
Smoothed Sarsa: Reinforcement Learning for Robot Delivery Tasks

Deepak Ramachandran
Computer Science Dept.

University of Illinois at Urbana-Champaign
Urbana, IL-61801

dramacha@uiuc.edu

Rakesh Gupta
Honda Research Institute USA, Inc.

800 California Street, Suite 300,
Mountain View, CA 94041

rgupta@hra.com

Abstract— Our goal in this work is to make high level
decisions for mobile robots. In particular, given a queue of
prioritized object delivery tasks, we wish to find a sequence
of actions in real time to accomplish these tasks efficiently.
We introduce a novel reinforcement learning algorithm called
Smoothed Sarsa that learns a good policy for these delivery tasks
by delaying the backup reinforcement step until the uncertainty
in the state estimate improves. The state space is modeled by a
Dynamic Bayesian Network and updated using a Region-based
Particle Filter. We take advantage of the fact that only discrete
(topological) representations of entity locations are needed for
decision-making, to make the tracking and decision making
more efficient.

Our experiments show that policy search leads to faster task
completion times as well as higher total reward compared to a
manually crafted policy. Smoothed Sarsa learns a policy orders
of magnitude faster than previous policy search algorithms. We
demonstrate our results on the Player/Stage simulator and on
the Pioneer robot.

I. INTRODUCTION

Mobile robots have now been deployed in environments
with people including offices [1] and hospitals [2]. Such
robots need to keep track of relevant entities (people and
objects) in the environment, and perform multiple tasks all
at the same time. The robot must plan efficient sequences
of actions to accomplish these tasks. This planning needs
to be responsive to new tasks being added dynamically and
changes in the environment.

In this paper, we are concerned with dynamically planning
efficient action sequences for multiple delivery tasks of the
form “Deliver object X to person Y”. Our primitive actions
are of the kind “Move to location X”, “Pick Up” and
“Deliver”. We assume that we have low-level controllers and
navigational algorithms available to perform these actions.
(though not always successfully).

The standard model for such stochastic decision-making
problems is the Partially Observable Markov Decision Pro-
cess (POMDP). The goal of a POMDP is to construct a
policy for the robot that determines which action to take at
any state that could arise during operation. A good policy
results in a sequence of actions that maximizes a global
utility criterion such as expected total reward or minimum
expected time for task completion. Policies can be manually
encoded, but these work well only for small instances and
get progressively harder to update when new tasks are added.
Policies for complex decision making tasks are usually learnt

by Reinforcement learning(RL) [3], a framework for learning
optimal behavior by trial and error.

Our key contribution is a novel reinforcement learning
algorithm specialized for mobile robots called Smoothed
Sarsa. Based on Sarsa [4], which proceeds by learning a
Q function that approximates the value of an action taken at
a state. When there is high uncertainty in the state estimator
(such as when the relevant entities have not been observed),
the learning step in Smoothed Sarsa is delayed until a better
state estimate is obtained (e.g. after an entity is observed).
Then the state estimate is smoothed i.e. taken back in time, to
learn the value that should have been assigned to the original
state. We show how to do the smoothing using particle filters
and do the Q-learning such that convergence properties are
preserved.

Our second contribution is the use of a quasi-topological
representation of the state-space for decision making. When
making decisions about what action to take next, the ex-
act position of an object or person is of little relevance.
What matters is the probability that the entity is at some
approximate region, such as in front of his desk or on the
kitchen table. Our entity-tracking algorithm, the region-based
particle-filter, is specially designed to exploit this property.

POMDPs have been applied extensively in the past [5],
[6], [7], [8] to robot navigation and some crude forms of
decision-making. The applicability of these approaches are
limited by the high dimensional discretization of space they
use, hand tuning of policy, and the excessive time taken to
learn a good policy. To our knowledge, ours is the first work
that solves task-level decision making problems for robots at
this level of generality.

We implemented our approach in simulation and on
a Pioneer mobile robot in a 5 room office environment.
Smoothed Sarsa managed to learn a good policy in 3 hours,
whereas PEGASUS [9] took days to return a policy with
worse performance. In simulated trials, the learned policy
completed a set of delivery tasks 30% faster on average than
a carefully crafted manual policy.

