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Course Description 
Digital photography is evolving rapidly with advances in electronic sensing, processing 
and storage. The emerging field of computational photography attempts to exploit the 
cheaper and faster computing to overcome the physical limitations of a camera, such as 
dynamic range, resolution or depth of field, and extend the possible range of 
applications. The computational techniques encompass methods from modification of 
imaging parameters during capture to modern image reconstruction methods from the 
captured samples. 
 
Many ideas in computational photography are still relatively new to digital artists and 
programmers although they are familiar with photography and image manipulation 
techniques. A larger problem is that a multi-disciplinary field that combines ideas from 
computational methods and modern digital photography involves a steep learning curve. 
For example photographers are not always familiar with advanced algorithms now 
emerging to capture high dynamic range images, but image processing researchers 
face difficulty in understanding the capture and noise issues in digital cameras. These 
topics, however, can be easily learned without extensive background. The goal of this 
course is to present both aspects in a compact form. 
 
The new capture methods include sophisticated sensors, electromechanical actuators 
and on-board processing. Examples include adaptation to sensed scene depth and 
illumination, taking multiple pictures by varying camera parameters or actively modifying 
the flash illumination parameters. A class of modern reconstruction methods is 
emerging. The methods can achieve a ‘photomontage’ by optimally fusing information 
from multiple images, improve signal to noise ratio and extract scene features such as 
depth edges. The course briefly reviews fundamental topics in digital imaging and then 
provides a practical guide to underlying techniques beyond image processing such as 
gradient domain operations, graph cuts, bilateral filters and optimizations. 
 
The participants learn about topics in image capture and manipulation methods for 
generating compelling pictures for computer graphics and for extracting scene 
properties for computer vision, with several examples. We hope to provide enough 
fundamentals to satisfy the technical specialist without intimidating the curious graphics 
researcher interested in photography. 

 

Prerequisites  
A basic understanding of camera operation and image processing is required. 
Familiarity with concepts of linear systems, convolution, and machine vision will be 
useful.  
 
Photographers, digital artists, image processing programmers and vision researchers 
using or building applications for digital cameras or images will learn about camera 
fundamentals and powerful computational tools, along with many real world examples. 



iv 

 

 

Course Schedule 
A.1 Introduction (Raskar, 5 mins) 
A.2 Concepts in Computational Photography  (Tumblin, 15 mins) 
A.3 Understanding Film-like Photography  (Tumblin, 10 mins) 
A.4 Image Processing Tools  (Raskar, 10 mins) 
 Q&A (5 minutes)  
   
B.1 Image Reconstruction Techniques  (Tumblin, 20 mins) 
B.2 Computational Camera : Convergence of Optics and Software  (Nayar, 35 minutes) 
 Q&A  (5 minutes) 
 Break (15 mins)  
   
C.1 Computational Imaging in the Sciences  (Levoy, 35 minutes) 
 Q&A  (5 minutes) 
   
D.1 Computational Illumination  (Raskar, 15 mins) 
D.2 Smart Optics, Modern Sensors and Future Cameras  (Raskar, 20 mins) 
   
E.1 Panel Discussion and Q&A  (Nayar, Levoy, 

Raskar, Tumblin 30 
mins) 

 
 
Topics not covered: film cameras, advanced optics, traditional image processing, image based 
rendering (IBR) and novel view synthesis, lighting and illumination hardware technologies, 
camera assisted projector display systems, geometric calibration and photometric calibration 
techniques, compression, storage, photo-editing software packages, file formats and standards. 
 
 

 

Course Web Page  http://www.merl.com/people/raskar/photo/ 
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cartoon animation system.  In the 1980's Levoy worked on volume rendering, 
a family of techniques for displaying sampled three-dimensional functions, 
such as CT and MR data.  In the 1990's he worked on technology and 
algorithms for 3D scanning.  This led to the Digital Michelangelo Project, in 
which he and a team of researchers spent a year in Italy digitizing the statues 
of Michelangelo using laser rangefinders.  His current interests include light 
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Course 15: Computational PhotographyCourse 15: Computational Photography
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Mitsubishi Electric Research Labs
Jack Tumblin
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Course 15: Computational PhotographyCourse 15: Computational Photography
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WelcomeWelcome

•• Understanding FilmUnderstanding Film--like Photographylike Photography

–– Parameters, Nonlinearities, RayParameters, Nonlinearities, Ray--based conceptsbased concepts

•• Image Processing and Reconstruction ToolsImage Processing and Reconstruction Tools
–– MultiMulti--image Fusion, Gradient domain, Graph Cutsimage Fusion, Gradient domain, Graph Cuts

•• Improving Camera PerformanceImproving Camera Performance
–– Better dynamic range, focus, frame rate, resolutionBetter dynamic range, focus, frame rate, resolution

•• Future DirectionsFuture Directions
–– HDR cameras, Gradient sensing, Smart optics/lightingHDR cameras, Gradient sensing, Smart optics/lighting

Speaker: Marc Speaker: Marc LevoyLevoy

Marc Levoy is an Associate Professor of Computer Science and 
Electrical Engineering at Stanford University.  

He received his PhD in Computer Science from the University of 
North Carolina in 1989.  In the 1970's Levoy worked on computer 
animation, developing an early computer-assisted cartoon animation 
system.  In the 1980's Levoy worked on volume rendering, a family 
of techniques for displaying sampled three-dimensional functions, 
such as CT and MR data.  In the 1990's he worked on technology 
and algorithms for 3D scanning.  This led to the Digital Michelangelo 
Project, in which he and a team of researchers spent a year in Italy 
digitizing the statues of Michelangelo using laser rangefinders. His 
current interests include light field sensing and display, 
computational imaging, and digital photography.  Levoy received the 
NSF Presidential Young Investigator Award in 1991 and the 
SIGGRAPH Computer Graphics Achievement Award in 1996 for his 
work in volume rendering.

http://graphics.stanford.edu/~levoy/

Speaker:   Speaker:   ShreeShree NayarNayar

Shree K. Nayar is a Professor at Columbia University.

He received his PhD degree in Electrical and Computer 
Engineering from the Robotics Institute at Carnegie Mellon 
University in 1990. He heads the Columbia Automated Vision 
Environment (CAVE), which is dedicated to the development of 
advanced computer vision systems. His research is focused on 
three areas; the creation of novel vision sensors, the design of
physics based models for vision, and the development of 
algorithms for scene understanding. His work is motivated by 
applications in the fields of digital imaging, computer graphics, 
and robotics. Professor Nayar has received best paper awards 
at ICCV 1990, ICPR 1994, CVPR 1994, ICCV 1995, CVPR 
2000 and CVPR 2004. He is the recipient of the David and 
Lucile Packard Fellowship (1992), the National Young 
Investigator Award (1993), the NTT Distinguished Scientific 
Achievement Award (1994), and the Keck Foundation Award 
for Excellence in Teaching (1995). He has published over 100 
scientific papers and has several patents on inventions related 
to vision and robotics.

http://www.cs.columbia.edu/~nayar/

Speaker:   Ramesh RaskarSpeaker:   Ramesh Raskar

Ramesh Raskar is a Senior Research Scientist at MERL. 

His research interests include projector-based graphics, 
computational photography and non-photorealistic rendering. 
He has published several articles on imaging and photography 
including multi-flash photography for depth edge detection, 
image fusion, gradient-domain imaging and projector-camera 
systems. His papers have appeared in SIGGRAPH, 
EuroGraphics, IEEE Visualization, CVPR and many other 
graphics and vision conferences. He was a course organizer at 
Siggraph 2002 through 2005. He was the panel organizer at 
the Symposium on Computational Photography and Video in 
Cambridge, MA in May 2005 and taught a graduate level class 
on Computational Photography at Northeastern University, Fall 
2005. He is a member of the ACM and IEEE.

http://www.merl.com/people/raskar/raskar.html 
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Speaker:   Jack TumblinSpeaker:   Jack Tumblin

Jack Tumblin is an Assistant Professor of Computer 
Science at Northwestern University.  

His interests include novel photographic sensors to assist 
museum curators in historical preservation, computer graphics 
and visual appearance, and image-based modeling and 
rendering. During his doctoral studies at Georgia Tech and 
post-doc at Cornell, he investigated tone-mapping methods to 
depict high-contrast scenes. His MS in Electrical Engineering 
(December 1990) and BSEE (1978), also from Georgia Tech, 
bracketed his work as co-founder of IVEX Corp., (>45 people 
as of 1990) where his flight simulator design work was granted 
5 US Patents.  He is an Associate Editor of ACM Transactions 
on Graphics, was a member of the SIGGRAPH Papers 
Committee (2003, 2004), and in 2001 was a Guest Editor of 
IEEE Computer Graphics and Applications.

http://www.cs.northwestern.edu/~jet

OpportunitiesOpportunities
–– Unlocking PhotographyUnlocking Photography

•• How to expand camera capabilitiesHow to expand camera capabilities
•• Digital photography that goes beyond filmDigital photography that goes beyond film--like photographylike photography

–– OpportunitiesOpportunities
•• Computing corrects for lens, sensor and lighting limitationsComputing corrects for lens, sensor and lighting limitations
•• Computing merges results from multiple imagesComputing merges results from multiple images
•• Computing reconstructs from coded image samplesComputing reconstructs from coded image samples
•• Cameras benefit from computerized light sourcesCameras benefit from computerized light sources

–– Think beyond postThink beyond post--capture image processingcapture image processing
•• Computation well before image processing and editing Computation well before image processing and editing 

–– Learn how to build your own cameraLearn how to build your own camera--toystoys

Traditional  PhotographyTraditional  Photography

Lens

Detector

Pixels

Image

Computational  PhotographyComputational  Photography: : 
Optics, Sensors and ComputationsOptics, Sensors and Computations

Generalized
Sensor

Generalized
Optics

Computations

Picture

4D Ray Bender
Upto 4D 

Ray Sampler

Ray Reconstruction

Computational PhotographyComputational Photography

Novel Cameras
Generalized
Sensor

Generalized
Optics

Processing

Computational PhotographyComputational Photography Novel Illumination

Novel Cameras
Generalized
Sensor

Generalized
Optics

Processing

Light Sources
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Computational PhotographyComputational Photography Novel Illumination

Novel Cameras

Scene: 8D Ray Modulator

Generalized
Sensor

Generalized
Optics

Processing

Light Sources

Computational PhotographyComputational Photography Novel Illumination

Novel Cameras

Scene: 8D Ray Modulator

Display

Generalized
Sensor

Generalized
Optics

Processing

Recreate 4D Lightfield

Light Sources

Computational PhotographyComputational Photography Novel Illumination

Novel Cameras

Scene: 8D Ray Modulator

Display

Generalized
Sensor

Generalized
Optics

Processing

4D Ray Bender
Upto 4D 

Ray Sampler

Ray 
Reconstruction

Generalized
Optics

Recreate 4D Lightfield

Light Sources

Modulators

4D Incident Lighting

4D Light Field

A Teaser: Dual PhotographyA Teaser: Dual Photography

Scene

PhotocellProjector

A Teaser: Dual PhotographyA Teaser: Dual Photography

Scene

PhotocellProjector

A Teaser: Dual PhotographyA Teaser: Dual Photography

Scene

PhotocellProjector
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A Teaser: Dual PhotographyA Teaser: Dual Photography

Scene

PhotocellProjector Camera camera

The 4D transport matrix:The 4D transport matrix:
Contribution of each projector pixel to each camera pixelContribution of each projector pixel to each camera pixel

scene

projector

camera

The 4D transport matrix:The 4D transport matrix:
Contribution of each projector pixel to each camera pixelContribution of each projector pixel to each camera pixel

scene

projector

SenSen et al, Siggraph 2005et al, Siggraph 2005

camera

The 4D transport matrix:The 4D transport matrix:
Which projector pixel contribute to each camera pixelWhich projector pixel contribute to each camera pixel

scene

projector

SenSen et al, Siggraph 2005et al, Siggraph 2005

??

Dual photographyDual photography
from diffuse reflectionsfrom diffuse reflections

the camera’s view
SenSen et al, Siggraph 2005et al, Siggraph 2005

Camera Obscura,  Gemma Frisius, 1558

1558A Brief History of Images
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Lens Based Camera Obscura, 1568

1558
1568

A Brief History of Images

Still Life, Louis Jaques Mande Daguerre, 1837

1558

1837

1568
A Brief History of Images

Silicon Image Detector,  1970

1558

1837

1568

1970

A Brief History of Images 1558

1837

1568

1970
1994

A Brief History of Images

Digital Cameras

Dream of A New PhotographyDream of A New Photography

Old New
• People and Time ~Cheap        Precious
• Each photo Precious       Free
• Lighting Critical Automated*
• External Sensors No Yes
• ‘Stills / Video’ Disjoint Merged

• Exposure Settings Pre-select    Post-Process
• Exposure Time Pre-select    Post-Process
• Resolution/noise  Pre-select    Post-Process
• ‘HDR’ range Pre-select    Post-Process
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Course: Computational PhotographyCourse: Computational Photography

Jack Tumblin
Northwestern University

A2:A2:
What is the Ideal What is the Ideal 

Photographic Signal?Photographic Signal?

What What isis Photography?Photography?

Safe answer:Safe answer:

A wholly new,A wholly new,
expressive medium expressive medium 
(ca. 1830s)(ca. 1830s)

•• Manipulated display of what we think, feel, want, …Manipulated display of what we think, feel, want, …
–– Capture a memory, a visual experience in tangible formCapture a memory, a visual experience in tangible form
–– ‘painting with light’; express the subject’s visual essence‘painting with light’; express the subject’s visual essence
–– “Exactitude is not the truth.“Exactitude is not the truth.” ” ––Henri MatisseHenri Matisse
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What What isis Photography?Photography?
•• A ‘bucket’ word: a neat container for messy notionsA ‘bucket’ word: a neat container for messy notions

(e.g.  aviation, music, comprehension)(e.g.  aviation, music, comprehension)

•• A record of what we see,A record of what we see,
or would like to see,or would like to see,
in tangible form.in tangible form.

•• Does photography Does photography 
always capture it?   always capture it?   no.

•• So, what do we see?So, what do we see?
Harold ‘Doc’ Edgerton 1936Harold ‘Doc’ Edgerton 1936

‘‘FilmFilm--Like’ PhotographyLike’ Photography

Film Camera designs still dominate:Film Camera designs still dominate:
–– ‘Instantaneous’ light measurement…‘Instantaneous’ light measurement…
–– Of focal plane image behind a lens.Of focal plane image behind a lens.
–– Reproduce those amounts of light;Reproduce those amounts of light;
–– EXACT MATCH!EXACT MATCH!

Implied:Implied:
““What we see is What we see is ≅≅

focalfocal--plane intensities.plane intensities.””
well, nowell, no……
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DisplayDisplay
RGB(x,y,tRGB(x,y,tnn))

ImageImage
I(x,y,I(x,y,λλ,t),t)

Light &Light &
OpticsOptics3D Scene3D Scene

light sources,
BRDFs,
shapes,

positions,
movements,

…
EyepointEyepoint

position, 
movement,
projection,

…

PHYSICALPHYSICAL PERCEIVEDPERCEIVED

Why we like PhotographyWhy we like Photography

Exposure Exposure 
Control,Control,

tone maptone map
SceneScene
light sources,
BRDFs,
shapes,
positions,
movements,
…
EyepointEyepoint
position, 
movement,
projection,
…

V
is

io
n

V
is

io
n

Tangible RecordTangible Record
Editable, storable asEditable, storable as

Film or PixelsFilm or Pixels

What’s Beyond FilmWhat’s Beyond Film--Like Photography?Like Photography?

Thought Experiment:Thought Experiment:
SideSide--byby--side digital camera & film camera.side digital camera & film camera.

•• COMPARE:COMPARE:
–– Digital Camera result. Digital Camera result. 
–– Digitized (Scanned) Film result.Digitized (Scanned) Film result.

? Can we See more, Do more, Feel more? ? Can we See more, Do more, Feel more? 

? Has photography really ? Has photography really changedchanged yet?yet?
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3?D Scene3?D Scene
light sources,
BRDFs,
shapes,
positions,
movements,
…
EyepointEyepoint
position, 
movement,
projection,
…
MeaningMeaning……

VisualVisual
StimulusStimulus

3D Scene3D Scene
light sources,

BRDFs,
shapes,

positions,
movements,

…
EyepointEyepoint

position, 
movement,
projection,

…

PHYSICALPHYSICAL PERCEIVED PERCEIVED 
or UNDERSTOODor UNDERSTOOD

Goals for a New PhotographyGoals for a New Photography

V
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n

V
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n
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s
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C
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g
C
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Light &Light &
OpticsOptics

Tangible RecordTangible Record
estimates we canestimates we can

capture, edit, store, displaycapture, edit, store, display

Missing:Missing: Dynamic Display, Interactive…Dynamic Display, Interactive…

What other waysWhat other ways
better better revealreveal
appearanceappearance to to 
human viewers?human viewers?

(Without direct shape (Without direct shape 
measurement? )measurement? )

Time for space wiggle. Time for space wiggle. Gasparini, 1998.

Can you understandCan you understand
this shape better?this shape better?



55

Missing:Missing: More Revealing Sets of RaysMore Revealing Sets of Rays
““MultipleMultiple--CenterCenter--ofof--Projection ImagesProjection Images”” RademacherRademacher, P, Bishop, G.,  SIGGRAPH '98, P, Bishop, G.,  SIGGRAPH '98

Taking Taking ImagesImages versus Taking versus Taking PicturesPictures

Image:Image: A copy of light intensities. A copy of light intensities. 

(Just (Just one kindone kind of picture, made by copying a scaled map of of picture, made by copying a scaled map of 
scene light intensities, as a lens might)scene light intensities, as a lens might)

Visual AppearanceVisual Appearance: : What we What we thinkthink we see.we see.

(Consciously(Consciously--available estimates of our surroundings, available estimates of our surroundings, 
made from the light reaching our eyes)made from the light reaching our eyes)

Picture:Picture: A ‘container’ for visual appearance.  A ‘container’ for visual appearance.  

(something we make to hold what we see, (something we make to hold what we see, 
or what would like to see.  Includes nonor what would like to see.  Includes non--photorealistic drawings)photorealistic drawings)
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Photographic Signal: Pixels RaysPhotographic Signal: Pixels Rays

•• Core ideas are ancient, simple, seem obvious:Core ideas are ancient, simple, seem obvious:
–– Lighting: Lighting: ray sourcesray sources
–– Optics:Optics: ray bending/folding devicesray bending/folding devices
–– Sensor:Sensor: measure lightmeasure light
–– Processing:Processing: assess itassess it
–– Display:Display: reproduce itreproduce it

•• Ancient Greeks:Ancient Greeks:
‘eye rays’ wipe the world‘eye rays’ wipe the world
to feel its contents…to feel its contents…

http://http://www.mlahanas.de/Greeks/Optics.htmwww.mlahanas.de/Greeks/Optics.htm

The Photographic Signal PathThe Photographic Signal Path

Computing can improve every component:Computing can improve every component:

Light SourcesLight Sources SensorsSensors
Data Types,Data Types,
ProcessingProcessing

DisplayDisplay
RaysRays

OpticsOpticsOpticsOptics

““Scene”Scene”
RaysRays
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Review: How many Rays are there?Review: How many Rays are there?

44--D set; infinitesimal members.     Imagine:D set; infinitesimal members.     Imagine:
–– Convex Enclosure of a 3D scene Convex Enclosure of a 3D scene 
–– InwardInward--facing ray camera at every surface pointfacing ray camera at every surface point
–– Pick the rays you need for ANY camera outside.Pick the rays you need for ANY camera outside.
–– 2D surface of cameras,2D surface of cameras,

2D 2D ray set for each camera,ray set for each camera,
4D set of rays.4D set of rays.

(Levoy et al. SIGG’96)(Levoy et al. SIGG’96)((GortlerGortler et al. ‘96)    et al. ‘96)    

++

44--D Light Field / D Light Field / LumigraphLumigraph

Measure all the Measure all the outgoingoutgoing light rays. light rays. 
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44--D Illumination FieldD Illumination Field

Same Idea: Measure all the Same Idea: Measure all the incomingincoming light rayslight rays

4D x 4D = 84D x 4D = 8--D Reflectance FieldD Reflectance Field

Ratio:Ratio: RRijij = (outgoing = (outgoing rayrayii) ) // (incoming (incoming rayrayjj))



99

[Debevec et al. 2002]

[Debevec et al. 2000] [Masselus et al. 2002]

[Masselus et al. 2003] [Malzbender et al. 2002]

[Matusik et al. 2002]

Is a 4-D Light Source Required?

Is A 4D Camera Required?  Is A 4D Camera Required?  
e.g. MIT Dynamic Light Field Camera 2002e.g. MIT Dynamic Light Field Camera 2002

• Multiple dynamic 
Virtual Viewpoints

• Efficient Bandwidth usage:
‘send only what you see’

• Yang, et al 2002
• 64 tightly packed commodity 

CMOS webcams
• 30 Hz, Scaleable, Real-time:

or is it justor is it just “more film“more film--like cameras, but like cameras, but nownow with computers!”with computers!” ? ? 

Is this the whole answer?Is this the whole answer?
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Or do Ray Or do Ray ChangesChanges Convey Appearance?Convey Appearance?
5 ray sets 5 ray sets explicit geometric occlusion boundariesexplicit geometric occlusion boundaries

Ramesh Raskar, MERL, 2004

Or do Ray Or do Ray ChangesChanges Convey Appearance?Convey Appearance?

•• These rays   +  all these rays  give me…These rays   +  all these rays  give me…

•• MANY more usefulMANY more useful
details I can examine…details I can examine…
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MildMild Viewing & Lighting Changes; Viewing & Lighting Changes; 
Are these Enough?Are these Enough?

ConvicingConvicing visual appearance:visual appearance:
Is Accurate Depth really necessary? Is Accurate Depth really necessary? 

a few good 2a few good 2--D images may be enough…D images may be enough…

““Image jets, Level Sets, Image jets, Level Sets, 
and Silhouettes“and Silhouettes“
Lance Williams, 
talk at Stanford, 1998.

