existence.

Rule-based systems require a designer or programmer to describe the operation
of an algorithm in abstract terms, in the form of instructions that describe ma-
nipulations on variables and data to produce a desired behavior. This strategy
works well when the designer has a good understanding of the building blocks
of particular kinds of algorithms and how they can be assembled to perform a
task, or when the task itself is fairly simple and easy to grasp in abstract terms.

But there are problems with this approach too. For one, the task of exhaustively
describing exactly what should happen in every combination of situations can be
overly tedious, especially when the number of variables to which the system
must respond is high. In many problem domains, such an exact description may
be unnecessary, and the designer may be willing to accept some indeterminate-
ness in return for a simpler expression of the solution.

Most of all, the rule-based approach does not match well with the way human
beings are inherently skilled to describe and learn processes by example and deal
with problems by adapting prior concrete experience. A rule-based approach
somewhat assumes one “knows the rules” in advance, and many designers and
artists often have hypotheses they want to test. But this approach generally con-
flicts with the process of organic discovery and growth in which many engage to
experiment with the raw materials in search of interesting mappings and possi-
bilities.

Case-based reasoning

Case-based reasoning represents a different perspective on how one might pro-
gram a computer to perform a task not by writing an exhaustive list of instruc-
tions but rather by showing the computer examples of the desired behavior for
certain situations and allowing it to generalize from those cases to produce ap-
propriate behaviors for other situations.

In many ways, this approach mirrors the way the human brain generalizes
knowledge from past experiences in order to deal appropriately with new and
novel situations. For example, in a dancing class, an instructor teaches different
steps, showing variations of each routine depending on the rhythm of the music,

63

the amount of floor space available, the characteristics of one’s dance partner,
and so on. Outside of class and away from the instructor, when the student en-
counters a new environment, a new partner, and an unfamiliar piece of music, he
will adapt the “examples” learned in the class as best he can to deal with the new
situation. Rather than invoking a list of memorized rules, he recalls his old
dancing experiences, recognizing any similarities between them and the new
situation, and appropriately combines elements of those experiences to produce
a new behavior.

Christopher Riesbeck and Roger Schank eloquently state the root strategy:

“Case-based reasoning means reasoning from prior examples. A case-
based reasoner has a case library. In a problem-solving system, each
case would describe a problem and a solution to that problem. The

reasoner solves new problems by adapting relevant cases from the li-
brary.” [RS89, p. 25]

In their acclaimed book, Inside Case-Based Reasoning, they go on to describe dif-
ferent styles of case-based reasoning, examples of such systems, and compari-
sons to rule-based approaches. Agnar Aamodt and Enric Plaza restate the basic
idea this way:

“Instead of relying solely on general knowledge of a problem domain,
or making associations along generalized relationships between prob-
lem descriptors and conclusions, case-based reasoning is able to utilize
the specific knowledge of previously experienced, concrete problem
situations (cases). A new problem is solved by finding a similar past
case, and reusing it in the new problem situation.” [AP94]

It is interesting, if not critical, to note that case-based reasoning is not completely
devoid of rule-based principles. When the case-based reasoner must adapt pre-
vious cases to address a new situation, it must apply a specific rule-based
method to first analyze the similarities between the old cases and the new one,
and then combine elements of the old cases to generate a proper new behavior.
These “adaptation rules” can be complex and are typically very domain and task
specific, but their existence does not necessarily imply that case-based reasoning
is just rule-based reasoning in disguise, as Riesbeck and Schank point out:

“... the advantage of case-based reasoning is that, messy though they
may still be, the adaptation rules can be much simpler than those re-
quired by a purely rule-based system, if the case library is reasonably
filled out. In many real-world domains it is very difficult, if not impos-
sible, to create a complete set of rules, and applying large numbers of
rules is very inefficient. A case-based reasoner can get by with a much
weaker set of rules, if the case library is broad enough.” [RS89, p.42]

Although the details are too many to discuss in this brief document, the human
brain handles this adaptation and generalization process in a particular way.
The exact development and function of the brain structures involved varies from
person to person based on a variety of hereditary and environmental factors, and
so despite any similarity in background, different people have different ways of
dealing with new situations. In our dancing class example, the students uncon-
sciously adapt their dancing memories in slightly different ways, resulting in
slightly different behaviors.

64

However, in order to create an artificial system capable of this kind of case ad-
aptation, we need not model the complexities of the human brain in every re-
spect. In certain restricted problem domains, it may be possible to distill a few
concrete rules that embody the ways trained human beings handle case adapta-
tion in that domain. For example, consider CHEF, a case-based reasoner that
adapts old recipes to generate new ones that satisfy the needs of a new situation
[Ham89]. In this system, the adaptation rules describe various well understood
principles of modifying recipes—what kinds of substitutions are viable, how
cooking times are dictated by the addition or removal of ingredients, what steps
need to be added or eliminated, and so on. Although these rules represent a
mere small subset of the knowledge and skills held by good human chefs, they
are quite enough to handle many complex recipe modifications.

Case based reasoning in design

The fundamental case-based reasoning strategy described above can be adapted
to the domain of media design by thinking of media delivery contexts as the
“problems” and the corresponding appropriate media to deliver in those envi-
ronments as the “solutions.” A delivery context may incorporate any combina-
tion of factors such as the type of presentation equipment in use, the preferences
or actions of the audience, the conditions in the presentation area, and so on, as
described in Chapter 2. The designer will provide several concrete examples of
particular contexts and the corresponding media to present, and the system will
adapt these examples to handle new and unexpected delivery contexts in an in-
telligent manner.

Related work

Case-based thinking is certainly nothing new in the design world—every de-
signer approaches a new problem largely by remembering previous experi-
ences—what worked and what didn’t—and adapting that knowledge in the
creation and validation of a new piece. Maher and Garza present a broad survey
of the methods many have applied to automate various aspects of this process in
tools that support designers in the completion and evaluation of new works, or
even systems that can generate new designs completely automatically [MG97].
They reference examples ranging from Julia, a system that automates meal plan-
ning by applying constraints learned from previous meals [Hin88], to Kritik, a
tool that assists in repairing problems with mechanical devices using specific
knowledge about the behavior of similar components in other devices [GBS97].

The Media Lab has been active in the domain of automated and assisted design
for several years as well, with the work of Louis Weitzman figuring especially
prominently:

“Designers can no longer be present in the production cycle of every
document. This suggests tools to meta-design descriptions of docu-
ments. This activity of meta-design creates descriptions that can sub-
sequently be used to automatically design information under dynamic
conditions.” [Wei95, p. 12]

Weitzman utilized relational grammars to support a system that allowed its us-
ers to build layout rules through a graphical example-based interface. A de-
signer could manipulate concrete graphical elements, such as titles, bylines, cap-
tions, and images, on a virtual drafting board, and the system would automati-

65

cally recognize relationships between these elements, such as aligned placement
and similar sizing, and use them to generate a set of rules that could later control
the automatic layout of particular sets of information. For example, a designer
could create a layout “language” for a table of contents for one style of magazine,
and other languages for other styles of magazines, and the system would apply
these languages to automatically generate complete table of contents designs in-
corporating a desired set of contents information.

This approach is not strictly case-based in character, however, because although
the designer can build several different visual “languages” for different layout
designs, the system does not adapt and combine these languages in any way to
create new ones appropriate for other situations. It is in this realm that the sec-
ond tool of developed in this research, Cabbage, attempts to innovate.

The Cabbage strategy

The second tool developed in this research, Cabbage, is a case-based reasoning
system for developing responsive graphical layouts that can automatically re-
design themselves appropriately as presentation conditions change.

Multi-layered tasks and thinking processes

As discussed earlier, designers of responsive media often think visually about
their problems and possess inherent skills for understanding and describing
processes by example. With this basic realization in mind, Cabbage is chiefly an
experiment, intended to push the boundaries of visual interface design and to
investigate the usefulness of a purist case-based approach for creating responsive
media in a complex problem domain. In this respect, Cabbage primarily ad-
dresses the third guiding observation presented at the beginning of this disserta-
tion, that responsive media projects consist of multi-layered tasks and thinking
processes, although the other two observations still inform many of the decisions
made in Cabbage’s design.

Cabbage aims to provide an intuitive, completely visual environment in which
the designer can indicate the context factors to which a layout must respond and
then demonstrate proper designs for particular contexts. In a purist case-based
spirit, the goal is for the system to require as little rule-based human involvement
as possible in order to infer the structure within and recognize common elements
across the demonstrated designs. The designer will not be required to write any
text program of any kind or encode any sort of abstract rule describing a re-
sponse behavior. The user need only concern himself with creating concrete de-
sign examples appropriate for certain contexts. The system will adapt and com-
bine aspects of these designs completely on its own to generate new designs for
other contexts.

Application domain

As an example of the task domain to which Cabbage is suited, suppose you are a
graphic designer faced with the problem of creating an advertisement that will
be displayed in hundreds or thousands of different ways—on a billboard, in a
magazine, on a coupon, in a subway train, in an interactive web site, on the side
of an old barn, and so on. Each situation consists of variations in the presenta-
tion context—canvas size, aspect ratio, audience type, viewing time, and so
on—and your goal is to specially tailor the ad for each individual scenario.

66

Rather than make a thousand separate designs all by yourself, you might furnish
examples of what you want the ad to look like in a few situations to the members
of your staff and ask them to build the rest of the designs for you.

However, you may be in trouble if you don’t have a staff, or if you are very short
on time. Or perhaps you envision an advertisement that automatically reconfig-
ures itself based on live sensor feedback, if such is available in certain presenta-
tion environments. And further suppose that you are not an experienced com-
puter programmer and feel you are not likely to become one any time soon. A
tool like Cabbage could be useful in such a situation. Here are some other appli-
cation ideas:

* A responsive store window display that changes the way it presents its in-
formation based on the distance and activities of the people standing near it.

* A responsive airport display that redesigns itself to present information
most effectively based on the walking speed and direction of passers-by.

* A responsive refrigerator door that displays information in an arrangement
that is most appropriate for the time of day and the current activities in and
occupants of the kitchen, and perhaps even the physical heights of these oc-
cupants which may range from children to adults.

Visual interface

Cabbage aims to provide a visual interface that consists of features familiar to
users of common computer-aided graphic design programs, but where the goal
is not to create just one design but rather several designs of the same message.
Each design represents an appropriate display of the message for a certain deliv-
ery context, and as such, they can be thought of as residing at points in a multi-
dimensional “design space” whose axes represent the individual context factors
that affect the look of the design (size, aspect ratio, viewing distance, viewing
time, or whatever). The job of Cabbage is to, on request, appropriately adapt
these examples to generate designs appropriate for other points in the design
space.

The graphical user interface of Cabbage rethinks several aspects of interface de-
sign that have become commonplace in other tools. Written in Isis, utilizing the
Macaroni object-based media library and OpenGL for graphics rendering, all of
the interface “widgets” in Cabbage have been designed and implemented from
scratch, giving it a unique look and feel.

Cabbage supports a single pointing device with a single button, and no more,
which enables it to operate effectively in pen-based tablet interfaces. In the cur-
rent version, the designer uses a separate editor to enter any text pieces needed
for the design, prior to launching the main tool. To support experimentation,
there are no commands or shortcuts invoked by keyboard, and there are also no
pull-down menus and dialogue boxes, as these constructs often hide functional-
ity or make it difficult to access or discover what operations a tool supports.
Every action that a designer can take at any moment is displayed directly in the
interface in a fashion that keeps the screen as uncluttered and organized as pos-
sible.

67

Below is a screen grab of the Cabbage interface:

Text
Cabbage
Ac

Cabbage is a visual tool for creating graphic designs that can
adapt to presentation canditions or react to aspects of the viewers
Font The tool employs a ‘case-based' or ‘programming by example’ metaphor
Helvetica in which the human shows the computer how the design shauld look in
c | different situations. The tool then generalizes from these specific
examples to create designs appropriate for other circumstances

Cappage | Gaboese

time

There are four main sections of the tool—the design space axes (lower left), the
design case library (lower right), the object manipulation controls (upper left),
and the canvas itself (upper right). Each of these is described below.

The case library

Generation mode

appage

When the tool is first launched, the case library is completely empty, and the tool
is ready for the designer to create the first design case. Clicking the Create
Example button begins a new design case, which is initially completely empty.
As designs are created, they are shown in miniature in the case library, to serve
as a frame of reference for new designs. Clicking on a design selects it and

68

causes it too be displayed in the canvas. The user may duplicate or delete the
selected case, as well as save and restore the entire library to and from a disk file.

The canvas

Cabbage is a visual tool for creating graphic designs that can
adapt ta presentation conditions or react to aspects of the viewers
The tool employs a 'case-based' or ‘programming by example’ metaphor

in which the human shows the computer how the design should look in
different situations. The tool then generalizes from these specific
examples o create designs appropriate for other circumstances

The canvas is the area of the screen that shows the actual design under construc-
tion. Only the currently selected design case is displayed here. An empty canvas
simply signifies that there are no media objects in the design as of yet, or that all
of the objects are invisible. The user may select and move objects by clicking and
dragging. If several objects overlap, clicking on the same location several times
will cycle through selecting the separate objects layered at that point in the can-
vas. The designer can modify various properties of each object in the object con-
trol section of the tool, described below.

69

The object manipulation controls

Position Si Rotation Depth Alpha
= l'll'

Red/Green Blue/Green

IIEmahle

Disable

Recall

The first use of the object control area is to simply add new media objects to a
design. Currently the tool supports three simple object types: box, image, and
text. The Delete and Duplicate buttons perform the expected function on the
object selected in the canvas. The Select button cycles through selecting all of
the objects in the design, in case one cannot be easily reached on the canvas.

When the user creates a media object, it is added to every design case in the li-
brary, not just the currently selected one. The user may make an object invisible
in certain design cases if it is not needed there, but as a matter of principle, every
design case consists of an instance of every object, which greatly simplifies the
problem of later determining object correspondences in the generalization com-
ponent of the system. The user may also give a name to each object, which helps
identify which one is selected if it is not easily visible in the current canvas.

When an object is selected, controls appear that represent all of the manipula-
tions the user may perform on the object’s properties. Each of these controls has
a special design that visually illustrates the current value of each property as well
as the range of possible states. There are controls for position, size, rotation,
depth, color, and transparency. The user can also change the positioning point of
the object.

Other controls appear only when the selected object is of a particular type. An
image selection control lets the user select the source media of an image object,
and a cropping control enables zooming in on a desired portion of an image.
Font and text controls control the look of text objects, as well as the actual text
that appears, which is entered in a separate editor prior to using Cabbage.

With the Global button, the user may specify whether he wishes to affect the
properties of the selected object locally, in the currently selected design case
showing in the canvas, or globally, in every design in the case library. Some
properties, however, are always affected on a global level, such as the position-
ing point, image, text, and font settings.

70

The design space

+

distance

time

Prior to launching the tool, the designer defines a name and a range of numerical
values for each axis of the design space. Although only two are shown in the
above image, there may be as many axes as needed to represent all of the context
factors that will affect the design. As each case is completed, it must be placed at
a particular point in this multidimensional space using the controls in this por-
tion of the tool.

