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A computer program 
that creates new but 

stylistically 
recognizable music 
from existing works 

offers insights into the 
elusive phenomenon of 

musical style. 

Style 

or centuries, composers have experimented with recombining existing 
music to create new but stylistically satisfying works. For instance, Haydn 
and Mozart wrote Musikalisches Wurfelspiel, or musical dice games, pieces 

that could be reassembled in many different ways and remain musically viable. 
Thus, even a very simple piece would become the source of numerous new works, 
each of which, while varying in aesthetic quality, conformed generally to  the style 
of the source. 

Mo7art.s Kochel S16f is a particularly good example. It consists of two 8 by 11 
matrices containing the numbers 1 through 176 (2 x 8 x 1 2 ) .  The number 8 repre- 
sents the measures of eight-bar phrases (traditional classical-period forms). and 
the number 1 1  represents all possible outcomes of the throws of two dice. These 
numbers are then keyed to  176 measures of music. According to N = DR, where R 
= rank and D = vertical dimension, this allows for 45,949,729,863,572,161 possible 
correct combinations. 

The composer$ devising these games knew the style of their period intimately 
and applied that knowledge and their own ingenuity to  these experiments. The 
word style in this context refers to musical properties characteristic of a particular 
historical-artistic period (in this case, classical), a geographical location (Vienna), 
an instrument (keyboard), and the composer’s personal musical habits (recogniz- 
able musical motives, for instance). 

This article delineates some of the elements of musical style I discovered in a 
research project called Experiments in Musical Intelligence (EMI). One  subpro- 
gram of EM1 is an expert system that employs pattern recognition processes to 
create recombinant music - music written in  the styles of various composers by 
means of a contextual recombination of elements in the music of those composers. 

This EM1 subprogram performs much the same task as the musical dice games 
on music that was not written to be disassembled, reorganized, and reassembled. 
I t  separates and analyzes musical pitches and durations and then mixes and 
recombines the patterns of those pitches and durations so that, while each new 
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composition is different, it sub- 
stantially conforms to  the style of 
the original. The new works gen- 
erally inherit aspects of the style 
of the period and, to  a lesser de- 
gree, the style of the composer of 
the recombined works. Called re- 
combinant music, this is not just a 
parlor game but a serious attempt 
to understand how listeners rec- 
ognize the style of a composer or 
period. one of the more elusive 
and difficult to describe musical 
phenomena. 

The problems 

The fundamental problems in 
building a program to produce 
effective recombinant music are 

(1) into what size should the 
elements of the original music be 
disassembled, 

(2) what method should be used 
to rearrange these elements, and 

(3) how these elements should 
be reassembled to make musical 
sense. 

After all, random recombination 
produces chaotic results, as shown 
in Figures 1 and 2. Figure 1 pre- 
sents two examples of music from 
Mozart’s sonatas. Figure 2 is a ran- 
dom recombination of the beats of 
Figure 1. showing the source of 
each reorganized beat by work (A 
or B), measure number, and beat 
number within that measure. 

The new composition is musi- 
cal gibberish, as can be seen (and 
heard. if played) in Figure 2. Nei- 
ther the common practice of 
Mozart’s period nor his own style 
has survived the recombination. 
One  reason for this is that Mozart 
did not compose these phrases as 
a musical dice game. Furthermore, 
the disassembly and recombina- 
tion were done unintelligently and 
unmusically. Important questions 
about the size of the musical ele- 
ments (one beat in Figure 2) and 
whether harmony and melody 
should be taken together or sepa- 
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‘igure 1. From (a) Mozart’s Sonata K. 283, second movement (1774); (b) Mozart’s 

Sonata K. 330, third movement (1778). 

A 1 . l  A2.2 87.1 A1.4 86.1 A2.3 81.2 86.1 

I 
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B5.1 A2.4 A4.3 81.2 85.2 A2.2 64.4 

Figure 2. Random recombinant music and its analysis. “A” here refers to Figure la,  
“B” to Figure lb; the numbers represent the location, first by the measure number 
and then by the beat number. 

rately were ignored, as was the repeti- 
tion of the first two measures of each 
example Of Figure (In both with 
variation). Nor was attention paid to 
the manner in which the reorganized 
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‘igure 3. From Mozart’s Sonata K. 279, first movement (1774). 
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Figure 4. Two versions of a Mozart 
signature from (a) K. 330 and (b) K. 
547a. 

material was reconnected. For exam- 
ple, the harmonic progressions of Fig- 
ures 1 a and 1 b have been mutilated and 
no longer f i t  Mozart’s or his period’s 
stylistic constraints. 