‘‘The Ideal Photographic Signal’The Ideal Photographic Signal’
I CLAIM IT IS:I CLAIM IT IS:
All Rays? Some Rays? All Rays? Some Rays? ChangesChanges in Rays in Rays 

Photographic ray space is vast and boring.Photographic ray space is vast and boring.
>8 dimensions:  4D view, 4D light, time, >8 dimensions:  4D view, 4D light, time, λλ,,

Gather only ‘visually significant’ ray changesGather only ‘visually significant’ ray changes

? What rays should we measure ? ? What rays should we measure ? 
? How should we combine them ?? How should we combine them ?
? How should we display them   ?? How should we display them   ?
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Future Photography:Future Photography: Novel  IlluminatorsNovel  Illuminators

Novel CamerasNovel Cameras

SceneScene: : 8D Ray Modulator8D Ray Modulator

Generalized Generalized 
SensorSensor

GeneralizedGeneralized
ProcessingProcessing 4D Ray 4D Ray 

SamplerSampler

Ray Ray ReconstructorReconstructor

General Optics:General Optics:
4D Ray Benders4D Ray Benders

Recreated 4D Light fieldRecreated 4D Light field

LightsLights
ModulatorsModulators

4D Incident Lighting4D Incident Lighting
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Generalized DisplayGeneralized Display

Novel DisplaysNovel Displays

Beyond ‘FilmBeyond ‘Film--Like’ PhotographyLike’ Photography
‘‘Computational Photography’;Computational Photography’;

To make ‘meaningful ray changes’To make ‘meaningful ray changes’ tangible,tangible,

•• Sensors can do more… Sensors can do more… 
•• Displays can do more…Displays can do more…
•• Light Sources can do more…Light Sources can do more…
•• Optics can do more…Optics can do more…
•• Ray Descriptors can do more…Ray Descriptors can do more…

by applying lowby applying low--cost storage, cost storage, 
computation, and control.  computation, and control.  
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Course : Computational PhotographyCourse : Computational Photography

Jack Tumblin
Northwestern University

A3: FilmA3: Film--like Photography:like Photography:
The RayThe Ray--Optics ModelOptics Model

‘‘FilmFilm--Like’ PhotographyLike’ Photography

Film Camera designs still dominate:Film Camera designs still dominate:
–– ‘Instantaneous’ light measurement…‘Instantaneous’ light measurement…
–– Of focal plane image behind a lens.Of focal plane image behind a lens.
–– Reproduce those amounts of light;Reproduce those amounts of light;
–– Display ‘exactly matches’ the sceneDisplay ‘exactly matches’ the scene

Implied:Implied:
““What we see is What we see is ≅≅

focalfocal--plane intensities.plane intensities.””
well, nowell, no……
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‘‘FilmFilm--Like Photography’: Ray ModelLike Photography’: Ray Model

Image PlaneImage Plane
I(x,y)I(x,y)
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Image:Image:
Planar 2D map of Planar 2D map of 

light intensities light intensities 

Light + 3D Scene:Light + 3D Scene:
Illumination, Illumination, 

shape, movement, shape, movement, 
surface BRDF,…  surface BRDF,…  

‘‘Center of Center of 
Projection’Projection’

(P(P33 or Por P22 Origin)Origin)

FilmFilm--Like PhotographyLike Photography

•• Lighting:  Lighting:  Ray SourcesRay Sources (external)(external)

•• Scene: Scene: Ray ModulatorRay Modulator (external)(external)

•• Optics: Optics: Ray BendersRay Benders Thin Lens Approx. Thin Lens Approx. 

•• Sensors:Sensors: Ray BundleRay Bundle Sensor Irradiance  Sensor Irradiance  
MeasurementMeasurement E(x,yE(x,y))

•• ProcessingProcessing Ray Ray Normalized Normalized E(x,yE(x,y))

•• DisplayDisplay Recreate RaysRecreate Rays Normalized Normalized E(x,yE(x,y))
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FilmFilm--like Optics: ‘Thin Lens Law’like Optics: ‘Thin Lens Law’

•• Focal lengthFocal length ff:  where parallel rays converge:  where parallel rays converge
•• Object at distance SObject at distance S11 forms image at Sforms image at S2 2 

•• Focus at infinity: Adjust for SFocus at infinity: Adjust for S22=f=f
Larger SLarger S22 for closer focusfor closer focus

http://www.nationmaster.com/encyclopedia/Lens-(optics)

Rays AreRays Are DoublyDoubly DifferentialDifferential

•• Lens Systems: Lens Systems: approximateapproximate rays with bundlesrays with bundles
•• Finite angle, not rays Finite angle, not rays (lens aperture)(lens aperture)

•• Finite area, not points Finite area, not points (circle of confusion)(circle of confusion)

http://www.nationmaster.com/encyclopedia/Lens-(optics)
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Ray BUNDLES approximate RaysRay BUNDLES approximate Rays

•• Rays are Rays are doublydoubly infinitesimal!infinitesimal!
–– A ‘ray’ leaves a span of infinitesimal area 0A ‘ray’ leaves a span of infinitesimal area 0++

–– And covers a span of infinitesimal directions 0And covers a span of infinitesimal directions 0++

•• Ray Bundles: Ray Bundles: 
Finite, measurable power from combined raysFinite, measurable power from combined rays
–– A finite span of SOLID ANGLE, A finite span of SOLID ANGLE, andand
–– A finite span of SURFACE AREAA finite span of SURFACE AREA

Ray BUNDLES approximate RaysRay BUNDLES approximate Rays

•• Rays are Rays are doublydoubly infinitesimal!infinitesimal!
A ‘ray’ Leaves 0A ‘ray’ Leaves 0++ areaarea in 0in 0++ directions directions 

EXAMPLE:EXAMPLE:
•• Power from 1 point Power from 1 point 

on a spherical lamp?  on a spherical lamp?  
00/+/+ = 60Watts / (= 60Watts / (∞∞ points)points)

–– BUT has a finite, measurable ratio:  (flux/area)BUT has a finite, measurable ratio:  (flux/area)
(60Watts / 30 cm(60Watts / 30 cm22 area) = 2 W / cmarea) = 2 W / cm22

rr
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Ray BUNDLES approximate RaysRay BUNDLES approximate Rays

•• Rays are Rays are doublydoubly infinitesimal!infinitesimal!
A ‘ray’ Leaves A ‘ray’ Leaves 00++ areaarea in 0in 0++ directions directions 

EXAMPLE:EXAMPLE:
•• Power from spherical lamp Power from spherical lamp 

in just 1 direction? in just 1 direction? 
00++ = (60Watts / (= (60Watts / (∞∞ directions)directions)

–– BUT has finite ratio: BUT has finite ratio: 
(60Watts / 4(60Watts / 4ππ steradianssteradians) = 4.77 W / cm) = 4.77 W / cm22

Ray Measurement: Radiance LRay Measurement: Radiance L

•• Incoming light directions form hemisphere Incoming light directions form hemisphere ΩΩ; ; 
Ray == one point on the hemisphereRay == one point on the hemisphere

THUSTHUS
‘Incident Rays’ measured in ‘Incident Rays’ measured in Radiance Units L:Radiance Units L:
Irradiance per unit solid angleIrradiance per unit solid angle
L = (watts / area) / L = (watts / area) / srsr
((srsr = = steradianssteradians; solid angle; ; solid angle; 

= surface area on unit sphere)= surface area on unit sphere) ΩΩθθii
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Ray ‘Bundles’Ray ‘Bundles’

•• Rays have no surface area  (just a point)Rays have no surface area  (just a point)
•• Rays have no solid angle (just a point)Rays have no solid angle (just a point)
THUS:THUS:
•• A Ray carries A Ray carries infinitesimal infinitesimal power (0power (0++ Watts).Watts).
•• Only Only BUNDLES of raysBUNDLES of rays are measurable! are measurable! 

ΩΩθθii

?How can estimate the ?How can estimate the 
‘Photographic Signal’ ‘Photographic Signal’ 
when we can’t directly when we can’t directly 
measure it?measure it?

Lens Flaws: Lens Flaws: Depth of FocusDepth of Focus

For the For the same same focal length:focal length:
•• Larger lensLarger lens

–– Gathers a Gathers a wider ray bundlewider ray bundle::
–– More light: brighter imageMore light: brighter image
–– Shallower depthShallower depth--ofof--focusfocus

•• Smaller lensSmaller lens
–– Gathers a narrower ray Gathers a narrower ray 

bundle:bundle:
–– Less light: dimmer imageLess light: dimmer image
–– Deeper depthDeeper depth--ofof--focusfocus



7

Lens Flaws: Lens Flaws: Geometric AberrationGeometric Aberration

•• Aberrations:Aberrations:
Real lenses don’t converge rays perfectlyReal lenses don’t converge rays perfectly

•• Spherical:Spherical: edge rays edge rays ≠≠ center rayscenter rays
•• Coma: Coma: diagonal rays focus deeper at edgediagonal rays focus deeper at edge

http://www.nationmaster.com/encyclopedia/Lens-(optics)

Radial Distortion Radial Distortion 
((e.g.e.g. ‘Barrel’ and ‘pin‘Barrel’ and ‘pin--cushion’)cushion’)

straight lines curve around the image center straight lines curve around the image center 
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Lens Flaws: Lens Flaws: Chromatic AberrationChromatic Aberration

•• Dispersion: wavelengthDispersion: wavelength--dependent refractive indexdependent refractive index
–– (enables prism to spread white light beam into rainbow)(enables prism to spread white light beam into rainbow)

•• Modifies rayModifies ray--bending and lens focal length: f(bending and lens focal length: f(λλ))

•• color fringes near edges of imagecolor fringes near edges of image
•• Corrections: add ‘doublet’ lens of flint glass, etc.Corrections: add ‘doublet’ lens of flint glass, etc.

http://http://www.swgc.mun.ca/physics/physlets/opticalbench.htmwww.swgc.mun.ca/physics/physlets/opticalbench.htmll

Lens Flaws: Lens Flaws: Chromatic AberrationChromatic Aberration

•• Lens Design Fix:Lens Design Fix: MultiMulti--element lenseselement lenses
Complex, expensive, many tradeoffs!Complex, expensive, many tradeoffs!

•• Computed Fix:Computed Fix: Geometric warp for R,G,B.Geometric warp for R,G,B.
Near Lens CenterNear Lens Center Near Lens Outer EdgeNear Lens Outer Edge
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Lens Flaws: Intensity AberrationsLens Flaws: Intensity Aberrations

Image ‘Vignette’: bright at center, dark at edges.Image ‘Vignette’: bright at center, dark at edges.

Several compounded causes:Several compounded causes:
•• Internal shadowingInternal shadowing——angleangle--dependent Ray bundles dependent Ray bundles 
•• Longer paths for offLonger paths for off--axis Rays; Dark Glass axis Rays; Dark Glass 
•• Planar detector: outer pixels span greater angle Planar detector: outer pixels span greater angle 

•• Compensation:Compensation:
–– Use antiUse anti--vignetting filters, vignetting filters, 

(darkest at center)(darkest at center)
–– OR PositionOR Position--dependent dependent 

pixelpixel--detector sensitivity.detector sensitivity.
http://http://homepage.ntlworld.com/j.houghton/vignette.htmhomepage.ntlworld.com/j.houghton/vignette.htm

PolarizationPolarization

Sunlit haze is often Sunlit haze is often 
strongly polarized.  strongly polarized.  
Polarization filter yieldsPolarization filter yields
much richer sky colorsmuch richer sky colors
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FilmFilm--like Color Sensinglike Color Sensing

http://www.yorku.ca/eye/photopik.htm

EquiluminantEquiluminant CurveCurve
defines defines ‘‘luminanceluminance’’

vs. wavelengthvs. wavelength

•• Visible Light: narrow band of Visible Light: narrow band of emagemag spectrumspectrum
•• λλ ≈≈ 400400--700 nm700 nm (nm = 10(nm = 10--9 meter wavelength)9 meter wavelength)
••(humans:<1 octave (humans:<1 octave honey bees: 3honey bees: 3--4 4 ‘‘octavesoctaves

do honey bees sense harmonics, see color do honey bees sense harmonics, see color ‘‘chordschords’’ ??

FilmFilm--like Color Sensinglike Color Sensing

www.vaytek.com/specDVC.htm

RGB spectral curves RGB spectral curves 
VaytekVaytek CCD camera CCD camera 

with Bayer gridwith Bayer grid

•• Visible Light: narrow band of Visible Light: narrow band of emagemag spectrumspectrum
•• λλ ≈≈ 400400--700 nm700 nm (nm = 10(nm = 10--9 meter wavelength)9 meter wavelength)
•• At least 3 spectral bands required (e.g. R,G,B)At least 3 spectral bands required (e.g. R,G,B)
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Color SensingColor Sensing

•• 33--chip vs. 1chip vs. 1--chip: quality vs. costchip: quality vs. cost

http://www.cooldihttp://www.cooldictionary.com/words/Bayertionary.com/words/Bayer--filter.wikipediafilter.wikipedia

Practical Color Sensing: Practical Color Sensing: 
Bayer GridBayer Grid

•• Estimate RGBEstimate RGB
at ‘G’ at ‘G’ celscels from from 
neighboring neighboring 
valuesvalues
http://www.cooldictionary.com/
words/Bayer-filter.wikipedia
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ConclusionsConclusions

•• FilmFilm--like photography methods limit digital like photography methods limit digital 
photography to filmphotography to film--like results or less.like results or less.

•• Broaden, unlock our views of photography:Broaden, unlock our views of photography:

•• 4D, 8D, even 10D Ray Space holds the photographic 4D, 8D, even 10D Ray Space holds the photographic 
signal.  Look for new solutions by creating, gathering, signal.  Look for new solutions by creating, gathering, 
processing RAYS, not focalprocessing RAYS, not focal--plane intensities.plane intensities.

•• Choose the best, most expressive sets of rays,Choose the best, most expressive sets of rays,
THEN find the best way to measure them.THEN find the best way to measure them.

Useful links:Useful links:

•• Interactive Thin Lens Demo Interactive Thin Lens Demo 
(or search ‘(or search ‘physletphyslet optical bench’)optical bench’)

www.swgc.mun.ca/physics/physlets/opticalbench.htmlwww.swgc.mun.ca/physics/physlets/opticalbench.html

For more about color:For more about color:
–– PrevPrev. SIGGRAPH courses (Stone et al.) . SIGGRAPH courses (Stone et al.) 
–– Good: Good: www.cs.rit.edu/~ncs/color/a_spectr.htmlwww.cs.rit.edu/~ncs/color/a_spectr.html
–– Good: Good: www.colourware.co.uk/cpfaq.htmwww.colourware.co.uk/cpfaq.htm
–– Good: Good: www.yorku.ca/eye/toc.htmwww.yorku.ca/eye/toc.htm
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Image Processing Image Processing 
and and 

Reconstructions ToolsReconstructions Tools

Ramesh RaskarRamesh Raskar
Mitsubishi Electric Research LabsMitsubishi Electric Research Labs

Cambridge, MACambridge, MA

Image ToolsImage Tools

•• Gradient domain operations, Gradient domain operations, 
–– Applications in tone mapping, fusion and mattingApplications in tone mapping, fusion and matting

•• Graph cuts, Graph cuts, 
–– Applications in segmentation and Applications in segmentation and mosaicingmosaicing

•• Bilateral and Trilateral filters, Bilateral and Trilateral filters, 
–– Applications in image enhancementApplications in image enhancement

Intensity Gradient in 1DIntensity Gradient in 1D

I(x)
1

105

G(x)
1

105
Intensity Gradient

Gradient at x,
G(x)    =    I(x+1)- I(x)

Forward Difference

Reconstruction from GradientsReconstruction from Gradients

I(x)
1

105
Intensity

G(x)
1

105
Gradient

?
?

For  n intensity values, about  n gradients 

Reconstruction from GradientsReconstruction from Gradients

I(x)
1

105
Intensity

G(x)
1

105
Gradient

1D Integration

I(x)  =  I(x-1)  +  G(x)

Cumulative sum

?

Grad X

Grad Y

Intensity Gradient in 2DIntensity Gradient in 2D

Gradient at x,y as Forward Differences 
Gx(x,y)    =    I(x+1  , y)- I(x,y)
Gy(x,y)    =    I(x ,  y+1)- I(x,y)

G(x,y) = (Gx , Gy)
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Intensity Gradient Vectors in ImagesIntensity Gradient Vectors in Images

Gradient Vector

Grad X

Grad Y

2D 
Integration

Reconstruction from GradientsReconstruction from Gradients
Given G(x,y) = (Gx , Gy)

How to compute I(x,y) for the image ?

For n 2 image pixels,  2 n 2 gradients !

Grad X

Grad Y

2D 
Integration

Intensity Gradient in 2DIntensity Gradient in 2D

Recovering Original Image

Grad X

Grad Y

Intensity Gradient ManipulationIntensity Gradient Manipulation

New Grad X

New Grad Y

Gradient 
Processing

Recovering Manipulated Image

Gradient 
Processing

New Grad X

New Grad Y

2D 
Integration

Intensity Gradient ManipulationIntensity Gradient Manipulation

Recovering Manipulated Image

Gradient 
Processing

New Grad X

New Grad Y

2D 
Integration

Intensity Gradient ManipulationIntensity Gradient Manipulation

Recovering Manipulated Image
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Grad X

Grad Y

New Grad X

New Grad Y

2D 
Integration

Intensity Gradient ManipulationIntensity Gradient Manipulation

Gradient 
Processing

A Common Pipeline

Reconstruction from GradientsReconstruction from Gradients

EulerEuler--Lagrange EquationLagrange Equation
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Application: Compressing Dynamic RangeApplication: Compressing Dynamic Range

How could you put all thisHow could you put all this
information into oneinformation into one
Image ?Image ?

Attenuate High GradientsAttenuate High Gradients

I(x)
1

105

G(x)
1

105

Intensity Gradient

I(x)
1

105

Intensity

Maintain local detail at the cost 
of global range

Fattal et al Siggraph 2002

Basic AssumptionsBasic Assumptions

•• The eye responds more to local intensity The eye responds more to local intensity 
differences (ratios) than global illuminationdifferences (ratios) than global illumination

•• A HDR image must have some large A HDR image must have some large 
magnitude gradientsmagnitude gradients

•• Fine details consist only of smaller magnitude Fine details consist only of smaller magnitude 
gradients gradients 
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Gradient Compression in 1DGradient Compression in 1D Gradient Domain MethodGradient Domain Method

Basic MethodBasic Method
•• Take the log of the Take the log of the luminancesluminances
•• Calculate the gradient at each pointCalculate the gradient at each point
•• Scale the magnitudes of the gradients with a Scale the magnitudes of the gradients with a 

progressive scaling function (Large progressive scaling function (Large 
magnitudes are scaled down more than small magnitudes are scaled down more than small 
magnitudes)magnitudes)

•• ReRe--integrate the gradients and invert the log integrate the gradients and invert the log 
to get the final imageto get the final image

Grad X

Grad Y

New Grad X

New Grad Y

2D 
Integration

Summary: Intensity Gradient ManipulationSummary: Intensity Gradient Manipulation

Gradient 
Processing

Graph and Images

Credits: Jianbo Shi

Agrawala et al, Digital Photomontage, Siggraph 2004
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Agrawala et al, Digital Photomontage, Siggraph 2004 Agrawala et al, Digital Photomontage, Siggraph 2004
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actual photomontageset of originals perceived

Source images Brush strokes Computed labeling

Composite

Brush strokes Computed labeling

Image objective

0 if  red
∞ otherwise

0 for any label

Graph Based Image Segmentation

Wij

Wij
i

j

V: graph node

E: edges connection nodes

Wij: Edge weight

Image pixel

Link to neighboring pixels

Pixel similarity

Segmentation = Graph partition Minimum Cost Cuts in a graph

Cut: Set of edges whose removal makes a graph disconnected

Si,j : Similarity between pixel i and pixel j

Cost of a cut,

A
A
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Problem with min cuts

Min. cuts favors isolated clusters

Normalize cuts in a graph

Ncut = balanced cut

NP-Hard!

Brush strokes Computed labeling

Graph Cuts for Segmentation and Mosaicing

Cut ~ String on a height field

Bilateral and Trilateral FilterBilateral and Trilateral Filter

BilateralBilateral TrilateralTrilateralInputInput

Bilateral and Trilateral FilteringBilateral and Trilateral Filtering

Outline

• Unilateral filtering
• Smoothing using filtering

• Bilateral filtering
• Strength and 3 weaknesses

• Trilateral filtering
• Key ideas

• Application in tone mapping
• Detail preserving contrast reduction

‘‘Unilateral’ FilterUnilateral’ Filter

Traditional, linear, FIR filters
Key Idea: Convolution

- Output(x) = local weighted avg. of inputs.
- Weights vary within a ‘window’ of nearby x

Smoothes away details, BUT blurs result

cc
weight(x)weight(x)

Note that weightsNote that weights
always sum to 1.0always sum to 1.0
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‘‘Unilateral’ FilterUnilateral’ Filter

Forces a Tradeoff:
-Broad window:   better detail removal

-- OR --
-Narrow window: better large structure

But we want BOTH...

Bilateral FilterBilateral Filter
A 2-D filter window: weights vary with intensity

[Tomasi&Manduchi1998] 
Further Analysis: [Black99] [Elad02] [Durand&Dorsey02], ...

c: distance from input   (domain of input)
s: difference from input  (range of input)

cc

ss

DomainDomain

RangeRange
f(x)f(x)

xx

Bilateral FilterBilateral Filter

cc

ss

DomainDomain

RangeRange
f(x)f(x)

xx

2 Gaussian Weights:2 Gaussian Weights:
product = product = 
ellisoidalellisoidal footprintfootprint

Bilateral FilterBilateral Filter

cc

ss

cc

ss

Why it works: graceful segmentation
• Filtering in one region ignores filtering in another
• Gaussian s acts as a ‘filtered region’ finder

DomainDomain

RangeRange
f(x)f(x)

xx

Piecewise smooth result 
• averages local small details, ignores outliers
• preserves steps, large-scale ramps, and curves,...