Each axis appears separately as a horizontal slider. The user can change the po-
sition of the currently selected case along each axis by simply clicking on the
slider. The slider highlights the current value in yellow, but it also shows the
values of the other unselected cases as dimmer tick marks. These marks can help
the designer recognize what areas of the design space may be filled out too
densely or sparsely.

This part of the tool also consists of a grid that enables viewing the relationship
between two particular context factors. The user controls which two factors ap-
pear on the horizontal and vertical axes of the grid by clicking on the red and
green axis selector buttons next to each slider. The grid works analogously to the
one-dimensional sliders. The position of the current case with respect to the two
selected factors can be changed by clicking directly on the grid. The positions of
the other unselected cases are shown dimly. If one area is very sparsely popu-
lated, the designer may choose to add cases in that region to fill out the space
more completely.

Case adaptation algorithm

The most important component of Cabbage, its case adaptation algorithm, was
also the most difficult to develop. Three main goals were kept in mind through-
out. First, the algorithm should be able to generate new designs fairly instanta-
neously, at least several times per second. This requirement somewhat rules out
extensive tree-search approaches for finding an optimal design in the face of am-
biguity. Second, the algorithm should support extrapolation. That is, if a design
is requested for a point outside of the main “cloud” of design cases provided by
the user, the system should be able to analyze and extrapolate trends in the re-
gion of the cloud nearest the new point to determine a new design. Third, the
algorithm should infer as much as possible on its own about the relationships
between the media objects in each design and be able to instantiate similar rela-
tionships in an adapted design, or at least apply common rules of good graphic
design to clean up any problem areas.

71

There were a few lesser goals as well, such as the algorithm should be able to
deal with a very sparsely populated design space, as well as with areas of high
case density, in an intelligent manner. Also, the algorithm should support conti-
nuity over an arbitrary path of solutions in the design space to whatever extent
possible, so that any dynamic changes in the delivery context will result in
smooth transitions in the look of the design.

Cabbage fulfills all of these goals to a certain extent, although these towering ob-
jectives are not to be taken lightly. Cabbage is an initial exploration into this
realm, and there is much room for improvement and further research that will
guarantee the problem of creating a truly general adaptation algorithm for this
domain will remain an open question for a long time to come.

Select nearest case

The current algorithm evolved incrementally over several months, beginning
with the simplest possible approach, in which the system selects the design case
nearest to the new point in the design space and uses that design without any
changes. Nearness is measured by first normalizing the values of each context
factor within its range and then computing a multidimensional distance in the
usual way. This first-order algorithm is completely unintelligent, but may be
appropriate for certain applications.

Combine nearby cases

A second-order algorithm performs a linear combination of individual object
parameters (position, size, color, and so on) from the library cases, weighted in-
versely by the distance of the old case from the new point. Then, a clean-up
phase restores relationships between objects, aligning edges of objects that are
already nearly aligned, and also moving and resizing objects slightly to ensure
that any objects that did not overlap in the library cases do not overlap in the
newly generated case.

Although this algorithm accomplishes the continuity goal, it is still quite unintel-
ligent. It does not support extrapolation, nor does it properly heed any structure
evident in the original library designs. But its biggest problem is in what hap-
pens in dense areas of the design space—if the new point has several library
points in its immediate vicinity, there is no sense that certain cases are “behind”
others, as viewed from the new point, and perhaps should have their contribu-
tions to the final design correspondingly reduced.

72

Combine nearby unoccluded cases

The third algorithm incorporates the notion of points being “behind” others by
performing a linear combination of cases, weighted inversely by distance and
also by an occlusion metric. This metric is computed for a given library point P
by considering all the other library points nearer to the new point N. For each
nearer point Q, the system computes a dot product (dp) of the normalized vec-
tors Q-N and P-Q. If the result is greater than zero, as would be the case in the
following illustration, the point P is considered to be “behind” point Q to an ex-
tent proportional to (dp), and the contribution of point P to the final design is
scaled by 1 - (dp).

P
[]
Q-N
P-Q
Q
N

The same clean-up operation is performed on the resulting design. Although
this algorithm still does not support any sort of extrapolation, it works surpris-
ingly well, able to generate designs that intuitively make sense based on the
contents of the case library.

Combine nearby unoccluded extrapolations of cases

The fourth and best algorithm available in Cabbage abandons a simple linear
combination approach to adaptation in favor of a limited trend analysis strategy
that is capable of extrapolation. The system makes a list of lines passing through
pairs of nearby library points. It then projects the new point onto each line and
computes object parameters at the projection points by linearly interpolating or
extrapolating the pair of library designs on each line. Each of these projection
points is assigned a contribution factor equal to the product of the inverses of the
distances of the two associated library points from the new point.

The algorithm continues by invoking the same occlusion metric as used in the
previous scenario, but this time considering the projection points instead of the
actual library points. The occlusion scale factor is applied to the contribution of
each projection point, and the final output of the algorithm is a linear combina-
tion of the object parameters associated with each projection point, weighted by
the final contribution factors. Qualitatively, this algorithm is more robust when
the case library is very sparse, and the designs it generates make more intuitive
sense than those created by the third algorithm, especially at points “outside” of
any main cloud of design examples.

73

Refining and presenting the result

The user can test the selected adaptation algorithm by clicking on the Generate
button in the tool. The algorithm is invoked on the case library as it stands (mi-
nus the currently selected case) to build a new design for the design space point
indicated on the design space axis controls. Each of the four algorithms is capa-
ble of generating designs several times per second, which enables the user to
drag around in the sliders and grid to explore the design space with immediate
feedback and smooth transitions. If the system generates an improper design,
the user can make corrections and add it back into the library as a new case.

When the designer is satisfied with the system’s performance, he can relinquish
this manual control and use a playback program to connect the context factors
for the design directly to real sensing mechanisms. This playback program pre-

sents the design full-screen and dynamically alters it with smooth transitions in
response to sensor activity.

Example project

In early 2000, Cabbage was used to create a responsive poster suitable for a Me-
dia Lab research open house or similar type of affair. The subject of the poster is
Cabbage itself, and the design responds to two variables about the viewer:

+ the distance of the viewer from the poster

+ the length of time the viewer has been standing in front of the poster

74

The goal of the design is to grab attention and draw the viewer closer when he is
far away, and then to try to retain the viewer for a longer period by presenting
additional information over time. The two context factors are named “distance”
and “time,” and a total of nine design examples form the case library for the
poster, as shown below. These designs are placed in a rough 3x3 grid arrange-
ment in the design space, although this is not a necessity—any arrangement is
allowed.

distancel)

Cabbage

The intention was to place the design under the control of real distance sensors
and timers. The system supported smooth transitions between intermediate de-
signs. Below are some examples of how the design would respond in different
situations.

75

When someone first walks in to the presentation space, the poster presents a sin-
gle large title, to catch attention. If the viewer approaches, the main title will
grow smaller and a subtitle will appear, further drawing the viewer in. When
the viewer is close enough, the headings become smaller and a detailed descrip-
tion appears. If the viewer remains, a second and third page will appear. Below
are a few stills from this kind of sequence:

G \0)8) age

A case-based editor for
responsive graphic designs

ased editor for
nsive graphic designs

Graphical user interface
for building design examples

76

On the other hand, if the viewer only ever approaches halfway and then leaves
early, the full descriptions will never appear:

Gabbage

A case-based editor for
responsive graphic designs

77

If the viewer approaches very close to the presentation screen, closer than was
ever expected when the designs were first entered into the system, the adapta-
tion rules support an extrapolation of the design where the headings and de-
scriptions appear even smaller than they were originally demonstrated by the
designer. This is an appropriate reaction as someone standing very close will
find it difficult to read large text, although Cabbage accomplished this simply by
extrapolating the trends in the nearby cases, not by applying any higher-level
knowledge about the viewers of the poster.

Evaluation

Perhaps the most successful aspect of Cabbage is its visual interface, which, as
discussed, consists of widgets and controls implemented from scratch in Isis with
OpenGL as the rendering engine. Showing each design in the case library in
miniature makes it easy to compare designs and manipulate objects on a global
level. Emphasizing visibility and accessibility to an extreme yields an interface
that is more amenable to a multi-layered design process rooted in discovery and
experimentation. Perhaps the best feature is that users of Cabbage deal only
with concrete layout design examples and never have to write any code or de-
scribe behaviors with abstract rules. All of these results together suggest that
Cabbage has the potential to support a much wider variety of users than typical
responsive media design tools.

Despite their ability, at least in the simplified scenarios tested, to create results
that intuitively make sense with a minimum of complex math, there are some
important weaknesses with the adaptation rules employed in Cabbage. For one,
none of them inherently take into account relationships that may exist between
objects. For example, the system does not currently recognize if a text box is con-
sistently placed below and left-aligned to an image object in every case and try to
preserve that relationship in any newly generated design. Object parameters are

78

combined in a mutually exclusive fashion, and the “clean up” routine attempts to
restore graphically appropriate relationships between objects afterwards.

However, it would not be difficult to implement a more structured approach.
Weitzman demonstrated a method to deduce certain object relationships—if a
user situates two objects near each other and nearly aligns them or makes them
nearly the same size in a particular dimension, the system assumes that con-
straint was meant to hold, and if thereafter one object changes position or size,
the other will follow correspondingly [Wei95]. However, his system only han-
dles the detection and propagation of relationships, and not what should happen
if, for example, the designer shows an object aligned with another in some cases
but not in others. A system would need not only a method to deduce the struc-
ture hierarchy of a layout, but also to appropriately “interpolate” between and
combine bits and pieces of several hierarchies to generate new ones. In addition,
in situations of high ambiguity, it may be much more satisfying, for a designer
who desires greater control, to explicitly indicate object relationships rather than
have them deduced automatically.

However, even if these weaknesses were eliminated, there are still deeper issues
to consider that threaten the viability of Cabbage and other case-based tools like
it. Since the adaptation rules do not often handle sparsely populated design
spaces very well, simply adding one additional context variable to a project can
double or triple the number of designs the user must enter into the system in or-
der to achieve good results. But more importantly, given the incomplete and
amorphous role of the adaptation rules employed in case-based reasoners, a de-
signer who uses Cabbage must be willing to accept a certain amount of indeter-
minateness in what the system will generate. This can be extremely frustrating,
however, as many designers are attracted to the computer precisely because of its
capability for exactness—because it doesn’t reason like a human being.

The adaptation rules themselves may not match well with a particular designer’s
style, and understanding how these rules work to the point of modifying them
could prove to be daunting. Because the algorithms in case-based reasoners like
Cabbage cannot be accessed or changed through a friendly interface, if at all, de-
signers may try to assert more control over the system by adding more and more
examples to the database, but through this process, designers often learn enough
about the input-output mappings they are trying to develop that a more rule-
based approach begins to make more sense.

In the final analysis, as it stands now, Cabbage is not suitable as a serious pro-
duction environment for making responsive layout designs. With a few changes,
it could function perhaps a design exploration tool, allowing designers to ex-
periment with mappings and combinations in a process of understanding their
problems more fully. Since it is based in Isis, case libraries created in Cabbage
can be stored in a format that can be manipulated from within an Isis program in
a more rule-based fashion.

However, Cabbage is successful as an experiment to understand what kinds of
things visual thinking and case-based reasoning can and cannot accomplish in a
responsive media design tool, and this knowledge will ultimately prove very
helpful in the design of the third new tool developed in this research, described
in the next chapter, which utilizes many of the best visual interface concepts of
Cabbage but returns to a rule-based approach for creating a different, very spe-
cific kind of responsive media.

79

Chapter 5

Viper

Observations

A common thread that runs through many of the prototypes described in Chap-
ter 3 is the idea of creating context-aware video programs that can re-edit them-
selves in response to a variety of factors—presentation equipment, viewing con-
ditions, real-time audience activity, and so on. The Birds, Jayshree, Magic Win-
dows, and the CINEMAT all consist of a dynamic editing component in which
individual video clips are selected and assembled in real time in response to the
movements of the spectator. The background of Sashay/Sleep Depraved is a movie
edited on the fly to convey the mental state of the main character, altered
through gestures of the spectator. Reflection of Presence and Vision Television in-
corporate activity, emotion, and identity detection elements that could drive in-
telligent alterations in the media being presented. Direct viewer control over the
navigation of material is a central element in the Aspen Movie Map [Moh82], the
Movie Manual project [Gan83], and many other earlier interactive video experi-
ments.

Each of these prototypes is comprised of very similar components—a database of
video clip objects, a set of rules governing how those clips should be selected and
combined, and a playback program that actually renders the media. However,
the lack of any specialized tool for making content of this type resulted in much
extra time being spent tediously annotating video clips and coding database-
lookup and editing routines from scratch in textual computer programs. Fur-
thermore, because these programs were written without a common framework
or set of primitives, the individual components that make them up cannot be
shared or combined easily to make new systems. The designers of these projects
will also find it more difficult to understand the inner workings of each other’s
systems.

The similarity in the types of tasks involved in making responsive video pro-
grams, together with the lack of a common framework for this kind of media and
the non-optimality of using a general-purpose programming interface for many
parts of the process, raises the idea of creating a new tool geared specifically for
authoring this kind of content.

Motivations

Consumers of Internet-mediated content have become accustomed to personal-
ized and responsive media experiences that better match their needs and circum-
stances. The World Wide Web has presented new opportunities for storytelling
as well, enabling authors to endow audience members with new freedoms to
navigate and explore complex story worlds, whether fictional or non-fictional, in
ways suited to each individual.

81

Producers of television and other video content have been left somewhat behind
in this revolution, still often restricted to creating one-size-fits-all programs, or
perhaps a very small set of alternative versions of a program for different audi-
ences. But now that there is significant computational power and intelligence
throughout the chain all the way from production to display, and now that there
is often sufficient “extra” bandwidth available, it is possible to perform much of
the final editing process on the receiver at the same time the program is viewed.

In a broadcast or multicast scenario, the source no longer transmits a linear video
program, but rather a collection of media clips and objects along with procedural
metadata, authored by the producer, describing how the receiver should assem-
ble those objects, adjusting for whatever factors, to present a complete television
program. Besides allowing for a fine-grained adaptation of content to each spe-
cific viewing situation, this approach doesn’t require potentially sensitive infor-
mation about the viewer to be transmitted outside of the viewing environment.
Possible applications include advertisements that are more specifically targeted
to particular people or situations, news programs that take into account a
viewer's background, educational programs that adjust in real time to a student's
attention level and other emotional responses, or environmentally responsive
video installations in public spaces. The ultimate goal is not to take editing con-
trol away from the creator of a program and place it in the hands of the viewer,
but rather to give video producers and directors more control over how their sto-
ries and messages are presented in different situations and over what freedoms,
if any, are granted to the audience to pursue their own exploration of the content.

