
Figure 1. Additive property of the Hough transform. L is the local
origin of the block that contains P, and O is the global origin of the image.

l1 and l2 are parallel lines passing through P and L respectively.

Additive Hough Transform on Embedded Computing Platforms
Shantanu S. Sinha

Indian Institute of Technology Bombay
Mumbai, India

shantanu.s.sinha@iitb.ac.in

R. K. Satzoda, S. Suchitra, T. Srikanthan
Nanyang Technological University

Singapore
{satz0002, such0004}@e.ntu.edu.sg, astsrikan@ntu.edu.sg

Abstract— The Hough Transform (HT) is one of the most widely
used feature extraction techniques in real-time applications, like
lane departure warning, surveillance etc. Most existing HT
implementations are serial in nature, resulting in high
computation time. Recently, we proposed the Additive Hough
Transform (AHT), which achieves angle and block level
parallelism in HT computation. In this paper, we evaluate the
performance gains offered by AHT in both serial and parallel
configurations by implementing it on different computing
platforms such as multicore processors, GPUs and FPGAs. It is
shown that AHT offers significant performance gains over
existing implementations of the HT in both serial and parallel
configurations on a wide range of embedded platforms.

I. INTRODUCTION

The Hough Transform (HT) is a widely used feature
extraction technique to detect instances of parametric curves
using a voting procedure in parameter space [2]. The HT is
computationally expensive as it involves computation of
transcendental functions and this has limited its use in real-
time capable systems. Angle-level parallelism has been
explored for HT computation in [7], [8] to improve its
performance, wherein HT for different angle spaces are
computed in parallel. However, such architectures still require
the edge map to be read in a raster scan fashion and, hence,
most existing parallel implementations are constrained by
serial reading of the image. Most GPU implementations of HT
involve pixel-level parallelism [9], [10]. While pixel-level
parallelism does prove to be effective on high-end GPUs, it is
not feasible on commercially available commodity GPUs with
less streaming multiprocessors, as it requires concurrent
execution of a large, suboptimal number of threads, leading to
poor performance.

In [4]-[6] and [8], attempts have been made to reduce the
computational complexity involved with the evaluation of
trigonometric quantities by replacing them with simple shift
and add operations using Coordinate Rotation Digital
Computers (CORDIC) [3]. However, CORDIC, being
iterative in nature can pose to be a bottleneck in the overall
performance of the HT. Also, most of the CORDIC-based HT
implementations are serial in nature, thereby limiting the
achievable speedup.

We proposed a novel parallel implementation of the Hough
Transform called the Additive Hough Transform (AHT) in
[1], that exploits additive properties of the HT to replace
trigonometric operations with simple additions in a block

based fashion resulting in angle and block level parallelism. It
was shown in [1] that the AHT is capable of achieving a
speedup by orders of magnitude for any image size, and is
suitable for porting onto massively parallel systems like
FPGAs. In this paper, we demonstrate the feasibility of
implementing the AHT on multiple embedded platforms.
Further, it is shown that AHT outperforms its
existing counterparts in both serial and parallel configurations
with respect to execution time and resource utilization. The
rest of the paper is organized as follows. In Sec. II, the AHT is
described briefly. The different implementations of AHT and
existing conventional HT that were developed for evaluation,
are described in Sec. III. A detailed performance evaluation of
the implementations is presented in Sec. IV followed by
conclusions in Sec. V.

II. ADDITIVE HOUGH TRANSFORM

In this section we briefly discuss the block-based parallel
Additive Hough Transform (AHT) technique. The HT maps a
pixel P(x,y) in the Cartesian space into a sinusoidal curve in
the Hough space indexed by -[2] using

x cos(y sin(

where is the length of the perpendicular to a line passing
through P and subtending an angle with the x-axis.

In [1], we proposed to divide the image edge map into
rectangular blocks of binary pixels. It was shown that the HT
of any edge pixel in the block can be calculated as the sum of
the HT value of the edge pixel with respect to (w.r.t) the local
origin of the block it belongs to and the HT value of this local

1196978-1-4799-0066-4/13/$31.00 ©2013 IEEE

Figure 2. (a) High-level overview of AHT implementations in hardware.
(b) Block modules in implementation (ix). (c) Block modules in
implementation (xi). (d) Block modules in implementation (x)

origin w.r.t the global origin of the image. This property is
called the additive property of HT represented as

HT(P, O) = HT(P, L) + HT(L, O) (2)

where L is the local origin of the image block which contains
the pixel (Fig. 1). Henceforth, HT(P, L) will be referred to as
the Local Hough Transform (LHT) of the pixel P and HT(L,
O) as the Global Hough Transform (GHT) of the local origin
L. In [1], the additive property of the HT was exploited to
develop angle and block level parallel architectures, wherein
multiple edge blocks were processed in parallel. More details
can be found in [1].