• Equivalent to anisotropic diffusion and robust statistics
[Black98,Elad02,Durand02]

• Simple & Fast     (esp. w/ [Durand02] FFT-based speedup)

Bilateral Filter: StrengthsBilateral Filter: Strengths

cc

ss

Output at      is Output at      is 
average of  a average of  a 
tiny regiontiny region

Bilateral Filter: 3 DifficultiesBilateral Filter: 3 Difficulties

• Poor Smoothing in 
High Gradient Regions

• Smoothes and blunts
cliffs, valleys & ridges

• Can combine disjoint 
signal regions 

cc

ss
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Bilateral Filter: 3 DifficultiesBilateral Filter: 3 Difficulties

• Poor Smoothing in 
High Gradient Regions

• Smoothes and blunts
cliffs, valleys & ridges

• Can combine disjoint 
signal regions

c

ss

Bilateral Filter: 3 DifficultiesBilateral Filter: 3 Difficulties

• Poor Smoothing in 
High Gradient Regions

• Smoothes and blunts
cliffs, valleys & ridges

• Disjoint regions 
can blend together 

c

ss

New Solution: “Trilateral” FilterNew Solution: “Trilateral” Filter

• Keep best features of bilateral, adds more
• Corner sharpening resembles PDE shocks
• User sets 1 parameter (good defaults for 7 internals)

Input Bilateral Trilateral

BilateralBilateral Trilateral FilterTrilateral Filter

Three Key Ideas:
• Tilt the filter window

according to bilaterally-
smoothed gradients

• Limit the filter window
to connected regions 
of similar smoothed gradient.

• Adjust Parameters 
from measurements 
of the windowed signal

cc
ss

BilateralBilateral Trilateral FilterTrilateral Filter

Key Ideas:
• Tilt the filter window

according to bilaterally-
smoothed gradients

• Limit the filter window
to connected regions 
of similar smoothed gradient.

• Adjust Parameters 
from measurements 
of the windowed signal

cc
ss

BilateralBilateral Trilateral FilterTrilateral Filter

Key Ideas:
• Tilt the filter window

according to bilaterally-
smoothed gradients

• Limit the filter window
to connected regions 
of similar smoothed gradient.

• Adjust Parameters 
from measurements 
of the windowed signal

cc
ss
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Application: Tone MappingApplication: Tone Mapping

DetailDetail--
RemovingRemoving

FilterFilter
1010xx

In

Out

Details

Base

• Filter removes details. 

• Goal: Detail-Preserving Contrast Reduction
• in log domain, difference == contrast
• remove details, compress contrast, replace details

loglog1010

γγ (<1: compression)(<1: compression)

w
(<1: detail strength)

..

10X10X 10X10X 10X10X

More Trilateral More Trilateral 
ResultsResults

Comparable to Comparable to 
Gradient AttenuationGradient Attenuation
[[FattalFattal et al 2002]et al 2002]

Similar to LCIS Similar to LCIS 
[Tumblin&Turk`99][Tumblin&Turk`99]
[Bertozzi’03][Bertozzi’03]

Simple, RobustSimple, Robust

.           .           

• ,
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Course 15: Computational PhotographyCourse 15: Computational Photography

B1:B1: ReconstructionReconstruction

Ramesh Raskar
Mitsubishi Electric Research Labs

Jack Tumblin
Northwestern University

Course WebPage : 
http://www.merl.com/people/raskar/photo

Image Fusion and ReconstructionImage Fusion and Reconstruction

•• Epsilon PhotographyEpsilon Photography
–– Vary time, viewVary time, view

–– Vary focus, exposure polarization, illuminationVary focus, exposure polarization, illumination

–– Better than any one photoBetter than any one photo

•• Achieve effects via multiAchieve effects via multi--image fusionimage fusion

•• Understand computer vision methodsUnderstand computer vision methods

•• Exploit lightingExploit lighting

TimeTime--LapseLapse
•• DuchampDuchamp

–– Nude Descending a StaircaseNude Descending a Staircase

TimeTime--LapseLapse

Richard Hundley 2001Richard Hundley 2001

Shape Time PhotographyShape Time Photography

Freeman et al 2003

Varying Focus: Extended depthVarying Focus: Extended depth--ofof--fieldfield

Agrawala et al, Digital Photomontage, Siggraph 2004
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Source images Computed labeling

Composite

Computer Vision TechniquesComputer Vision Techniques
•• Photometric Stereo Photometric Stereo 

–– Varying light source positionsVarying light source positions
–– Estimate surface normal from shadingEstimate surface normal from shading
–– Diffuse objects: minimum 3 lightsDiffuse objects: minimum 3 lights

•• Depth from DefocusDepth from Defocus
–– Varying focusVarying focus

•• Defogging Defogging 
–– Varying time and polarizationVarying time and polarization

Varying Focus: Depth from DefocusVarying Focus: Depth from Defocus
(Nayar, Watanabe and Noguchi, 95 )

near
focus

image
detectors lens

aperture

scene

P

Q

f

oi

fio
111

=+
Previous Work:

Pentland 87,  Subbarao 88, Nayar 89.

(Nayar, Watanabe and Noguchi, 95 )

far
focus

image
detectors lens

aperture

scene

P

Q

f

oi

fio
111

=+
Previous Work:

Pentland 87,  Subbarao 88, Nayar 89.

Varying Focus: Depth from DefocusVarying Focus: Depth from Defocus

Real Time  Defocus  Depth  Camera (Movies)Real Time  Defocus  Depth  Camera (Movies)

(Nayar , Watanabe , Noguchi 95 )

Performance : 512 x 480 Depth map at  30 frames per  sec.

Two Different Foggy Conditions

Clear Day  from  Foggy Days

Time: 3 PM

Time: 5:30 PM

Clear Day Image

Deweathering

(Shree Nayar,  Srinivasa Narasimhan 00)
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Varying PolarizationVarying Polarization
Yoav Y. Schechner, Nir Karpel 2005Yoav Y. Schechner, Nir Karpel 2005

Best polarization state

Worst polarization state

Best polarization 
state

Recovered 
image

[Left] The raw images taken through a polarizer. [Right] White-balanced results: 
The recovered image is much clearer, especially at distant objects, than the raw image 

Varying PolarizationVarying Polarization
•• SchechnerSchechner, , NarasimhanNarasimhan, , NayarNayar

•• Instant Instant dehazingdehazing
of images using of images using 
polarizationpolarization

Varying Wavelength: Varying Wavelength: MultispectralMultispectral FusionFusion

Vegetation Mapping of the Forest 

SAR Optical Landsat

=+

Varying IR Wavelength Image FusionVarying IR Wavelength Image Fusion

SWIR LWIR

Uniform fusion across image

Adaptive fusion by sub region

NIR

Ramesh Raskar, Ramesh Raskar, KarhanKarhan Tan, Rogerio Feris, Tan, Rogerio Feris, 
JingyiJingyi Yu, Matthew TurkYu, Matthew Turk

Mitsubishi Electric Research Labs (MERL), Cambridge, MAMitsubishi Electric Research Labs (MERL), Cambridge, MA
U of California at Santa BarbaraU of California at Santa Barbara

U of North Carolina at Chapel HillU of North Carolina at Chapel Hill

NonNon--photorealistic Camera: photorealistic Camera: 
Depth Edge Detection Depth Edge Detection andand Stylized Rendering Stylized Rendering 

usingusing

MultiMulti--Flash ImagingFlash Imaging
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Canny Intensity Edge Detection

Our Method

Image Fusion and Reconstruction

• Epsilon Photography
– Vary focus, exposure polarization, illumination

– Vary time, view

– Better than any one photo

• Achieve effects via multi-image fusion

• Understand computer vision methods

• Exploit lighting 

Improving FILMImproving FILM--LIKE LIKE 
Camera PerformanceCamera Performance

What would make it ‘perfect’ ?

• Dynamic Range

FilmFilm--Style Camera:   Dynamic  Range LimitsStyle Camera:   Dynamic  Range Limits

Under-Exposure    
• Highlight details: Captured
• Shadow details: Lost

Over-Exposure    
• Highlight details: Lost
• Shadow details: Captured

???? ????
0    255 0    255 

Domain of Human Vision:Domain of Human Vision:
from ~10-6 to ~10+8 cd/m2

Range of Typical Displays:Range of Typical Displays:
from ~1 to ~100 cd/m2

starlightstarlight moonlightmoonlight office lightoffice light daylightdaylight flashbulbflashbulb

1010--66 1010--22 11 1010 100100 1010+4+4 1010+8+8

Problem:Map Scene to DisplayProblem:Map Scene to Display
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© 2004 Marc Levoy

High dynamic range capture (HDR)

• overcomes one of photography’s key limitations
– negative film  =  250:1  (8 stops)
– paper prints    =  50:1
– [Debevec97]  =  250,000:1  (18 stops)
– hot topic at recent SIGGRAPHs

→

Debevec’97 (see www.HDRshop.com)Debevec’97 Debevec’97 (see (see www.HDRshop.comwww.HDRshop.com))

j=0j=0
j=1j=1

i=2i=2
j=3j=3

j=4j=4
j=5j=5

j=6j=6

STEP 1: STEP 1: 
----number the images ‘i’,number the images ‘i’,
----pick fixed spots (pick fixed spots (xxjj,y,yjj) ) 
that sample scene’s that sample scene’s 
radiance values radiance values logLlogLii well:well:

j=0j=0 11 22 33 44 55 66

??
logLlogLii

Pi
xe

l V
al

ue
 Z

Pi
xe

l V
al

ue
 Z

f(logLf(logL))

Debevec’97 (see www.HDRshop.com)Debevec’97 Debevec’97 (see (see www.HDRshop.comwww.HDRshop.com))

j=0j=0
j=1j=1

i=2i=2
j=3j=3

j=4j=4
j=5j=5

j=6j=6

STEP 2: STEP 2: 
----Collect pixel values Collect pixel values ZZijij

(from image i, location j)

----(All of them sample the (All of them sample the 
response  curve response  curve f(logLf(logL)…))…)

logLlogLii

Pi
xe

l V
al

ue
 Z

Pi
xe

l V
al

ue
 Z

j=0j=0 11 22 33 44 55 66

?? f(logLf(logL)) logLlogLii

••Use the multiple samples to Use the multiple samples to 
reconstruct the response curve;reconstruct the response curve;

••Then use the inverse response curve to Then use the inverse response curve to 
reconstruct the intensities that caused the responsesreconstruct the intensities that caused the responses

??

Pi
xe

l V
al

ue
 Z

Pi
xe

l V
al

ue
 Z

j=0j=0 11 22 33 44 55 66ZZijij

Pi
xe

l V
al

ue
 Z

Pi
xe

l V
al

ue
 Z

F(logLF(logL) ? ) ? 

logLlogL

Debevec’97 (see www.HDRshop.com)Debevec’97 Debevec’97 (see (see www.HDRshop.comwww.HDRshop.com))
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HDR Direct Sensing?HDR Direct Sensing?
•• An open problem!   (esp. for video...)An open problem!   (esp. for video...)

•• A direct (and expensive) solution:A direct (and expensive) solution:
–– Flying Spot Radiometer: Flying Spot Radiometer: 

brute force instrument, costly, slow, delicate brute force instrument, costly, slow, delicate 
•• Some Other Novel Image Sensors:Some Other Novel Image Sensors:

–– lineline--scan camerasscan cameras (e.g. (e.g. SpheronSpheron: multi: multi--detector)detector)

–– logarithmic CMOS circuitslogarithmic CMOS circuits (e.g. (e.g. FraunhoferFraunhofer Inst)Inst)

–– SelfSelf--resetting pixelsresetting pixels (e.g. (e.g. sMaLsMaL /Cypress Semi)/Cypress Semi)

–– Gradient Gradient detectorsdetectors (CVPR 2005 (CVPR 2005 Tumblin,RaskarTumblin,Raskar et al)et al)

Captured  ImagesCaptured  Images

Computed Image

(Courtesy  Shree Nayar, Tomoo Mitsunaga 99)

Ginosar et al 92,  Burt & Kolczynski 93,
Madden 93, Tsai 94,  Saito 95,  Mann & Picard 95,
Debevec & Malik 97, Mitsunaga & Nayar 99,
Robertson et al. 99,  Kang et al. 03

HDR From Multiple MeasurementsHDR From Multiple Measurements

MANY ways to make multiple exposure MANY ways to make multiple exposure measurmentsmeasurments

Sequential Exposure Change:

time

Ginosar et al 92,  Burt & Kolczynski 93,
Madden 93, Tsai 94,  Saito 95,  Mann 95,
Debevec & Malik 97, Mitsunaga & Nayar 99,
Robertson et al. 99,  Kang et al. 03

Mosaicing with Spatially Varying Filter:

time

Schechner and Nayar 01,
Aggarwal and Ahuja 01

Multiple Image Detectors:

Doi et al. 86, Saito 95, Saito 96, 
Kimura 98, Ikeda 98,
Aggarwal & Ahuja 01, …

MANY ways to make multiple exposure measurementsMANY ways to make multiple exposure measurements

Multiple Sensor Elements in a Pixel:

Handy 86, Wen 89, Murakoshi 94,
Konishi et al. 95, Hamazaki 96, Street 98

Assorted Pixels:

Nayar and Mitsunaga oo,
Nayar and Narasimhan 02

R R R R
B B B B
G G G G

G G G G
R R R R

B B B B
G G G G

G G G G
R R R R

B B B B
G G G G

G G G G
R R R R

B B B B
G G G G

G G G G

Generalized Bayer Grid:
Trade resolution for multiple exposure,color

AssortedAssorted‐‐Pixel Camera PrototypePixel Camera Prototype

Digital Still Camera Camera with Assorted Pixels

( Courtesy : Sony Kihara Research Lab )

Another Approach:  Locally Adjusted Sensor SensitivityAnother Approach:  Locally Adjusted Sensor Sensitivity

Computational Pixels:

Brajovic & Kanade 96, 
Ginosar & Gnusin 97
Serafini & Sodini 00

( pixel sensivity set by its illumination)

NO GRADIENT CAMERA: RAMESH HAS IT
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LCD Light Attenuator 
limits image intensity 
reaching  8-bit sensor

Unprotected 
8-bit Sensor 
Output:

Sensor: LCD Adaptive Light AttenuatorSensor: LCD Adaptive Light Attenuator

Attenuator-
Protected
8-bit Sensor
Output

detector
element

attenuator
element

It

Tt+1

light

Controller

Improving FILMImproving FILM--LIKE LIKE 
Camera PerformanceCamera Performance

• Vary Focus Point-by-Point

High depth-of-field

• adjacent views use different focus settings
• for each pixel, select sharpest view

close focus distant focus composite

[Haeberli90]

Levoy et al., SIGG2005

SingleSingle--Axis MultiAxis Multi--Parameter Camera Parameter Camera 
(SAMP) (SAMP) 

2005: Morgan McGuire (Brown), 2005: Morgan McGuire (Brown), 
WojciechWojciech Matusik (MERL), Matusik (MERL), 
HanspeterHanspeter Pfister (MERL), Pfister (MERL), 
FredoFredo Durand (MIT), Durand (MIT), 
John Hughes (Brown), John Hughes (Brown), 
ShreeShree NayarNayar (Columbia)(Columbia)

Idea: Idea: 
Cameras + Cameras + BeamsplittersBeamsplitters
Place MANY (8) camerasPlace MANY (8) cameras

at same virtual locationat same virtual location

SAMP Prototype System (Layout)SAMP Prototype System (Layout) Multiple Simultaneous Focus DepthsMultiple Simultaneous Focus Depths

zF zB

ForeBack
‘Co-located’ 
Lenses

Fore & Back
Focal Planes

Strongly desired in microscopy, too: see
http://www.micrographia.com/articlz/artmicgr/mscspec/mscs0100.htm
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Long-range
synthetic aperture photography Focus Adjustment: Sum of Bundles

Improving FILMImproving FILM--LIKE LIKE 
Camera PerformanceCamera Performance

• Field of view vs. Resolution?

Are we done?
• Almost EVERY digital camera has

panoramic stitching.

No;  Much more is possible:

A tiled camera array

• 12 × 8 array of VGA cameras
• abutted:   7680 × 3840 pixels
• overlapped 50%:   half of this
• total field of view = 29° wide
• seamless mosaicing isn’t hard 
• cameras individually metered
• Approx same center-of-proj.

Tiled panoramic image
(before geometric or color calibration)

Tiled panoramic image
(after calibration and blending)
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1/60 1/60

1/60 1/60

1/120 1/60

1/60 1/30

1/120
1/60

1/60 1/30

same exposure 
in all cameras

individually 
metered

same and 
overlapped 50%

Improving FILMImproving FILM--LIKE LIKE 
Camera PerformanceCamera Performance

• Exposure time and Frame rate

High Speed Video

Say you want 120 frame per second (fps) video. 
• You could get one camera that runs at 120 fps
• Or…

High Speed Video

Say you want 120 frame per second (fps) video. 
• You could get one camera that runs at 120 fps
• Or… get 4 cameras running at 30 fps.

52 Camera Cluster, 1560 FPS
Levoy et al., SIGG2005

Conclusions

• Multiple measurements:
– Multi-camera, multi-sensor, multi-optics, multi-lighting

• Intrinsic limits seem to require it
– lens diffraction limits, noise, available light power.

• Are we eligible for Moore’s law?
Or will lens making, mechanics limit us?
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Computational Cameras:

Convergence of Optics and Software

Shree K. Nayar

Support:
NSF, ONR, Packard Foundation
T. C. Chang Endowed Chair

Computer Science
Columbia University

http://www.cs.columbia.edu/CAVE/

Traditional  Camera

Lens

Detector

Pixels

c  Shree Nayar, Columbia University
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Computational  Cameras

Detector

New  OpticsComputations

Pixels

Vision

c  Shree Nayar, Columbia University

Wide Angle Imaging

Examples: Disney 55, McCutchen 91, Nalwa 96, 
Swaminathan & Nayar 99, Cutler et al. 02

Multiple Cameras Catadioptric Imaging

Examples:  Rees 70,  Charles 87,  Nayar 88,  
Yagi 90,   Hong 91,  Yamazawa 95,  Bogner 95,  
Nalwa 96, Nayar 97,   Chahl & Srinivasan 97

c  Shree Nayar, Columbia University
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What’s the Mirror’s Shape ?

viewpoint

z

r

scene

(with Simon Baker, ICCV 98)

mirror z(r)

(
4

2
2

1
2

(2
4

1
22
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2

2

2
2

2
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⎝
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k
k

kckrcz

Complete  Class  of  Mirrors

(k > 0)

(k > 2)

lens

camera

c  Shree Nayar, Columbia University

OneShot 360 by RemoteReality

4 Megapixel (2000 x 2000)
360  degree  still  camera

(Nayar 97)

c  Shree Nayar, Columbia University
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c  Shree Nayar, Columbia University

(with Venkat Peri 96)
c  Shree Nayar, Columbia University
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Commercial
Security

Virtual Tours

Perimeter Monitoring
Vehicle Navigation

Near Vehicle Awareness

Omnidirectional Periscope Wide Area Surveillance

(Courtesy : RemoteReality Inc.)c  Shree Nayar, Columbia University

Radial  Stereoscopic  Imaging

(with Sujit Kuthirummal, SIGGRAPH  06)

c  Shree Nayar, Columbia University
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c  Shree Nayar, Columbia University

c  Shree Nayar, Columbia University
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Mosaicing

c  Shree Nayar, Columbia University

……Redundant Measurements

c  Shree Nayar, Columbia University
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Field of View

Dynamic Range

Spectrum

Depth of Field

Polarization

camera

spatially varying 
optical  filter

( Schechner and Nayar, ICCV 2001 )

Generalized Mosaicing

c  Shree Nayar, Columbia University

focusfocal
Exposure                         Spectrum                   Polarization                          Focus

c  Shree Nayar, Columbia University
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Attenuation

High Dynamic Range Mosaicing

c  Shree Nayar, Columbia University

88 - 18,794

High Dynamic Range Mosaic

c  Shree Nayar, Columbia University
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Spectral

y

x
λ

Multispectral Mosaicing

c  Shree Nayar, Columbia University

500 700400 600 λ 500 700400 600 λ 500 700400 600 λ

Multispectral Mosaic

c  Shree Nayar, Columbia University
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pixels

image detector

optical mask

scene

High Dynamic Range Imaging: Assorted Pixels

Spatially Varying 
Exposures (SVE)

( with Tomoo Mitsunaga, CVPR 2000)
c  Shree Nayar, Columbia University

c  Shree Nayar, Columbia University
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Sony Cybershot Sony Cybershot with Assorted Pixels

c  Shree Nayar, Columbia University

Object Motion

Camera Motion

Motion Blur

c  Shree Nayar, Columbia University
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Te
m

po
ra

l R
es

ol
ut

io
n 

(f
ps

)

130

3

Spatial Resolution (pixels)

3M
2048x1536

High Resolution Camera

75K
320x240

Low Resolution Camera

Fundamental Trade‐Off in Imaging

(with Moshe Ben‐Ezra, CVPR 2003)
c  Shree Nayar, Columbia University

Low‐Res. Camera

High‐Res. Camera

Same Time Period

Debluring Approach: Hybrid Imaging

PSF Estimation

Motion Analysis

x

y

Deconvolution

c  Shree Nayar, Columbia University
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Primary Detector
(2048x1536)

Secondary Detector
(360x240)

Resolution Ratio of 1 : 36

Hybrid Imaging System: Prototype

c  Shree Nayar, Columbia University

f = 633mm, Exp. Time 1 Sec (> ‐9 stops)

Example: Blurred High Resolution Image

c  Shree Nayar, Columbia University
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Low Resolution Video

Example: PSF Estimation from Motion

X (Pixels)
10 130

10

90

Y
(P
ix
el
s)

0.001

0.06

Estimated PSF

c  Shree Nayar, Columbia University

Deblurred imageBlurred Image

Tripod image (Ground Truth) 

Example: PSF Estimation from Motion

c  Shree Nayar, Columbia University
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Time

Space

Super‐Resolution using Jitter Video

Conventional Video

Time

Space

Jitter Video

(with Moshe Ben‐Ezra and Assaf Zomet, CVPR 2004)
c  Shree Nayar, Columbia University

Lens Detector

Micro‐Actuator

Jitter Camera

Jitter is Instantaneous and Synchronized
c  Shree Nayar, Columbia University



17

Lens Detector

Micro‐Actuator

Jitter Camera

Jitter is Instantaneous and Synchronized
c  Shree Nayar, Columbia University

Computer Controlled
X Micro‐Actuator

Computer Controlled
Y Micro‐Actuator

Board Camera

Lens

c  Shree Nayar, Columbia University
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1 (out of 4) Jitter Camera Image Super‐Resolution