Providing at least a coarse degree of personalization, such as showing one of a
small number of different versions of an advertisement transmitted in parallel
bitstreams, has been relatively easy given currently deployed infrastructure
[Sim00]. But achieving finer-grained personalization or real-time responsiveness
has come at the cost of developing complex pieces of software using interfaces
that do not match well with the thinking and working styles of most traditional
video producers and editors, who are used to manipulating audio and video
source material in a more direct and hands-on fashion.

Automated and dynamic video editing

There is a moderate body of prior work that explores different ways of thinking
about automating part or all of the editing process for video programs, in some
cases where this editing is guided in part by the viewer or audience.

Frank Nack and Alan Parkes developed AUTEUR, a tool that employs a hierar-
chical system for describing shot content and scene structure that can generate a
limited form of slapstick-style comical video sequences [NP97]. Their system
incorporates a fixed knowledge base and editing model, gathered in part by ob-
serving real video editors at work, that dictates the rules by which clips are cho-
sen and sequenced to accomplish a simple thematic goal, in this case humor.
However, it is unclear how such a model would be extended to handle other
themes or genres, or how it might successfully drive the editing of scenes more
than a few seconds long without becoming inordinately complex and unwieldy.
In addition there is no clear strategy for determining what type of video material
needs to be captured and included in the system’s database in order to fulfill the
needs of AUTEUR’s automated story planner.

Michael Mateas, Steffi Domike, and Paul Vanouse created a system called Termi-

nal Time that assembles a montage of archival film and video footage to accom-
pany a spoken narrative describing historical events [MDV99]. The focus and

82

bias of this constructed narrative is dictated in part by audience feedback in the
form of answers to multiple choice questions at several points during the pres-
entation. However, clips are selected from a database with a simple term index-
ing scheme to reflect the subject of the narrative as it progresses, without atten-
tion to whether the resulting juxtaposition of shots is cinematically appropriate
or meaningful.

Rainer Lienhart has developed techniques for making “on the fly” annotations to
home movies and for automatically summarizing those movies into short video
abstracts [LR00]. Content is organized in a hierarchical fashion, and different
kinds of transitions set off boundaries between different logical sections of the
abstracts. However, the tool employs a highly problematic scheme for automati-
cally extracting important parts of very long shots based solely on audio charac-
teristics, and clips are chosen for inclusion in an abstract largely through random
selection rather than with any higher level sense of cinematic meaning.

The Media Lab has been active in this domain for several years as well, especially
within the Interactive Cinema group. In Agent Stories, a tool devised by Kevin
Brooks, an author creates an annotated web of video story snippets from which
programmatic story “agents” will construct and present complete stories [Bro99].
These agents, developed by Brooks, are each skilled at assembling a story a dif-
ferent way. Contour and Dexter, developed by Michael Murtaugh, together form
a system that employs a spreading activation network to guide content selections
in an interactive video program such as a documentary [Mur96]. The system
selects segments from a large annotated database of video material in a fashion
that’s relevant to the interests of the viewer as reflected by his previous choices
of content during the program. Gilberte Houbart’s Viewpoints on Demand utilizes
a semantic net representation of support relationships between opinions ex-
pressed in video clips and allows viewers to adjust “content knobs” to control
the way an argument will presented about a particular topic [Hou94]. Lee
Morgenroth’s Homer allows an editor to build a story model from some simple
building blocks and have the system select content from a logged database of
video and generate a rough cut of a video story, acting much like an editor’s as-
sistant [Mor92].

Other systems are specifically geared for automatically generating multimedia
presentations consisting of speech, written text, and graphics. Many such sys-
tems, such as that developed by Dalal et. al. [Dal96], use constraint satisfaction
mechanisms to determine the sequence and duration of media elements, typi-
cally for presenting highly structured information, but it is unclear how these
approaches would translate to more general forms of storytelling or entertain-
ment.

Overall, there are three main observations to note about all of the works men-
tioned above:

 These systems are not capable of incorporating real-time audience activity
or other feedback during a presentation and altering editing immediately.
Terminal Time and Contour/Dexter come the closest, but both only process
and incorporate viewer choices at the endpoints of long content segments.

* All of these systems assemble video programs in simple sequences of shots
or segments separated largely by cut transitions. There is no sense of multi-
ple tracks or layers on which more complex edits or transitions might be
constructed, and it can be difficult to create a compelling narrative with
high production values without these elements.

83

¢ There is no common framework that underlies all of the editing and anno-
tation models and algorithms employed by these systems, and thereby no
way to easily share or combine components of many to make new systems.

The third tool developed in this research, Viper, will address all three of these
drawbacks.

The Viper strategy

The third main contribution of this research, Viper, addresses this need for a
common design framework for creating video programs that have the ability to
react and re-edit themselves in response to audience activity, equipment configu-
rations, preferences, or other factors. As with the other tools developed in this
research, Viper aims to reflect in is design the three main guiding observations
about responsive media highlighted at the beginning of this document.

Multi-sensory interfaces and materials

In contrast to the approach of the some of the systems described above in which
viewers make choices and provide feedback only at the endpoints of segments
that form the branches of “multi-linear” video programs, Viper aims to support
richer and more demanding forms of responsiveness that require complex sens-
ing systems and the ability to alter editing in a seamless way at the same time a
program is being viewed. Whereas the systems described above only support
putting together clips end to end on a single logical track with simple cut or fade
transitions, Viper enables higher production values by supporting multiple video
and audio tracks and providing primitives for assembling complex edits and
transitions, such as L-cuts, audio and video inserts, dissolves, graphic overlays,
slow motion, and so on, and for finely adjusting these elements in response to
real-time response activity.

Multi-person collaborations and experiences

In an aim to support a wider variety of users, Viper offers a visual interface in-
spired by Cabbage for preparing video material and making custom annotations
that is familiar and comfortable to users of traditional editing tools like Avid or
iMovie. To support more effective collaborations, the individual tool compo-
nents of Viper, described in later sections, are designed in a way that each can
operate simultaneously with the others on different networked workstations.
And as stated above, Viper aims to support richer forms of sensing in which sev-
eral viewers or spectators might participate in a responsive video experience at
the same time.

Multi-layered tasks and thinking processes

Two major components of the design process for responsive video programs are
the annotation of media clips and the development of rules to choose and assem-
ble those clips into complete programs. Although these tasks are quite different
in nature, the success of an application is highly dependent on how well the re-
sults of one component serve the needs of the other. Viper supports a direct
hands-on approach in which designers can shift easily back and forth between
these two task layers to achieve the best results.

84

Perhaps most importantly, Viper addresses the need for a common foundation
for developing many different kinds of responsive video applications. In con-
trast to Cabbage and the other video tools described above, Viper does not con-
sist of a predetermined knowledge base or domain-specific editing or adaptation
model that controls how the system assembles its output. In a strategy similar to
that of Isis, Viper aims to provide a common set of extensible primitives from
which designers can build these models themselves to suit the needs of particu-
lar applications. Because these models are based within a common framework,
components from one project can be shared and incorporated into other projects
more easily, and the authors of different projects will be able to understand and
learn from each other’s systems more easily as well.

The following sections present more detail on the design of Viper, beginning

with a description of the process of creating a production with Viper, followed
by a discussion of an extended project example.

The Viper production process

There are five main parts to the process of building a responsive video program
with Viper: planning the production, capturing media, preparing and annotat-
ing clips, building editing guidelines, and presenting the result. Each of these
task areas is described in detail below.

Planning a production
The first step in creating a production with Viper is for the author to simply sit
back and think about the production and draw up initial answers to these ques-

tions:

» What variables about the viewer or the environment will the program
respond to?

» How will these response factors be sensed or gathered?

* How can these factors be represented numerically or textually in the
simplest possible fashion?

» What is the general structure of the video program?
» What types of editing alterations will the program exhibit?

» What material needs to be shot or gathered to cover all of these possi-
ble alterations?

» How can this material be produced in the most efficient way?

Capturing media

In a Viper production, not every piece of footage gathered will appear in every
final version of the program, and so there is typically more shooting to be done
to cover all of the possible editing variations the program will exhibit. This sug-
gests a shooting strategy that de-emphasizes concentrating on the absolute per-
fection of individual shots and favors capturing the widest possible variety of
imagery. At the same time, it is probably more important to have a clear plan of

85

what must be captured, to avoid spending extra time redoing setups and shoot-
ing additional scenes when something is forgotten.

In many situations, it may not take much additional time to produce any extra
footage as it may involve fairly simple variations on a theme or shooting setup.
For example, a responsive advertisement for a restaurant might feature imagery
of specific dishes that are likely to appeal to the viewer. There might be 20 dif-
ferent plates that need to be highlighted in different situations, but all of them
might be shot quickly with very similar camera and studio setups.

Once the video footage is produced, it must be digitized into the computer. The
current version of Viper handles video and audio in the Isis movie format in
which video frames are stored as JPEG images and audio is stored in raw PCM
format. Viper includes a video digitizer that can capture media directly into this
format, and also a program that will convert MJPEG AVI movies to the Isis
movie format. All the video material for one production must be captured at the
same resolution and with the same audio characteristics (sample rate, number of
bits, and so on).

The organization of data in the Isis movie format supports extremely efficient
random access to individual video frames and audio samples, which greatly in-
creases the performance of the playback component described later. Future ver-
sions of Viper may support other movie formats that have similar features.

The user invokes a command to create a special disk folder to hold all of the data
associated with a particular Viper project. The user edits certain text files within
this folder to specify the locations of the digitized source material along with
other information about the production needed by the tool. A newly created
project folder contains documentation and templates that describe what infor-
mation is needed and where it should be placed. A future version of Viper could
include a friendlier graphical interface for these tasks.

Forming a database of clips

The third part of the Viper production process involves splitting the captured
video and audio source material into individual clip objects and annotating those
clips with information about their content and function in the larger scheme of
the production. The database of media objects created in this stage is accessed
when later writing the editing guidelines for a production that express how clips
will be chosen from this database and assembled into a complete program.

For this task area, Viper provides a graphical interface based on the same wid-
gets that were successful in Cabbage. This interface aims to incorporate elements
that are likely to be familiar to users of traditional computer-based editing sys-
tems.

86

rent keywords

|

dancing perform

&
| §

handoff

around deadcrowd
.

The bottom part of the tool is the clip database, which is initially empty. To be-
gin making a new clip, the user can either click an empty box on the grid or copy
the information of an existing clip with the Mem and Re c buttons or the Dup
button. Additional grid pages may be added by clicking the Extend button.
The Save button writes the database to disk, and Revert recalls the last stored
version of the database.

The upper left portion of the tool provides an interface for selecting the source
movie of each clip and for setting in and out points in a fairly traditional way.
There are facilities for changing frame rate and for selecting a descriptive “key
frame” of the clip, which is shown in miniature in its database grid box. There
are two long rectangular bars, the upper of which represents the entire source
movie, which may be several minutes in length. The lower bar represents the
actual clip as a portion of this source movie between the currently selected in and
out points.

The highlighted portion of the lower bar represents the “critical section” of the
clip, which at first will include the entire clip. If the clip can stand being short-
ened from its full length and still preserve its meaning, the user can specify a
smaller critical section to indicate a limit to how much the clip may be trimmed.
When writing the editing guidelines later, the producer may select different
lengths of the clip in order to fit a certain time slice, or perhaps to alter the pacing
of a program. If a clip contains dialogue, typically the critical section will include
all of the dialogue and helps to indicate how loosely or tightly the system may
cut around that dialogue.

87

The user may browse through the video represented by these two bars by click-
ing and dragging within them. Clicking on the video frame itself starts playback
from the currently selected point. If “loop” mode is engaged by clicking the
Loop button, the clip is played repeatedly from beginning to end, allowing
changes to in and out points to be tested more rapidly.

In a Viper production, it is important to realize that depending on how the edit-
ing model is written later, a single clip may be placed in sequence with many
different clips in different versions of the final program, and it may be difficult to
predict exactly what kinds of juxtapositions will be generated. This suggests a
clip preparation strategy that is not overly focussed on perfecting the exact in
and out points of each clip with respect to others it may appear next to, as is
done in a traditional linear editing process. Rather, the author must emphasize
building a database of flexible clips that may be used and sequenced in different
ways, and tailor them only as much as necessary to support the types of editing
alterations that will be devised later.

Making annotations

In the process of building clip objects, the producer must add annotations that
express something about the clip’s content or what its intended use is for the
program. Viper supports making two simple kinds of annotations, keywords
and numerical ratings, in the upper right portion of the graphical interface.
Other kinds of custom annotations, such as indications of relationships between
clips, may be added in a text file and loaded into the system as well. New po-
tential keywords and scale factors may be created or deleted as needed by click-
ing the appropriate buttons. Pressing the Attach/Detach button adds or re-
moves the selected keyword from the list of annotations for the current clip. For
scale factors, clicking directly on the slider adds the annotation to the current
clip, and clicking on the box to the right of the slider will remove it.

In contrast to generic and exhaustive approaches to media annotation, such as
that employed by Media Streams [DM95], Viper supports a very direct and man-
ual system that allows the author to develop a concise set of potential annota-
tions that are specific to the production at hand and most likely to be needed to
support the editing model that will be constructed later. For example, if the plan
is to create an educational program that will include more or less detail on a
topic in different situations, the author may choose to rate clips on an “impor-
tance” level and later use this annotation to decide which clips to include in the
final program. Or, in the process of annotating home movie material, the author
of a responsive video family scrapbook may choose to add keywords that indi-
cate which family members appear in each clip. The MPEG-7 standard outlines a
format in which Viper annotations might be stored along with each clip [NL99],
although the current version of the tool does not use the MPEG-7 format.

Although the most useful kinds of annotations are often too content-specific or
subjective to be sensed by automatic means, a future version of Viper could sup-
port such systems. Techniques like those developed by Nuno Vasconcelos
[Vas00] and others can identify textures and tones in video scenes, or even detect
the presence of particular objects. The characteristics of actors, including their
identities, could be determined automatically using several different systems,
such as neural-network face detection [RBK98] or the Eigenfaces face recognition
approach created at the Media Lab [MWP98]. Facial expressions or audio char-
acteristics could be analyzed to detect the emotional qualities of clips [Pic00].

88

Building editing guidelines

The next and most important step in making a Viper production is to build the
editing model that expresses which clips will be chosen from the database and
how they will be combined to create a complete video program in response to
the chosen factors. For this task, Viper provides a set of primitives based in the
Isis programming language that are designed to insulate the author as much as
possible from the details of general-purpose programming while at the same
time maintaining a high level of extensibility and flexibility in how mappings
may be created. The author may incorporate standard Isis syntax in his guide-
lines if a more complex manipulation is needed. The goal of these primitives is
to be able to support any of the editing models and algorithms employed by the
other video tools described at the beginning of this chapter.

In contrast to Morgenroth’s Homer, which was intended mainly as an editor’s
assistant in making a rough selection and ordering of content based on a story
model, Viper integrates the process of building a story model with the intricate
details of how the bits and pieces of that story will be rendered in editing with
transitions and effects, extending the model’s scope all the way to delivery. Vi-
per also includes the ability to finely vary the characteristics of the components
and operations expressed in the model based on possibly real-time variables
about the viewer and other response factors. In addition, this component of Vi-
per is designed to run in parallel with both the annotation tool and the playback
system in order to better support an incremental design process in which clips or
annotations may be changed or added and editing guidelines may be tested and
refined as needed.