The rest of this paper is organized as follows. In section II
we describe the state-space used by the decision making al-
gorithm and the region-based particle filter. In section III, we
review the theory of POMDPs and reinforcement learning.
Section IV describes our Smoothed-Sarsa algorithm. Section
V presents our experiments. Sections VI and VII discuss
related work and conclusions respectively.

2009 IEEE International Conference on Robotics and Automation
Kobe International Conference Center
Kobe, Japan, May 12-17, 2009

978-1-4244-2789-5/09/$25.00 ©2009 IEEE 2125

Fig. 1. The complete DBN. |E| = number of entities.

II. BELIEF STATE REPRESENTATION AND FILTER

We begin our exposition by describing the belief state
maintained by the robot of its environment, which will be the
state space used for planning. We specify the representation
of robot pose, the region-based representation of locations
of people and objects (entities), and the transition model.
The temporal model incorporating all these components is a
Dynamic Bayesian Network (DBN) (Figure 1), updated using
our region-based particle filter.

A. Robot pose

Robot pose is defined by an (x, y, θ) tuple. A robot
localization algorithm, such as FastSLAM [10], is used to
update the robot pose using the controls and sensor readings
as input. Note that entity observations depend on both true
entity positions and the robot pose, since the robot pose is
needed to translate the relative coordinates returned by the
sensors into absolute (world) coordinates.

B. Entity Location

Entity locations are modeled by a two-layer representation
as shown in Figure 2. For each entity, we have a discrete
region variable that indicates its approximate location such
as in front of the desk, or beside the water cooler. There
are a small number of these regions, and each region defines
a prior distribution over the exact position of the entity. For
example the position variable, Xt = (xt, yt), could be drawn
from a Gaussian distribution

Xt ∼ N(µRt ,ΣRt)

with mean µRt
and covariance ΣRt

for a region Rt.
The advantage of this representation is that task-level

decision-making only needs to consider the upper (discrete)
layer of the state space. Also, domain knowledge about the
environment can be incorporated into the discrete prior on
regions.

C. State transitions

State transitions for each entity can occur at either the
region or position level. Transitions at the region level
represent deliberate movement of the entity from one region
to another (e.g. a person moving from the office to the coffee

Fig. 2. Location of entities are modeled by a discrete region variable R,
and a position, 〈x, y〉 whose distribution’s parameters are conditioned on
R.

machine) and happen with small probability at each time
step. When a transition is made from a region Rt = r to
another Rt+1 = r′, the new position Xt+1 is drawn from
the prior for r′. These probabilities can be learned from
observations or hard-coded from domain knowledge (our
current approach).

Transitions at the position level represent movement by
the entity within a region (e.g. fidgeting in an office chair).
We model this behavior by a Brownian motion process. The
dynamics are chosen such that over time and in the absence
of observations or region-level transitions, the particle dis-
tribution reverts to the prior for the region, corresponding to
the intuition that the entity remains in the region but could
be anywhere inside it. This is a simpler model than many
commonly used in robotics, like those based on Extended
Kalman Filters [11]. It is sufficient because we are not
interested in accurate tracking of entity motions, but only
their locations.

D. Region-based Particle Filters

Particle filters are used for tracking the posterior distri-
bution of entity locations since updating cannot be done in
closed form for our model. We maintain a set of samples,
called particles (see Figure 3), from the distribution of region
and position variables for each entity. These particles are
updated at each time step t by the region-based particle
filter (shown in Table I), which is based on the Bootstrap
filter [12].

At each time step, the following update occurs: First, we
apply the transition model for regions to each particle indi-
vidually. If this causes a particle to move to a new region r′,
its new position is sampled from the prior for r′. Otherwise
we apply the motion model for position variables (Sec. II-C).
Next we re-weight each particle by the conditional likelihood
of the current observation given the particle’s position (These
likelihoods are derived from the observation model of the
robot).