Super‐Resolution using Jitter Video

c  Shree Nayar, Columbia University
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mirror array

Imaging Through Micro‐Mirrors

scene

viewpoint

detector

black
surface

Geometry: Ray Orientation

oi inix(   )  =  G (    )

Photometry: Ray Attenuation

ix(   )  =ai int (    )
int (    ) bnt (    )+

ix

bno i
in

ix

(with Vlad Branzoi and Terry Boult, 2004)

c  Shree Nayar, Columbia University

Digital Micromirror Device (DMD)

DMD Array:

(by Texas Instruments)

14 um

Micromirror Architecture:

10o‐10o

DMD for Imaging: 
(Malbet et al. 95, Kearney et al. 98, Castracane et al. 99, Christensen et al. 02)

c  Shree Nayar, Columbia University



20

Programmable  Imaging  System

DMD Electronics

Camera Electronics

Imaging Lens

Lens Focused on DMDTilted CCD
c  Shree Nayar, Columbia University

* =

*

*

=

=

Modulation: Examples

Scene DMD Image Camera Image

c  Shree Nayar, Columbia University
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Adaptive Dynamic Range Imaging (ADR)

Normal (Constant Exposure) Video

ADR  Video DMD Control Video

(Nayar & Branzoi 03)
(Christensen et al. 02)

Pixel‐wise Dynamic
Range Control

c  Shree Nayar, Columbia University

Image Detector

Camera with a Lens

Scene

Aperture

Lens

c  Shree Nayar, Columbia University



22

Image Detector

Lensless Camera with Volumetric Aperture

Volumetric
Aperture

Scene

(with Assaf Zomet, 2005)
c  Shree Nayar, Columbia University

Image Detector

Single Aperture Layer

Single Layer
Aperture

Scene

( )vuS ,

α

f

( )αtan=u

( ) ( ) ( )∫ ∫ −−= dudvfvyfuxTvuSyxI ,,,Pixel Brightness:

Scene Transmittance Functionc  Shree Nayar, Columbia University
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Initial  Implementation: LCD Attenuator

Camera without Lens LCD Aperture

LCD
Controller

c  Shree Nayar, Columbia University

Panning without Moving Parts

LCD Attenuator

Image Detector

Captured Video

c  Shree Nayar, Columbia University
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Image Detector

Multiple Aperture Layers

Multi‐Layered
Aperture

Scene

( )vuS ,

α
j=1

( )αtan=u

Pixel Brightness:

Scene Transmittance Functions

( ) ( ) ( )∫ ∫ ∏
=

−−= dudvvfyufxTvuSyxI
N

j
jjj

1

,,,

j=2
.
.

c  Shree Nayar, Columbia University

Conventional View Desired View

c  Shree Nayar, Columbia University
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Attenuating Layers

Image Detector

Pinholes

Fov 2
Fov 1

Fov 3

Split Field of View using Multiple Layers

c  Shree Nayar, Columbia University

Split Field of View

Lens
Camera

Lensless
Camera

c  Shree Nayar, Columbia University
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Computational Cameras

Detector

New  OpticsComputations

Pixels

Vision

c  Shree Nayar, Columbia University

Programmable Imaging

Detector

New  OpticsComputations

Pixels

Vision Programmable Controller

c  Shree Nayar, Columbia University
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Light field
photography and videography

Marc Levoy

Computer Science Department
Stanford University

34:15 total + 30% = ~45 minutes
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© 2005 Marc Levoy

List of projects

• high performance imaging
using large camera arrays

• light field photography
using a handheld plenoptic camera

• dual photography
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High performance imaging
using large camera arrays

Bennett Wilburn, Neel Joshi, Vaibhav Vaish, Eino-Ville Talvala, Emilio Antunez,
Adam Barth, Andrew Adams, Mark Horowitz, Marc Levoy

(Proc. SIGGRAPH 2005)
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© 2005 Marc Levoy

Stanford multi-camera array

• 640 × 480 pixels ×
30 fps × 128 cameras

• synchronized timing
• continuous streaming
• flexible arrangement
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© 2005 Marc Levoy

Ways to use large camera arrays

• widely spaced light field capture
• tightly packed high-performance imaging
• intermediate spacing synthetic aperture photography
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© 2005 Marc Levoy

Intermediate camera spacing:
synthetic aperture photography

Σ
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© 2005 Marc Levoy

Example using 45 cameras
[Vaish CVPR 2004]

•Reference:
–Vaish, V., Wilburn, B., Joshi, N., Levoy, M., Using 
Plane + Parallax for Calibrating Dense Camera 
Arrays,
Proc. CVPR 2004.
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•At left is a single view, at right is a sum of all views, 
appropriately shifted.
•For the movie, see 2nd bullet of “Slides and videos” on 
http://graphics.stanford.edu/projects/array/
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© 2005 Marc Levoy

Video

•Video available at 
http://graphics.stanford.edu/papers/CameraArray/
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Tiled camera array

• world’s largest video camera
• no parallax for distant objects
• poor lenses limit image quality
• seamless mosaicing isn’t hard

Can we match the image quality of a cinema camera?

•poor lenses limit image quality
–we set out to answer the question, “Can we match 
the image quality of an SLR?”
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Tiled panoramic image
(before geometric or color calibration)
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Tiled panoramic image
(after calibration and blending)
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Tiled camera array

• world’s largest video camera
• no parallax for distant objects
• poor lenses limit image quality
• seamless mosaicing isn’t hard
• per-camera exposure metering
• HDR within and between tiles 

Can we match the image quality of a cinema camera?
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same exposure 
in all cameras

individually 
metered

checkerboard
of exposures



Time = 15

© 2005 Marc Levoy

High-performance photography 
as multi-dimensional sampling

• spatial resolution
• field of view
• frame rate
• dynamic range
• bits of precision
• depth of field
• focus setting
• color sensitivity
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© 2005 Marc Levoy

Spacetime aperture shaping

• shorten exposure time to 
freeze motion → dark

• stretch contrast to restore 
level → noisy

• increase (synthetic) aperture 
to capture more light →
decreases depth of field
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• center of aperture: few cameras, long exposure →
high depth of field, low noise,
but action is blurred

• periphery of aperture: many cameras, short exposure →
freezes action, low noise,
but low depth of field
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© 2005 Marc Levoy

Light field photography using a 
handheld plenoptic camera

Ren Ng, Marc Levoy, Mathieu Brédif,
Gene Duval, Mark Horowitz and Pat Hanrahan

(Proc. SIGGRAPH 2005
and TR 2005-02)

•Light field capture not using an array of cameras, but
–using a single, handheld camera

•What we’ll do with these light fields is not seeing through 
crowds, but

–refocusing a picture after we take it, and
–moving the observer (slightly) after we take the 
picture
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© 2006 Marc Levoy

Conventional versus light field camera
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© 2006 Marc Levoy

Conventional versus light field camera

uv-plane st-plane
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© 2006 Marc Levoy

Conventional versus light field camera

uv-planest-plane



Time = 24

Prototype camera

4000 × 4000 pixels  ÷ 292 × 292 lenses  =  14 × 14 pixels per lens

Contax medium format camera Kodak 16-megapixel sensor

Adaptive Optics microlens array 125μ square-sided microlenses
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© 2005 Marc Levoy

Mechanical design

• microlenses float 500μ above sensor
• focused using 3 precision screws
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© 2006 Marc Levoy

Prior work

• integral photography
– microlens array + film
– application is autostereoscopic effect

• [Adelson 1992]
– proposed this camera
– built an optical bench prototype using relay lenses
– application was stereo vision, not photography

•Reference:
–Adelson, E.H., Wang, J.Y.A., Single Lens Stereo 
with a Plenoptic Camera ,
–IEEE Transactions on Pattern Analysis and 
Machine Intelligence (PAMI),
Vol. 14, No. 2, 1992, pp. 99-106.
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© 2006 Marc Levoy

Digitally stopping-down

• stopping down  =  summing only the 
central portion of each microlens

Σ

Σ
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© 2006 Marc Levoy

Digital refocusing

• refocusing  =  summing windows 
extracted from several microlenses

Σ

Σ
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© 2006 Marc Levoy

A digital refocusing theorem

• an  f / N light field camera, with P × P pixels 
under each microlens, can produce views as 
sharp as an  f / (N × P) conventional camera

– or –

• it can produce views with a shallow depth of 
field ( f / N ) focused anywhere within the 
depth of field of an  f / (N × P) camera
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Example of digital refocusing

•For full sequence, see 
http://graphics.stanford.edu/papers/lfcamera/
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Refocusing portraits

•For full sequence, see 
http://graphics.stanford.edu/papers/lfcamera/
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Action photography

•For full sequence, see 
http://graphics.stanford.edu/papers/lfcamera/
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Extending the depth of field 

conventional photograph,
main lens at  f / 22

conventional photograph,
main lens at  f / 4

light field, main lens at f / 4,
after all-focus algorithm

[Agarwala 2004]

•main lens at f/22
–captured with light field camera and f/4 lens,
–computed by extracting only the middle pixel of 
that image
–would be the same image if no microlenses and 
larger pixels

•Reference:
–Agarwala, A., Dontcheva, M., Agrawala, M., 
Drucker, S., Colburn, A., Curless, B., Salesin, D., 
Cohen, M., Interactive digital photomontage,
Proc. SIGGRAPH 2004.
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Macrophotography
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Digitally moving the observer

• moving the observer  =  moving the 
window we extract from the microlenses

Σ

Σ
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Example of moving the observer
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Moving backward and forward
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Implications

• cuts the unwanted link between exposure
(due to the aperture) and depth of field

• trades off (excess) spatial resolution for ability to 
refocus and adjust the perspective

• sensor pixels should be made even smaller, 
subject to the diffraction limit

36mm × 24mm  ÷ 2μ pixels  =  216 megapixels
18K × 12K pixels
1800 × 1200 pixels  × 10 × 10 rays per pixel
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Dual Photography

Pradeep Sen, Billy Chen, Gaurav Garg, Steve Marschner,
Mark Horowitz, Marc Levoy, Hendrik Lensch

(Proc. SIGGRAPH 2005)
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Helmholtz reciprocity

scene

light

camera
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Helmholtz reciprocity

scene

camera

light
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photocell

scene

Measuring transport along a set of paths
projector
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scene

point light

Reversing the paths
camera

•The transport will be the same
–up to a global scaling factor
–because we replaced a projector by a different kind 
of light
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Forming a dual photograph

scene

photocellprojector
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Forming a dual photograph

scene

image of
scene

“dual” light
“dual” camera
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Physical demonstration

• light replaced with projector
• camera replaced with photocell
• projector scanned across the scene

conventional photograph,
with light coming from right

dual photograph,
as seen from projector’s position

and as illuminated from photocell’s position
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Related imaging methods

• time-of-flight scanner
– if they return reflectance as well as range
– but their light source and sensor are typically coaxial

• scanning electron microscope

Velcro® at 35x magnification,
Museum of Science, Boston
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camera

The 4D transport matrix

scene

projector



Time = 50

camera

The 4D transport matrix

scene

projector

P

pq x 1

C

mn x 1

T

mn x pq
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T PC =

The 4D transport matrix

pq x 1mn x 1

mn x pq
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TC =

The 4D transport matrix

1
0
0
0
0

mn x pq

pq x 1mn x 1
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TC =

The 4D transport matrix

0
1
0
0
0

mn x pq

pq x 1mn x 1
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TC =

The 4D transport matrix

0
0
1
0
0

mn x pq

pq x 1mn x 1
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The 4D transport matrix

T PC =

pq x 1mn x 1

mn x pq
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The 4D transport matrix

applying Helmholtz reciprocity...

T PC =

pq x 1mn x 1

mn x pq

T P’C’ =

mn x 1pq x 1

pq x mn

T

•This lets us relight the scene
–as viewed from the projector’s position, and
–not just as illuminated by a uniform point light, but
–as illuminated by a point source with arbitrary 
directional control,
–i.e. as illuminated by a programmable video 
projector
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Example

conventional photograph
with light coming from right

dual photograph
as seen from projector’s position

Video available at 
http://graphics.stanford.edu/papers/dual_photography/
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Properties of the transport matrix

• little interreflection → sparse matrix
• many interreflections → dense matrix
• convex object  → diagonal matrix
• concave object  → full matrix

Can we create a dual photograph entirely from diffuse reflections?
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Dual photography
from diffuse reflections

the camera’s view
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The relighting problem

• subject captured under multiple lights
• one light at a time, so subject must hold still
• point lights are used, so can’t relight with cast shadows

Paul Debevec’s
Light Stage 3
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The 6D transport matrix
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The 6D transport matrix
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The advantage of dual photography

• capture of a scene as illuminated by 
different lights cannot be parallelized

• capture of a scene as viewed by different 
cameras can be parallelized
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scene

Measuring the 6D transport matrix

projector

mirror array
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Relighting with complex illumination

• step 1:  measure 6D transport matrix T
• step 2:  capture a 4D light field
• step 3:  relight scene using captured light field

scene

camera arrayprojector

TT P’C’ =

mn x uv x 1pq x 1

pq x mn x uv
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Running time

• the different rays within a projector can in fact 
be parallelized to some extent

• this parallelism can be discovered using a 
coarse-to-fine adaptive scan

• can measure a 6D transport matrix in 5 minutes

•5 minutes
–using a video-rate camera
–and (effectively) measuring 1M x 1M transport 
entries
–for scenes having average amounts of diffuse 
interreflection
–everything depends on the density of the T matrix



Time = 67

Can we measure an 8D transport matrix?

scene

camera arrayprojector array

•8D transport matrix
–the full scattering function
–if this were a surface, we’d call it the BSSRDF
–what should we call this?  the bidirectional light 
field transport distribution function (BLFTDF)?
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http://graphics.stanford.edu

T PC =

pq x 1mn x 1 mn x pq
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Computational Imaging
in the Sciences (and Medicine)

Marc Levoy

Computer Science Department
Stanford University

Due to copyright restrictions, some images have been removed from this version of the slides.
To see presentation with these images intact, go to:

http://graphics.stanford.edu/courses/cs448a-06-winter/
and look under the heading “Lectures for SIGGRAPH 2006 course on Computational Photography”.

•Based on lectures given in:
–Stanford CS 448A (Computational 
Photography), Winter quarter 2006

34:15 total + 30% = ~45 minutes
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Some examples

• medical imaging
– rebinning
– transmission tomography
– reflection tomography (for ultrasound)

• geophysics
– borehole tomography
– seismic reflection surveying

• applied physics
– diffuse optical tomography
– diffraction tomography
– inverse scattering

inspiration for light field rendering

time-of-flight or wave-based
in this lecture
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• biology
– confocal microscopy
– deconvolution microscopy

• astronomy
– coded-aperture imaging
– interferometric imaging

• airborne sensing
– multi-perspective panoramas
– synthetic aperture radar

related to tomography

applicable at macro scale too
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• optics
– holography
– wavefront coding
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Confocal scanning microscopy

pinhole

light source

•typical reference:
–Corle, T.R.. Kino, G.S. Confocal Scanning 
Optical Microscopy and Related Imaging 
Systems,
Academic Press, 1996.

•if you introduce a pinhole
–only one point on the focal plane will be 
illuminated
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Confocal scanning microscopy

pinhole

light source

photocell

pinhole

r

•...and a matching optical system,
–hence the word confocal

•this green dot
–will be both strongly illuminated and sharply 
imaged

•while this red dot
–will have less light falling on it by the square of 
distance r,
–because the light is spread over a disk
–and it will also be more weakly imaged by the 
square of distance r,
–because its image is blurred out over an disk on the 
pinhole mask, and only a little bit is permitted through

•so the extent to which the red dot contributes to the final 
image

–falls off as the fourth power of r, the distance from 
the focal plane
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Confocal scanning microscopy

pinhole

light source

photocell

pinhole

•of course, you’ve only imaged one point
–so you need to move the pinholes
–and scan across the focal plane
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Confocal scanning microscopy

pinhole

light source

photocell

pinhole
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[UMIC SUNY/Stonybrook]

Image removed due to
copyright restrictions

Image removed due to
copyright restrictions

•the object in the lower-right image is actually 
spherical,

–but portions of it that are off the focal plane 
are both blurry and dark,
–effectively disappearing
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Synthetic confocal scanning
[Levoy 2004]

light source

→ 5 beams
→ 0 or 1 beams

•our goal
–is to approximate this effect at the large 
scale

•we can understand the photometry of this setup
–using a simplified counting argument

•Reference:
–Levoy, M., Chen, B., Vaish, V., Horowitz, 
M., McDowall, I., Bolas, M., Synthetic 
aperture confocal imaging,
Proc. SIGGRAPH 2004. 
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Synthetic confocal scanning

light source

→ 5 beams
→ 0 or 1 beams

•5:0 or 5:1
–if we had 5 cameras as well as 5 projectors, 
then the ratio would be 25:0 or 25:1
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Synthetic confocal scanning

→ 5 beams
→ 0 or 1 beams

• works with any number of projectors  ≥  2
• discrimination degrades if     point to left of
• no discrimination for    points to left of
• slow!
• poor light efficiency

dof

•depth of field
–a microscoper would call it the axial 
resolution
–to make the depth of field shallower, 
spread out the projectors, i.e. a larger 
synthetic aperture



Time = 13

©2006 Marc Levoy

Synthetic coded-aperture
confocal imaging

• different from coded aperture imaging in astronomy
• [Wilson, Confocal Microscopy by Aperture Correlation, 1996]

•Reference:
–Wilson, T., Juskaitis, R., Neil, M.A.A., 
Kozubek, M., Confocal microscopy by 
aperture correlation,
Optics Letters, Vol. 21, No. 23, December 1, 
1996.
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Synthetic coded-aperture
confocal imaging
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Synthetic coded-aperture
confocal imaging
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Synthetic coded-aperture
confocal imaging
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Synthetic coded-aperture
confocal imaging

100 trials
→  2 beams  ×  50/100 trials  =  1
→ ~1 beam  ×  50/100 trials =  0.5
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Synthetic coded-aperture
confocal imaging

100 trials
→  2 beams  ×  50/100 trials  =  1
→ ~1 beam  ×  50/100 trials =  0.5

floodlit
→  2 beams
→  2 beams

trials  – ¼  ×  floodlit
→  1  – ¼ ( 2 )  =  0.5
→  0.5  – ¼ ( 2 )  =  0
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Synthetic coded-aperture
confocal imaging

• works with relatively few trials (~16)
• 50% light efficiency
• works with any number of projectors  ≥  2
• discrimination degrades if     point vignetted for some projectors
• no discrimination for     points to left of
• needs patterns in which illumination of tiles are uncorrelated

100 trials
→  2 beams  ×  50/100 trials  =  1
→ ~1 beam  ×  50/100 trials =  0.5

floodlit
→  2 beams
→  2 beams

trials  – ¼  ×  floodlit
→  1  – ¼ ( 2 )  =  0.5
→  0.5  – ¼ ( 2 )  =  0

•note all the tildas in the formulas
–this algorithm is statistical in nature
–for example, if we flip a coin to decide whether to 
illumninate a particular tile on a particular trial
–the binomial theorem tells us how much variability we’ll 
get over a given number of trials

•the effect of this variability
–the image of our focal plane will be slightly non-uniform, 
and
–objects off the focal plane won’t be entirely dark after the 
confocal subtraction

•but for visual purposes
–our technique works well with a modest number of trials, 
like 16
–far fewer than would be required to scan out the focal 
plane, as in the usual confocal scanning algorithm
–we need patterns in which the illumination of different 
tiles are spatially uncorrelated

•patterns
–Hadamard patterns don’t work well because

»they need to be square
»they are too structured, creating aliasing on foreground 
objects
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Example pattern
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What are good patterns?
pattern           one trial           16 trials
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Patterns with less aliasing

multi-phase
sinusoids?
[Neil 1997]

•reference:
–Neil, M.A.A., Juskaitis, R., Wilson, T., 
Method of obtaining optical sectioning by 
using structured light in a conventional 
microscope,
Optics Letters, Vol. 22, No. 24, December 
15, 1997.
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Implementation
using an array of mirrors

•video projector is orange dot at right, off-axis 
screen (not used) is red line, mirrors are yellow 
lines, scene is green dot, focal planes are 
superimposed yellow lines at green dot
•virtual projectors are orange dots at left
•this is an interactive program that let’s you adjust 
all the parameters
•main tradeoff is between angular spread of rays 
arriving at scene versus depth of field of patterns 
arriving there
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Implementation using an 
array of mirrors

•URL of SIGGRAPH 2004 paper and movie is:
–http://graphics.stanford.edu/papers/confoc
al/
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Confocal imaging in scattering media

• small tank
– too short for attenuation
– lit by internal reflections

•I observed a confocal effect
–but it was modest
–theory said the effect should be stronger
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Experiments in a large water tank

50-foot flume at Wood’s Hole Oceanographic Institution (WHOI)
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Experiments in a large water tank

• 4-foot viewing distance to target
• surfaces blackened to kill reflections
• titanium dioxide in filtered water
• transmissometer to measure turbidity

•titanium dioxide
–the stuff in white paint
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Experiments in a large water tank

• stray light limits performance
• one projector suffices if no occluders
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Seeing through turbid water

floodlit scanned tile

•this is very turbid water
–the “attenuation length” (a technical term 
that roughly translates to “how far you can 
see clearly”) is about 8 inches
–and I’m trying to see through 4 feet

•if you contrast enhance these images,
–you can see the improvement in signal-to-
noise ratio

•Reference:
–M. Levoy, Improving underwater vision 
using confocal imaging.  In preparation.
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Other patterns

sparse grid

staggered grid

swept stripe

•to speed things up,
–one can use patterns that illuminate several 
tiles at once
–similar strategies have been used in 
confocal microscopy

•the problem with this one
–the illumination beams (coming in from the 
right side) intersect the lines of sight to 
other tiles, degrading contrast

•here’s a pattern in which they don’t
–a staggered grid

•here’s another pattern in which they don’t
–a simple swept stripe
–with the light coming in from the right side
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Other patterns

swept stripefloodlit scanned tile
•here’s how a swept stripe stacks up against the 
other patterns

–somewhere in the middle, in terms of 
quality

•a swept stripe has a number of advantages, 
though...
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Stripe-based illumination

• if vehicle is moving, no sweeping is needed!
• can triangulate from leading (or trailing) edge 

of stripe, getting range (depth) for free

Image removed due to
copyright restrictions

•no sweeping is needed
–the forward motion of the vehicle will sweep out 
the stripe!