In this segment of the tool, the author must declare exactly what context factors
the program will be responding to, including the name and type of each variable
and its range of possible values. This information is used to generate a graphical
user interface that provides a manual control over the values of each of the vari-
ables. This interface currently supports variable types of integer, string, and list
of strings, although more may be added later. For example, a viewer’s age
might be specified with an integer variable in a range from 0 to 100, and his fa-
vorite genres of music might be given as a list of strings taken from a list of 15
possibilities.

89

Here is an example of a manual control panel displayed by Viper:

CampaignAd manual controller

Edit

ui Nt

facilities

Once they are declared, the job is to use the values of these variables along with
the Viper editing primitives to guide the selection of the appropriate clips from
the database and their assembly into a complete program. This process happens
in a text Isis program, upon entry to which all of the response variables (typically
named with the prefix rv-) have been set to the values given in the manual con-
troller, and the variable clip-database holds the entire database of media ob-
jects formed in the previous stage. By the end of the file, the user must set the
variable final-movie to be the final edit decision list for the video program.
The primitives provided for this task are described below and come in four fla-
vors: database lookup, scoring and sorting, preparation, and editing. For the
sake of brevity in the following sections, full documentation on each primitive is
omitted.

Database lookup primitives

These primitives allow the author to select a particular subset of clips from the
database that satisfy certain properties or constraints. Essentially, this is how the
author will choose the story elements that will appear in the final program. Any
of the response variables defined in the production, as described above, may be
used to guide the details of how these selections are made.

Below, tag represents the name of a keyword or numerical annotation, and cd
represents the database (or list) of clips that will be narrowed by the primitive.
Each primitive returns a new list of clips that satisfy the specified conditions, ex-
cept for select-head which returns just a single clip. Primitives may be cas-

90

caded to express a more complex selection metric. The standard Isis list ma-
nipulation primitives may be used as well—such as append to concatenate two
lists of clips together, or reverse to reverse the order of the clips in a list.

(select-tags tag tag .. cd)
Select all clips that have at least one of the given annotations

(select-tags-all tag tag .. cd)
Select all clips that have all of the given annotations

(select-tag tag cd)
Select all clips that have the given annotation

(select-val tag val cd)
Select all clips in which the given annotation has the given value

(select-ineqg tag egproc val cd)

Select all clips in which the specified inequality holds for the given annota-
tion and value

(select—-name name cd)

Select all clips that have the specified name

(select-first num cd)
Select the first N clips in the database or list

(select-first-tagsum tag initial target cd)

Select the first N clips such that the values of the given annotation sum to at
least the given target value

(select-random num cd)

Select a certain number of clips at random

(select-head cd)
Select the first clip in the list

(select-proc sproc cd)

Select all clips for which the given procedure tests True when invoked on
the clip

For example, the following chooses all the clips that have the keyword “jane”

attached to them:

(set janeClips (select-tag "jane" clip-database))

91

This example selects out all the clips that have both the keyword “scenery” and
the keyword stored in a response variable named rv-city, and also have an
“importance” level greater than the value of a numerical response variable
named rv-threshold:

(set cityClips (select-tags-all "scenery" rv-city clip-database)))
(set cityClips (select-ineq "importance" > rv-threshold cityClips))

Scoring and sorting primitives

These primitives allow the author to control aspects of how the selected story
elements will be ordered or arranged in other ways in the final program. Many
times it will be necessary to sort clips based on the value of one or more annota-
tions. For example, the author may need to sort a collection of clips in decreasing
order of “importance,” select a certain number of clips from the head of the re-
sulting list to include in the final program, and then sort those clips in increasing
order of a “chronology” annotation. The scoring primitives allow the author to
add new annotations to each clip in a collection that express a certain metric, per-
haps to sort by at a later time.

(sort-tag-increasing tag cd)

Sort clips in increasing order of the value of the given annotation

(sort-tag-decreasing tag cd)

Sort clips in decreasing order of the value of the given annotation

(sort-tag-nearest tag val cd)

Sort clips in order of the distance of the given annotation from the given
value

(sort-random tag cd)

Sort clips in a random order

(sort-proc sproc cd)

Sort clips in a customized way based on the given procedure

(score-tags newtag tags cd)

Add a new numerical annotation that expresses how many of the given an-
notations are attached to each clip

(score-length newtag trimval cd)

Add a new numerical annotation that contains the duration of each clip, if
trimmed the given amount (between 0.0 and 1.0)

(score-proc newtag sproc cd)

Add a new annotation to all clips based on the return value of the given
procedure when invoked on each clip

(clip-duration clip)

Returns the duration of a clip in seconds

92

For example, the following sorts the selected Boston scenery clips from above in
decreasing order of importance:

(set bosClips (sort-tag-decreasing "importance" bosClips))

The following selects the 4 Jane clips that are nearest to 5 seconds long:

(score-length "length"™ 0.0 janeClips)
(set janeClips (sort-tag-nearest "length" 5.0 janeClips))
(set janeClips (select-first 4 janeClips))

Preparation primitives

Clips selected directly from the database are not “playable” until they have been
converted into an edit decision list, or movie for short, using one of the following
preparation primitives. Conceptually, these primitives represent the transfor-
mation of simple story elements into the details of how those elements will be
rendered in the final program. It is at this point that the author can request that a
clip should be shortened from its full size by a certain amount.

Each of these primitives returns a playable movie consisting of a single shot
starting at time 0. The editing primitives described later allow these single-clip
movies to be sequenced and layered on separate tracks to create more complex
movies.

(prepare-clip clip)
Make a movie from the specified clip

(prepare-clip-time clip time)

Make a movie from the specified clip, trimmed to given duration, centered
around the clip’s critical section, as specified in the annotation tool

(prepare-clip-trim clip trimval)

Make a movie from the specified clip, trimmed the given amount from 0.0 to
1.0, where 0.0 represents no trim, and 1.0 represents a trim that consists only
of the clip’s critical section

Editing primitives

The single-clip movies created by the above primitives are fully playable by
themselves. The author must use the following editing primitives to create
movies that consist of more than one clip. These primitives provide more than
just the ability to put clips together in a simple sequence. Viper supports multi-
ple video and audio tracks, allowing the author to create complex edits, such as
inserts and L-cuts. Track numbering begins at 1. Material on higher-numbered
tracks overrules that on lower-numbered tracks. Fades provide the ability to
control the visibility of each track. Transition and mixing primitives allow mul-
tiple video or audio elements to be mixed and dissolved together in differing
amounts to create highly customized effects. The author may use any of the re-

93

sponse variables defined for the production to alter the parameters of any of
these elements.

Each of the following primitives acts on movies and returns a movie. Again, op-
erations may be cascaded to perform more intricate editing maneuvers. The
author sets the variable final-movie to be the final version of the movie that
he wishes to present.

(video-only movie)

Extract only the video elements of a movie

(audio-only movie)

Extract only the audio elements of a movie

(shift-start time movie)

Shift the starting time of all elements in a movie by a given amount

(change-start time movie)

Change the starting time of all elements in a movie

(set-level level movie)

Set the video or audio level of all elements in the movie

(ramp-in ramptime movie)

Place a ramp-in (dissolve) transition at the beginning of every element in a
movie in which the level of each element will increase from 0.0 to 1.0 over
the given duration

(ramp-out ramptime movie)

Place a ramp-out transition at the end of every element in a movie

(ramp-in-out ramptime movie)

Place both ramp-in and ramp-out transitions in every element

(change-track tracknum movie)

Change the track number of all elements in a movie

(isolate-track tracknum movie)

Extract only the elements on the given track in a movie

(remove-track tracknum movie)

Remove all the elements on the given track in a movie

(fade-in fadetime movie)

Place a fade-in transition at the beginning of a movie

(fade-out fadetime movie)

Place a fade-out transition at the end of a movie

(fade-only movie)

Extract only the fade elements in a movie

94

(sequence-movies spacing movies)

Sequence the given movies such that each starts after the next in order,
spaced by the given amount (which may be negative)

(combine-movies movie movie ..)

Combine the given movies into a single movie, without shifting the starting
time of each movie

(movie-duration movie)

Returns the duration of the given movie in seconds

There are additional primitives for creating graphics, such as title screens and
credits, and for including them in a movie like any other audio or video element.
For the purposes of brevity, details of these primitives are omitted here.

Inspecting and refining

To assist in the task of building the editing guidelines for a program, Viper pro-
vides a way to view the edit decision lists generated by the system in a graphical
form. These visual renderings resemble the program timelines found in tradi-
tional editing tools such as Final Cut Pro and Avid. Each audio, video, and
graphic element appears as a colored rectangle—blue for audio, red for video,
and orange for graphic. The position of the left edge of each rectangle indicates
the starting time of the element, and its horizontal size indicates its duration.
Transparency at the left or right edges of an element indicates a ramp or dissolve
transition. Multiple tracks are separated by a thin horizontal line, with higher-
numbered tracks appearing above lower-numbered tracks. A green bar running
underneath the elements on a track indicates where the track is enabled and
shows the position of fade-in and fade-out transitions. When a track is enabled,
the video material on it overrules that on any track below it.

95

revwalk2 catwalk

blackSsec introlong
introlong allbad2l

orbital

Enable

od garden snick

revwalk?z aliv stairwell vertigo wending

intro alotp

intro allbad2s alotprob2

shaft

Enable

vismod garde gents sni

vending

intro alotprobl
intro allbad2m alotprobl food

barretto

. Enable

To facilitate comparisons between different generated versions of the program,
this interface has three sections, each of which can display an entire edit decision
log. To view an edit decision list (EDL), the author selects one of the three sec-
tions, enters values for the response variables, and finally clicks the Edit button
to generate the program and display it in the viewer. The author may scroll
horizontally and increase or decrease the time scale of the viewer in order to
zoom in on particular segments or gain a more global view of the program.

The EDL viewer runs in cooperation with another important Viper component,
the movie player. This movie player, the same as will be used later to deliver the
final presentation, is capable of rendering the movie full screen at full frame rate
on a moderate Unix workstation, assembling each audio and video frame from
its constituent media clips and objects in real time. It also supports writing the
movie to a disk file.

Clicking the P1lay button in the control panel will present the current version of
the movie in the player. A white vertical bar travels slowly across the edit deci-
sion viewer indicating the current play point. The user can click on the EDL
viewer to pause and jump to different point, and then click P1ay again to start
playback from that point. Dragging on the viewer allows the user to “scrub”
across the movie, to inspect a transition more closely for example.

96

Below are a few very simplified examples of the editing primitives in action, each
accompanied by an example of what might be rendered by the edit decision list
viewer in each case. A longer and more complex example will be presented later
in this chapter, in the context of a full production created with Viper.

The following creates a movie that consists of the four selected Jane clips from
above in simple sequence:

(set janeMovies (map video-only (map prepare-clip janeClips)))
(set final-movie (sequence-movies 0.0 janeMovies))

This example demonstrates how to make those clips dissolve into and out of each
other instead of simply cut from one to the next. The length of these dissolves is
controlled by a response variable named rv-abruptness that, for the purposes
of this example, holds an integer from 0 to 10.

set dislen (* 0.1 (- 10 rv-abruptness)))

set janeMovies (map video-only (map prepare-clip janeClips)))

set janeMovies (map (proc (movie) (ramp-in-out dislen movie)) janeMovies))
set final-movie (sequence-movies (* -1.0 dislen) janeMovies))

97

The following adds an audio track to the movie based on a response variable rv-
genre that perhaps indicates the viewer’s favorite kind of music, assuming the
possible values of the variable will correspond to the keyword annotations made
in the “music” clips:

set musicClips (select-tags-all "music" rv-genre clip-database))
set musicClip (select-head musicClips))

set runtime (movie-duration final-movie))

set musicMovie (audio-only (prepare-clip-time musicClip runtime)))
set musicMovie (ramp-in-out 0.3 musicMovie))

set final-movie (combine-movies musicMovie final-movie))

JaneHome

The following performs an insert edit in which an “interview” clip will fade in
and play starting at halfway through the second Jane clip:

(set insertClip (select-head (select-name "interview" clip-database)))
(set insertMovie (fade-out 0.5 (fade-in 0.5 (prepare-clip insertClip))))
(set startPoint (+ (clip-duration (janeClips 0))

(* 0.5 (clip-duration (janeClips 1)))))
(set insertMovie (change-track 2 (shift-start startPoint insertMovie)))
(set final-movie (combine-movies insertMovie final-movie))

JaneHome

Presenting the result

Once the author has completed building the editing guidelines and manually
tested the responsiveness of the program to his satisfaction, he is ready to con-
nect the system to the actual sensors or sources that will be used to gather the
response data. The author may choose to write a completely external computer
program that collects the desired response data and executes the Viper playback
program on that data. Alternatively, he may build the data collection component
with the utilities available in Isis and invoke the Viper program generator and
playback routines directly.

The author must also decide how real-time changes to the response variables will
be handled by the system, if such changes are possible. In every case, a change

98

to the state of the variables will cause the movie to be re-edited, but the author
may choose one of several options for how the currently playing movie will tran-
sition into the new version, some of which involve named “checkpoints” that the
author may add into the edit decision list to indicate appropriate transition
points:

* Interrupt the current movie immediately

* Interrupt the current movie at a checkpoint

+ Wait until the end of the current movie

* Enter the new movie at its beginning

* Enter the new movie at a checkpoint

* Enter the new movie at a particular time offset
Viper does not assume a particular kind of distribution channel. It targets sce-
narios in which the receiver is responsible for performing the final assembly of a

program, but it will also support assembling personalized programs at a remote
server and streaming them to the receiver in a traditional linear fashion.

Experience

Perhaps the best way to understand and evaluate Viper is to see how it was used
to create a real production. To date, two major productions have been com-
pleted, a third is nearing completion, and two more are in the planning stage.
For the purposes of illustration, this section describes two of these projects in
brief and then expounds upon a third in great detail.

99

Steer Roast documentary

The first production, created with an early version of Viper, is a responsive
documentary about the 2000 Steer Roast festival at Senior House at MIT, which
features mud wrestling, live bands, and copious amounts of burning meat. The
presentation device consists of “sex” and “violence” knobs that the viewer can
turn to explore alternative ways of portraying and understanding the meaning of
the event. There is also a “police activity” knob that allows the viewer to in-
crease or decrease the perceived police presence at the event, and a “length”
knob that controls duration of the program. The straightforward editing model
developed for the production chooses clips for inclusion in the program based on
sex, violence, and police presence ratings made on each in the annotation stage,
as well as an importance rating that helps the system to omit passages that are
less critical to show in shorter versions of the documentary.