Finally we perform a re-sampling step. A new particle
set is created by sampling the previous set of particles in
proportion to their weights. The crucial point here is that the
re-sampling is done on a per-region basis, to keep the number
of particles in a region equal to the total weight of that
region. This keeps the probability mass of each region tightly
controlled. Essentially, the only way for mass to shift from
one region to another is through the transition model. Thus,

2126

Algorithm 1 Region-based Particle Filter update at time
step t. Pt is the particle set at time t. p.r, p.x, p.y are the
region, x and y positions respectively of particle p. Ot is the
observation at time t.

for each pi
t−1 ∈ Pt−1 do

Generate region pi
t.r using transition model for pi

t−1.r.
if pi

t.r 6= pi
t.r then

Generate position (pi
t.x, pi

t.y) from prior for pi
t.r

else
Generate (pi

t.x, pi
t.y) from motion model for pi

t.r
end if

end for
Apply the Observation model. Set the weight of pi

t,
wi = Pr(Ot|(pi

t.x, pi
t.y))

for each region r do
Set Pt,r = {pi

t|pi
t.r = r},Wr =

∑
Pt,r

wi

Take bWrc samples from Pt,r such that each pi
t ∈ Pt,r

is chosen with prob. ∝ wi. Call them Pt,r.
end for
Set Pt = ∪rPt,r

the estimates of the discrete probabilities at the region layers
will be highly accurate, even when the position variables are
not. This improves the performance of planning algorithms
that use only the discrete region values for decision-making.

In the next section we describe how decision making for
delivery tasks is done in a POMDP with the entity beliefs
as the state space.

III. MARKOV DECISION PROCESSES AND
REINFORCEMENT LEARNING

Markov Decision Processes (MDPs) provide a mathemat-
ical framework for decision making in a stochastic envi-
ronment. A Markov Decision Process (MDP) is a tuple
(S, A, T, γ,R) where:

S the set of states
A is the set of actions
T : S × A × S 7→ [0, 1] determine the state transition

probabilities
γ ∈ [0, 1) is called the discount factor
R : S ×A 7→ R is the reward function.
A (stationary) policy is a map π : S 7→ A and the

(discounted, infinite-horizon) value of a policy π at state
s ∈ S, denoted V π(s), is :

V π(1) = Es1,s2,...[R(s1, π(s1)) + γR(s2, π(s2)) + . . . |π]

where Pr(si+1|si, π) = T (si, π(si), si+1) and E is the
expectation operator. We wish to find an optimal policy π∗

such that V π(s) is maximized for all s ∈ S by π = π∗. We
also define the following auxiliary Q-function:

Qπ(st, at) = R(st, at) + γEst+1∼T (st,at,·)[V
π(st+1)] (1)

We denote the Q-function of the optimal policy π∗ as Q∗.

Fig. 3. A snapshot from the particle filter at time step t. Each cluster of
particles indicates a region.

Note that from Q∗, the policy π∗ can be recovered as :

π∗(s) = argmax
a∈A

Q∗(s, a) (2)

In reinforcement learning, an agent is placed in an MDP
and allowed to take actions that move it from state to state.
It observes the sequences of states visited and the reward
returned at each state, but otherwise has no knowledge of
the MDP parameters. Its goal is to determine a policy with
value as close as possible to the optimal policy.

A. POMDPs

Often the agent executing the MDP does not have direct
knowledge of the current state. For example, in our delivery
task application, the robot may not know at the current time
step where the relevant entities are, but it might have a
belief distribution over their locations. In such a case an
extension to MDPs called the Partially Observable Markov
Decision Process (POMDP) can be used. A POMDP is a
6-tuple (S, B, A, T, γ,R), where in addition to the MDP
elements we have a set of belief states B, each of which
is a probability distribution over the set of states S. The
policy is now a function from the belief state to the action
space, π : B → A.

POMDPs are notorious difficult to solve even for small
problems. Many specialized solution techniques have been
proposed such as PEGASUS [9]. One common approach is
to regard the POMDP as an MDP with the belief space B as
the underlying state space (the Information-state MDP [13]).
Our algorithm will be in this spirit. In particular, we define
Q functions over the belief space. For every bt ∈ B,

Qπ(bt, a) = Est∼bt [Q
π(st, a)]

= R(bt, a) + γEbt+1∼T (bt,a,·)[V π(bt+1)]

Note that we have extended the definition of T,R, Q and V
to the belief state by taking expectations in the obvious way.