Obviously,  g rea t  care  must  be  
taken in disassembling the original 
works. analyzing the various constit- 
uent parts. and reassembling the parts 
in a new, but musically valid, order. 
The EM1 subprogram accomplishes 
this i n  three steps: 

(1) pattern matching for characteris- 
tics of the composer’s style, 

(2) analyzing each component for its 
deep hierarchical musical function, and 

(3) reassembling the parts sensitive- 
ly with a technique drawn from natural- 
language processing. 

Pattern matching 

When listening to a piece of music for 
the first time, one usually can detect 
previously heard patterns even though 
the music is generally new to the ears. 
The example in Figure 3 shows how the 
presence of certain patterns can aid in 
style recognition. I t  demonstrates  
Mozart’s typical use of the Alberti bass, 
the repeated four-note structure in the 
left hand. The right hand demonstrates 
a more subtle trait: the leap to  the lower 
chromatic nonharmonic tones C-sharp 
and D-sharp from the second to third 
beats of the first and second measures 
respectively. 

The musical logic of these two pat- 
terns (called signatures in EMI), along 
with the harmonic progression and the 
melodic sequence (the second measure 
being a repetition of the first, up one 
step with one subtle variation), com- 
bine to create an elegant bit of recogniz- 
able Mozartian craftsmanship. The 
constraints of the composer’s period 
and the signatures of his personal style 
are both evident and abundant. 

If a recombinant compositional pro- 
cess is to be successful, it must ensure 
that the signatures survive the recon- 
structive process in a recognizable form 
and in an appropriate context. There- 
fore, the program controlling the disas- 
sembly of the original composition must 
determine the appropriate size of the 
signatures as well as recognizing the 
signatures themselves. The recombina- 
tion must also be contextually sensitive. 
Signatures must be locationally depen- 
dent and immutable to the extent that 
all intervallic relationships remain in- 
tact. They must, however, be transpos- 
able so that they reconnect in a variety 
of logical and musical ways. 

The first problem inherent in recom- 
binant music, defining a logical sampling 
size, is a complex process. In Mozart’s 
and Haydn’s musical dice games, each 
sample was usually a measure or two 
that began and ended in ways that al- 
lowed successful connection with other 
measures in the work. But how long 
should the samples be in the more com- 
plex recombinant process undertaken 
by the EM1 subprogram described here? 
One way of determining this involves 
pattern matching. 

Musical pattern matching entails the 
discovery of musical patterns, particu- 
larly those that occur in more than one 
work of a composer and are hence rec- 
ognizable as important elements of the 
composer’s style. This requires a pro- 
gram that not only recognizes that two 
patterns are exactly the same, a fairly 
trivial feat, but also that two patterns 
are almost the same. 

The EM1 subprogram accomplishes 
musical pattern matching by means of 
controllers that define how closely a 
pattern must resemble another for it to 
register as a match. If we resolve these 
controllers too narrowly, the patterns 
that are one aspect of a composer’s style 
will not pass. If we resolve the controllers 
too broadly, elements that arenot patterns 
identifying a composer’s style will be 
allowed to pass. If we set these control- 
lers correctly, only signatures will pass. 

Figure 3 shows a simple example of 
pattern matching to  find signatures. 
Imagine that these two measures of mu- 
sic have been foundin two different works 
rather than in the same work and that a 
pattern-matching program is attempting 
to determine whether they constitute a 
signature. It is improbable that a nonmu- 
sical pattern matcher would find these 
two measures very similar except in 
rhythm. They share less than 50 percent 
ofcommonpitches(thatis,[CCBCEC- 
sharp D] [D C-sharp D F D-sharp E]), 
with none of these falling in the same 
location with respect to associated beats 
within the measures. One measure has 
fewer notes than the other. But to our 
ears, they are easily identifiable as sim- 
ple variations of the same pattern. 

What we need is a musical pattern 
matcher that can reduce the patterns to  
similar organizations. The EM1 sub- 
program does this by reducing pitches 
to intervals. In the first case, the distances 
between notes in the patterns are calcu- 
lated in half steps, giving [0 -1 1 4 -3 11 
for the first measure and [0 -1 1 3 -2 11 
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for the second measure with rests 
represented by zero. Notice that 
the intervals immediately show 
the similarity of the two patterns 
in both direction and amount of 
motion. 