100

Personalized research open-house

The most recent application created with Viper, still in development at the time
of this writing, is an interactive kiosk that presents a personalized research “open
house” for visitors to the Garden of the Media Lab. The viewer uses a touch-
screen to select theme areas that he is interested in hearing about and an ap-
proximate duration for the program. The media database consists of imagery of
various projects in the Garden over the past several years, as well as description
segments with narration that are used partly as voiceovers. The editing model
creates a survey of the research in the Garden that includes projects that are
likely to appeal to the viewer based on his selections. More time is spent on pro-
jects that are a close match to the viewer’s choices, and less time on projects that
are only partially related. The editing guidelines emphasize the construction of
an engaging program with a coherent thread that includes any introductory ma-
terial about the Garden or specific groups that might be relevant to the projects
that will be presented.

Other projects

There are a few other projects envisioned for Viper at this point, including a
cooking show that tailors its pace and level of detail in teaching the viewer how
to make a homemade pizza, and a responsive video art installation in which real-
time spectator movements affect the activities of a video character. In addition,
one other major production has already been completed. This production, a re-
sponsive campaign advertisement that adapts to the preferences and concerns of
the viewer to present the candidate in the most appealing manner, is discussed in
detail below.

A responsive campaign advertisement

Among the most prominent media phenomena of the year 2000 were the cam-
paigns of Al Gore and George W. Bush for the U.S. presidency, and television
advertising was a central method these and other candidates used to reach out
and deliver their messages to voters. Every week would bring a new wave of
advertisements, some critical of the opponent, some bragging about political

101

achievements, some introducing the family of the candidate, and so on. For the
most part, these advertisements were hit-and-miss with the public, as each indi-
vidual voter has different concerns about the country and about the two candi-
dates, as well as different personal preferences and tastes that would render
some of the messages more or less memorable and appealing. The one-size-fits-
all advertisements simply could not cater to every expectation.

This raised the notion of creating a responsive political campaign advertise-
ment—one that can adapt to the viewer’s personal profile and concerns in order
to “sell” the candidate in the most appealing and effective way for each individ-
ual. In the case of this production, the mock candidate is not running for the U.S.
presidency, but rather for a position on the student committee at the Media Lab.
The goal of the advertisement is to tailor the message of the candidate, played by
Aisling Kelliher, based on the following response factors:

* The job position of the viewer:
student, faculty, administration, sponsor

* The floor of the building the viewer normally inhabits:
1st, 2nd, 3rd, 4th

¢ The general mindset of the viewer:
negative, positive

A list of concerns the viewer has about the Media Lab, one or more of:
equipment, cleanliness, safety, space, food,
facilities, classes, stress, distractions

* The genre of music the viewer finds most uplifting:
jazz, classical, latin, funk, techno

¢ The viewer’s attention span:
short, medium, long

If the identity of the viewer is known, many of these variables might be gathered
automatically, by consulting online databases for personal information and per-
haps inferring his main concerns about the lab by checking if he is a member of
certain mailing lists. In the current setup, the viewer simply fills out a brief
checkbox form before watching the program.

The general structure of the ad that was envisioned and later modeled in Viper
with respect to these response factors is as follows:

Introduction
Background music begins, the genre of which is controlled by the viewer’s
music preference. Fade in to an uplifting introductory image of the candi-

date, which is the same for any version of the program.

The candidate introduces herself, as if being interviewed. The length of her
introduction is varied based on the viewer’s attention span.

102

Build relationship with viewer

In a video insert, we see a series of clips of the candidate walking around in
different parts of the lab, concentrating on areas that are on the same home
floor as the viewer. Presented slightly in slow-motion, the pacing of these
clips is increased or decreased based on the viewer’s attention span, and
only as many clips are included to cover the duration of the candidate’s re-
marks.

During this insert, the candidate makes a statement about the general con-
dition of the lab, tailored to appeal to the viewer’s mindset.

Address specific issues

We see the candidate in the interview again, stating that there are a lot of
problems at the lab that need to be addressed, and a second insert begins
with a series of descriptive clips that illustrate different problems. The clips
for this segment are chosen to appeal to the concerns the viewer has about
the lab, and pacing is again varied to cater to the viewer’s attention span.

If the viewer has a medium or long attention span, we hear a voiceover of
the candidate making a longer statement about one of the items on the
viewer’s list of concerns.

Build confidence in abilities

The candidate, in the interview again, states why she thinks she is the best
person for the job, length controlled by attention span again.

In a third video insert, we see a series of slightly slow-motion clips of the
candidate talking to and shaking hands with people in the lab who are on
the same floor and who have the same job position as the viewer. Pacing is
again metered by attention span.

Closing

The candidate makes a brief final statement that caters to the viewer’s
mindset.

Fade slowly into a final uplifting image of the candidate emerging from the
Media Lab looking confident and popular, the same image for every ver-
sion of the advertisement. Fade to black.

Shooting for the advertisement was surprisingly straightforward. A single after-
noon was needed to go from floor to floor and capture imagery of Aisling walk-
ing around and inspecting different parts of the building, shaking hands with as
many people as possible in each area, and pointing out problem areas in a few
entertaining vignettes. On a second day, a mock interview was set up in which
Aisling made all of the statements that are used in different parts and in different
versions of the program.

The annotations made on each clip make it easy to select out the most appropri-
ate clips to include in each section of the advertisement. Each imagery clip is
classified with keywords to identify the floor of the building it was shot on, the
kind of people in the shot (students, professors, ...), the concern illustrated in the
clip (equipment, food, ...), and the general function of the clip (a walking shot, a
handshake shot, a lab concern shot, ...). Each clip includes a critical section that is

103

approximately half of its full length in order to enable the editing model to
shorten it as necessary in adjusting the pacing of the program. The interview
clips are annotated based on the part of the advertisement for which they are
intended and on the mindset and attention span to which they cater. Various
selections of background music are included in the database as well and classi-
fied by genre.
The resulting advertisements generated by Viper are surprisingly effective and
entertaining. Below are a three storyboards that attempt to illustrate, in the ab-
sence of video, the progression of the program for three different viewer profiles:
Viewer profile 1

* astudent

* from the st floor

* with a negative mindset

» concerned about food and safety

* likes Latin music

* has a medium attention span

Fade in to opening shot of Aisling walking outside, looking confident and vi-
sionary. An energetic upbeat Latin tune plays softly in the background. Voice-
over begins, followed by the visual of Aisling in her office: “I'm Aisling Kelliher
and I've just finished my first year here in the Media Lab in the Interactive Cinema
group as a graduate student.”

As her introduction finishes, dissolve into shots of Aisling walking around dif-
ferent parts of the lab, all on the first floor (6 shots, 31 seconds total). Voiceover,
catering to the viewer’s negative mindset: “Things at the lab couldn’t be worse, to be
honest, I mean, morale is low, faculty aren’t talking to each other, students aren’t talking
to faculty or getting to know each other at all. I think the projects that are coming out of
the lab reflect this, the fact that there’s probably work that’s been redone... only because
students haven't heard about it or they aren’t talking to each other.”

104

Return to office shot. “There are currently alot of problems at the lab that really need
attention.” Dissolve into a series of shots illustrating problems with food and
stress in the lab (7 shots, 30 seconds total). Voiceover: “I think the variety of food
that students in the lab are subjected to is rather intense. I can’t believe they expect us to
survive on a diet of sea urchins and buffalo and venison —1 mean, it’s been so long since
we’ve had good honest-to-god plain food in this lab. It’s been a long time since I've had
some nice lamb stew, and I do be fond of my bit of lamb stew.”

Office interview audio begins again, followed by visual. “I feel very strongly about
this issue and I think it’s going to be a major part of me being on the student committee.”
Dissolve into several shots of Aisling shaking hands with students from the first
floor (4 shots, 16 seconds total). Voiceover: “Primarily I think I'm quite an ap-
proachable person, so if somebody has a problem they shouldn’t find it a big hassle to
have to come to me and discuss it with me.”

105

Interview AB roll again, in which Aisling makes a closing statement calling for
change. Voiceover continues over final shot of Aisling emerging from the the
lab, waiving and looking determined. “My whole campaign is about change. I think
things need to be shaken up, we need to see alot of changes, alot of differences coming out
here in the lab and I'm really going to be the person that’s going to help implement these
and change things for the future of the lab.”

Aisling Kelliher

for

MIT Media Lab
Student Committee

Dissolve to title. Fade to black. Total duration: 101 seconds

Viewer profile 2

* afaculty member

e from the 3rd floor

* also with a negative mindset

» concerned about equipment and facilities

* likes classical music

* also has a medium attention span
The structure of the program in this case is generally the same as in the first ex-
ample except that it includes imagery and voiceovers more appropriate for the
new viewer.
Fade in to opening shot of Aisling walking outside, looking confident and vi-
sionary. An energetic yet soothing Bach piano concerto plays softly in the back-
ground. Voiceover begins, followed by the visual of Aisling in her office: “I'm

Aisling Kelliher and I've just finished my first year here in the Media Lab in the Interac-
tive Cinema group as a graduate student.”

106

As the introduction finishes, dissolve into shots of Aisling walking around dif-
ferent parts of the lab, all on the third floor this time (7 shots, 31 seconds total).
Voiceover, same as before: “Things at the lab couldn’t be worse, to be honest, I mean,
morale is low, faculty aren’t talking to each other, students aren’t talking to faculty or
getting to know each other at all. I think the projects that are coming out of the lab re-
flect this, the fact that there’s probably work that’s been redone... only because students
haven’t heard about it or they aren’t talking to each other.”

Return to office shot. “There are currently alot of problems at the lab that really need
attention.” Dissolve into a series of shots illustrating problems with equipment
and facilities in the lab (7 shots, 32 seconds total). New voiceover: “I think
equipment is a problem in the lab, particularly with small pieces of equipment that need
to be regularly reordered and kept in stock. You often get the case where you go to a bin
and whatever it is you're looking for is not there. You might go to a LEGO bin, and the
right arm of the little lady who sells the tickets or whatever piece ... is missing, and that
can completely destroy the whole feeling and aesthetic of the project that you're working
on.”

107

Office interview audio begins again, followed by visual. “I feel very strongly about
this issue and I think it’s going to be a major part of me being on the student committee.”
Dissolve into several shots of Aisling shaking hands with professors, as many
from the 3rd floor as possible (4 shots, 15 seconds total). Same voiceover as be-
fore: “Primarily I think I'm quite an approachable person so if somebody has a problem
they shouldn’t find it a big hassle to have to come to me and discuss it with me.”

Interview AB roll again, and Aisling makes the same closing statement calling for
change. Voiceover continues over final shot of Aisling emerging from the lab
waiving again. “My whole campaign is about change. 1 think things need to be shaken
up, we need to see alot of changes, alot of differences coming out here in the lab and I'm
really going to be the person that’s going to help implement these and change things for
the future of the lab.”

108

Aisling Kelliher

for

MIT Media Lab
Student Committee

Dissolve to title. Fade to black. Total duration: 104 seconds

Viewer profile 3

* afaculty member

e from the 3rd floor

* with a negative mindset

» concerned about equipment and facilities

* likes classical music

 with a ** SHORT ** attention span
The following advertisement is for a professor with the same profile as in the
second example, but who has a short attention span. The selection of imagery is
approximately the same, but fewer shots will be shown and their pacing much
more swift. Fades and dissolves are shorter, and voiceovers will be shorter as
well. The middle section where Aisling speaks about the viewer’s concerns in
detail is omitted altogether.
Fade in to same opening shot, with same classical background music. Same in-

troductory sequence: “I'm Aisling Kelliher and I've just finished my first year here in
the Media Lab in the Interactive Cinema group as a graduate student.”

As the introduction finishes, dissolve into a faster-paced montage of shots of
Aisling walking around the third floor (5 shots, 15 seconds total). The voiceover
is shorter: “Things at the lab couldn’t be worse, to be honest, I mean, morale is low,
faculty aren’t talking to each other, students aren’t talking to faculty or getting to know
each other at all. ”

109

Return to office shot. Slightly longer statement about problems “It’s unfortunate
that there are alot of things at the lab that need attention, and I really want to be able to
fix these problems.” A moment after this statement begins, we see a quick three
shots illustrating equipment problems at the lab (about 9 seconds). There is no
detailed statement about these problems.

Dissolve directly into a series of shots of Aisling shaking hands with professors
again, this time paced more quickly (3 shots, 8 seconds total). Shorter voiceover:
“I think people find it easy to talk to me, if there’s a problem I'm quite approachable.”

Same final sequence where Aisling calls for change. Final shot of Aisling
emerging from the lab is shorter. “My whole campaign is about change. I think
things need to be shaken up, we need to see alot of changes, alot of differences coming out
here in the lab and I'm really going to be the person that’s going to help implement these
and change things for the future of the lab.”

110

Aisling Kelliher

for

MIT Media Lab
Student Committee

Dissolve to title. Fade to black. Total duration: 50 seconds

A version of the advertisement for a viewer with a long attention span will have
the same general structure as that for a medium attention span but with ex-
tended voiceovers and a more relaxed pacing throughout. The database includes
enough material to adequately cover all of the other viewer profile settings as
well. The system can also generate several slightly different versions of the ad-
vertisement for the same viewer profile, ensuring that a single viewer will rarely
see exactly the same thing twice.

Edit decision lists

For the purposes of comparison, the following diagram shows the three edit de-
cision lists Viper generated for the three profiles described above. Following this
image is a discussion of how the editing model is encoded for this production,
and a discussion of the weakness of this production and how it could be im-
proved with additional annotations and a more complex editing model.

111

asueya

azueya

UT3STAY

Tenk RT3uocd3s

Tenk ATEucu3s

opReTd

a3ueyo

a3ueyo

gqoJddjoTe

ZgoddjoTe T OasgyoeTq

TpUaA aT 087134 SATTE 2 TEM

ayTw JaTdod : 3 R3S

:€ 9|yoid

043uT

oAiTe

-¢ 9|yoid

033344eq

wzpeqTTe 043uT

UuT3Woa

ATddns

-1 9|yoad

112

Editing guidelines

To illustrate the flexibility and extensibility of the Viper primitives, this section
“lifts the hood” and presents the editing guidelines developed for the campaign
advertisement production. These guidelines embody the editing model that
maps the values of the 6 viewer profile variables to complete final edit decision
lists like those shown graphically in the previous image.

It is important to realize that the complexity of a video program generated by
Viper is only as rich as both the editing model and the system of annotations cre-
ated for it by the producer. If one or both of these components is lacking in some
respect, a program may not “hang together” as tightly as one would want. There
are many such weaknesses in this particular example production that will be dis-
cussed later along with ways to alleviate some of the problems by adding addi-
tional material into the editing model.

This first section of the model creates some Isis variables that refer directly to the
values of the 6 profile variables. The possible values of these variables were care-
fully chosen to correspond to many of the keyword annotations attached to clips
in the media database. The rv-length variable represents the viewer’s atten-
tion span, and consequently the desired length of the advertisement.

set rv-position (current-state "position™))

set rv-location (current-state "location™))

set rv-mindset (current-state "mindset"))

set rv-concerns (current-state "concerns"))

set rv-music (current-state "music"))
set rv-length (current-state "length"))

Two variables based on the viewer’s attention span are created that will later
help adjust the pacing of the program. One variable will control how closely
clips are trimmed to their critical sections before they are assembled together,
and the other will control the approximate speaking pause inserted between
separate interview and voiceover segments. A third variable selects one item
from the viewer’s list of concerns to be the “main” concern that the middle part
of the advertisement will emphasize.