B. Q function approximation

Our reinforcement learning approach will be to learn the
optimal Q∗ and then use equation 2 to derive π∗. We shall
represent the Q function in the following parametrized form:

Qπ(s, a) u
n∑

i=1

wπ
i φi(s, a) = wπ · φ(s, a) (3)

2127

Algorithm 2 Smoothed-Sarsa with Function Approximation.
Input: initial belief state b0, arbitrary action a0.
w := 0
for t = 0, 1, 2, . . . until w converges do

Take action at, observe rt, bt+1.
at+1 := argmaxa Q(bt+1, a).
Put (t, bt, at, rt, at+1) onto BACKUPQUEUE.
For each (t′, bt′ , at′ , rt′ , at′+1) on BACKUPQUEUE (in
order)
if var(bt

t′) ≤ θthresh or t > t′ + kmax then
δt
t′ := rt′ + γQ(bt

t′+1, at′+1)−Q(bt′ , at′)
w

α← δt
t′∇wQ(bt, at)

Remove (t′, b′t, a
′
t, r

′
t, a

′
t+1) from BACKUPQUEUE.

end if
end for
Return w

where φ = φ1, φ2, . . . , φn is a vector of fixed feature
functions and wπ = wπ

1 , wπ
2 , . . . , wπ

n is a vector of weights.
The feature functions are chosen to encode properties of the
state and action that are relevant to determining the Q value
(e.g. for the delivery task, the distance to each region or
probability of an object being in a region). We assume that
the true Q∗ can be well-approximated by some weighted
sum of these feature functions and thus the reinforcement
learning problem reduces to finding the optimal weights, w∗,
s.t. Q∗(s, a) u w∗ · φ(s, a), for all s ∈ S, a ∈ A.

We can extend this approximation to a function of belief
state b in the obvious way:

Q∗(b, a) = Es∼b[Q∗(s, a)] = w∗·Es∼b[φ(s, a)] = w∗·φ(b, a)

In order to recover the optimal policy π∗, we solve

π∗(b) = argmax
a

Q∗(b, a) = argmax
a

[w∗ · φ(b, a)]

For our problem, we consider a finite set of actions with
at most one or two parameters so this maximization can be
easily done.

IV. THE SMOOTHED-SARSA ALGORITHM

Smoothed-Sarsa (Algorithm 2) is a reinforcement learning
algorithm based on Sarsa ([4]). The main feature of Sarsa is
the technique of bootstrapping: After an action at is taken
and the robot moves from belief state bt to a new state
bt+1 while collecting reward rt, an action at+1 is chosen
according to the current policy, and the predicted Q value of
the new state is used to compute an improved estimate for
the previous state’s Q value, called the backup target:

δt = rt + γQ(bt+1, at+1)−Q(bt, at)

Observe that if Q = Q∗, then E[δt] = 0.
The backup is used to adjust the weights of the policy

after each step as follows:

w ← w + αδt∇wQ(bt, at)

where α is the learning rate, set to some small value and
then decreased over time. This backup step is repeated every

time an action is taken, until the weights converge. In many
applications of Reinforcement Learning, aggressive use of
backups has been shown to make the difference between a
working and non-working policy [3].

However, the problem with the Sarsa update step is that
the backed-up estimate of Q(bt+1, at+1) can be very poor if
the uncertainty in the state estimate is high. In the delivery
task example, consider a situation where the robot has picked
up an object and is trying to determine the Q-value of a
move action. This will essentially be an expectation over the
person’s location and if the person has not been observed
before, could be very different from the “true” Q of the
underlying state. Ideally, one would like to use Q(st+1, at+1)
in the backup, but this is unknown while learning.

The key idea of Smoothed Sarsa is to delay the backup
until some time step t + k(k > 1) when the uncertainty
in the state estimate is reduced, and then go back in time
(smoothing) to get a better prediction of Q(st+1, at+1). More
precisely, define

bt+k
t+1 = Pr(st+1|bt+k)

the belief distribution over st+1 conditioned on our belief
state at time step t+k (which incorporates observations after
time step t). The backup in Smoothed-Sarsa is then:

δt+k
t = rt + γQ(bt+k

t+1 , at+1)−Q(bt, at)

Suppose var(bt+k
t+1) � var(bt+1). This can happen, for

example, after an observation is made. Then var(δt+k
t) <

var(δt) and hence the convergence of the iterative procedure
is correspondingly faster.

In practice, we define a threshold θv for the variance and a
limit kmax for the time step delay. If the variance of bt+k

t+1 falls
below θv or t+kmax time steps are completed without having
done a backup for time t, then the backup is completed using
bt+kmax
t+1 . If multiple time steps go by with delayed backups,

then the algorithm has to be careful to perform the backups
in the right order (See Table II).