•in addition, since the stripe is coming from the side...
–essentially constitutes a structured-light 
rangefinder

•this is not a new idea
–Jules Jaffe proposed it 14 years ago

»Jaffe, J.S., Computer modeling and the design of 
optimal underwater imaging systems,
IEEE J. Oceanic Eng. 15(2), 101-111 (1990).

–but he had no technology to implement it
–compact video projectors provide that technology

•so we can easily envision
–video projectors being mounted on future 
underwater vehicles
–this is the Hercules remotely operated vehicle
–exploring the wreck of the Titanic two months ago 
in the North Atlantic
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Application to
underwater exploration

[Ballard/IFE 2004]

Image removed due to
copyright restrictions

Image removed due to
copyright restrictions

•so I think we can expect
–video projectors being mounted on future 
underwater vehicles
–this is the Hercules remotely operated vehicle
–exploring the wreck of the Titanic two months ago 
in the North Atlantic
–Pictures from Robert Ballard, Institute for 
Exploration, 2004.

•the question is
–can you produce an overhead view like this, of the 
Titanic
–in a single shot taken from far away using shaped 
illumination
–rather than by mowing the lawn with the 
underwater vehicle
–which is difficult, dangerous, time consuming, and 
produces a mosaic with parallax errors
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Shaped illumination in a 
computer vision algorithm

• low variance within one block  =  stereo constraint
• sharp differences between adjacent blocks  =  focus constraint
• both algorithms are confused by occluding objects

transpose of the light field
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Shaped illumination in a 
computer vision algorithm

• confocal estimate of projector mattes  → re-shape projector beams
• re-capture light field  → run vision algorithm on new light field
• re-estimate projector mattes from model and iterate

transpose of the light field
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Confocal imaging versus 
triangulation rangefinding

• triangulation
– line sweep of W pixels or log(W) 

time sequence of stripes, W ≈ 1024
– projector and camera lines of sight 

must be unoccluded, so requires S 
scans, 10 ≤ S ≤ 100

– one projector and camera
– S log(W) ≈ 100-1000

• confocal
– point scan over W2 pixels or time 

sequence of T trials, T ≈ 32-64
– works if some fraction of aperture 

is unoccluded, but gets noisier, max 
aperture ≈ 90°, so 6-12 sweeps?  

– multiple projectors and cameras
– 6 T = 200-800

90º

30º

no moving parts
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The Fourier projection-slice theorem
(a.k.a. the central section theorem)   [Bracewell 1956]

• P (t) is the integral of g(x,y) in the direction 
• G(u,v) is the 2D Fourier transform of g(x,y)
• G (ω) is a 1D slice of this transform taken at 
• -1 { G (ω) } = P (t) !

P (t
) G (ω)

(from Kak)

Image removed due to
copyright restrictions

•References:
–Bracewell, R. N. Strip Integration in Radio 
Astronomy,
Australian Journal of Physics, Vol. 9, 1956, 
No. 2, pp. 198-217.
–Kak, A, Slaney, M., Principles of 
Computerized Tomographic Imaging,
IEEE Press, 1988.
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Reconstruction of g(x,y)
from its projections

• add slices G (ω) into u,v at all angles and inverse 
transform to yield g(x,y), or

• add 2D backprojections P (t, s) into x,y at all angles 

P (t)

P (t, s)

G (ω)

(from Kak)dss)(t,P(t)P ∫
+∞

∞−

= θθ

θθ |v)G(u,)(G =ω

Image removed due to
copyright restrictions
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The need for filtering before 
(or after) backprojection

• sum of slices would create 1/ω hot spot at origin
• correct by multiplying each slice by |ω|, or
• convolve P (t) by -1 { |ω| } before backprojecting
• this is called filtered backprojection

ω

1/ω

ω

|ω|

hot spot correction

u

v
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• sum of slices would create 1/ω hot spot at origin
• correct by multiplying each slice by |ω|, or
• convolve P (t) by -1 { |ω| } before backprojecting
• this is called filtered backprojection

ω

1/ω

ω

|ω|

-1 { |ω| }  =  Hilbert transform of  (∂/ ∂t) P (t)

=  −1 / ( π t ) * (∂/ ∂t) P (t)

=  -1{ }ωε

ε
ω −

→
e

0
lim

hot spot correction

u

v

~2nd derivative

(from Bracewell)

Image removed due to
copyright restrictions

Image removed due to
copyright restrictions

Image removed due to
copyright restrictions

•Reference:
–Bracewell, R.N., The Fourier Transform 
and its Applications,
2nd ed., McGraw-Hill, 1985.
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Summing filtered 
backprojections

(from Kak)

Image removed due to
copyright restrictions
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Example of reconstruction 
by filtered backprojection

X-ray sinugram

filtered sinugram reconstruction
(from Herman)

Image removed due to
copyright restrictions

Image removed due to
copyright restrictions

Image removed due to
copyright restrictions

Image removed due to
copyright restrictions

•Reference:
–Herman, G.T., Image Reconstruction from 
Projections,
Academic Press, 1980.
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More examples

CT scan
of head

volume
renderings

the effect
of occlusions
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Shape from light fields
using filtered backprojection

scene

backprojection occupancy

reconstructionsinugram

•Reference:
–M. Levoy, unpublished.

•but also see:
–Brady, D.J., Stack, R., Feller, S., Cull, E., 
Fernandez, L., Kammeyer, D., and Brady, 
R., Information Flow in Streaming 3D 
Video,
Proc. SPIE, Vol. CR76-13, 2000.
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Relation to Radon Transform

• Radon transform

• Inverse Radon transform

where P1 where is the partial derivative of P with respect to t

dsθs θθ, r s θr gθr,P ∫
+∞

∞−

+−= )cossinsincos()(

r

r

)( θr,P

dqqθyθxP
q

dθyxg ∫∫
+∞

∞−

++−= ),sincos(1
2

1),( 1

2

0
2 θ

π

π
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copyright restrictions



Time = 46

• Radon transform

• Inverse Radon transform

where P1 where is the partial derivative of P with respect to t

dsθs θθ, r s θr gθr,P ∫
+∞

∞−

+−= )cossinsincos()(

dqqθyθxP
q

dθyxg ∫∫
+∞

∞−

++−= ),sincos(1
2
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2

0
2 θ

π

π
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Higher dimensions

• Fourier projection-slice theorem in n

– Gξ(ω), where ξ is a unit vector in n, ω is the basis for a hyperplane
in n-1, and G contains integrals over lines

– in 2D:  a slice (of G) is a line through the origin at angle ,
each point on -1 of that slice is a line integral (of g) perpendicular to 

– in 3D:  each slice is a plane through the origin at angles ( ,φ) ,
each point on -1 of that slice is a line integral perpendicular to the plane

• Radon transform in n

– P(r,ξ), where ξ is a unit vector in n, r is a scalar,
and P contains integrals over (n-1)-D hyperplanes

– in 2D:  each point (in P) is the integral along the line (in g)
perpendicular to a ray connecting that point and the origin

– in 3D:  each point is the integral across a plane
normal to a ray connecting that point and the origin

(from Deans)

Image removed due to
copyright restrictions

•Reference:
–Deans, S., The Radon Transform and Some 
of its Applications,
Krieger, 1983.
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Frequency domain volume rendering
[Totsuka and Levoy, SIGGRAPH 1993]

with
depth cueing

with
depth cueing
and shading

with
directional

shading

X-ray

volume rendering

•Reference:
–Totsuka, T. and Levoy, M., Frequency Domain 
Volume Rendering,
Proc. SIGGRAPH 1993.

•Example depth cueing
–sinusoidal falloff = multiplication of volume by large 
sinusoid
–= convolution of spectrum by F(sinusoid) = 
convolution by spike = shifting the 3D spectrum 
before extracting slice!

•Example directional shading
–we can’t compute |N.L| or max(N.L,0)
–Lambertian under hemispherical shading = ½ + ½ 
N.L, which smoothly maps N.L to 0..1
–N.L = first derivative of volume in direction x of 
pole = directional first moment (x f(x)) of spectrum,
which again can be computed while extracting a slice
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Other issues in tomography

• resample fan beams to parallel beams
• extendable (with difficulty) to cone beams in 3D
• modern scanners use helical capture paths
• scattering degrades reconstruction
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Limited-angle projections

(from Olson)

Image removed due to
copyright restrictions

•Reference:
–Olson, T., Jaffe, J.S., An explanation of the 
effects of squashing in limited angle 
tomography,
IEEE Trans. Medical Imaging, Vol. 9, No. 
3., September 1990.
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Reconstruction using Algebraic 
Reconstruction Technique (ART)

• applicable when projection angles are limited
or non-uniformly distributed around the object

• can be under- or over-constrained, depending on N and M

∑
=

==
N

j
jiji Mifwp

1

,,2,1, …

M  projection rays
N  image cells along a ray
pi = projection along ray i
fj = value of image cell j   (n2 cells)
wij = contribution by cell j to ray i

(a.k.a. resampling filter) (from Kak)

Image removed due to
copyright restrictions
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Procedure
• make an initial guess, e.g. assign zeros to all cells
• project onto p1 by increasing cells along ray 1 until Σ = p1

• project onto p2 by modifying cells along ray 2 until Σ = p2,  etc.
• to reduce noise, reduce by             for α < 1

i
ii

ii
k

kk w
ww

pwfff
•

−•
−=

−
− )()1(

)1()(

cells all of estimate th)( kf k =
iwwww iNiii ray  along ),,,( weights 21 …=

)(kfΔα

Image removed due to
copyright restrictions

Image removed due to
copyright restrictions

•Formula is derived in Kak, chapter 7, p. 278
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Procedure
• make an initial guess, e.g. assign zeros to all cells
• project onto p1 by increasing cells along ray 1 until Σ = p1

• project onto p2 by modifying cells along ray 2 until Σ = p2,  etc.
• to reduce noise, reduce by             for α < 1)(kfΔα

• linear system, but big, sparse, and noisy
• ART is solution by method of projections [Kaczmarz 1937]
• to increase angle between successive hyperplanes, jump by 90°
• SART modifies all cells using  f (k-1), then increments k
• overdetermined if M > N, underdetermined if missing rays
• optional additional constraints:

• f  > 0  everywhere (positivity)
• f  =  0  outside a certain area

•SIRT = Simultaneous Itertative Reconstruction 
Technique
•SART = Simultaneous ART
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• linear system, but big, sparse, and noisy
• ART is solution by method of projections [Kaczmarz 1937]
• to increase angle between successive hyperplanes, jump by 90°
• SART modifies all cells using  f (k-1), then increments k
• overdetermined if M > N, underdetermined if missing rays
• optional additional constraints:

• f  > 0  everywhere (positivity)
• f  =  0  outside a certain area

(Olson)

Image removed due to
copyright restrictions

•Reference:
–Olson, T., A stabilized inversion for limited 
angle tomography. Manuscript.
–35 degrees missing
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(Olson)

Image removed due to
copyright restrictions

Image removed due to
copyright restrictions

•Nonlinear constraints
–f = 0 outside of circle (oval?)
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Shape from light fields
using iterative relaxation

•Reference:
–M. Levoy, unpublished

•but also see:
–DeBonet, J., Viola, P., Poxels: 
responsibility weighted 3D volume 
reconstruction,
Proc. ICCV 1999.
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Borehole tomography

• receivers measure end-to-end travel time
• reconstruct to find velocities in intervening cells
• must use limited-angle reconstruction method (like ART)

(from Reynolds)

Image removed due to
copyright restrictions

•Reference:
–Reynolds, J.M., An Introduction to Applied 
and Environmental Geophysics,
Wiley, 1997.
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Applications

mapping a seismosaurus in sandstone 
using microphones in 4 boreholes and 

explosions along radial lines

mapping ancient Rome using 
explosions in the subways and 
microphones along the streets?

Image removed due to
copyright restrictions

•Left picture is from Reynolds, right picture is from 
Stanford’s Forma Urbis Romae project
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From microscope light fields
to volumes

• 4D light field  → digital refocusing →
3D focal stack  → deconvolution microscopy →
3D volume data

• 4D light field  → tomographic reconstruction →
3D volume data

Image removed due to
copyright restrictions

Image removed due to
copyright restrictions

Image removed due to
copyright restrictions

•Reference:
–http://www.api.com/lifescience/DeltaVision
RT.html
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3D deconvolution

• object * PSF → focus stack
• {object} × {PSF} → {focus stack}
• {focus stack} {PSF} → {object}
• spectrum contains zeros, due to missing rays
• imaging noise is amplified by division by ~zeros
• reduce by regularization (smoothing) or completion of spectrum
• improve convergence using constraints, e.g. object > 0

focus stack of a point in 3-space is the 3D PSF of that imaging system

[McNally 1999]

Image removed due to
copyright restrictions

Image removed due to
copyright restrictions

•Reference:
–McNally, J.G., Karpova, T., Cooper, J., 
Conchello, J.A., Three-Dimensional Imaging 
by Deconvolution Microscopy,
Methods, Vol. 19, 1999.
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Example:  15μ hollow fluorescent bead

=*

light field microscope

* =

conventional microscope

focal stack volumetric model

•Images from:
– Levoy, M., Ng, R., Adams, A., Footer, M., 
Horowitz, M., Light field microscopy,
ACM Transactions on Graphics (Proc. 
SIGGRAPH), 25(3), 2006.
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Silkworm mouth
(collection of B.M. Levoy)

slice of focal stack slice of volume volume rendering
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Legs of unknown insect
(collection of B.M. Levoy)
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Tomography and 3D deconvolution:
how different are they?

• deconvolution
– 4D LF  → refocusing → 3D spectrum → {PSF} →

volume

• tomography
– 4D LF  → 2D slices  in 3D spectrum  → |ω| → volume

• deconvolution
– 4D LF  → refocusing → 3D stack → inverse filter → volume

• tomography
4D LF b k j ti b k j ti filt l

Fourier domain

spatial domain

-1

-1

•Full proof appears in [Levoy 2006] (previously 
cited)
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For finite apertures,
they are still the same

• deconvolution
– nonblind iterative deconvolution with 

positivity constraint on 3D reconstruction

• limited-angle tomography
– Simultaneous Algebraic Reconstruction 

Technique (SART) with same constraint
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• tomography from limited-angle projections

• deconvolution from finite-aperture images

Their artifacts are also the same

* =
[McNally 1999]

[Delaney 1998]

Image removed due to
copyright restrictions

Image removed due to
copyright restrictions

Image removed due to
copyright restrictions

Image removed due to
copyright restrictions

•References:
–Delaney, A.H., Bresler, Y., Globally 
Convergent Edge-Preserving Regularized 
Reconstruction: An Application to Limited-
Angle Tomography,
IEEE Transactions on Image Processing, 
Vol. 7, No. 2, February 1998.
–others are previously cited
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Diffraction tomography

• Wolf (1969) showed that a broadband hologram gives the 3D 
structure of a semi-transparent object

• Fourier Diffraction Theorem says {scattered field} = arc in
{object} as shown above, can use to reconstruct object

• assumes weakly refractive media and coherent plane illumination,
must record amplitude and phase of forward scattered field

(from Kak)

limit as λ → 0 (relative to 
object size) is Fourier 

projection-slice theorem

Image removed due to
copyright restrictions

Image removed due to
copyright restrictions

•Wolf
–applicable only to semi-transparent objects
–Wolf E 1969, Three-dimensional structure 
determination of semi-transparent objects 
from holographic data, Opt. Commun. 1 
153–6
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• Wolf (1969) showed that a broadband hologram gives the 3D 
structure of a semi-transparent object

• Fourier Diffraction Theorem says {scattered field} = arc in
{object} as shown above, can use to reconstruct object

• assumes weakly refractive media and coherent plane illumination,
must record amplitude and phase of forward scattered field

(from Kak)

limit as λ → 0 (relative to 
object size) is Fourier 

projection-slice theorem

[Devaney 2005]

Image removed due to
copyright restrictions

Image removed due to
copyright restrictions

Image removed due to
copyright restrictions

•measuring phase
–typically requires a reference beam and 
interference between it and the main beam, 
i.e. a holographic procedure

•Reference:
–Devaney, A., Inverse scattering and optical 
diffraction tomography,
Powerpoint presentation.
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Inversion by
filtered backpropagation

• depth-variant filter, so more expensive than tomographic
backprojection, also more expensive than Fourier method

• applications in medical imaging, geophysics, optics

backprojection
backpropagation

(Jebali)

Image removed due to
copyright restrictions

•Reference:
–Jebali, A., Numerical Reconstruction of 
semi-transparent objects in Optical 
Diffraction Tomography,
Diploma Project, Ecole Polytechnique, 
Lausanne, 2002.
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Diffuse optical tomography

• assumes light propagation by multiple scattering
• model as diffusion process  (similar to Jensen01)

(Arridge)

Image removed due to
copyright restrictions

•References:
–Arridge, S.R., Methods for the Inverse 
Problem in Optical Tomography,
Proc. Waves and Imaging Through Complex 
Media, Kluwer, 307-329, 2001.
–Schweiger, M., Gibson, A., Arridge, S.R.,
“Computational Aspects of Diffuse Optical 
Tomography,”
IEEE Computing, Vol. 5, No. 6, Nov./Dec., 
2003.  (for image)
–Jensen, H.W., Marschner, S., Levoy, M., 
Hanrahan, P., A Practical Model for 
Subsurface Light Transport,
Proc. SIGGRAPH 2001.
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The optical diffusion equation

• D = diffusion constant = 1/3σ’t
where σ’t is a reduced extinction coefficient 

• φ(x) = scalar irradiance at point x
• Qn(x) = nth-order volume source distribution, i.e.

• in DOT, σa source and σt are unknown

)(3)()()( 10
2 xQDxQxxD a

GG
•Δ+−=Δ φσφ (from Jensen)

ωω
π

dxQxQ ),()(
4

0 ∫=
G

ωωω
π

dxQxQ GG),()(
4

1 ∫=
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Diffuse optical tomography

• assumes light propagation by multiple scattering
• model as diffusion process  (similar to Jensen01)
• inversion is non-linear and ill-posed
• solve use optimization with regularization (smoothing)

female breast with
sources (red) and
detectors (blue)

Image removed due to
copyright restrictions

Image removed due to
copyright restrictions

•acquisition
–81 source positions, 81 detector positions
–for each source position, measure light at 
all detector positions
–use time-of-flight measurement to estimate 
initial guess for absorption, to reduce cross-
talk between absoprtion and scattering
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Coded aperture imaging

• optics cannot bend X-rays, so they cannot be focused
• pinhole imaging needs no optics, but collects too little light
• use multiple pinholes and a single sensor
• produces superimposed shifted copies of source

(source assumed infinitely distant)
(from Zand)

Image removed due to
copyright restrictions

Image removed due to
copyright restrictions

•Reference:
–Zand, J., Coded aperture imaging in high 
energy astronomy,
http://lheawww.gsfc.nasa.gov/docs/cai/coded
_intr.html
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Reconstruction by
matrix inversion

d = C s
s = C-1 d
• ill-conditioned unless 

auto-correlation of 
mask is a delta function

⎥
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detector mask
(0/1)

source

source larger than detector,
system underconstrained

collimators restrict source directions to
those from which projection of mask

falls completely within the detector

(from Zand)

Image removed due to
copyright restrictions

Image removed due to
copyright restrictions
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Reconstruction
by backprojection

• backproject each detected pixel through each hole in mask
• superimposition of projections reconstructs source
• essentially a cross correlation of detected image with mask
• also works for non-infinite sources; use voxel grid
• assumes non-occluding source

(from Zand)

Image removed due to
copyright restrictions

•Another example:
–Carlisle, P., Coding aperture imaging 
("Mmm, gumballs..."),
http://paulcarlisle.net/old/codedaperture.htm
l
–cross correlation is just convolution (of 
detected image by mask) without first 
reversing detected image in x and y
–conversion of blacks to -1’s in “decoding 
matrix” just serves to avoid normalization of 
resulting reconstruction
–performing this on an image of gumballs, 
rather than a 3D gumball scene, is equivalent 
to assuming the gumballs cover the sky at 
infinity, i.e. they are an angular function

•assumes non-occluding source
–otherwise it’s the voxel coloring problem
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Interesting techniques
I didn’t have time to cover

• reflection tomography
• synthetic aperture radar & sonar
• holography
• wavefront coding
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Ramesh Raskar, Computational Illumination

Computational IlluminationComputational Illumination

Ramesh Raskar
Mitsubishi Electric Research Labs

Course WebPage : 
http://www.merl.com/people/raskar/photo/course/

Ramesh Raskar, CompPhoto Class Northeastern, Fall 2005

Computational 
Illumination

Ramesh Raskar, Computational Illumination

Computational PhotographyComputational Photography Novel Illumination

Novel Cameras

Scene: 8D Ray Modulator

Display

Generalized
Sensor

Generalized
Optics

Processing

Recreate 4D Lightfield

Light Sources

Programmable  
4D Illumination field + 
time + wavelength

Programmable  
4D Illumination field + 
time + wavelength

Ramesh Raskar, Computational Illumination

Computational Illumination:Computational Illumination:
Programmable 4D Illumination Field + Time + WavelengthProgrammable 4D Illumination Field + Time + Wavelength

•• Presence or AbsencePresence or Absence
–– Flash/NoFlash/No--flashflash

•• Light positionLight position
–– MultiMulti--flash for depth edgesflash for depth edges
–– Programmable dome (image reProgrammable dome (image re--lighting and matting)lighting and matting)

•• Light color/wavelengthLight color/wavelength

•• Spatial ModulationSpatial Modulation
–– Synthetic Aperture IlluminationSynthetic Aperture Illumination

•• Temporal ModulationTemporal Modulation
–– TV remote, Motion Tracking, Sony IDTV remote, Motion Tracking, Sony ID--cam, RFIGcam, RFIG