(set trimval
(switch rv-length

("short™ 1.0)
("medium" 0.5)
("long™ 0.0)))

(set pausetime
(switch rv-length

("short™ 1.5)
("medium" 2.333)
("long™ 3.0)))

(set main-concern (rv-concerns 0))

113

The media database consists of a variety of interview clips, groups of which can
serve as “introductions” or “wrap-ups” and so on, and each group consists of
versions that are appropriate for different mindsets and attention spans. The
following lines make the selection of the interview and voiceover clips that will
be included in the final program.

(set interview-clips (select-tag "interview" clip-database))

(set intro-clip

(select-head (select-tags-all "intro" rv-length interview-clips)))
(set mindset-clip

(select-head (select-tags-all "howarethings" rv-mindset rv-length interview-clips)))
(set alotofprobs-clip

(select-head (select-tags-all "alotofproblems" rv-length interview-clips)))
(set solveproblem-clip

(select-head (select-tags-all "solveproblem" rv-length interview-clips)))
(set qualities-clip

(select-head (select-tags-all "qualities" rv-length interview-clips)))
(set wrapup-clip

(select-head (select-tags-all "wrapup" rv-mindset interview-clips)))

(set probvoiceover-clips (select-tag "probvoiceover" interview-clips))

(score-tags "probappeal" [main-concern main-concern rv-position] probvoiceover-clips)
(set probvoiceover-clips (sort-tag-decreasing "probappeal" probvoiceover-clips))

(set probvoiceover-clip (select-head probvoiceover-clips))

The following few lines select a few miscellaneous clips that will be included in
all versions of the movie, such as the opening and closing shots. It also selects
the background music to be included, based on the viewer’s music taste.

(set music-clip (select-head (select-tags-all "music" rv-music clip-database)))
(set revwalk-clip (select-head (select-name "revwalk2" clip-database)))

(set atrium-clip (select-head (select-name "atrium" clip-database)))

(set elevlaugh-clip (select-head (select-name "elevlaugh" clip-database)))

(set bigdoor-clip (select-head (select-name "bigdoor" clip-database)))

(set music-level (/ (real (music-clip "audiolevel™)) 10.0))

The following section transforms the selected interview and voiceover clips into
self-contained movies with the proper transitions, if applicable. These movies
will be combined together later.

(set intro-movie (prepare-clip intro-clip))

(set mindset-movie (audio-only (prepare-clip mindset-clip)))

(set alotofprobs-movie (prepare-clip alotofprobs-clip))

(set probvoiceover-movie (audio-only (prepare-clip probvoiceover-clip)))
(set solveproblem-movie (prepare-clip solveproblem-clip))

(set qualities-movie (prepare-clip qualities-clip))

(set wrapup-movie (prepare-clip wrapup-clip))

(set mindset-movie (set-level 1.2 mindset-movie))
(set probvoiceover-movie (set-level 1.2 probvoiceover-movie))

(set atrium-movie (prepare-clip-trim atrium-clip trimval)
(set elevlaugh-movie (prepare-clip-trim elevlaugh-clip trimval)

(set revwalk-movie (prepare-clip-trim revwalk-clip trimval)
(set revwalk-movie (fade-in 1.0 revwalk-movie))

(set revwalk-movie (fade-out 0.4 revwalk-movie))

(set revwalk-movie (change-track 2 revwalk-movie))

(set bigdoor-movie (prepare-clip-trim bigdoor-clip trimval)
(set bigdoor-movie (fade-in 0.4 bigdoor-movie))

(set bigdoor-movie (ramp-out pausetime bigdoor-movie))

(set bigdoor-movie (change-track 2 bigdoor-movie))

(set title-movie (prepare-graphic "title"™ "title™ [0 0] (+ 0.5 (* 2.0 pausetime))))
(set title-movie (ramp-in pausetime title-movie))
(set title-movie (fade-out 1.0 title-movie))

(set title-movie (change-track 2 title-movie))

(set black5-movie (prepare-graphic "black5sec" "black™ [0 0] 5.0))

114

This section calculates the desired duration of the three montage sequences ap-
pearing in the middle of the advertisement, based on the lengths of the interview
and voiceover movies created above. Differing amounts of extra time, expressed
by the pausetime variable created above, is added into these calculations to
later adjust the pacing between segments.

(if (= rv-length "short"
(begin

(set walkabout-destime

(+ (* 0.5 (movie-duration intro-movie)) pausetime
(movie-duration mindset-movie) (* pausetime 1.333)))

(set problem-destime
(+ (* 0.6 (movie-duration alotofprobs-movie)) pausetime 2.0))

(set handshake-destime
(+ =2.0 (* 0.666 pausetime) (movie-duration qualities-movie) pausetime 4.0)))

(set walkabout-destime
(+ (* 0.5 (movie-duration intro-movie)) pausetime
(movie-duration mindset-movie) (* pausetime 1.333)))
(set problem-destime
(+ (* 0.25 (movie-duration alotofprobs-movie)) pausetime
(movie-duration probvoiceover-movie) pausetime pausetime))
(set handshake-destime
(- (+ pausetime (movie-duration qualities-movie) pausetime 4.0)
(movie-duration atrium-movie)
(if (= rv-length "long") (movie-duration elevlaugh-movie) 0.0)))))

This next section selects the clips to be included in the three montage sequences:
the series of clips where Aisling is walking around, the series of clips where she
is pointing out problems, and the series where she shakes hands with various
people. In each series, clips are favored that correspond with the viewer’s pro-
file—if the viewer is a professor, clips of handshakes with faculty members are
favored, and if the viewer has chosen classes and distractions as his concerns,
then clips illustrating those concerns are favored, with extra emphasis given to
the “main concern” as determined above. Just enough clips are chosen to fill the
desired durations calculated in the previous section.

(set walkabout-clips (sort-random (select-tags-all "walkabout" clip-database)))

(set problem-clips (sort-random (select-tags-all "problem" clip-database)))
(set handshake-clips (sort-random (select-tags-all "handshake" clip-database)))

(score-tags "walkappeal" [rv-location] walkabout-clips)

(score-tags "probappeal" (append [main-concern] rv-concerns) problem-clips)

(if (= rv-position "student"
(score-tags "shakeappeal” [rv-position rv-location rv-location] handshake-clips)
(score-tags "shakeappeal” [rv-position rv-position rv-location] handshake-clips))

(set walkabout-clips (sort-tag-decreasing "walkappeal” walkabout-clips))
(set problem-clips (sort-tag-decreasing "probappeal" problem-clips))
(set handshake-clips (sort-tag-decreasing "shakeappeal" handshake-clips))

(score-length "clipdur" trimval walkabout-clips)
(score-length "clipdur" trimval problem-clips)
(score-length "clipdur" trimval handshake-clips)

(set walkabout-clips

(select-first-tagsum "clipdur" 0.0 walkabout-destime walkabout-clips))
(set problem-clips

(select-first-tagsum "clipdur" 0.0 problem-destime problem-clips))
(set handshake-clips

(select-first-tagsum "clipdur" 0.0 handshake-destime handshake-clips))

115

This section transforms the three groups of selected clips into self-contained
movies. The clips are trimmed by the amount determined previously for the
trimval variable to increase or decrease pacing based on the viewer’s attention
span. Fades are inserted, and these movies are placed on a second track so they
act as “inserts” that will periodically overrule the interview video on the first
track.

(set walkabout-movies (map (proc (clip) (prepare-clip-trim clip trimval)
walkabout-clips))

(set walkabout-movies (map (proc (movie) (ramp-in-out 0.4 movie)) walkabout-movies))

(set walkabout-movie (sequence-movies -0.4 walkabout-movies))

(set walkabout-duration (movie-duration walkabout-movie))

(set walkabout-movie (fade-in 0.4 walkabout-movie))

(set walkabout-movie (fade-out 0.4 walkabout-movie))

(set walkabout-movie (change-track 2 walkabout-movie))

(set problem-movies (map (proc (clip) (prepare-clip-trim clip trimval)
problem-clips))

(set problem-movies (map (proc (movie) (ramp-in-out 0.4 movie)) problem-movies))

(set problem-movie (sequence-movies -0.4 problem-movies))

(set problem-duration (movie-duration problem-movie))

(set problem-movie (fade-in 0.4 problem-movie))

(if (!= rv-length "short"™) (set problem-movie (fade-out 0.4 problem-movie)))

(set problem-movie (change-track 2 problem-movie))

(set handshake-movies
(append (switch rv-length

("short™ [1])
("medium" [atrium-movie])
("long" [atrium-movie elevlaugh-movie]))

(map (proc (clip) (prepare-clip-trim clip trimval)) handshake-clips)))
(set handshake-movies (map (proc (movie) (ramp-in-out 0.4 movie)) handshake-movies))
(set handshake-movie (sequence-movies -0.4 handshake-movies))
(set handshake-duration (movie-duration handshake-movie))
(if (!= rv-length "short"™) (set handshake-movie (fade-in 0.4 handshake-movie)))
(set handshake-movie (fade-out 0.4 handshake-movie))
(set handshake-movie (change-track 2 handshake-movie))

116

Below, the individual self-contained movies created in the previous sections are
assembled piece by piece into a complete program. Each movie is shifted in time
to a particular point relative to the movies that come before it in the sequence.
The music is layered into the mix as well, at a lower volume. At the end, a single
call to combine-movies assembles the final movie that is returned from the
program. Five seconds of black is inserted at the beginning and end of the movie
as a buffer.

The way the movie is assembled is slightly different for different attention spans.
The following section shows the assembly for the short attention span, in which
the long description of concerns in the lab is omitted and the problem description
and handshake clips are combined into a single video insert.

(set intro-length (movie-duration intro-movie))
(set alotofprobs-length (movie-duration alotofprobs-movie))

(if (= rv-length "short")
(begin
(set intro-start (- (movie-duration revwalk-movie)

(* 0.2 (movie-duration intro-movie))))
(set intro-movie (shift-start intro-start intro-movie))

(set walkabout-start (+ intro-start (* 0.5 intro-length)))
(set walkabout-movie (shift-start walkabout-start walkabout-movie))

(set mindset-start (+ (movie-duration intro-movie) pausetime))
(set mindset-movie (shift-start mindset-start mindset-movie))

(set alotofprobs-start (- (movie-duration walkabout-movie) 0.4))
(set alotofprobs-movie (shift-start alotofprobs-start alotofprobs-movie))

(set problem-start (+ alotofprobs-start (* 0.4 alotofprobs-length)))
(set problem-movie (shift-start problem-start problem-movie))

(set handshake-start (- (movie-duration problem-movie) 0.4))
(set handshake-movie (shift-start handshake-start handshake-movie))

(set qualities-start (+ handshake-start pausetime -2.0))
(set qualities-movie (shift-start qualities-start qualities-movie))

(set wrapup-start (- (movie-duration handshake-movie) 4.0))
(set wrapup-movie (shift-start wrapup-start wrapup-movie))

(set bigdoor-start (- (movie-duration wrapup-movie) 3.5))
(set bigdoor-movie (shift-start bigdoor-start bigdoor-movie))

(set title-start (- (movie-duration bigdoor-movie) pausetime))
(set title-movie (shift-start title-start title-movie))

set music-duration (movie-duration title-movie))

set music-movie (audio-only (prepare-clip-time music-clip music-duration)))
set music-movie (set-level (* 0.25 music-level) music-movie))

set music-movie (ramp-in 1.0 (ramp-out 2.0 music-movie)))

(set final-movie
(combine-movies revwalk-movie intro-movie walkabout-movie mindset-movie
alotofprobs-movie problem-movie
handshake-movie qualities-movie wrapup-movie bigdoor-movie
title-movie music-movie))

(set final-movie (sequence-movies 0.0 [black5-movie final-movie blackS5-movie])))

117

Below is the final assembly for the medium or long attention spans, which in-
cludes the long voiceover about concerns.
(begin # medium or long attention span
(set intro-start (- (movie-duration revwalk-movie)

(* 0.2 (movie-duration intro-movie))))
(set intro-movie (shift-start intro-start intro-movie))

(set walkabout-start (+ intro-start (* 0.5 intro-length)))
(set walkabout-movie (shift-start walkabout-start walkabout-movie))

(set mindset-start (+ (movie-duration intro-movie) pausetime))
(set mindset-movie (shift-start mindset-start mindset-movie))

(set alotofprobs-start (- (movie-duration walkabout-movie) 0.4))
(set alotofprobs-movie (shift-start alotofprobs-start alotofprobs-movie))

(set problem-start (+ alotofprobs-start (* 0.75 alotofprobs-length)))
(set problem-movie (shift-start problem-start problem-movie))

(set probvoiceover-start (+ (movie-duration alotofprobs-movie) pausetime))
(set probvoiceover-movie (shift-start probvoiceover-start probvoiceover-movie))

(set solveproblem-start (- (movie-duration problem-movie) pausetime))
(set solveproblem-movie (shift-start solveproblem-start solveproblem-movie))

(set handshake-start (- (movie-duration solveproblem-movie) 0.4))
(set handshake-movie (shift-start handshake-start handshake-movie))

(set qualities-start (+ handshake-start pausetime))
(set qualities-movie (shift-start qualities-start qualities-movie))

(set wrapup-start (- (movie-duration handshake-movie) 4.0))
(set wrapup-movie (shift-start wrapup-start wrapup-movie))

(set bigdoor-start (- (movie-duration wrapup-movie) 3.5))
(set bigdoor-movie (shift-start bigdoor-start bigdoor-movie))

(set title-start (- (movie-duration bigdoor-movie) pausetime))
(set title-movie (shift-start title-start title-movie))

set music-duration (movie-duration title-movie))

set music-movie (audio-only (prepare-clip-time music-clip music-duration)))
set music-movie (set-level (* 0.25 music-level) music-movie))

set music-movie (ramp-in 1.0 (ramp-out 2.0 music-movie)))

(set final-movie
(combine-movies revwalk-movie intro-movie walkabout-movie mindset-movie
alotofprobs-movie problem-movie
probvoiceover-movie solveproblem-movie
handshake-movie qualities-movie wrapup-movie bigdoor-movie
title-movie music-movie))

(set final-movie (sequence-movies 0.0 [black5-movie final-movie blackS5-movie])))

By the end of the script, the variable final-movie contains the complete edit
decision list for the given set of profile values. This description is passed directly
to the playback system which renders the audio and video for the viewer to
watch.

Possible improvements

As stated above, a program generated by Viper will only be as rich as the anno-
tation system and editing model created by its producer. This responsive cam-
paign advertisement production has many weaknesses that could have been
avoided with some additional work on these components.