A. Smoothing

It remains to show how the smoothing is done to infer bt+k
t+1

from bt+k. This can be easily done by storing the history
of the region variable (r1, r2, . . . , rt+k) in each particle pi

(Recall section II-D). As new observations are made, the
particles are automatically re-weighted by their likelihood so
that at time t+k, the density of particles reflect the posterior
distribution conditioned on all observations. Thus we have
the smoothed belief for each entity,

bt+k
t+1(r) u

∑
pi∈Pt+k

I(pi.rt+1 == r)

where I denotes the indicator function. The total belief
state will then be the product of each entity’s smoothed
belief.

2128

V. EXPERIMENTS

We have applied our methods to robot delivery tasks in
simulation and on a real robot. We considered n-object n-
person delivery scenarios in a 5-room office environment,
with varying n. Reinforcement learning was done in the
simulation over the course of thousands of scenarios to learn
a good policy for this task which was transferred to a real
robot. The actions available to the robot were:

1) Move towards region r for t seconds.
2) Pickup object x from region r.
3) Deliver currently held object to person x in region r.
The robot gets a reward for completing each task

proportional to its priority. The feature vector used to
approximate the Q function (Equation 3) was composed of
relevant state variables such as Pr(Entity e in Region r),
distance(entity e, region r), IsVisible(region r, region r′)
and Entropy(region r). We also used some non-
linear functions of these basic features (such as
Pr(Entity e in Region r)

distance(entity e, region r)) to capture any non-linear dependence
the Q∗ function has on the state.

Even with just two delivery tasks we can expect very
complex behaviour from the optimal policy. Suppose for
example, the robot was in a position to immediately pick
up either of the two objects. It would generally prefer the
task for which its belief about the person’s location was more
certain in the current state. But this could change if one task
had greater priority than the other or if choosing the other
task meant that unexplored regions of the environment could
be visited and new observations made. When choosing its
next action, the robot must not only consider regions that
are likely to have relevant entities, but also the distances to
them and the visibility of other regions from there. We shall
show that the learned policy exhibits these behaviours, and
finds near-optimal trade-offs between them.

A. Simulation

We used Smoothed Sarsa to learn a policy for the mul-
tiple delivery problem in the Player/Stage simulator [14].
We generated thousands of scenarios with varying region
parameters and entity locations. The simulated robot uses
a laser range-finder for localization and a blob detector to
detect and recognize entities.

Using the Region-based Particle Filter for entity tracking
and Smoothed Sarsa for reinforcement learning, we con-
verged on an approximately optimal policy in 3 hours with
25,000 simulations. In comparison running the state of the art
POMDP solver PEGASUS [9] on the same problem took 2
days to terminate and could only find a successful policy for
single delivery tasks while ordinary Sarsa never converged
at all.

In Figures 5 and 6 we compare the qualitative performance
of the policy learned by Smoothed Sarsa and a manually
crafted baseline policy. The manual policy does each task in
order of priority, and when searching for an entity, it visits
the regions in order of maximum likelihood. The smoothed-
sarsa policy demonstrates more intelligent behaviour than
the manual one. The manual policy starts out looking for

Fig. 4. Mean time to completion of tasks for Smoothed Sarsa vs. Manual
Policy

the first object in the leftmost room and keeps looking for
it without switching tasks after it sees the second object.
Consequently it must move back and forth between the two
ends of the office 3 times to complete all the tasks. The
smoothed sarsa policy moves to the rightmost room first
because it recognizes that the probability of completing some
task is greatest there. It decides to do the second delivery task
since both the object and the person are in the same room. It
then completes the first task, moving across to the left room
just once. The total run time was 50 seconds for the sarsa
policy and 118 seconds for the manual policy.

In Figure 4, we show the mean performance of Smoothed
Sarsa and the manual policy against the number of deliv-
ery tasks. These numbers were averaged over 100 trials.
Smoothed Sarsa consistently performs better.