A single controller that deter- 
mines interval accuracy proves 
the patterns to  be musically alike 
enough to be a signature. By al- 
lowing, for example, any interval 
to be off by just one half step in 
either direction, the controller 
enables the program to recognize 
the musical similarity of the pat- 
terns. Such a variation, by the 
way, is very common in tonal 
music, where composers, in order 
to  remain within a diatonic 
framework when sequencing, of- 
ten substitute whole steps for half 
steps and vice versa. Thus, an al- 
lowance for these variations helps 
the pattern matcher find musical 
similarities. 

My research has shown that 
these signatures are typically two 
or more beats in length and occur 
near the ends or  cadences of 
musical phrases. They are thus 
locationally dependent and size 
specific. Apparently, most tonal 
composers tended to write more 
freely a t  the beginnings of 
phrases and to end with style- 
identifying signatures. Figure 4 
shows two versions of a Mozart 
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cadential signature with choice of key, 
number of notes, and type of accompa- 
niment as variations. The intervallic 
movement of the melodies of both ex- 
amples is exactly the same, with varia- 
tions in the rhythm. The harmony is 
likewise the same functionally, although 
there are discrepancies in the voicing 
and doubling. 

Figure 5 shows two complete phrases 
from the same Mozart sonatas given in 
Figure 1, with signatures shown in boxes. 
The harmonic signatures are labeled “S,” 
with “AM” standing for accompaniment 
motives and “MM” for melodic motives. 
The latter two matching elements com- 
prise a pattern-matching subprogram that 
gives the analysis portion of the program 
information about the dominating me- 
lodic and accompaniment models. Ob- 
serve that the cadential signature in Fig- 
ure 5b is the one shown in Figure 4a and 
that the melodic part of the signature in 
Figure 5a resembles the melodies shown 
in Figure 4. 

Figure 5. Some characteristics of the Mozart excerpts shown in Figure 1. 

The two musical examples shown in 
Figure 5 (that is, the music of Figure 1) 
have very much in common. This is crit- 
ical to  the pattern-matching process just 
described. The compositions chosen for 
EM1 must be reasonably similar, in- 
cluding key and meter. The last catego- 
ry is particularly important. For exam- 
ple, imagine a single work written first 
in quarter notes with the metronome 
set at the quarter note equal to 60 (one 
quarter note per second) and then re- 
written in eighth notes with the metro- 
nome set at the quarter note equal to 30 
(one eighth note per second). Perfor- 
mances of both pieces would sound the 
same. Yet, they would look and analyze 
very differently, particularly if the pro- 
gram being used assumed certain beat 
constraints were in effect. Thus, entered 
music must be coerced to  look the same, 
in both musical and numerical nota- 
tions. 

Once EM1 discovers signatures, it 
freezes them to their location and then 

protects them during recomposition. 
Without this protection, signatures 
would get lost in a Pandora’s box of 
confused musical ideas. Once signatures 
are frozen, the remainder of the music is 
fragmented fairly freely in size, since at 
this stage the idea is to  create a new 
instance of the composer’s style, with 
the original works being unrecogniz- 
able. 

Hier arc hical analysis 
Successful recombinant music must 

retain the musical logic inherent in the 
original works upon which it  is based. 
Therefore, the program at this point 
analyzes all the musical groupings, in- 
cluding signatures, for hierarchical 
function. In the initial stages, this anal- 
ysis is a traditional analysis of harmonic 
function, using functional categories 
theorists call “tonic” or I (C triad in C 
major), “dominant” or V (G triad in C 
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major), and so on. The analysis is made 
prior to the mixing of groupings, be- 
cause the protocol, or ordering of func- 
tions, is critical to the reorganizing of 
groupings. When mixing does take place, 
it follows the form of a fixed sequence 
of functions with free substitution of 
the actual music the functions repre- 
sent. Thus, the tonic function remains 
in the same location in the new work, 
but it can exchange music with other 
analyzed music of that same function 
(that is, other tonics). Again, signatures 
do not move nor can they be replaced. 

The hierarchical analysis can be quite 
deep. That is, fragments can be keyed 
by s t ra ta  of information,  such as 
“cadence-tonic” or “tonic-6-incipient ,” 
which indicate the original location and 
nuance of function. With a large num- 
ber of works for analysis, the program 
can choose from hundreds of different 
categories, each with numerous musi- 
cal subphrases, so that successive parts 
of the new work can be musically tied 
together and not just randomly cho- 
sen. 