For example, the clips selected for each of the three montage segments in the
middle of the movie are sequenced in random order, as this was seen as ade-
quate in the initial version to get the message across to the viewer. But this ap-
proach results in some occasionally awkward juxtapositions—for example when
there is camera motion in one direction in one clip and then in the other direction
in the following clip, when two extreme close-ups of Aisling are cut together, or
when, by chance, two otherwise unrelated shots that originated at the same loca-
tion in the building are placed in sequence with one another.

118

All of these difficulties could be averted by adding a few additional annotations
on the relevant clips and a few more lines in the editing model. For example,
clips could be tagged with information about the direction of camera motion at
the clip’s entry and exit points, perhaps represented by a few keywords like
“motion-left-entry,” “motion-right-exit,” or even a numerical rating expressing
speed of motion various directions. The editing model would use these annota-
tions and inspect the ordering of clips in these sequences to ensure that, for ex-
ample, clips ending with motion to the right are not followed by clips with mo-
tion to the left. In addition, clips could be tagged based on framing—wide, me-
dium, close, and so on—and the model adjusted to minimize placing clips with
similar characteristics in series with each other. Similar strategies could be used
to avoid other cinematic snafus like 180 degree cuts and other breaks in continu-
ity. Some of these techniques are important components in Sashay/Sleep Depraved
and the CINEMAT, as described in Chapter 3, and could have been modeled in
Viper.

Although the graphical interface does not include this functionality yet, Viper
also allows for annotations in a text file describing relationships between clips.
For example, if two of the problem imagery clips for the campaign advertisement
are related in some way—perhaps one must appear before the other—a relation-
ship annotation could be entered and the editing model adjusted to ensure that if
both clips are selected for inclusion that they appear in a particular order. If only
one of the clips is selected, the editing model could force the other to be included
as well, if desired.

Another complaint about the current advertisement as it stands is that in the
middle segment, where Aisling addresses a particular concern about the lab, the
sequence of imagery seen in the video insert does not really reflect the thread of
her statements. A much better albeit more complicated approach is possible here
as well. The clips illustrating problems in the lab could be annotated with more
information about their specific content—for example the clip where Aisling
finds an empty play-doh bin might include the keywords “playdoh” or “empty-
bin.” Then, if a transcript of Aisling’s interviews with detailed timing informa-
tion is entered into the editing model, the Viper primitives could support choos-
ing and ordering clips to correspond to the moment-to-moment content of her
statements.

Although the campaign advertisement did not require this technique, in assem-
bling a sequence of shots that represent a continuous stretch of time, cutting from
one shot to the next on a gesture or other gross event often produces the least
awkward result. For example, if a character in a movie is about to open a door
and walk into a room, an editor will typically cut from the exterior to the interior
shot just as the doorknob is turned. This strategy of cutting on gestures could be
automated in Viper. Currently, Viper’s graphical interface does not have a
friendly way of placing named gesture point annotations in the middle of a clip,
but such annotations could be included as gesture/timestamp pairs in a text file.
If the relevant gestures occur at the exact beginning or end of a clip then a key-
word annotation may be adequate as well. The author could then use these an-
notations in the editing model to trim and sequence clips so that these gesture
points coincide.

Evaluation

Even though it has been in existence for a shorter period of time, Viper has
proven successful in a number of important ways with respect to the three main
design guidelines presented at the beginning of this document. Viper’s main

119

technological strength is its inherent support for the kinds of multi-layered edits
and effects that traditional video producers rely on in making effective programs
with high production values. Because of its capability to assemble and render
movies from their constituent media objects at full frame rate, Viper opens the
door to the ability to instantaneously modify editing in the middle of playback in
response to real-time audience activity and other factors, not just on a segment to
segment basis like the other video tools described previously.

Viper’s visual interfaces for preparing databases of clips and viewing edit deci-
sion lists puts a familiar face on a very different kind of production process and
eases the burden on those who are skilled with traditional video editing tools in
shifting to the new kinds of tasks associated with a Viper production. The indi-
vidual components of these tools may operate synchronously on separate work-
stations connected by a network so that several collaborators can work on differ-
ent aspects of a project at the same time.

Viper’s main achievement is the formation of a common framework of primitives
for developing the annotation schemes and editing models that govern how re-
sponse variables map to complete video programs. These primitives are extensi-
ble and flexible enough to support any of the video systems described at the be-
ginning of this chapter as well as the various storytelling experiments described
in Chapter 3, yet specific enough to insulate the producer from unnecessary de-
tails of general-purpose programming. In an approach unlike Cabbage and
other case-based reasoners in which the rules governing a system’s operation are
often hidden and unchangeable by the user of the tool, Viper has an open system
in which a producer can share and build upon elements from prior projects and
incrementally construct a customized model that satisfies the needs of a particu-
lar production.

Because it is still young, one weakness of Viper is that there is not yet a large
body of prior work from which to draw higher-level components to use in the
editing models for future productions. As more work is done using Viper, pro-
ducers will be able to borrow more and more pieces from previous productions
to reduce the amount of work that needs to be done for a new project. Over time,
producers may build up large libraries of components that they commonly need
in their productions, and such libraries might even be packaged and marketed to
other users.

As discussed in previous sections, although keywords and numerical ratings can
go a long way, the capability to log other types of annotations should be added
to Viper’s graphical interface. However, opinions differ on the usefulness of cre-
ating a more graphical interface for developing Viper editing models. Having
these primitives based in textual Isis programs was helpful during the develop-
ment of Viper because it enabled more rapid experimentation and testing of dif-
ferent kinds of operations. The availability of the general-purpose Isis syntax for
use in making an editing model is also important in situations where highly
customized calculations or mappings are needed, as was the case in the respon-
sive campaign advertisement. However, a more graphical interface might better
reflect the kinds of manipulations being performed with the media objects in a
way that makes them easier to understand by a wider variety of users. These
issues suggest many clear avenues for further investigation, some more of which
will be highlighted in the next chapter.

120

Chapter 6
Conclusion

Contributions

The first goal of this body of research has been to develop a broader under-
standing of responsive media and the processes by which we conceive and build
such media. As outlined previously, this understanding boils down to three ba-
sic observations—that responsive media consist of multi-sensory interfaces and
materials, multi-person collaborations and experiences, and multi-layered
tasks and thinking processes. These realizations arise from an awareness of the
wide variety of forms and the vast range of possibilities that exist, in addition to
the experience of developing different kinds of responsive media applications, a
variety of which are described in detail in the latter part of Chapter 3.

These three guiding observations form an approach for constructing a new genre
of computer-based design tools that allow their users to more efficiently create
and more effectively communicate with responsive media. This approach stands
as the foundation of the three main material contributions of this research:

» Isis: a new programming language, specially tailored to serve as a basis for
responsive media

» Cabbage: an experiment in employing a purist form of case-based reasoning
in a tool for creating responsive graphical layouts

* Viper: a tool for creating video programs that can re-edit themselves to ad-
just to presentation conditions, audience activity, and other factors

The contributions within each of these three tools are perhaps best collectively
summarized within the context of the three design guidelines mentioned above.

Multi-sensory interfaces and materials

Responsive media often involve a wide variety of sensing and display interfaces
and a rich amalgamation of audio, video, graphics and other media types, possi-
bly spread over several computing nodes.

The design of the Isis programming language aims to support these complex and
demanding raw materials in a number of ways. Isis is a complete language, ena-
bling programmers to implement arbitrarily complex input-output mappings,
and provides a number of libraries for handling a variety of unusual input and
output devices. The “lean and mean” internal design of Isis includes a small
number of core constructs and primitive operations, internal structures based on
native machine types and arrays rather than strings or linked lists, and no extra
overhead for security layers or virtual machines. The syntax is designed to sup-
port the memory management system in a way that eliminates the need for gar-
bage collection of basic values. Together these internal optimizations result in a

121

small and fast interpreter compared to other non-compiled languages, and one
that doesn’t exhibit “hiccups” during execution that can threaten the flow of real-
time media experiences.

Building upon the foundation of interface functionality provided by Isis, Cab-
bage and Viper aim to support richer forms of spectator and audience sensing as
well. Cabbage incorporates case adaptation rules that generate intuitive results
yet involve a minimum of complex math, enabling smooth transitions in graphi-
cal layouts in response to real-time sensor feedback. Viper enables producers to
make video programs that can instantly and seamlessly “re-edit” themselves at
the same time they are being viewed, to adjust to real-time audience activity, en-
vironmental conditions, or other response factors. These programs can also take
into account equipment configurations as well as viewer preferences or profile
information. Extending upon the limited functionality of earlier automated ed-
iting tools, Viper’s primitives support multiple video and audio layers and intri-
cate types of edits and transitions, such as inserts, dissolves, graphics, and so on.
Together these innovations enable producers to create video programs that ex-
hibit rich forms of responsiveness while maintaining the high production values
that are essential in making compelling experiences.

Multi-person collaborations and experiences

Because responsive media projects often span multiple disciplines, they typically
involve many different kinds of people with many different kinds of expertise,
working collaboratively to realize a common goal.

Isis incorporates a fixed minimalist syntax, lessening the burden on program-
ming novices wishing to master the language and providing a common frame-
work for collaborators to more easily comprehend and build upon each other’s
contributions to a project. Yet while small and immutable, the syntax still pro-
vides all of the features expected of a good programming language that hackers
need in order to take full advantage of their skills. Experience indicates that
these design choices have resulted in a language that is indeed more accessible to
a wider variety of users. The total Isis environment also includes a set of com-
munity support tools centered around a web site that allows users to publish and
share customized packages of functionality while sustaining the “lean and
mean” minimalist attitude of the core design of the language. The design of Vi-
per goes one step further and incorporates interfaces that can operate synchro-
nously on separate networked workstations, allowing several collaborators to
work simultaneously on different aspects of a single project.

In addition, some of the best forms of responsive media are those that involve
multiple audience members or participants. Reflecting this observation, all three
of Isis, Cabbage, and Viper, as discussed above, strive for better support of non-
standard and unusual interface devices, opening the door to new forms of com-
puter-mediated responsive media that engage several viewers or spectators at
the same time.

Multi-layered tasks and thinking processes
Creators of responsive media have many different ways of thinking about and
approaching the tasks that face them, and this design process typically involves

the need to work incrementally and to innovate at many different levels.

As an interpreted language, Isis is more amenable to an incremental design proc-
ess in which changes and improvements can be integrated into a prototype more

122

readily, even during execution. Wherever possible, the libraries of functionality
offered by Isis follow a multi-level design strategy, consisting of multiple layers
offering different levels of abstraction of a particular set of operations, designed
to interoperate with each other in the most seamless way.

However, Isis still requires its users to think about input-output mappings in an
abstract rule-based fashion which may not match well with the more concrete
example-based thinking styles of many of its likely users. Further, its textual in-
terface in many ways does not reflect the types of media being manipulated and
the range of operations available. With this in mind, Cabbage is designed as an
experiment to explore the opposite end of the spectrum—to investigate the vi-
ability of applying case-based reasoning in a complex responsive media problem
domain. Cabbage aims to innovate in the user interface realm as well by incor-
porating tool components that emphasize visibility and accessibility to the high-
est degree possible. Cabbage allows designers to create responsive graphical
layouts by demonstrating examples of what the proper layout should be at dif-
ferent points in an N-dimensional “design space” whose axes represent the indi-
vidual response variables. The tool employs several new algorithms that “rea-
son” from these specific examples and generate new designs appropriate for
other situations.

Although successful in many ways, including that it does not require a designer
to write a single line of code to create fairly elaborate dynamic behaviors, the re-
sults of the Cabbage experiment indicate that case-based approach alone may not
be adequate to support a serious production tool for a non-trivial form of respon-
sive media. The heuristic and incomplete nature of the adaptation rules in case-
based reasoners does not appear to match well with designers who often ap-
proach computational devices in search of exactness. Further, the fact that these
rules are usually not intended to be visible to or changed by the designer poses
serious concerns about the extensibility of these systems beyond their specific
problem realms.

Informed by these lessons, Viper presents an approach more like Isis in its pro-
gramming strategy, but that borrows from Cabbage in the look and feel of its
user interfaces, many of which are designed in a fashion to be familiar to users of
traditional video editing tools and to support an incremental production process
in which a producer can shift easily between the various tasks and view results
immediately as changes are made.

Just as Isis aims to serve as a flexible basis for responsive media as a whole, Viper
addresses the need for a common framework for creating responsive video ap-
plications. In contrast to the other tools and prototypes discussed in earlier
chapters, the primitives offered by Viper enable producers to create a customized
annotation system and editing model specific to the needs of a particular project.
These primitives are carefully designed to shield the producer from excessive
details of general-purpose programming while still providing a high degree of
extensibility and flexibility in the range of applications supported by the tool.
This common framework introduces new opportunities for producers to more
readily share and build upon components from each other’s projects.

Other contributions

Along with these three main contributions, this research also presents several
prototypes and applications created with these three tools that, on one level,
demonstrate each tool’s viability as a platform for thinking differently and more
clearly about responsive media design projects. On another level, these proto-
types, ranging from hyperlinked video soap operas to interactive art installations

123

to responsive political campaign advertisements, illustrate the enormous poten-
tial computer-mediated responsive media have in commerce, education, com-
munication, expression, and other domains. This realization only intensifies the
importance of understanding these media and building more appropriate design
tools, to enable designers and producers to make the wisest and most effective
use of these media for whatever purposes they are needed.

The journey continues

As much as one would desire to bring a thread of research completely to a close,
the first realization that arises from looking back at the body of work presented
in this document is that it is not so much a “body,” in the sense of being a closed
entity, as it is only a small peninsula connected to a vast continent that has yet to
be explored and is probably worth exploring. Chapters 3 through 5 present
evaluations of the three tools created in this research and allude to some possible
directions for further investigation, but a few more such “jumping off” points are
described here.

The majority of programming languages in use today consist of simple textual
user interfaces, in part because computers are very good at processing sequential
lines of ASCII characters and because many of these languages trace their begin-
nings to a time when anything more than a text interface was the exception and
not the rule. With advances in graphical interfaces, new languages, like MAX
and Prograph, have tested more visual approaches utilizing flowcharts and other
metaphors, which exhibit many problems of their own, as discussed in Chapter
2. In the end, it is not necessarily the abundant presence of text that is the crutch
in programming as much as it is the way we create and organize that text, often
in editors that have their roots in generic word processing and are not inherently
tailored for the differently-structured tasks of designing algorithms and encod-
ing their implementations. Parentheses, semicolons, ampersands, backslashes,
and a variety of other symbols borrowed from human languages are unwieldy
and unsightly as syntactical constructs and grouping mechanisms in computer
programming languages. All of these issues call for a complete rethinking of the
design of computer program editors to meld more closely with the characteristics
of the languages and tasks at hand, perhaps by incorporating more than mere
ASCII symbols, by including other graphical mechanisms to assist in the organi-
zation of ideas in a program, and by much more closely integrating the interpre-
tation, debugging, and documentation systems of a language directly into the
program creation process. A new system could also more closely incorporate
many of the community support components provided by the Isis web site,
making it easier for programmers to search, share, publish, and ultimately build
upon each other’s work.