B. Robot

For our experiments we used a Pioneer mobile robot
with 3 sensors: a SICK laser rangefinder for localization, a
Swiss-ranger depth camera for person detection and a Ueye
vision camera for object recognition. We used PLAYER
[14] to control the robot. The person detector uses the
LASIK library [15] and objects are detected by matching
patterns imprinted on the object. The policy learned in
simulation was transferred to the robot with no modification
(the implementation of action primitives and the observation
model had to be changed). We tested the policy in an office
environment with the same map as in simulation. A video
of the robot executing the policy for 2 tasks is part of this
submission. Frames from this video are shown in Figure 7.
The environment is quite cluttered with other objects and
persons. People in these images are stationary for simplicity
but could be moving while the robot is operating. The robot
does not physically pick up and deliver objects but indicates
by beep sounds when it would execute such actions if it had
an actuator.

VI. RELATED WORK

There have been other attempts at high level planning
using POMDPs dealing with both noisy speech input and

2129

path planning. In particular, Pineau et al. [2] built a high
level control and dialog management system using a robot
and person location, person’s speech commands, and goals
(motion, reminders, information). They learnt a policy using
a hierarchical decomposition of POMDPs that asked for
confirmations to reduce uncertainty. However they made a
strong assumption that the domain possesses structure that
can be expressed via an action hierarchy. Schmidt-Rohr et
al. [16], [17] built a POMDP with 200 states and 11 actions
for a fetch and delivery task. However, their policy is manual
and not learnt. Spaan et al. [8] perform both localization and
path planning using POMDPs. They discretize a multiple
room environment into a 500 position grid and performs
an object delivery task within a group of static pickup
grid locations. However their policy does not consider the
interesting features of decision making that we do, and in
fact can be thought of as solving multiple path planning
problems.

The closest work in the reinforcement community to our
Smoothed Sarsa algorithm is by Walsh et al. [18] on learning
with delayed rewards, a setting where rewards are received
by the agent only after some delay.

VII. CONCLUSIONS

We have proposed a framework for learning task-level
decision making for robots. We make two contribution in
this paper. Our key contribution is the Smoothed Sarsa,
reinforcement learning algorithm, that delays the learning
step until better state estimates are obtained. Smoothed
Sarsa preserve convergence properties but with lower backup
variance and faster convergence times.

Secondly, we introduce the region-based particle filter
for tracking people and objects in the environment. The
algorithm emphasizes the accurate tracking of the discrete
region variables, which are more useful for decision making,
at the expense of precise positional estimates.

We plan to extend this work to tasks other than object
delivery, such as recycling and robot re-localization. The
same methods should apply with appropriate modifications
to the Q function representation. Currently the locations of
the regions and the transition model for entities are hard-
coded. We plan to explore how to learn them from clustering
real-world observations of people’s behaviour over time. We
also defer to future work a rigorous theoretical analysis of
Smoothed Sarsa’s convergence bounds.

ACKNOWLEDGMENTS

We wish to acknowledge Jongwoo Lim, Jiwoong Sim, and
Youding Zhu at the Honda Research Institute for help with
the object detector.

We thank Andrew Ng, Steve Gould, and Ian Goodfellow
from Stanford University for use of the LASIK library for
people detection. We also thank Eyal Amir and Shivaram
Kalyanakrishnan for useful discussions.

REFERENCES

[1] K. O. Arras and S. J. Vestli, “Hybrid, high-precision localization for
mail distribution mobile system robot mops,” in Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA),
May 1998.

[2] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun,
“Towards robotic assistants in nursing homes: Challenges and results,”
Special issue on Socially Interactive Robots, Robotics and Autonomous
Systems, vol. 42, no. 3-4, pp. 271–281, 2003.

[3] R. Sutton and A. Barto, Reinforcement Learning. MIT Press, 1998.
[4] G. A. Rummery and M. Niranjan, “On-line q-learning using connec-

tionist systems,” Cambridge University Engineering Dept., Tech. Rep.
CUED/F-INFENG/TR 166, 1994.

[5] G. Theocharous and L. P. Kaelbling, “Approximate planning in
POMDPs with macro-actions,” in Advances in Neural Information
Processing Systems 16 (NIPS), 2004.

[6] S. Koenig and R. Simmons, “Xavier: A robot navigation architecture
based on partially observable markov decision process models,” in Ar-
tificial Intelligence Based Mobile Robotics: Case Studies of Successful
Robot Systems, R. B. D. Kortenkamp and R. Murphy, Eds. MIT Press,
1998, pp. 91 – 122.