III. PROPOSED AHT IMPLEMENTATIONS

We implemented variants of AHT on three different
computing platforms – programmable CPUs, graphics
processing units (GPUs) and reconfigurable hardware
(FPGAs). On each of these platforms, we implemented both
serial and parallel versions of AHT in addition to serial and
parallel versions of the regular HT to quantify the performance
benefits offered by AHT with respect to the regular HT. We
list the different implementations in this section.

A. Processor-based Implementations
Multicore CPUs and DSPs like Infineon TriCore [11] are

commonly used by in applications like Advanced Driver
Assistance Systems (ADAS), which are heavily dependent on
HT-based object detection. Achieving real-time performance
is the primary bottleneck in such computing systems. We
propose two variations of AHT and compare them with
conventional non block-based implementations. We
implemented the following three versions of the conventional
HT:

i. The most conventional serial HT implementation
approach [2].

ii. The OpenCV implementation of HT: This is a
conventional HT implementation as in (i), but caches
sine and cosine values at runtime.

iv. A modified parallel version of (i) which reads sine and
cosine values from LUTs. Multiple rows of the edge map
are processed in parallel.

The following two versions of AHT were implemented on
processor-based platforms:

iii. A block-based serial version of AHT, which reads LHT
values directly from LUTs. GHT values are computed
using (1), reading sine and cosine values from LUTs.

v. A parallel version of AHT with block-level parallelism.
Both LHT and GHT values are read directly from LUTs.

B. GPU-based Implementation
GPUs are widely used in graphics and vision based

applications owing to their highly parallel architecture. We
implemented AHT in the CUDA programming language to
evaluate its performance on GPU architecture. The CUDA
thread hierarchy divides threads into blocks and then
organizes the blocks into a grid. Each block has its own shared
memory that is accessible by all threads within that block.

In implementation (vi), we implement AHT such that each
block of threads of the CUDA hierarchy operates on a single
image block. Additionally, given the highly parallel nature of
the GPU architecture, a controlled amount of angle-level
parallelism in HT computation is also introduced to further
maximize computational efficiency. GHT values are read
directly from LUTs in shared memory within the blocks, while
LHT values are read from LUTs in global memory.

C. FPGA-based Implementations
We evaluated the performance of AHT on FPGA

platforms against existing hardware architectures for HT. We
implemented the following HT architectures that exploit the
angle parallelism in HT, i.e. reading the edge map serially in a
raster scan fashion but computing HT for multiple angles in
parallel:

vii. A CORDIC engine [3] in vector rotation mode is used
for HT computation as described in [5].

viii. Sine and cosine values of the angles HT is being
computed for are read from LUTs instead of using a
CORDIC engine.

In our implementations of AHT we divide the n x n image

into k × k blocks of m × m pixels each. Each block is
processed in parallel. Our architecture (Fig. 2(a)) consists of
one higher-level module per angle, accepting the complete

1197

TABLE II. IMPLEMENTATIONS TESTED

Description Level of
Parallelism

Running
Time

Size of
LUTs

Single Core CPUs/ DSPs
xii. Conventional HT None O(n2A) 0

xiii. OpenCV HT None O(n2A) 2A
xiv. AHT (serial) None O(n2A) (m2 + 2)A

Multicore CPUs/DSPs
xv. HT with naïve

parallelism Row O(n2A) 2A

xvi. AHT (parallel) Block O(m2A) (m2 + k2)A
Standard Parallelized

Systems
xvii. AHT (CUDA) Block, angle O(m2) (m2 + k2)A
Reconfigurable Platforms

xviii. HT with CORDIC Angle O(n2) 0
xix. HT with LUTs Angle O(n2) 2A
xx. AHT with small