The program also must analyze the 
original works for proper connective- 
ness before the elements of the music 
are fragmented and mixed. This analy- 
sis falls into three main categories: 

melody 
accompaniment 
harmony 

Rising melodies, for example, can be 
followed by falling ones for balance. 
Accompaniments, which otherwise 
would be a pastiche of various motives, 
can be made rhythmically consistent so 
that they flow regularly with the me- 
lodic line. Harmonies can be success- 
fully juxtaposed according to  the tradi- 
tions of the tonal common practice. 
Harmonic analysis includes measuring 
the strength of chord functions so that 
stronger cadences can be saved for the 
last chord of new works. This measure- 
ment also produces contextual connec- 
tivity so that each fragment is spliced 
into a logical location. 

We can see how EMI’s hierarchical 
analysis works by analyzing the various 
beats in Figures Sa and Sb and per- 
forming some basic steps to enhance 
the relationships. Both of these sonatas 
begin on a tonic chord that can be in- 
terchanged successfully with the appli- 
cation of musical transposition to  the 
left hand (that is, moving Figure Sb, 

measure 1, up one octave). Figure 5a, 
measure 1, beats 3 and 4 are dominant 
in function and either could be substi- 
tuted for the dominant of Figure 5b, 
measure 2, beat 2, with no ill effects and 
no transposition necessary. Likewise, 
the first two beats of Figure 5a, measure 
1, could be interchanged with the first 
two beats of measure 1 of Figure Sb with 
no damage. On the other hand, taking 
the second bar of Figure 5b and inter- 
changing it with the first two beats of 
Figure 5a would cause serious problems. 
Not only do the functions not match, 
but beginning the work on an unprepared 
dissonance would be stylistically un- 
characteristic. 

Also notice in Figures 5a and 5b that 
the program separates harmony (accom- 
paniment) from melody with nonsigna- 
tures. The separation occurs after the 
hierarchical function analysis, howev- 
er, so that melodic groupings retain their 
harmonic implications. This is very im- 
portant for the reassembling process. 

Since music often contains structural 
repeats at various levels, analysis of the 
substructural repeats in the original mu- 
sic must occur at this point in the process. 
For this analysis, the EM1 program uses 
a pattern matcher similar to the one de- 
scribed earlier but with a different func- 
tion. This pattern matcher informs the 
reassembly part of the program as to 
where internal (to the phrase) repeats 
take place so that similar repeats can 
take place in the final output. 

Once all elements of the music have 
been analyzed, harmonic functions of 
the same type are  stored together in 
lexicons and randomly mixed ( the 
shaking of the dice). Access to  each 
lexicon is then control led by the 
functional succession of one of the 
original works, as described in the 
next section. 

Reassembling 
according to the ATN 

The refitting of juxtaposed elements 
of a work back into logical and musical 
orders can be enhanced by using aug- 
mented transition networks (ATNs), a 
technique developed by researchers in 
natural-language processing. ATNs are 
programs designed to produce logical 
sentences from sentence bits and pieces 
that have been stored according to 
sentence function. These parts are reused 

to produce correct sentences in various 
forms with basically the same meaning. 
For example, “The prognosis for Jill is 
good” and “Jill has an excellent possi- 
bility of recovery” say the same thing in 
different ways. ATNs are typically used 
in computer applications in which vari- 
ation in the form, but not the substance, 
of the output (for example, medical 
prognosis) facilitates communication. 
ATNs can be applied to the recombinant 
music problem in much the same way as 
to language: analyze and store musical 
elements and then reuse them in com- 
positions that vary but have essentially 
the same musical meaning (variations 
within a set style). 

In  EMI, the ATN initially takes the 
form of an organizer. It first takes the 
set of functions from the analysis of one 
of the works being used. For example, 
one possible analysis of the first three 
beats of Figure l a  is “tonic-Alberti- 
repeat, tonic-6-Alberti-repeat, dominant- 
Alberti-up,” and so on. The ATN then 
uses this analysis as a template for cre- 
ating a new work by gathering applica- 
ble groupings of music from collections 
stored previously by the analysis por- 
tion of the program. For example, ex- 
actly the same “tonic-Alberti-repeat” 
given above could be logically chosen. 
The chance of that happening obviously 
depends on the amount of analyzed 
music available - the larger the amount, 
the greater the chance for variety. This 
process is very similar to  the ATN lan- 
guage model upon which the EM1 sub- 
program is based. 