[7] R. Simmons and S. Koenig, “Probabilistic robot navigation in partially
observable environments,” in Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 1995, pp. 1080–1087.

[8] M. T. J. Spaan and N. Vlassis, “A point-based POMDP algorithm for
robot planning,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), April 2004.

[9] A. Y. Ng and M. Jordan, “PEGASUS: A policy search method for large
MDPs and POMDPs,” in Proceedings of the Sixteenth Conference in
Uncertainty in Artificial Intelligence (UAI), 2000.

[10] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A
factored solution to the simultaneous localization and mapping prob-
lem,” in Proceedings of the AAAI National Conference on Artificial
Intelligence, 2002.

[11] M. Bennewitz, W. Burgard, G. Cielniak, and S. Thrun, “Learning mo-
tion patterns of people for compliant robot motion,” The International
Journal of Robotics Research, vol. 24, no. 1, pp. 31–48, 2005.

[12] A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequential Monte Carlo
Methods in Practice. Springer, 2001.

[13] L. P. Kaelbling, M. Littman, and A. Cassandra, “Planning and acting
in partially observable stochastic domains,” Artificial Intelligence, vol.
101, pp. 99–134, 1998.

[14] B. P. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage
project: Tools for multi-robot and distributed sensor systems,” in
In Proceedings of the 11th International Conference on Advanced
Robotics, 2003, pp. 317–323.

[15] Goodfellow, Dreyfus, Gould, and Ng, “People detection in 3-
dimensions on STAIR,” 2008, unpublished Manuscript.

[16] S. R. Schmidt-Rohr, S. Knoop, M. Lsch, and R. Dillmann, “Reasoning
for a multi-modal service robot considering uncertainty in human-
robot interaction,” in Proceedings of the 3rd ACM/IEEE international
conference on Human robot interaction, 2008, pp. 249–254.

[17] S. R. Schmidt-Rohr, M. Losch, and R. Dillmann, “Human and
robot behavior modeling for probabilistic cognition of an autonomous
service robot,” in The 17th IEEE International Symposium on Robot
and Human Interactive Communication (RO-MAN), August 2008, pp.
635–640.

[18] T. J. Walsh, A. Nouri, and L. Li, “Planning and learning in environ-
ments with delayed feedback,” in In ECML-07, 2007, pp. 442–453.

2130

Fig. 5. Manual policy using Stage simulator. The top image in each frame is a snapshot from the simulator and the bottom is a visualization of the
robot’s belief state and current action. The line joining the robot to the region shows the region that the robot is moving to. Ordering from left to right
(best viewed in color). TOP ROW (a) Robot looking for the first object in the left room based on prior (b) first object not found but first person found (c)
Robot looking for the first object in right room (d) second object found. Robot next navigates to top part of room. BOTTOM ROW (e) First object found
and picked up. Robot navigating to first person in left room (f) After delivering first object, robot navigating to second object (g) Robot picks up second
object and navigates to second person in the right room (h) Second object delivered.

Fig. 6. Smoothed Sarsa policy using Stage simulator. The top image in each frame is a snapshot from the simulator and the bottom is a visualization of
the robot’s belief state and current action. The line joining the robot to the region shows the region that the robot is moving to. Ordering from left to right
(best viewed in color). TOP ROW (a) Robot going to right room to look for first object because it is closer and more regions are visible (b) Robot sees
second object and picks it up (c) Second object is being delivered to the second person BOTTOM ROW (d) Robot moving to the first object in the same
right room (e) Robot looking for first person in the left room (f) First object delivered.

2131

Fig. 7. Smoothed Sarsa policy on a Pioneer Robot. The line joining the robot to the region shows the region that the robot is moving to. Ordering from
left to right (best viewed in color). TOP ROW (a) Robot going to left room to look for object (b) Robot looking at a different region for object (c) Robot
finds the first object in the corner of the left room SECOND ROW (d) First object picked up (e) Robot navigating to the first person (f) First person as
seen through the glass THIRD ROW (g) First object delivered to the first person. (h) Robot looking for the second object (i) Robot navigating to the
second object. FOURTH ROW (j) Robot picks the second object and looks for second person in the right room (k) Robot navigating to person in the
second room (l) Robot delivered second object to second person.

2132