•• Exploiting (uncontrolled) natural lighting conditionExploiting (uncontrolled) natural lighting condition
–– Day/Night FusionDay/Night Fusion

Ramesh Raskar, Computational Illumination

Computational IlluminationComputational Illumination
•• Presence or AbsencePresence or Absence

–– Flash/NoFlash/No--flashflash
•• Light positionLight position

–– MultiMulti--flash for depth edgesflash for depth edges
–– Programmable dome (image reProgrammable dome (image re--lighting and matting)lighting and matting)

•• Light color/wavelengthLight color/wavelength

•• Spatial ModulationSpatial Modulation
–– Synthetic Aperture IlluminationSynthetic Aperture Illumination

•• Temporal ModulationTemporal Modulation
–– TV remote, Motion Tracking, Sony IDTV remote, Motion Tracking, Sony ID--cam, RFIGcam, RFIG

•• General lighting conditionGeneral lighting condition
–– Day/NightDay/Night

Flash Result      Reflection LayerAmbient

Flash and Ambient Images
[ Agrawal, Raskar, Nayar, Li      Siggraph05 ]
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Ramesh Raskar, Computational IlluminationExposure Time

Fl
as

h
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ri
g
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s

FlashFlash--Exposure Exposure 
SamplingSampling

FlashFlash--Exposure Exposure 
HDR:HDR:

Varying bothVarying both

Ramesh Raskar, Computational Illumination

Varying Exposure time Varying Flash brightness Varying both

Capturing HDR Image

Ramesh Raskar, CompPhoto Class Northeastern, Fall 2005

Denoising Challenging Images

Available light:
+ nice lighting

- noise/blurriness
- color

No-flash Ramesh Raskar, CompPhoto Class Northeastern, Fall 2005

Flash:
+ details
+ color

- flat/artificial

Flash

Ramesh Raskar, CompPhoto Class Northeastern, Fall 2005

Use no-flash image relight flash image

Flash

No-flash

Result

Elmar Eisemann and Frédo Durand , Flash Photography Enhancement via Intrinsic 
Relighting

Georg Petschnigg, Maneesh Agrawala, Hugues Hoppe, Richard Szeliski, Michael Cohen, 
Kentaro Toyama. Digital Photography with Flash and No-Flash Image Pairs

Ramesh Raskar, Computational Illumination

Computational IlluminationComputational Illumination
•• Presence or AbsencePresence or Absence

–– Flash/NoFlash/No--flashflash
•• Light positionLight position

–– MultiMulti--flash for depth edgesflash for depth edges
–– Programmable dome (image reProgrammable dome (image re--lighting and matting)lighting and matting)

•• Light color/wavelengthLight color/wavelength

•• Spatial ModulationSpatial Modulation
–– Synthetic Aperture IlluminationSynthetic Aperture Illumination

•• Temporal ModulationTemporal Modulation
–– TV remote, Motion Tracking, Sony IDTV remote, Motion Tracking, Sony ID--cam, RFIGcam, RFIG

•• General lighting conditionGeneral lighting condition
–– Day/NightDay/Night
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Synthetic LightingSynthetic Lighting
Paul Paul HaeberliHaeberli, Jan 1992, Jan 1992

Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Ramesh Raskar, Karhan Tan, Rogerio Feris, 
Jingyi Yu, Matthew Turk

Mitsubishi Electric Research Labs (MERL), Cambridge, MA
U of California at Santa Barbara
U of North Carolina at Chapel Hill

NonNon--photorealistic Camera: photorealistic Camera: 
Depth Edge Detection Depth Edge Detection andand Stylized Rendering Stylized Rendering usingusing

MultiMulti--Flash ImagingFlash Imaging

Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Depth Edge Camera

Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera
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Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera
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Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Depth Discontinuities

Internal and external
Shape boundaries, Occluding contour, Silhouettes

Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Depth 
Edges

Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Sigma = 9 Sigma = 5

Sigma = 1

Canny Intensity Edge Detection

Our method captures shape edges
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Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Our MethodCanny

Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Our Method

Photo

Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Canny Intensity 
Edge Detection

Our Method

Photo Result
Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Canny Intensity Edge Detection

Our Method

Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera
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Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Imaging Geometry

Shadow lies along epipolar ray

Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Shadow lies along epipolar ray,

Epipole and Shadow are on opposite sides of the edge

Imaging Geometry

m

Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Shadow lies along epipolar ray,

Shadow and epipole are on opposite sides of the edge

Imaging Geometry

m

Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Depth Edge Camera

Light epipolar rays are horizontal or vertical

Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Normalized

Left / Max

Right / Max

Left Flash

Right Flash

Input U{depth edges}



8

Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Normalized

Left / Max

Right / Max

Left Flash

Right Flash

Input U{depth edges}
Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Normalized

Left / Max

Right / Max

Left Flash

Right Flash

Input U{depth edges}

Negative transition along epipolar ray is depth edge

Plot

Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

Normalized

Left / Max

Right / Max

Left Flash

Right Flash

Input

Negative transition along epipolar ray is depth edge

Plot U{depth edges}
Mitsubishi Electric Research Labs Raskar, Tan, Feris, Yu, TurkMultiFlash NPR Camera

% Max composite
maximg = max( left, right, top, bottom);

% Normalize by computing ratio images
r1 = left./ maximg; r2 = top ./ maximg;
r3 = right ./ maximg; r4 = bottom ./ maximg;

% Compute confidence map
v = fspecial( 'sobel' ); h = v';
d1 = imfilter( r1, v ); d3 = imfilter( r3, v );  % vertical sobel
d2 = imfilter( r2, h ); d4 = imfilter( r4, h ); % horizontal sobel

%Keep only negative transitions
silhouette1  = d1 .* (d1>0);      
silhouette2 = abs( d2 .* (d2<0) );
silhouette3 = abs( d3 .* (d3<0) );
silhouette4  = d4 .* (d4>0);

%Pick max confidence in each
confidence = max(silhouette1,  silhouette2, silhouette3,  silhouette4);
imwrite( confidence, 'confidence.bmp');

No magic
parameters !

Debevec et al. 2002: ‘Light Stage 3’ ImageImage--Based Actual ReBased Actual Re--lightinglighting

Film the background in Milan,Film the background in Milan,
Measure incoming light,Measure incoming light,

Light the actress in Los AngelesLight the actress in Los Angeles

Matte the backgroundMatte the background

Matched LA and Milan lighting.Matched LA and Milan lighting.

Debevec et al., SIGG2001
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courtesy of P. Debevec

courtesy of A Agrawala

Photomontage

Ramesh Raskar, CompPhoto Class Northeastern, Fall 2005

From Jack Tumblin
“Light Waving”

Tech Sketch (Winnemoller, Mohan, Tumblin, Gooch)

Ramesh Raskar, Computational Illumination

Computational IlluminationComputational Illumination
•• Presence or AbsencePresence or Absence

–– Flash/NoFlash/No--flashflash
•• Light positionLight position

–– MultiMulti--flash for depth edgesflash for depth edges
–– Programmable dome (image reProgrammable dome (image re--lighting and matting)lighting and matting)

•• Light color/wavelengthLight color/wavelength

•• Spatial ModulationSpatial Modulation
–– Synthetic Aperture IlluminationSynthetic Aperture Illumination

•• Temporal ModulationTemporal Modulation
–– TV remote, Motion Tracking, Sony IDTV remote, Motion Tracking, Sony ID--cam, RFIGcam, RFIG

•• General lighting conditionGeneral lighting condition
–– Day/NightDay/Night

© 2004 Marc Levoy

Synthetic Aperture Illumination: Comparison with 
Long-range synthetic aperture photography

• width of aperture 6’
• number of cameras 45
• spacing between cameras 5”
• camera’s field of view 4.5°
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© 2004 Marc Levoy

The scene

• distance to occluder 110’
• distance to targets 125’
• field of view at target 10’

© 2004 Marc Levoy

Synthetic aperture photography
using an array of mirrors

• 11-megapixel camera  (4064 x 2047 pixels)
• 18 x 12 inch effective aperture, 9 feet to scene 
• 22 mirrors, tilted inwards  → 22 views, each 750 x 500 pixels

© 2004 Marc Levoy

Synthetic aperture illumination

• technologies
– array of projectors
– array of microprojectors
– single projector  +  array of mirrors

© 2004 Marc Levoy

What does synthetic aperture 
illumination look like?

What are good patterns?
pattern           one trial           16 trials
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Underwater confocal imaging
with and without SAP 6-D Methods and beyond...

Relighting with 4D Incident Light Fields Vincent Masselus, Pieter Peers, 
Philip Dutre and Yves D. Willems SIGG2003

Ramesh Raskar, Computational Illumination

Computational IlluminationComputational Illumination
•• Presence or AbsencePresence or Absence

–– Flash/NoFlash/No--flashflash
•• Light positionLight position

–– MultiMulti--flash for depth edgesflash for depth edges
–– Programmable dome (image reProgrammable dome (image re--lighting and matting)lighting and matting)

•• Light color/wavelengthLight color/wavelength

•• Spatial ModulationSpatial Modulation
–– Synthetic Aperture IlluminationSynthetic Aperture Illumination

•• Temporal ModulationTemporal Modulation
–– TV remote, Motion Tracking, Sony IDTV remote, Motion Tracking, Sony ID--cam, RFIGcam, RFIG

•• General lighting conditionGeneral lighting condition
–– Day/NightDay/Night

Demodulating Cameras

• Simultaneously decode signals from blinking 
LEDs and get an image 

– Sony ID Cam
– Phoci

• Motion Capture Cameras
– Visualeyez™ VZ4000 Tracking System
– PhaseSpace motion digitizer 

Demodulating Cameras

• Decode signals from blinking LEDs + image 
– Sony ID Cam
– Phoci

• Motion Capture Cameras
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Mitsubishi Electric Research Labs
Raskar, Beardsley, vanBaar, Wang, 

Dietz, Lee, Leigh, WillwacherR F I G Lamps

Ramesh Raskar, Paul Beardsley, Jeroen van Baar, Yao Wang, 
Paul Dietz, Johnny Lee, Darren Leigh, Thomas Willwacher

Mitsubishi Electric Research Labs (MERL), Cambridge, MA

R F I R F I GG LampsLamps : : 
Interacting with a SelfInteracting with a Self--describing World via describing World via 
Photosensing Wireless Tags and ProjectorsPhotosensing Wireless Tags and Projectors

Mitsubishi Electric Research Labs
Raskar, Beardsley, vanBaar, Wang, 

Dietz, Lee, Leigh, WillwacherR F I G Lamps

Radio Frequency Identification Tags (RFID)Radio Frequency Identification Tags (RFID)

microchip

Antenna

No batteries,

Small size,

Cost few cents

Mitsubishi Electric Research Labs
Raskar, Beardsley, vanBaar, Wang, 

Dietz, Lee, Leigh, WillwacherR F I G Lamps

WarehousingWarehousing RoutingRouting

Library Library 

Baggage 
handling 
Baggage 
handling 

CurrencyCurrency

Livestock 
tracking
Livestock 
tracking

Mitsubishi Electric Research Labs
Raskar, Beardsley, vanBaar, Wang, 

Dietz, Lee, Leigh, WillwacherR F I G Lamps

 

Micro 
Controller

Memory Computer

READER

Micro 
Controller 

Memory

Conventional Passive RFID

Mitsubishi Electric Research Labs
Raskar, Beardsley, vanBaar, Wang, 

Dietz, Lee, Leigh, WillwacherR F I G Lamps

Tagged Books in a LibraryTagged Books in a Library

Id
Easy to get list of books in RF range

No Precise Location Data
Difficult to find if the books in sorted 

order ?
Which book is upside down ?

Mitsubishi Electric Research Labs
Raskar, Beardsley, vanBaar, Wang, 

Dietz, Lee, Leigh, WillwacherR F I G Lamps

Where are boxes with Where are boxes with 
Products close to Expiry Date ?Products close to Expiry Date ?
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Mitsubishi Electric Research Labs
Raskar, Beardsley, vanBaar, Wang, 

Dietz, Lee, Leigh, WillwacherR F I G Lamps

 

READER 

Micro 
Controller 

RF Data 

Memory 

Conventional RFID 

Computer

 

READER 

Micro 
Controller 

RF Data 

Light 

Memory 

Photosensor 

Computer

Conventional RF tag

Photo-sensing RF tag

Mitsubishi Electric Research Labs
Raskar, Beardsley, vanBaar, Wang, 

Dietz, Lee, Leigh, WillwacherR F I G Lamps

READER

Projector 
Micro 

Controller
RF Data 

Light 

Memory

Photosensor

Computer

Photosensor ?

Compatible with 
RFID size and power 
needs

Projector ?

Directional transfer,
AR with Image overlay

Mitsubishi Electric Research Labs
Raskar, Beardsley, vanBaar, Wang, 

Dietz, Lee, Leigh, WillwacherR F I G Lamps

c. Tags respond via RF, with date 
and precise (x,y) pixel location. 
Projector beams ‘O’ or ‘X’ at that 
location for visual feedback

c. Tags respond via RF, with date 
and precise (x,y) pixel location. 
Projector beams ‘O’ or ‘X’ at that 
location for visual feedback

a. Photosensing RFID tags
are queried via RF
a. Photosensing RFID tags
are queried via RF

d. Multiple users can 
simultaneously work from a distance 
without RF collision

d. Multiple users can 
simultaneously work from a distance 
without RF collision

b. Projector beams a time-varying 
pattern unique for each (x,y) pixel 
which is decoded by tags

b. Projector beams a time-varying 
pattern unique for each (x,y) pixel 
which is decoded by tags

Mitsubishi Electric Research Labs
Raskar, Beardsley, vanBaar, Wang, 

Dietz, Lee, Leigh, WillwacherR F I G Lamps

Mitsubishi Electric Research Labs
Raskar, Beardsley, vanBaar, Wang, 

Dietz, Lee, Leigh, WillwacherR F I G Lamps

RFID
(Radio  Frequency  Identification)

RFIG

(Radio  Frequency  Id  and  Geometry)

Mitsubishi Electric Research Labs
Raskar, Beardsley, vanBaar, Wang, 

Dietz, Lee, Leigh, WillwacherR F I G Lamps

Prototype TagPrototype Tag

RF tag  + 
photosensor

RF tag  + 
photosensor



14

Mitsubishi Electric Research Labs
Raskar, Beardsley, vanBaar, Wang, 

Dietz, Lee, Leigh, WillwacherR F I G Lamps

Pattern
MSB

Pattern
MSB

Pattern
MSB-1
Pattern
MSB-1

Pattern
LSB

Pattern
LSB

Projected Sequential Frames

•Handheld Projector beams binary coded stripes

•Tags decode temporal code

Mitsubishi Electric Research Labs
Raskar, Beardsley, vanBaar, Wang, 

Dietz, Lee, Leigh, WillwacherR F I G Lamps

Pattern
MSB

Pattern
MSB

Pattern
MSB-1
Pattern
MSB-1

Pattern
LSB

Pattern
LSB

Projected Sequential Frames

•Handheld Projector beams binary coded stripes

•Tags decode temporal code

Mitsubishi Electric Research Labs
Raskar, Beardsley, vanBaar, Wang, 

Dietz, Lee, Leigh, WillwacherR F I G Lamps

Pattern
MSB

Pattern
MSB

Pattern
MSB-1
Pattern
MSB-1

Pattern
LSB

Pattern
LSB

Projected Sequential Frames

•Handheld Projector beams binary coded stripes

•Tags decode temporal code

Mitsubishi Electric Research Labs
Raskar, Beardsley, vanBaar, Wang, 

Dietz, Lee, Leigh, WillwacherR F I G Lamps

Pattern
MSB

Pattern
MSB

Pattern
MSB-1
Pattern
MSB-1

Pattern
LSB

Pattern
LSB

Projected Sequential Frames

•Handheld Projector beams binary coded stripes

•Tags decode temporal code

Mitsubishi Electric Research Labs
Raskar, Beardsley, vanBaar, Wang, 

Dietz, Lee, Leigh, WillwacherR F I G Lamps

Pattern
MSB

Pattern
MSB

Pattern
MSB-1
Pattern
MSB-1

Pattern
LSB

Pattern
LSB

Projected Sequential Frames

•Handheld Projector beams binary coded stripes

•Tags decode temporal code

Mitsubishi Electric Research Labs
Raskar, Beardsley, vanBaar, Wang, 

Dietz, Lee, Leigh, WillwacherR F I G Lamps

Pattern
MSB

Pattern
MSB

Pattern
MSB-1
Pattern
MSB-1

Pattern
LSB

Pattern
LSB

For each tag

a. From light sequence, decode x and y coordinate

b. Transmit back to RF reader (Id, x, y)

For each tag

a. From light sequence, decode x and y coordinate

b. Transmit back to RF reader (Id, x, y)

00 11 11 00 00 X=12X=12
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Mitsubishi Electric Research Labs
Raskar, Beardsley, vanBaar, Wang, 

Dietz, Lee, Leigh, WillwacherR F I G Lamps

Visual feedback of 2D positionVisual feedback of 2D position

a. Receive via RF {(x1,y1), (x2,y2), …} pixels

b. Illuminate those positions

a. Receive via RF {(x1,y1), (x2,y2), …} pixels

b. Illuminate those positions

Ramesh Raskar, Computational Illumination

Computational IlluminationComputational Illumination
•• Presence or AbsencePresence or Absence

–– Flash/NoFlash/No--flashflash
•• Light positionLight position

–– MultiMulti--flash for depth edgesflash for depth edges
–– Programmable dome (image reProgrammable dome (image re--lighting and matting)lighting and matting)

•• Light color/wavelengthLight color/wavelength

•• Spatial ModulationSpatial Modulation
–– Synthetic Aperture IlluminationSynthetic Aperture Illumination

•• Temporal ModulationTemporal Modulation
–– TV remote, Motion Tracking, Sony IDTV remote, Motion Tracking, Sony ID--cam, RFIGcam, RFIG

•• Natural lighting conditionNatural lighting condition
–– Day/Night FusionDay/Night Fusion

Ramesh Raskar, CompPhoto Class Northeastern, Fall 2005

A Night Time Scene: 
Objects are Difficult to Understand due to Lack of Context 

Dark Bldgs

Reflections on 
bldgs

Unknown 
shapes

Ramesh Raskar, CompPhoto Class Northeastern, Fall 2005

Enhanced Context :
All features from night scene are preserved, but background in clear 

‘Well-lit’ Bldgs

Reflections in 
bldgs windows

Tree, Street 
shapes

Ramesh Raskar, CompPhoto Class Northeastern, Fall 2005

Background is captured from day-time 
scene using the same fixed camera 

Night Image 

Day Image

Result: Enhanced Image 

Ramesh Raskar, CompPhoto Class Northeastern, Fall 2005

Mask is automatically computed from 
scene contrast 
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Ramesh Raskar, CompPhoto Class Northeastern, Fall 2005

But, Simple Pixel Blending Creates 
Ugly Artifacts 

Ramesh Raskar, CompPhoto Class Northeastern, Fall 2005

Pixel Blending

Our Method:
Integration of 

blended Gradients

Ramesh Raskar, CompPhoto Class Northeastern, Fall 2005

Nighttime imageNighttime image

Daytime imageDaytime image

Gradient fieldGradient field

Importance Importance 
image Wimage W

Fi
na

l r
es

ul
t

Fi
na

l r
es

ul
t

Gradient fieldGradient field

Mixed gradient fieldMixed gradient field

GG11 GG11

GG22 GG22

xx YY

xx YY

II11

I2

GG GG
xx YY

Ramesh Raskar, CompPhoto Class Northeastern, Fall 2005

Reconstruction from Gradient Field

• Problem: minimize error |∇ I’ – G|
• Estimate I’ so that

G = ∇ I’

• Poisson equation

� ∇ 2 I’ = div G

• Full multigrid
solver

I’I’

GGXX

GGYY

Ramesh Raskar, CompPhoto Class Northeastern, Fall 2005

Video Enhancement using Fusion

– Video from fixed cameras
• Improve low quality InfraRed video using high-quality visible video
• Fill in dark areas, enhance change in intensity
• Output style: better context

– Current Demo
• Fusion of Night video and Daytime image

Original Video Frame
Easy-to-understand 

Non-photorealistic (NPR)
Image or Video

Ramesh Raskar, CompPhoto Class Northeastern, Fall 2005

Details
– Combine day and night time images

• Night videos have low contrast, areas with no detail
• Same camera during day can capture static information
• Dark areas of night video are replaced to provide context
• Moving object (from night) + Static scene (from day)

Day time 
Photograph

Combine pixels depending on context, 
image and temporal gradient

Night time 
Video 

(or Photo)

Enhanced 
Night Video 
(or Photo) 

with context

Modified Surveillance CameraModified Surveillance Camera
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Ramesh Raskar, CompPhoto Class Northeastern, Fall 2005

Video Enhancement

Ramesh Raskar, CompPhoto Class Northeastern, Fall 2005

Enhanced video
Note: exit ramp, lane dividers, 

buildings not visible in original night 
video, but clearly seen here.