inner Hough spaces Block, angle O(m2) (m2 + k2)A

xxi. AHT with large
inner Hough spaces Block, angle O(m2) (m2 + k2)A

xxii. AHT with CORDIC Block, angle O(m2) 0

edge map as input and filling the final Hough space. We shall
refer to these modules as image modules and for computation
of the HT for A angles, we would need A image modules.
Additionally, each image module comprises k × k lower level
modules, each of which take one block of the edge map as
input and store temporary inner Hough spaces. We shall refer
to these as block modules. The inner Hough spaces contain the
HT of the individual blocks and must be summed to compute
the final Hough space. In Fig. 2(b, c, d), ● checks for edge
pixels in the input data stream and ∑ represents an adder. The
following versions of AHT were implemented:

ix. Block modules compute only the local HT of the block.
The inner Hough spaces hence store only LHT values
and, hence, must be summed serially with the
corresponding GHT values before being transferred to
the final Hough space. (Fig. 2(b))

x. Block modules compute the final HT of all pixels in the
block. The inner Hough spaces would then be larger than
in (ix), but can be directly transferred to the final Hough
space without any need for further addition (Fig. 2(d)).

xi. This version is the same as (x), except for the use of
CORDIC engines to compute the LHT instead of LUTs
(Fig. 2(c)).

IV. PERFORMANCE EVALUATION

In this section, the performance evaluation of the different
implementations is discussed in detail. Implementations (i) to
(v) were implemented on a 1.6 GHz quad-core Intel Core i7
Q720 CPU. The CPU allows execution of eight threads in
parallel which was exploited by the parallel implementations
(iii) and (v) using the OpenMP multi-processing API [6].
Algorithm (vi) was implemented in the CUDA programming
language [5] on an NVIDIA GT630M GPU with 96
processing cores and 2GB of device memory. VHDL
implementations of (vii) through (xi) were synthesized on a
Xilinx Virtex6 XC6VLX760 FPGA.

Table I lists the different implementations and their
corresponding timing complexity. LUT sizes and processing
times are given for n × n images which, in AHT
implementations, are divided into k × k blocks, each
comprising m × m pixels. It is assumed that the HT is
computed for A angles and that there is no hardware constraint
on the maximum number of threads allowed in any
implementation. The block-level parallelism offered by AHT
reduces the time complexity from O(n2) to O(m2). Since we
generally choose m to be at least an order of magnitude
smaller than n, it can be seen that AHT implementations
perform orders of magnitude faster than the regular HT.

We tested all the implementations from Table 1 on 256 × 256
edge maps (n = 256) and, for AHT implementations, we chose
k to be 32, which gives m = 8. Considering that the
computation time of software implementations can vary with
edge content in input image, the performance of the software
versions, i.e. (i) to (vi) was evaluated by running the
implementations for a set of benchmark images. Fig. 3(a)
compares the parallel software implementations of AHT and
the regular HT for 35 benchmark images. Both versions of
AHT perform an average of 160% faster than the row-wise

parallel HT implementation (iv) for all images. Fig. 3(b)
compares the serial software implementations. AHT (iii) is
found to be the least computationally demanding among the
serial implementations and, on average, was found to be 140%
faster than the OpenCV implementation of HT even on serial
architecture. It is noteworthy that although AHT is designed
for parallel hardware platforms [1], yet it offers significant
performance gains on both serial and parallel software
implementations for single-core CPUs and DSPs. This is
primarily because of the low computation cost of the
operations involved in AHT as compared to conventional HT.

The GPU and CPU versions of AHT take comparable
amounts of time, even on a low-end commodity GPU like the
GT630M. The block-based nature of AHT requires concurrent
execution of fewer threads than complete pixel-level
parallelism, making it feasible on lower-end graphics
hardware as well. We achieved speeds in excess of 240 frames
per second on the GT630M. On faster scientific computing
GPUs with more streaming multiprocessors we can expect
much faster execution due to the scalability of AHT.

Fig. 4 compares the different hardware implementations of
AHT and the regular HT. AHT implementations (ix) and (x)
are able to achieve the highest clock speeds, in excess of
350MHz. Due to the block-level parallelism offered by AHT
in addition to the angle parallelism, implementations (ix), (x)

and (xi) require only about 10% of the cycles required by (vii)
and (viii). This reflects in the computation time per image if
we set the clock speed to a fixed value of 200 MHz for all
implementations.

In hardware applications, if the range of angles for which
the HT is to be computed is known a priori, LUTs can be used
and, in such cases, AHT implementation (x) was found to be
35× faster than the comparable conventional HT
implementation (viii) at the highest allowed clock speed. In

1198

(a)

(b)

Figure 3. Comparison of (a) parallel implementations and (b) serial
implementations in software.