When the organizing is complete, 
EMI’s ATN then becomes a smoother 
of transitions. Musical lines that previ- 
ously had been stepwise must again be 
made so. The ATN does this by diatonic 
transposition. In layman’s terms, the 
ATN fixes the positions of the notes 
according to the key of the work in as 
close a proximity to  those that precede 
and follow them as was found by the 
analysis of the original works. For Mozart 
this proximity is seconds and thirds. Ac- 
companiment figures usually adapt by 
octave transposition to fit the local range 
of the music, since the type of figure is 
determined by the setting of the function 
types (for example, the use of Alberti in 
the naming and storing of hierarchical 
function). In  addition, melodies and 
harmonies previously located elsewhere 
may require refitting so that they don’t 
overlap in range or uncharacteristically 
fall out of proximity. 
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Examples of output 

Combining the concepts of pat- 
tern matching, hierarchical anal- 
ysis, and ATN gives us a process 
that can create new examples of a 
given style. Figure 6 shows a ma- 
chine replication with one possi- 
ble analysis of this replication (the 
program itself is sufficiently com- 
plicated to  make the determina- 
tion of the origins of these seg- 
ments in the original music difficult 
at best). Note that the music here 
is logical and even musical to  a 
degree. The opening motiveseems 
balanced by direction, with the 
two two-beat groupings in the 
melody of the first measure act- 
ing in typical classical-period an- 
tecedent-consequent motions. 
The cadential signature is a real 

I 
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signal of Mozart’s style. In typical fash- 
ion, it is just over two beats in length. 
Transposition is fairly routine, while vari- 
ation is used only sparingly. The repeti- 
tion of bar 1 in bar 3 contributes to stylis- 
tic recognition. This EM1 subprogram 
achieves such repetition by means of the 
previously discussed analysis of the orig- 
inal music. which indicates how much 
repetition should occur in the output. 

The signature presented in Figure 3. 
that of the lower chromatic neighboring 
tone, appears transposed in the recom- 
binant example shown in Figure 7, mea- 
sures 2 and 4, an EMI-composed theme. 
This example is sparse (two voices) and 
simple (mostly scales). Yet, it has many 
Mozartian traits. For example, the har- 
monic rhythm moves by measure. The 
harmonic functions follow a straightfor- 
ward I-V-V-I-I-ii-V-I order typical of 
Mozart’s style. 

The music shown in Figure 7, the re- 
sult of EM1 pattern matching, hierarchi- 
cal analysis. and ATN recombination of 
all the Mozart sonata third movements, 
demonstrates the composer’s subtle 
implied harmonies and voicing. By the 
time all the computational processes have 
taken place, it is virtually impossible, 
save for the obvious signatures, to  abso- 
lutely identify the origin of each ele- 
ment. I prescribed the form (that is, the 
amount and location of phrase repeti- 
tion and contrast), and the key choice 
was random. However, the important 
ideas, signatures, and the harmonic pro- 
tocol were formed completely by the 
recombinant processes described here. 

__ 
Figure 
~ ~ ~ ~ . ~ ~ _ _ . _ _ _ - _ _ _ - A  

6. EMI’s recombination of segments in Figure 5, with signature (B7.1) and 
I 

suggested sources (t = transposition; v = variation). 

16 17 

Figure 7. The beginning of an EMI-Mozart sonata movement. 

usical style is a very compli- tures, while sensitively reorganizing oth- 
cated phenomenon. Recog- er elements of the music, allows for the M nizing a particular style is creation of new music with recogniz- 

linked, at least in part, to the presence ably the same style as the original. Sim- 
of fundamental musical signatures in a ilar experiments with the music of Bach, 
composer’s work. Reusing such signa- Joplin, Chopin, Gershwin, and many 
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others seem to  verify the results reported here (see Cope, 
1991, in the “Further reading” section). 

Works produced by this EM1 subprogram still suffer from 
problems of stylistic anomalies. Future research will aim at 
eliminating such anomalies by enhancing the hierarchical anal- 
ysis program. In  addition. dynamics and phrasing will become 
a part of the matching processes, refining the program substan- 
tially. If EM1 has been moderately successful at creating new 
music in established styles. it is due in no small part to the music 
incorporated for recombination. In short, EM1 has had great 
teachers: the classical masters themselves. W 
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