Overview of Process

Day time image: By averaging 
5 seconds of day video

Original night time traffic camera 
320x240 video

Mask frame (for frame above): 
Encodes pixel with intensity change

Input

Output

Ramesh Raskar, CompPhoto Class Northeastern, Fall 2005

Algorithm
Frame Frame NN

Daytime imageDaytime image

TimeAveragedTimeAveraged
importance maskimportance mask

Gradient fieldGradient field

Final resultFinal result

Processed binary maskProcessed binary mask

G
ra

di
en

t f
ie

ld
G

ra
di

en
t f

ie
ld

Frame Frame NN--11

Mixed gradient fieldMixed gradient field
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D.2: Smart Optics, Modern 
Sensors and Future Cameras 

Ramesh Raskar
Mitsubishi Electric Research Labs

Jack Tumblin
Northwestern University

Course WebPage : 
http://www.merl.com/people/raskar/photo

Computational Photography Novel Illumination

Novel Cameras

Scene: 8D Ray Modulator

Display

Generalized
Sensor

Generalized
Optics

Processing

Recreate 4D Lightfield

Light Sources
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Future Directions

• Smart Lighting 
– Light stages, Domes, Light waving, Towards 8D

• Computational Imaging outside Photography
– Tomography, Coded Aperture Imaging

• Smart Optics
– Handheld Light field camera, Programmable imaging/aperture

• Smart Sensors 
– HDR Cameras, Gradient Sensing, Line-scan Cameras, Demodulators

• Speculations

Wavefront Coding: 
10X Depth of Field

• In-focus: 
small ‘Circle of Confusion’:

• Out-of-focus:  LARGE
“circle of confusion’ 

• Coma-like distortion:  
Make Circle MOVE 

as focus changes:

http://www.cdm-optics.com/site/extended_dof.php
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Wavefront Coding: 
10X Depth of Field

• In-focus: 
small ‘Circle of Confusion’:

• Out-of-focus:  LARGE
“circle of confusion’ 

• Coma-like distortion
allows us to
De-convolve,
sharpen out-of-focus 
items 

http://www.cdm-optics.com/site/extended_dof.php

Light field photography using a 
handheld plenoptic camera

Ren Ng, Marc Levoy, Mathieu Brédif,
Gene Duval, Mark Horowitz and Pat Hanrahan
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Conventional versus light field 
camera

Conventional versus light field camera

uv-plane st-plane
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Conventional versus light field 
camera

uv-planest-plane

Prototype camera

4000 × 4000 pixels  ÷ 292 × 292 lenses  =  14 × 14 pixels 
l

Contax medium format camera Kodak 16-megapixel sensor

Adaptive Optics microlens array 125μ square-sided microlenses
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Digital refocusing

refocusing  =  summing windows 
extracted from several microlenses

Σ

Σ
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Example of digital refocusing

Extending the depth of field 

conventional photograph,
main lens at  f / 22

conventional photograph,
main lens at  f / 4

light field, main lens at f / 4,
after all-focus algorithm

[Agarwala 2004]
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Programmable Imaging

Detector

New  OpticsComputations

Pixels

Vision Programmable Controller

mirror array

Imaging Through Micro‐Mirrors

scene

viewpoint

detector

black
surface

Geometry: Ray Orientation

oi inix(   )  =  G (    )

Photometry: Ray Attenuation

ix(   )  =ai int (    )
int (    ) bnt (    )+

ix

bno i
in

ix

(Nayar,  Branzoi and Boult, 2004)
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Digital Micromirror Device (DMD)

DMD Array:

(by Texas Instruments)

14 um

Micromirror Architecture:

10o‐10o

DMD for Imaging: 
(Malbet et al. 95, Kearney et al. 98, Castracane et al. 99, Christensen et al. 02)

Programmable  Imaging  System

DMD Electronics

Camera Electronics

Imaging Lens

Lens Focused on DMDTilted CCD
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* =

*

*

=

=

Modulation: Examples

Scene DMD Image Camera Image

Optical Intra‐Pixel Feature Detection

DMD PixelsCCD Pixels 1 4      1

4    ‐20    4

1      4      1

Laplacian:

1 4      1

4      0      4

1      4      1

0      0      0

0     20     0

0      0      0
‐=

Laplacian Image:

1 4      1

4      0      4

1      4      1

1 4      1

4      0      4

1      4      1

1 4      1

4      0      4

1      4      1

1 4      1

4      0      4

1      4      1

0      0      0

0     20     0

0      0      0

0      0      0

0     20     0

0      0      0

0      0      0

0     20     0

0      0      0

0      0      0

0     20     0

0      0      0

‐

−−+= gfgfgf ***

a    b    c
d    e    f
g    h    i
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Optical Edge Detection

Scene Video Edge Video

Generalized Optics and Sensors

• Smart Optics
– Handheld Light field camera, 

– Programmable imaging/aperture

• Smart Sensors 
– HDR Cameras, 

– Gradient Sensing, 

– Line-scan Cameras, 

– Demodulators
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Future Directions

• Smart Lighting 
– Light stages, Domes, Light waving, Towards 8D

• Computational Imaging outside Photography
– Tomography, Coded Aperture Imaging

• Smart Optics
– Handheld Light field camera, Programmable imaging/aperture

• Smart Sensors 
– HDR Cameras, Gradient Sensing, Line-scan Cameras, Demodulators

• Speculations

Foveon: Thick Sensor
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Pixim

High Dynamic Range

http://www.cybergrain.com/tech/hdr/

Fuji's SuperCCD S3 Pro camera has a chip with high and low sensitivity sensors 
per pixel location to increase dynamic range 
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Gradient Camera

Sensing Pixel Intensity Difference with 
Locally Adaptive Gain

Ramesh Raskar, MERL
Work with Jack Tumblin, Northwestern U, 

Amit Agrawal, U of Maryland

Natural Scene Properties

x
1

105

x
1

105

Intensity Gradient

Intensity Histogram Gradient Histogram

1 105 -105 105
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Original Image
Intensity values ranging from 0 to 1800

Intensity ramp plus low contrast logo

Intensity Camera Image
8 bit camera for 1:1000 range

Problem: . saturation at high intensity regions

Log Camera Image
8 bit log for 1:106 range

Problem: Visible quantization effects at high intensities

Locally Adaptive Gain
Pixel divided by the average of local neighborhood. 

Thus the low frequency contents are lost and only 
detail remains.

Gradient Camera Image
In proposed method, we sense intensity 
differences. We use a 8 bit A/D with 
resolution of log(1.02) to capture 2% 
contrast change between adjacent pixels. 
Notice that the details at both high and low 
intensities are captured.

Gradient Camera

• Two main features
1. Sense difference between neighboring pixel intensity

At each pixel, measure (∇x , ∇y ) , ∇x = Ix+1,y - Ix,y        ,           ∇y = Ix,y+1 - Ix,y

2. With locally adaptive gain

• Gradient camera is very similar to locally adaptive gain camera
• Locally Adaptive Gain Camera 

– Gain is different for each pixel
– Problem: Loses low frequency detail and preserves only high frequency features (edges)

• Gradient Camera
– The gain is same for four adjacent pixels
– Difference between two pixels is measured with same gain on both pixels
– Reconstruct original image in software from pixel differences by solving a linear system 

(solving Poisson Equation)
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Camera Pipeline

2D Integration to 
reconstruct the 

image

Local gain 
adaptive to 
difference

Difference 
between 

pixels

On-board Hardware Software

Detail Preserving

Intensity Camera Log Intensity Camera Gradient Camera

Log cameras capture range but lose detail
Intensity cameras capture detail but lose range
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Quantization

Original Image Uniform 
quantization 3 bits

Log Uniform 
quantization 3 bits

Log Uniform gradients
quantization 3 bits

GradCam requires 
fewer bits

In the reconstructed 
image, error is pushed 
to high gradient pixel 

positions which is 
visually imperceptible

Intensity Histogram

1 105

Gradient Histogram

-105 105

High Dynamic Range Images

Scene Intensity camera 
saturation map

Gradient camera 
saturation map

Intensity camera fail to capture range
Gradients saturate at very few isolated pixels
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Line Scan Camera: PhotoFinish 2000 Hz 
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3D Cameras

• Time of flight
– ZCam (Shuttered Light Pulse)

• Phase Decoding of modulated illumination
– Canesta (Phase comparison)
– Phase difference = depth
– Magnitude = reflectance

• Structured Light
– Binary coded light and triangulation

ZCam (3Dvsystems), Shuttered Light Pulse

Resolution : Resolution : 
1cm for 21cm for 2--7 meters7 meters
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Graphics can inserted behind and between characters

CanestaCanesta: Modulated Emitter: Modulated Emitter

Phase ~ distance Phase ~ distance 
Amplitude ~ reflectanceAmplitude ~ reflectance
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Demodulating Cameras

• Simultaneously decode signals from blinking 
LEDs and get an image 

– Sony ID Cam
– Phoci

• Motion Capture Cameras
– Visualeyez™ VZ4000 Tracking System
– PhaseSpace motion digitizer
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Demodulating Cameras

• Decode signals from blinking LEDs + image 
– Sony ID Cam
– Phoci

• Motion Capture Cameras

Fluttered Shutter Camera
Raskar, Agrawal, Tumblin Siggraph2006
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Figure 2 results

Input Image

Rectified Image to make motion lines parallel to scan lines. 
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Image Deblurred by solving a linear system. No post-processing

Approximate cutout of the blurred image containing the 
taxi (vignetting on left edge). Exact alignment of cutout 

with taxi extent is not required.

Short Exposure Traditional MURA Coded

Coded Exposure Photography
Raskar, Agrawal, Tumblin Siggraph2006
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Coded Exposure Photography

Discrete Fourier Transform of Convolving Filter

Converting Deblurring into a Well-posed Problem
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Novel Sensors

• Gradient sensing
• HDR Camera, Log sensing
• Line-scan Camera
• Demodulating
• Motion Capture
• Fluttered Shutter
• 3D

Fantasy Configurations
• ‘Cloth-cam’: ‘Wallpaper-cam’

elements 4D light emission and 4D capture in 
the surface of a cloth…

• Floating Cam: ad-hoc wireless networks form 
camera arrays in environment…

• Other ray sets:
Multilinear cameras, canonical ‘basis’ cameras
(linear combination of 8 types) 
McMillan’04, ‘05
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Dream of A New PhotographyDream of A New Photography

Old New
• People and Time ~Cheap        Precious
• Each photo Precious       Free
• Lighting Critical Automated?
• External Sensors No Yes
• ‘Stills / Video’ Disjoint Merged
• Exposure Settings Pre-select    Post-Process
• Exposure Time Pre-select    Post-Process
• Resolution/noise  Pre-select    Post-Process
• ‘HDR’ range Pre-select    Post-Process

Computational PhotographyComputational Photography Novel Illumination

Novel Cameras

Scene: 8D Ray Modulator

Display

Generalized
Sensor

Generalized
Optics

Processing

4D Ray Bender
Upto 4D 

Ray Sampler

Ray 
Reconstruction

Generalized
Optics

Recreate 4D Lightfield

Light Sources

Modulators

4D Incident Lighting

4D Light Field
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Digital
Photography

Image processing
applied to captured
images to produce
“better” images.

Examples:
Interpolation, Filtering, 
Enhancement, Dynamic 
Range Compression,
Color Management,
Morphing, Hole Filling, 
Artistic Image Effects, 
Image Compression,
Watermarking.

Computational
Processing

Processing of a set
of captured images 
to create “new”
images.

Examples:
Mosaicing, Matting,
Super‐Resolution,
Multi‐Exposure HDR,
Light Field from 
Mutiple View, 
Structure from Motion, 
Shape from X.

Computational
Imaging/Optics

Capture of optically
coded images and 
computational 
decoding to produce 
“new?” images.

Examples:
Coded Aperture,
Optical Tomography,
Diaphanography,
SA Microscopy,
Integral Imaging,
Assorted Pixels,
Catadioptric Imaging,
Holographic Imaging.

Computational
Sensor

Detectors that
combine sensing 
and processing to
create “smart” 
pixels.

Examples:
Artificial Retina,
Retinex Sensors,
Adaptive Dynamic
Range Sensors,  
Edge Detect Chips,
Focus of Expansion
Chips, Motion 
Sensors.

Computational
Illumination

Adapting and
Controlling
Illumination to
Create ‘revealing’
image 

Examples:
Flash/no flash, 
Lighting domes,
Multi‐flash 
for depth edges,
Dual Photos,
Polynomial texture
Maps, 4D light
source

Computational   PhotographyFilm‐like 
Photography 
with bits Computational   Camera Smart Light
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Non-photorealistic Camera:
Depth Edge Detection and Stylized Rendering using Multi-Flash Imaging

Ramesh Raskar∗ Kar-Han Tan
Mitsubishi Electric Research Labs (MERL)

Rogerio Feris
UC Santa Barbara

Jingyi Yu†

MIT
Matthew Turk

UC Santa Barbara

Figure 1:(a) A photo of a car engine (b) Stylized rendering highlighting boundaries between geometric shapes. Notice the four spark plugs
and the dip-stick which are now clearly visible (c) Photo of a flower plant (d) Texture de-emphasized rendering.

Abstract
We present a non-photorealistic rendering approach to capture and
convey shape features of real-world scenes. We use a camera with
multiple flashes that are strategically positioned to cast shadows
along depth discontinuities in the scene. The projective-geometric
relationship of the camera-flash setup is then exploited to detect
depth discontinuities and distinguish them from intensity edges due
to material discontinuities.

We introduce depiction methods that utilize the detected edge
features to generate stylized static and animated images. We can
highlight the detected features, suppress unnecessary details or
combine features from multiple images. The resulting images more
clearly convey the 3D structure of the imaged scenes.

We take a very different approach to capturing geometric fea-
tures of a scene than traditional approaches that require reconstruct-
ing a 3D model. This results in a method that is both surprisingly
simple and computationally efficient. The entire hardware/software
setup can conceivably be packaged into a self-contained device no
larger than existing digital cameras.

Keywords: non-photorealistic rendering, image enhancement,
depth edges

1 Introduction

Our goal is to create stylized images that facilitate viewer com-
prehension of the shape contours of the objects depicted. Non-
photorealistic rendering (NPR) techniques aim to outline the shapes
of objects, highlight the moving parts to illustrate action, and re-

∗e-mail: [raskar,tan]@merl.com,[rferis,turk]@cs.ucsb.edu
†email: jingyi@graphics.csail.mit.edu

duce visual clutter such as shadows and texture details [Gooch and
Gooch 2001]. The result is useful for imaging low contrast and
geometrically complex scenes such as mechanical parts (Figure 1),
plants or the internals of a patient (in endoscopy).

When a rich 3D model of the scene is available, rendering sub-
sets of view-dependent contours is a relatively well-understood task
in NPR [Saito and Takahashi 1990]. Extending this approach to real
scenes by first creating 3D scene models, however, remains diffi-
cult. In this paper, we show that it is possible to bypass geometry
acquisition, and directly create stylized renderings from images. In
the place of expensive, elaborate equipment for geometry acquisi-
tion, we propose using a camera with a simple extension: multiple
strategically positioned flashes. Instead of having to estimate the
full 3D coordinates of points in the scene, and then look for depth
discontinuities, our technique reduces the general 3D problem of
depth edge recovery to one of intensity step edge detection.

Exploiting the imaging geometry for rendering results in a sim-
ple and inexpensive solution for creating stylized images from real
scenes. We believe that our camera will be a useful tool for pro-
fessional artists and photographers, and we expect that it will also
enable the average user to easily create stylized imagery.

1.1 Overview

Our approach is based on taking successive photos of a scene, each
with a different light source close to and around the camera’s center
of projection. We use the location of the shadows abutting depth
discontinuities as a robust cue to create a depth edge map in both
static and dynamic scenes.

Contributions Our main contribution is a set of techniques for
detecting and rendering shape contours of scenes with low-contrast
or high geometric complexity. Our technical contributions include
the following.

• A robust edge classification scheme to distinguish depth edges
from texture edges

• A collection of rendering and reconstruction techniques for
creating images highlighting shape boundaries from 2D data
without creating 3D representations, using qualitative depths

• An image re-synthesis scheme that allows abstraction of tex-
tured regions while preserving geometric features

• A technique to detect depth edges in dynamic scenes



Figure 2: Traditional image enhancement by improving (Left)
brightness and (Right) contrast. Low contrast depth edges remain
difficult to perceive.

We introduce the concept of aself-contained stylized imaging de-
vice, a ‘non-photorealistic camera’, which can directly generate im-
ages highlighting contours of geometric shapes in a scene. It con-
tains a traditional camera and embedded flashes, and can be readily
and inexpensively built. We attempt to address two important is-
sues in NPR [Gooch and Gooch 2001] [Strothotte and Schlechtweg
2002], detecting shape contours that should be enhanced and iden-
tifying features that should be suppressed. We propose a new ap-
proach to take image-stylization beyond the processing of a photo-
graph, to actively changing how the photographs are taken.

The output images or videos can be rendered in many ways,
e.g., technical illustration, line art or cartoon-like style. We high-
light depth discontinuities, suppress material and illumination tran-
sitions, and create renderings with large, smoothly colored regions
outlined with salient contours [Durand 2002]. We describe several
applications: imaging complex mechanical parts, improving im-
ages for endoscopes, anatomical drawings and highlighting changes
in a scene. Our approach shares thedisadvantages of NPR: rele-
vant details may be lost as an image is simplified, so tunable ab-
straction is needed (Section 3.3), and the usefulness of the output is
often difficult to quantify.

1.2 Related Work

NPR from images, rather than 3D geometric models has recently
received a great deal of attention. The majority of the available
techniques for image stylization involveprocessing a single image
as the input applying morphological operations, image segmenta-
tion, edge detection and color assignment. Some of them aim for
stylized depiction [DeCarlo and Santella 2002] [Hertzmann 1998]
while others enhance legibility. Interactive techniques for stylized
rendering such as rotoscoping have been used as well [Waking Life
2001; Avenue Amy 2002], but we aim to automate tasks where
meticulous manual operation was previously required. Our work
belongs to an emerging class of techniques to create an enhanced
image from multiple images, where the images are captured from
the same viewpoint but under different conditions, such as under
different illumination, focus or exposure [Cohen et al. 2003; Akers
et al. 2003; Raskar et al. 2004].

Aerial imagery techniques findshadow evidence by threshold-
ing a single intensity image, assuming flat ground and uniform
albedo to infer building heights [Huertas and Nevatia 1988; Irvin
and McKeown 1989; Lin and Nevatia 1998]. Some techniques im-
prove shadow capture with novel shadow extraction techniques to
compute new shadow mattes [Chuang et al. 2003] or remove them
to improve scene segmentation [Toyama et al. 1999]. Some other
techniques remove shadows without explicitly detecting them, such
as using intrinsic images [Weiss 2001].

Stereo techniques including passive and active illumination are
generally designed to compute depth values or surface orientation

rather than to detect depth edges. Depth discontinuities present dif-
ficulties for traditional stereo: it fails due tohalf-occlusions, i.e.,
occlusion of scene points in only one of the two views, which con-
fuse the matching process [Geiger et al. 1992]. Few techniques
try to model the discontinuities and occlusions directly [Birchfield
1999; Kang et al. 2001; Scharstein and Szeliski 2002]. Active il-
lumination methods, which generally give better results, have been
used for depth extraction, shape from shading, shape-time stereo
and photometric stereo but are unfortunately unstable around depth
discontinuities [Sato et al. 2001]. An interesting technique has
been presented to perform logical operations on detected inten-
sity edges, captured under widely varying illumination, to preserve
shape boundaries [Shirai and Tsuji 1972] but it is limited to uniform
albedo scenes. Using photometric stereo, it is possible to analyze
the intensity statistics to detect high curvature regions atoccluding
contours or folds [Huggins et al. 2001]. But the techniques assume
that the surface is locally smooth which fails for a flat foreground
object like a leaf or piece of paper, or view-independent edges such
as corner of a cube. They detect regions near occluding contours
but not the contours themselves.

Techniques forshape from shadow (or darkness) build a contin-
uous representation (shadowgram) from a moving light source from
which continuous depth estimates are possible [Raviv et al. 1989;
Langer et al. 1995; Daum and Dudek 1998]. However, it involves
a difficult problem of estimating continuous heights and requires
accurate detection of start and end of shadows. Good reviews of
shadow-based shape analysis methods are available in [Yang 1996]
[Kriegman and Belhumeur 2001] [Savarese et al. 2001].

A common limitation of existing active illuminations methods is
that the light sources need to surround the object, in order to create
significant shading and shadow variation from (estimated or known
3D) light positions. This necessitates afixed lighting rig, which
limits the application of these techniques to industrial settings, and
they are impossible to build into a self-contained camera.

We believe our proposed method for extracting depth edges is
complementary with many existing methods for computing depth
and 3D surface shape, as depth edges often violate smoothness as-
sumptions inherent in many techniques. If the locations of depth
discontinuities can be reliably detected and supplied as input, we
believe that the performance of many 3D surface reconstruction al-
gorithms can be significantly enhanced.

To find depth edges, we avoid the dependence on solving a corre-
spondence problem or analyzing pixel intensity statistics with mov-
ing lights, and we do not attempt to estimate any continuous value.
In our search, we have not seen a photometric or other type of stereo
method successfully applied to complex scenes where the normals
change rapidly– such as a potted plant, or a scene with high depth
complexity or low intensity changes, such as a car engine or bone.

1.3 Outline

Our method for creating a stylized image of a static scene consists
of the following.
� Capture a series of images of the scene under shifted light
positions
� Process these images to automatically detect depth edges
� Identify the subset of intensity edges that are illumination and
texture edges
� Compute qualitative depth relationships
� Enhance or simplify detected features for rendering
� Insert processed scene appearance for stylization

We use the termdepth edges to refer to the C0 discontinuities
in a depth map. Depth edges correspond to internal or external oc-
cluding contours (or silhouettes) or boundaries of physical objects.
The depth edges recovered aresigned: in the local neighborhood,
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Figure 3: Imaging geometry. Shadows of the gray object are cast
along the epipolar ray. We ensure that depth edges of all orienta-
tions create shadow in at least one image while the same shadowed
points are lit in some other image.

the side with lower depth value,foreground, is considered positive
while the opposite side isbackground and negative.Texture edges
are reflectance changes or material discontinuities. Texture edges
typically delineate textured regions.

In Section 2, we describe our approach to capturing important
features using a multi-flash setup. In Section 3, we discuss meth-
ods to use the information to render the images in novel styles. In
Section 4, we address the problem of extending the technique to
dynamic scenes. We describe our results in Section 5 and conclude
with discussion of limitations and future directions.

2 Capturing Edge Features

The image capturing process consists of taking successive pictures
of a scene with a point light sourceclose to the camera’s center
of projection (COP). Due to a smallbaseline distance between the
camera COP and the light source, a narrow sliver of shadow appears
abutting each edge in the image with depth discontinuities; its width
depends on the distance from the object edge to the background sur-
face. By combining information about abutting cast shadow from
two or more images with distinct light source positions, we can find
the depth edges.

2.1 Depth Edges

The method for detecting depth edges is the foundation for our ap-
proach. The idea is very simple, in retrospect. It allows us to clas-
sify other edges by a process of elimination.