Figure 4. Area-time comparison of various hardware implementations of
AHT and the regular HT on an FPGA

applications with area constraints, (ix) would provide a good
tradeoff between area occupied and processing time, still
being 12× faster than (viii). In applications where the angles
for which HT is to be computed are known only at runtime,
LUTs cannot be used. In such cases, CORDIC-based
implementations could be used, with AHT implementation
(xi) being 21× faster than the comparable regular HT
implementation (vii).

While AHT implementations do occupy more on-chip
area, this is justified by the lower area-time measure of AHT
implementations. As shown by us in [1], the grid size can be
adjusted to an optimal value, so as to minimize the area
occupied. For a 256 × 256 image, a 10 × 10 grid is optimal.
We have, however, in all our implementations used a 32 × 32
grid. As shown in [1], even though the area occupied is
minimum for a 10 × 10 grid, the area-time cost continues to
decrease with higher grid resolutions and applications not

constrained by on-chip area would use finer grids to achieve
faster execution. On lower-end devices, a grid size of 10 × 10
could be used to satisfy the area constraint.

V. CONCLUSIONS

We have implemented AHT on a variety of computing
platforms and have comprehensively evaluated its
performance in these environments. It was shown that AHT
provides significant benefits in computation time and area-
time cost in both serial and parallel configurations,
irrespective of the computing platform. In software, the
effectiveness of the block-based nature of AHT on low-end
GPUs and the scalability of AHT onto multiple CPU cores is
demonstrated. We have also demonstrated the low
computational complexity of AHT by comparing its serial
configuration with the OpenCV implementation of HT on a
processor-based platform. On reconfigurable hardware we
proposed three different variations of AHT based on the
application requirements. We demonstrated a CORDIC-based
AHT implementation executes significantly faster than
conventional CORDIC-based HT implementations. In
applications where the angles for which HT is to be computed
are known a priori, we presented two versions of AHT using
LUTs instead of CORDIC, depending on the on-chip area
available. Future work involves lowering the area cost
without compromising on the parallelism offered by AHT.

REFERENCES

[1] S. S. Sathyanarayana , R. K. Satzoda and T. Srikanthan "Exploiting
inherent parallelisms for accelerating linear Hough transform," IEEE
Trans. Image Process., vol. 18, no. 10, pp.2255 -2264 2009.

[2] R. O. Duda and P. E. Hart, “Use of the Hough transform to detect lines
and curves in pictures,” ACM Commun., vol. 15, no. 1, pp. 11–15,
1972.

[3] R. Andraka, “A survey of CORDIC algorithms for FPGA based
computers,” in Proc. ACM/SIGDA 6th Int. Symp. FPGA, Feb. 1998,
pp. 191–200.

[4] Suchitra, S., Satzoda, R. K., Srikanthan, T., "Accelerating CORDIC for
hough transform," Integrated Circuits, ISIC '09. Proceedings of the
2009 12th International Symposium on , vol., no., pp.167,170, 14-16
Dec. 2009.

[5] Timmermann, D., Hahn, H., Hosticka, B.J., "Hough transform using
Cordic method," Electronics Letters , vol.25, no.3, pp.205,206, 2 Feb.
1989

[6] S. M. Karabernou and F. Terranti, "Real-time FPGA implementation of
Hough Transform using gradient and CORDIC algorithm," Journal of
Image and Vision Computing, vol.23, pp. 1009 - 1017, July 2005.

[7] M.-Y. Chern and Y.-H. Lu, “Design and integration of parallel Hough
transform chips for high-speed line detection,” in Proc. 11th Int. Conf.
Parallel and Distributed Systems, Jul. 2005, vol. 2, pp. 42–46.

[8] E. K. Jolly and M. Fleury, “Multi-sector algorithm for hardware
acceleration of the general Hough transform,” Image Vis. Comput., vol.
24, pp. 970–976, 2006.

[9] S. Mohanty and P. Hristov, “GPU accelerated Hough transform for
high level trigger application”, Proceedings of the DAE Symp. on Nucl.
Phys. 57, 2012

[10] Gert-Jan van den Braak, Cedric Nugteren, Bart Mesman and Henk
Corporaal, “Fast Hough transform on GPUs: exploration of algorithm
trade-offs,” Proceedings of the 13th International Conference on
Advanced Concepts for Intelligent Vision Systems (ACIVS’11), 2011

[11] TriCore Core Architecture User Manual v1.6

1199

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Table of Contents