First time users of Cabbage enjoy the simplicity of being able to create an intri-
cate dynamic layout by example, without having to encode any rules in a pro-
gramming language. But after this initial honeymoon period is over, the frustra-
tion level increases as a desire to increase the complexity of a design sets in.
Through the process of working directly with the media objects and constructing
scores of examples, users become more conscious of the behaviors they wish to
encode in a design at a more abstract level and begin to rub up against the limi-
tations of many case-based reasoning systems in handling subtle relationships,
personal styles, and large numbers of variables. It is at this point in the design
process that a more rule-based approach begins to make more sense. This obser-
vation suggests the formulation of a new tool that could enable a case-based
process of discovery and exploration during the initial stages of a project’s de-
velopment, and that can then translate or transfer knowledge and relationships

124

gleaned from this exploration into a more rule-based interface for more precise
refinement leading up to completion. In many ways this transition from the
concrete to the abstract is what many designers experience in working on pro-
jects in many traditional domains, and this kind of tool would assist designers in
forming that abstract understanding and representing it programmatically more
efficiently. Such a tool could also morph into a form useful in education, per-
haps in mathematics or computer science, where learning to think about prob-
lems in terms of abstract components and manipulations is a critical pedagogical
goal.

Viper gives producers the ability to create a customized system of annotations,
within which source video and audio material is organized in a database, as well
as a customized model of editing to control how that material will be assembled
in different situations. But some interesting opportunities result when one or
more of these system components is generated by a different party or held fixed.
Creating standardized systems of annotation, as is the broad aim of the MPEG-7
effort, would enable the development of very large repositories of specific kinds
of video or audio clips, such as historical imagery or family tree material, from
which different producers could draw to satisfy their own customized editing
model. The converse is also interesting, in which a third party would provide
initially fixed annotation and editing model templates. Producers could shoot
their own content to fulfill a given basic model at first, and then make changes
and additions to that model more quickly to tailor a production for specific
needs. This idea would be particularly intriguing in an educational tool. Stu-
dents could learn the basics of telling video stories by shooting their own mate-
rial to fit a Viper template, and then later be able to rapidly experiment with dif-
ferent ways of telling those stories by making changes to the editing model. In
another thread, Viper could also be extended to handle live video material. As-
suming each live feed could be annotated in real-time with information about its
content, Viper could control the selection of which stream to show at different
points in time, opening the door to applications such as a live sporting event that
allows its viewers to select preferences about how they want the event pre-
sented—team or player emphases, selection or non-selection of commentators,
pacing of cuts, and so on.

These are just a few possible future directions related to the three tools created in
this research. Other areas suggest themselves in pondering how the three guid-
ing observations repeated throughout this document could be applied to rethink
the designs of many of the currently popular tools and to develop new ones for
more specific kinds of responsive media. Interestingly, one area that is still
clearly lacking and ripe for innovation is physical design. All three of the tools
described in this dissertation are bound to the same single-user single-
workstation metaphor employed by virtually every other computer-based tool in
existence. Although they support collaboration in other ways and consist of
elements that could extend easily to multi-user scenarios, none of the interfaces
present opportunities for several minds to work on the same aspect of a project
or task simultaneously. As discussed earlier, the mere one-person physical de-
sign of modern computer workstations reduces the inspiration for and discour-
ages the development of applications and experiences that involve more than a
single viewer or spectator at a time, and this in turn harms our ability to commu-
nicate with each other and foster the kinds of relationships that are the basis of so
many potential forms of responsive media. The technology exists to break away
from these antiquated and ineffectual designs, and only when we have the
strength to fully explore this territory will new ground truly have been broken.

125

Bibliography

[AP94]

Agnar Aamodt and Enric Plaza

Case-based reasoning: foundational issues, methodological variations, and system approaches
AT COMMUNICATIONS

vol. 7, no. 1, March 1994, pp. 39-59

[AS85]

Harold Abelson and Gerald Jay Sussman

STRUCTURE AND INTERPRETATION OF COMPUTER PROGRAMS
MIT Press, Cambridge, Massachusetts, 1985

[AWB97]

Stefan Agamanolis, Alex Westner, and V. Michael Bove, Jr.

Reflection of presence: toward more natural and responsive telecollaboration
Proc. SPIE MULTIMEDIA NETWORKS

vol. 3228A, 1997

[Bai97]

Freedom Baird

Tilting at a dreamer’s windmills: gesture-based constructivist interaction with character
Proc. CAITIA CONSCIOUSNESS REFRAMED

University of Wales College, Newport, Wales, 1997

[BBOO]

William Butera and V. Michael Bove, Jr.

The coding ecology: image coding via competition among experts
IEEE TRANS. CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
vol. 10, October 2000, pp. 1049-1058

[Bob99]

Aaron Bobick, et. al.

The KidsRoom: a perceptually-based interactive immersive story environment
PRESENCE: TELEOPERATORS AND VIRTUAL ENVIRONMENTS

vol. 8, no. 4, 1999, pp. 367-391

[Bov00]

V. Michael Bove, Jr., Jonathan Dakss, Edmond Chalom, and Stefan Agamanolis
Hyperlinked video research at the MIT Media Laboratory

IBM SYSTEMS JOURNAL

vol. 39, no. 3-4, 2000

[Bov95]

V. Michael Bove, Jr.

Object-oriented television

SMPTE JOURNAL

vol. 104, December 1995, pp. 803-807

[Bro99]

Kevin Brooks

METALINEAR CINEMATIC NARRATIVE: THEORY, PROCESS, AND TOOL
PhD thesis, MIT, 1999

127

[BW95]

V. Michael Bove, Jr. and John A. Watlington

Cheops: a reconfigurable data flow system for video processing
IEEE TRANS. CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
vol. 5, April 1995, pp. 140-149

[CBY6]

Edward Chalom and V. Michael Bove, Jr.

Segmentation of an image sequence using multi-dimensional image attributes
Proc. IEEE INT. CONF. IMAGE PROCESSING

1996, pp. 525-528

[Coh84]

Scott Cohen

ZAP! THE RISE AND FALL OF ATARI
McGraw Hill, New York, 1984

[Cyp93]

Allen Cypher, editor

WATCH WHAT I DO: PROGRAMMING BY DEMONSTRATION
MIT Press, Cambridge, Massachusetts, 1993

[Dal96]

Mukesh Dalal, et. al.

Negotiation for automated generation of temporal multimedia presentations
ProC. ACM MULTIMEDIA

1996, pp. 55-64

[Dav00]

Glorianna Davenport, Stefan Agamanolis, Barbara Barry, Brian Bradley, and Kevin
Brooks

Synergistic storyscapes and constructionist cinematic sharing

IBM SYSTEMS JOURNAL

vol. 39, no. 3-4, 2000

[Dav97]

Glorianna Davenport, Stefan Agamanolis, Brian Bradley, and Flavia Sparacino
Encounters in dreamworld: a work in progress

Proc. CAITIA CONSCIOUSNESS REFRAMED

University of Wales College, Newport, Wales, 1997

[DF95]

Glorianna Davenport and Larry Friedlander

Interactive transformational environments: Wheel of Life
CONTEXTUAL MEDIA: MULTIMEDIA AND INTERPRETATION
MIT Press, Cambridge, Massachusetts, 1995

[DM95]

Marc Davis

Media streams: an iconic visual language for video representation
READINGS IN HUMAN-COMPUTER INTERACTION: TOWARD THE YEAR 2000
Morgan Kaufmann, 1995, pp. 854-866

[Dov97]

Toni Dove

Somatic ventriloquism: throwing the body, distributing the self
ABSTRACTS OF CAITA CONSCIOUSNESS REFRAMED
University of Wales College, Newport, Wales, 1997

[Gan83]

Steve Gano
FORMS FOR ELECTRONIC BOOKS
M.S.V .S. thesis, MIT, June 1983

128

[GBS97]

Ashok Goel, Sambasiva Bhatta, and Eleni Stroulia

KRITIK: an early case-based design system

ISSUES AND APPLICATIONS OF CASE-BASED REASONING IN DESIGN
Lawrence Erlbaum Associates, 1997, pp. 87-132

[Ham89]

Kristian J. Hammond

Case-based planning: viewing planning as a memory task
PERSPECTIVES IN ARTIFICIAL INTELLIGENCE

Academic Press, Boston, Massachusetts, 1989

[Har96]

Bill Harley

Playing with the wall

WHO SAYS: ESSAYS ON PIVOTAL ISSUES IN CONTEMPORARY STORYTELLING
August House, Little Rock, 1996, pp. 129-140

[Hin88]

Tom Hinrichs

Towards an architecture for open world problem solving
PrROC. CBR WORKSHOP

Morgan Kaufmann, 1988, pp. 182-189

[Hou94]

Gilberte Houbart

VIEWPOINTS ON DEMAND: TAILORING THE PRESENTATION OF OPINIONS IN VIDEO
M.S. thesis, MIT, September 1994

[HS92]

Jim Hollan and Scott Stornetta
Beyond being there

Proc. ACM CHI

1992, pp. 119-125

[IKA94]

Hiroshi Ishii, Minoru Kobayashi, and Kazuho Arita
Iterative design of seamless collaboration media
COMMUNICATIONS OF THE ACM

vol. 37, August 1994, pp. 83-97

[Kru9e6]

Myron W. Krueger

Responsive environments

THEORIES AND DOCUMENTS OF CONTEMPORARY ART: A SOURCEBOOK OF ARTISTS” WRITINGS
Morgan Kaufmann, 2001

[LALOO]

Thomas Lewis, Fari Amini, and Richard Lannon
A GENERAL THEORY OF LOVE

Random House, New York, 2000

[LROO]

Rainer Lienhart

Dynamic video summarization of home video

Proc. SPIE 3972: STORAGE AND RETRIEVAL FOR MEDIA DATABASES
January 2000, pp. 378-389

129

[Lie93]

Henry Lieberman

Mondrian: A teachable graphical editor

WATCH WHAT I DO: PROGRAMMING BY DEMONSTRATION
MIT Press, Cambridge, Massachusetts, 1993, pp. 341-358

[Lie01]

Henry Lieberman, editor

YOUR WISH IS MY COMMAND: PROGRAMMING BY EXAMPLE
Morgan Kaufmann, 2001

[Lov97]

Margot Lovejoy

POSTMODERN CURRENTS: ART AND ARTISTS IN THE AGE OF ELECTRONIC MEDIA
Prentice Hall, second edition, 1997

[Mac96]

Tod Machover

Brain Opera

MEMESIS, THE FUTURE OF EVOLUTION: ARS ELECTRONICA FESTIVAL 96
Springer Verlag, New York, 1996

[Mar96]

Rafe Martin

Between teller and listener: the reciprocity of storytelling

WHO SAYS: ESSAYS ON PIVOTAL ISSUES IN CONTEMPORARY STORYTELLING
August House, Little Rock, 1996, pp. 141-154

[McL94]

Marshall McLuhan

UNDERSTANDING MEDIA: THE EXTENSIONS OF MAN
MIT Press, Cambridge, Massachusetts, 1994

[MDV99]

Michael Mateas, Steffi Domike, and Paul Vanouse

Terminal time: an ideologically-biased history machine

PrROC. AISB SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND CREATIVE LANGUAGE: STORIES
AND HUMOUR

1999, pp. 69-75

[MG97]

Mary Lou Maher and Andrés Gémez de Silva Garza
Case-based reasoning in design

IEEE EXPERT

vol. 12, March-April 1997, pp. 34-41

[Moh82]

Robert Mohl

COGNITIVE SPACE IN THE INTERACTIVE MOVIE MAP: AN INVESTIGATION OF SPATIAL LEARNING
IN VIRTUAL ENVIRONMENTS

PhD thesis, MIT, February 1982

[Mor92]

Lee Hayes Morgenroth

HOMER: A VIDEO STORY GENERATOR
B.S. thesis, MIT, May 1992

[Mur96]

Michael Murtaugh

THE AUTOMATIST STORYTELLING SYSTEM: PUTTING THE EDITOR’S KNOWLEDGE IN SOFTWARE
M.S. thesis, MIT, 1996

130

[MWP98]

Baback Moghaddam, Wasiuddin Wahid, and Alex Pentland

Beyond eigenfaces: probabilistic matching for face recognition

Proc. IEEE INT. CONF. AUTOMATIC FACE AND GESTURE RECOGNITION
April 1998, pp. 30-35

[Nai97]

Michael Naimark

What's wrong with this picture? Presence and abstraction in the age of cyberspace
Proc. CAITA CONSCIOUSNESS REFRAMED

University of Wales College, Newport, Wales, 1997

[NL99]

Frank Nack and Adam T. Lindsay

Everything you wanted to know about MPEG-7: part 1
IEEE MULTIMEDIA

vol. 6, no. 3, July-September 1999, pp. 65-77

[NP97]
Frank Nack and Alan Parkes

The application of video semantics and theme representation in automated video editing

MULTIMEDIA TOOLS AND APPLICATIONS
vol. 4, no. 1, January 1997, pp. 57-83

[Per64]

Donald G. Perrin

A branching teaching machine using motion pictures
SMPTE JOURNAL

vol. 73, September 1964, pp. 760-764

[Pic00]

Rosalind Picard

Toward computers that recognize and respond to user emotion
IBM SYSTEMS JOURNAL

vol. 39, no. 3-4, 2000

[Pop93]

Frank Popper

ART OF THE ELECTRONIC AGE
Thames and Hudson, London, 1993

[Rit93]

Dennis M. Ritchie

The Development of the C Language

ProC. ACM HISTORY OF PROGRAMMING LANGUAGES II
1993, pp. 201-208

[RBK98]

Henry A. Rowley, Shumeet Baluja, and Takeo Kanade

Neural network-based face detection

IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE
vol. 20, January 1998, pp. 23-38

[RS89]

Christopher K. Riesbeck and Roger C. Schank

INSIDE CASE-BASED REASONING

Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1989

[Shu88]

Nan C. Shu

VISUAL PROGRAMMING

Van Nostrand Reinhold, 1988

131

[Sim00]

David Simons
Digital TV wins
FORBES

vol. 28, June 2000

[Smiv6]

Josh R. Smith

Field mice: extracting hand geometry from electric field measurements
IBM SYSTEMS JOURNAL

vol. 35, 1996, pp. 587-608

[SW63]

Claude E. Shannon and Warren Weaver

THE MATHEMATICAL THEORY OF COMMUNICATION
University of Illinois Press, Chicago, 1963

[Tuf97]

Edward R. Tufte

VISUAL EXPLANATIONS: IMAGES AND QUANTITIES, EVIDENCE AND NARRATIVE
Graphics Press, Cheshire, Connecticut, 1997

[Vas00]

Nuno Vasconcelos

A probabilistic architecture for content-based image retrieval
Proc. IEEE COMPUTER VISION AND PATTERN RECOGNITION
2000

[Wei95]

Louis Weitzman

THE ARCHITECTURE OF INFORMATION: INTERPRETATION AND PRESENTATION OF INFORMATION
IN DYNAMIC ENVIRONMENTS

PhD thesis, MIT, February 1995

132

133