Our method is based on two observations regarding epipolar
shadow geometry, as shown in Figure 3. The image of the point
light source atPk is at pixelek in the camera image, and is called
thelight epipole. The images of the pencil rays originating atPk are
theepipolar rays originating atek. (WhenPk is behind the camera
center, away from the image plane, the epipolar rays wrap around
at infinity.) First, note that, a shadow of a depth edge pixel is con-
strained to lie along the epipolar ray passing through that pixel.
Second, the shadow is observed if and only if the background pixel
is on the side of the depth edge opposite the epipolealong the epipo-
lar ray. Hence, in general, if two light epipoles lie on opposite sides
of an edge, a cast shadow will be observed at the depth edge in one
image but not the other.

We detect shadows in an image by taking a ratio of the image
with the maximum composite of all the images. The ratio image ac-
centuates shadows, which abut the depth edges, and de-emphasizes
texture edges. During epipolar traversal in the ratio image, the entry
point of a shadowed region indicates a depth edge. The basic algo-
rithm is as follows: Givenn light sources positioned atP1,P2...Pn,

• Capture ambient imageI0
• Capturen picturesI+k , k = 1..n with a light source atPk

• ComputeIk = I+k − I0
• For all pixelsx, Imax(x) = maxk(Ik(x)), k = 1..n
• For each imagek,

Figure 4: Detecting depth edges. (a) Photo (b) Ratio image (c) Plot
along an epipolar ray, the arrows indicate negative transitions (d)
Detected edges

� Create a ratio image,Rk, whereRk(x) = Ik(x)/Imax(x)
• For each imageRk

� Traverse each epipolar ray from epipoleek
� Find pixelsy with step edges with negative transition
� Mark the pixely as a depth edge

With a number of light sources (minimum 2, but typically 4 to 8
are used) placed strategically around the camera, depth edges of
all orientation with sufficient depth differences can be detected. In
each image, as long as the epipolar ray at a depth edge pixel is
not parallel to the image-space orientation of the depth edge, a step
edge with negative transition (from lit part to shadowed part) will
be detected. If the depth edge is oriented along the epipolar ray, the
step edge cannot be detected.

Let us look at the algorithm in detail. Note that, the imageIk has
ambient component removed, i.e.,Ik = I+k −I0, whereI0 is an image
taken with only ambient light and none of then light sources on.
The base image is the maximum composite image,Imax,, which is
an approximation of the image with light source at the camera COP,
and in general has no shadows from any of then light sources. The
approximation is close if then light sources are evenly distributed
around the camera COP, have the same magnitude and the baseline
is sufficiently smaller than the depth of the scene being imaged.

Consider the image of a 3D pointX , given in camera coordinate
system, imaged at pixelx. The intensity,Ik(x), if X is lit by the light
source atPk,, under lambertian assumption, is given by

Ik (x) = µkρ (x)
(
L̂k (x) ·N (x)

)

Otherwise,Ik(x) is zero. The scalarµk is the magnitude of the
light intensity andρ(x) is the reflectance atX . L̂k (x) is the normal-
ized light vectorLk (x) = Pk −X , andN(x) is the surface normal, all
in the camera coordinate system.

Thus, whenX is seen byPk, the ratio is as follows.

Rk (x) =
Ik (x)

Imax(x)
=

µk
(
L̂x (x) ·N (x)

)

maxi
(
µi
(
L̂i (x) ·N (x)

))

It is clear that, for diffuse objects with nonzero albedoρ(x),
Rk(x) is independent of the albedoρ(x) and only a function of the
local geometry. Further, if the light source-camera baseline|Pk| is
small compared to the distance to the point, i.e.,|X | � |Pk|, then
this ratio is approximatelyµk

/
maxi (µi), which is a constant for a

set of omni-directional light sources in the imaging setup.
The ratio values in(Rk = Ik/Imax) are close to 1.0 in areas lit

by light sourcek and close to zero in shadowed regions. (In gen-
eral, the values are not zero due to interreflections). The intensity
profile along the epipolar ray in the ratio image shows a sharp nega-
tive transition at the depth edge as we traverse from non-shadowed
foreground to shadowed background, and a sharp positive transi-
tion as we traverse from shadowed to non-shadowed region on the



Figure 5: A stylized imaging camera to capture images under four
different flash conditions and our prototype.

background (Figure 4). This reduces the depth edge detection prob-
lem to an intensity step edge detection problem. A 1D edge detec-
tor along the epipolar ray detects both positive and negative tran-
sitions, and we mark the negative transitions as depth edges. As
mentioned earlier, since we are detecting a transition and not a con-
tinuous value, noise and interreflections only affect the accuracy of
the position but not the detection of presence of the depth edge.

In summary, there are essentially three steps: (a) create a ratio
image where the values in shadowed regions are close to zero; (b)
carry out intensity edge detection on each ratio image along epipo-
lar rays marking negative step edges as depth edges (c) combine the
edge maps from alln images to obtain the final depth edge map.

Self-contained Prototype An ideal setup should satisfy the
constraint that each depth pixel be imaged in both conditions, the
negative side of the edge is shadowed at least in one image and not
shadowed in at least one other image. We propose using the follow-
ing configuration of light sources: four flashes at left, right, top and
bottom positions (Figure 5).

This setup makes the epipolar ray traversal efficient. If the light
source is in the plane parallel to the image plane that contains the
center of projection, the light epipole is at infinity and the corre-
sponding epipolar rays are parallel in the image plane. In addition,
we place the epipoles such that the epipolar rays are aligned with
the camera pixel grid. For the left-right pair, the ray traversal is
along horizontal scan lines and for the top-bottom pair, the traver-
sal is along vertical direction.

2.2 Material Edges

In addition to depth edges, we also need to consider illumination
and material edges in the image. Illumination edges are boundaries
between lit and shadowed regions due to ambient light source(s),
rather than the flashes attached to our camera. Since the individual
imagesIk, are free of ambient illumination, they are free of ambient
illumination edges. In general, since material edges are indepen-
dent of illumination direction, they can be easily classified by a
process of elimination. Material edges are intensity edges ofImax
minus the depth edges.

This edge classification scheme works well and involves a mini-
mal number of parameters for tuning. The only parameters we need
are those for intensity edge detection of ratio images andImax im-
age, to detect depth and material edges, respectively.

2.3 Issues

The technique we presented to detect depth edges is surprisingly
robust and reliable. We discuss the few conditions in which the ba-
sic algorithm fails: a false negative when a negative transition at a
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Figure 6: (a) Relationship between baseline and width of shadow
(b) Condition where shadow detaches

depth edge cannot be detected in the ratio imageRk or a false pos-
itive when other conditions create spurious transitions inRk. The
depth edges can bemissed due to detached shadows, lack of back-
ground, low albedo of background, holes and valleys, or if depth
edges lie in shadowed region. The low albedo of background makes
it difficult to detect increase in radiance due to a flash, but this prob-
lem can be reduced with a higher intensity flash. The problems due
to holes/valleys or shadowed depth edges, where the visible back-
ground is shadowed for a majority of the flashes, are rare and fur-
ther reduced when the flash baseline is small. Below, we only dis-
cuss the problem due to detached shadows and lack of background.
Some pixels may bemislabeled as depth edge pixels due to specu-
larities or near silhouettes of curved surfaces. We discuss both these
issues. We have studied these problems in detail and the solutions
will be provided in a technical report. Here we describe the main
ideas.

Curved surfaces The silhouettes on curved surfaces vary
smoothly with change in viewpoint and the ratioRk(x) is very low
near depth edges when the 3D contours corresponding to silhou-
ettes with respect to neighboring flash positions are sufficiently dif-
ferent. This is because the dot product

(
L̂k (x) ·N (x)

) ≈ 0 and the
dot product for light sources on the ‘opposite’ side will be larger(
L̂i (x) ·N (x)

)
>
(
L̂k (x) ·N (x)

)
. ThusRk(x) decreases rapidly even

though the pixel is not in a shadowed region. However, as seen in
examples shown here, this is not a major issue and simply results in
a lower slope at the negative transition inRk. Unlike the problems
below, it does not lead to a reversal of intensity gradient along the
epipolar ray.

Tradeoff in choosing the baseline A larger baseline distance
between the camera and the flash is better to cast a wider detectable
shadow in the image, but a smaller baseline is needed to avoid sep-
aration of shadow from the associated depth edge.

The width of the abutting shadow in the image isd =
f B(z2− z1)

/
(z1z2), where f is the focal length,B is baseline in

Figure 7: (Left) Minimum composite of image with flash FS and
FL. (Right) Plot of intensity along a scanline due to FS, FL and
min(IS, IL).



Figure 8: Specularities and lack of background. First column:Imax and corresponding result showing artifacts. Second column: For the
yellow line marked on dumbbell (x=101:135); Top plot,Ile f t (red) withImax (light blue). Bottom plot, ratioRle f t . Note the spurious negative
transition inRle f t , at the arrow, which gets falsely identified as a depth edge. Third column: Top plot, gradient ofIle f t (red), Iright (green),
Itop (blue) and Median of these gradients (black). Bottom plot, reconstructed intrinsic image (black) compared withImax (light blue). Fourth
column: Top, intrinsic image. Bottom, resulting depth edge map. Fifth column: Top, Scene without a background to cast shadow. Bottom,
Edges ofI0/Imax, in white plus detected depth edges in red.

mm, andz1, z2 are depths, in mm, to the shadowing and shadowed
edge. (See Figure 6)

Shadow detachment occurs when the width,T , of the object is
smaller than(z2− z1)B

/
z2. So a smaller baseline, B, will allow

narrower objects (smaller T) without shadow separation. Fortu-
nately, with rapid miniaturization and sophistication of digital cam-
eras, we can choose small baseline while increasing the pixel reso-
lution (proportional tof ), so that the productfB remains constant,
allowing depth detection of narrow objects.

When camera resolutions are limited, we can exploit ahierar-
chical baseline method to overcome this tradeoff. We can detect
small depth discontinuities (with larger baselines) without creat-
ing shadow separation at narrow objects (using narrow baselines).
In practice, we found two different baselines were sufficient. We,
however, now have to deal with spurious edges due to shadow sep-
aration in the image with larger baseline flash FL. The image with
smaller baseline flash, FS, may miss small depth discontinuities.
How can we combine the information in those two images? There
are essentially four cases we need to consider at depth edges (Fig-
ure 7) (a) FS creates a undetectable narrow shadow, FL creates a de-
tectable shadow (b) FS creates a detectable small width shadow and
FL creates a larger width shadow. (c) FS creates detectable shadow
but FL creates a detached shadow that overlaps with FS shadow and
(iv) same as (d) but the shadows of FS and FL do not overlap.

Our strategy is based on simply taking the minimum composite
of the two images. In the first three cases, this conveniently in-
creases the effective width of the abutting shadow without creating
any artifacts, and hence can be treated using the basic algorithm
without modifications. For the fourth case, a non-shadow region
separates the two shadows in the min composite, so that the shadow
in FL appears spurious.

Our solution is as follows. We compute the depth edges using FS
and FL (Figure 7). We then traverse the epipolar ray. If the depth
edge appears in FS (at D1) but not in FL we traverse the epipolar ray
in FL until the next detected depth edge. If this depth edge in FL,
there is no corresponding depth edge in FS, we mark this edge as a
spurious edge.

The solution using min-composite, however, will fail to detect
minute depth discontinuities where even FL does not create a de-
tectable shadow. It will also fail for very thin objects where even FS
creates a detached shadow.

Specularities Specular highlights that appear at a pixel in one
image but not others can create spurious transitions in the ratio im-

ages as seen in Figure 8. Although methods exist to detect specu-
larities in a single image [Tan et al. 2003], detecting them reliably
in textured regions is difficult.

Our method is based on the observation that specular spots shift
according to the shifting of light sources that created them. We need
to consider three cases of how specular spots in different light posi-
tions appear in each image: (i) shiny spots remain distinct (e.g., on
highly specular surface with a medium curvature) (ii) some spots
overlap and (iii) spots overlap completely (e.g., on a somewhat
specular, fronto-parallel planar surface). Case (iii) does not cause
spurious gradients in ratio images.

We note that although specularities overlap in the input images,
the boundaries (intensity edges) around specularities in general do
not overlap. The main idea is to exploit the gradient variation in the
n images at a given pixel (x,y). If (x,y) is in specular region, in cases
(i) and (ii), the gradient due to specularity boundary will be high in
only one or a minority of then images under different lighting. The
median of then gradients at that pixel will remove this outlier(s).
Our method is motivated by the intrinsic image approach by [Weiss
2001], where the author removes shadows in outdoor scenes by not-
ing that shadow boundaries are not static. We reconstruct the image
by using median of gradients of input images as follows.

• Compute intensity gradient,Gk(x,y) = ∇ Ik (x,y)
• Find median of gradients,G(x,y) = mediank(Gk(x,y))
• Reconstruct imageI′ which minimizes|∇ I′ −G|

Image reconstruction from gradients fields, an approximate invert-
ibility problem, is still a very active research area. InR2, a modified
gradient vector fieldG may not be integrable. We use one of the di-
rect methods recently proposed [Elder 1999] [Fattal et al. 2002].
The least square estimate of the original intensity function,I′, so
thatG ≈ ∇ I’, can be obtained by solving the Poisson differential
equation∇ 2I’ = div G, involving a Laplace and a divergence opera-
tor. We use the standard full multigrid method [Press et al. 1992] to
solve the Laplace equation. We pad the images to square images of
size the nearest power of two before applying the integration, and
then crop the result image back to the original size [Raskar et al.
2004]. We use a similar gradient domain technique to simplify sev-
eral rendering tasks as described later.

The resultant intrinsic image intensity,I′(x,y) is used as the de-
nominator for computing the ratio image, instead of the max com-
posite,Imax(x,y). In specular regions, the ratioIk (x,y)

/
I′ (x,y) now

is larger than 1.0. This is clamped to 1.0 so that the negative transi-
tions in the ratio image do not lie in specular parts.



Figure 9: (a) A edge rendering with over-under style. (b) Rendering edges with width influenced by orientation. (c) and (d) Normal
Interpolation for toon rendering exploiting over-under mattes.

Lack of Background Thus far we assumed that depth edges
casting shadows on a background are within a finite distance. What
if the background is significantly far away or not present? This turns
out to be a simple situation to solve because in these cases only the
outermost depth edge, the edge shared by foreground and distant
background, is missed in our method. This can be easily detected
with a foreground-background estimation technique. InImax image
the foreground pixels are lit by at least one of the flashes but in the
ambient image,I0, neither the foreground nor the background is lit
by any flash. Hence, the ratio ofI0/Imax, is near 1 in background
and close to zero in interior of the foreground. Figure 8 shows
intensity edges of this ratio image combined with internal depth
edges.

3 Image Synthesis

Contour-based comprehensible depiction is well explored for 3D
input models [DeCarlo et al. 2003] but not for photographs. In the
absence of a full 3D representation of the scene, we exploit the
following 2D cues to develop novel rendering algorithms.

(a) The sign of the depth edge,
(b) Relative depth difference based on shadow width,
(c) Color near the signed edges, and
(d) Normal of a smooth surface at the occluding contour

We aim to automate tasks for stylized rendering where meticulous
manual operation was originally required, such as image editing or
rotoscoping [Waking Life 2001] .

3.1 Rendering Edges

We create a vectorized polyline representation of the depth edges
by linking the depth edge pixels into a contour. The polyline is
smoothed and allows us to stylize the width and color of the con-
tour maintaining spatial coherency. While traversing the marked
depth edge pixels to create a contour, at T-junctions, unlike tradi-
tional methods that choose the next edge pixel based on orientation
similarity, we use the information from the shadows to resolve the
connected component. Two edge pixel are connected only if they
are connected in the intensity edges of all then ratio images.

Signed edges At the negative transition along the epipolar ray
in the ratio image,Rk,the side of edge with higher intensity is the
foreground and lower intensity (corresponding to shadowed region)
is background. This qualitative depth relationship can be used to
clearly indicate foreground-background separation at each edge.
We emulate the over-under style used by artists in mattes. The
foreground side is white while the background side is black. Both
are rendered by displacing depth contour along the normal (Figure
9(a)).

Light direction We use a commonly known method to convey
light direction by modifying the width of edges depending on the

edge orientation. Since the edge orientation in 3D is approximately
the same as the orientation of its projection in image plane, the
thickness is simply proportional to the dot product of the image
space normal with a desired light direction (Figure 9(b)).

Color variation We can indicate color of original object by ren-
dering the edges in color. From signed edges, we pick up a fore-
ground color along the normal at a fixed pixel distance, without
crossing another depth or intensity edge. The foreground colored
edges can also be superimposed onto a segmented source image as
seen in Figure 10(c).

3.2 Color Assignment

Since there is no 3D model of the scene, rendering non-edge pixels
requires different ways of processing captured 2D images.

Normal interpolation For smooth objects, the depth edge cor-
responds to the occluding contour where the surface normal is per-
pendicular to the viewing direction. Hence the normals at depth
edges lie in the plane of the image and we can predict normals at
other pixels. We solve this sparse interpolation problem by solving
a 2D Poisson differential equation. Our method is inspired by the
Lumo [Johnston 2002] where the over-under mattes are manually
created. In our case, signed depth edges allow normal interpolation
while maintaining normal discontinuity at depth edges.

Image attenuation We accentuate the contrast at shape bound-
aries using an image attenuation maps (Figure 10(a)) as follows.
Depth edges are in white on a black background. We convolve with
a filter that is the gradient of an edge enhancement filter. Our filter
is a Guassian minus an impulse function. When we perform a 2D
integration on the convolved image, we get a sharp transition at the
depth edge.

Depicting Change Some static illustrations demonstrate action
e.g., changing oil in a car, by making moving parts in the fore-
ground brighter. Foreground detection via intensity-based schemes,
however, is difficult when the colors are similar and texture is lack-
ing, e.g., detecting hand gesture in front of other skin colored parts
(Figure 11). We take two separate sets of multi-flash shots, with-
out and with the hand in front of the face to capture the reference
and changed scene. We note that any change in a scene is bounded
by new depth edges introduced. Without explicitly detecting fore-
ground, we highlight interiors of regions that contribute to new
depth edges.

We create a gradient field where pixels marked as depth edges
in changed scene but not in reference, are assigned a unit magni-
tude gradient. The orientation matches the image space normal to
the depth edge. The gradient at other pixels is zero. The recon-
structed image from 2D integration is a pseudo-depth map – least
squared error solution via solving Poisson equation. We threshold
this map at 1.0 to get the foreground mask which is brightened.
Note, the shadow width along the epipolar ray is proportional to
the ratio of depth values on two sides of the edge. Hence instead
of a unit magnitude gradient, we could assign a value proportional



Figure 10: Color assignment. (a) Attenuation Map (b) Attenuated Image (c) Colored edges on de-emphasized texture

Figure 11: Change Detection. (Left column) Reference image,
changed image, and pseudo depth map of new depth edges (Right)
Modified depth edge confidence map.

to the logarithm of the shadow width along the epipolar ray to get
a higher quality pseudo-depth map. Unfortunately, we found that
the positive transition along the ray is not strong due to the use of a
non-point light source and interreflections. In principle, estimated
shadow widths could be used for say, tunable abstraction to elimi-
nate edges with small depth difference.

3.3 Abstraction

One way to reduce visual clutter in an image and emphasize object
shape is to simplify details not associated with the shape bound-
aries (depth edges) of the scene, such as textures and illumination
variations [Gooch and Gooch 2001]. Our goal is to create large
flat colored regions separated by strokes denoting important shape
boundaries. Traditional NPR approaches based on image segmen-
tation achieve this by assigning a fixed color to each segment [De-
Carlo and Santella 2002]. However, image segmentation may miss
a depth edge leading to merger of foreground and background near
this edge into a single colored object. Although image segmenta-
tion can be guided by the computed depth edges, the segmentation
scheme places hard constraint on closed contours and does not sup-
port smalls gaps in contours. We propose a method that is concep-
tually simple and easy to implement.

Our method reconstructs image from gradients without those at
texture pixels. No decision need to be made about what intensity
values to use to fill in holes, and no feathering and blurring need be
done, as is required with conventional pixel-based systems. We use

a mask image,γ, to attenuate the gradients away from depth edges.
The mask image is computed as follows.

γ(x,y) = a if (x,y) is a texture edge pixel
= a ·d(x,y) if (x,y) is a featureless pixel
= 1.0 if (x,y) is a depth edge pixel

The factord(x,y) is the ratio of the distance field of texture pixels
by the distance field of depth edge pixels. The distance field value
at a pixel is the Euclidean distance to the nearest (texture or depth)
edge pixel. As shown in Figure 12, the parametera controls the
degree of abstraction, and textures are suppressed fora = 0. The
procedure is as follows.

• Create a mask imageγ (x,y)
• Compute intensity gradient∇ I(x,y)
• Modify masked gradientsG(x,y) = ∇ I(x,y)γ(x,y)

• Reconstruct image I’ to minimize|∇ I′ −G|
• NormalizeI′(x,y) colors to closely matchI(x,y)

The image reconstruction follows the solution of a Poisson equation
via a multi-grid approach as in the specularity attenuation technique
in Section 2.

Figure 12: Tunable abstraction for texture de-emphasis. Depth edge
followed by abstraction witha = 1, a = 0.5 anda = 0.

4 Dynamic Scenes

Our method for capturing geometric features thus far requires tak-
ing multiple pictures of the same static scene. We examine the
lack of simultaneity of capture for scenes with moving objects
or a moving camera. Again, a large body of work exists for esti-
mating motion in image sequences, and a sensible approach is to
use the results from the static algorithm and apply motion compen-
sation techniques to correct the artifacts introduced. Finding op-
tical flow and motion boundaries, however, is a challenging prob-
lem especially in textureless regions [Papademetris and Belhumeur
1996; Birchfield 1999]. Fortunately, by exploiting properties of our
unique imaging setup, in most cases, movement of depth edges in
dynamic scenes can still be detected by observing the correspond-
ing movement in shadowed regions. As in the static case, we bypass



the hard problem of finding the rich per-pixel motion representation
and focus directly on finding the discontinuities i.e., depth edges in
motion. The setup is similar to the static case withn flashes around
the camera, but triggered in a rapid cyclic sequence, one flash per
frame. We find depth edges in a given frame and connect edges
found in adjacent frames into a complete depth edge map.

Figure 13: Depth edge detection for dynamic scenes. (Top) Three
frames from multi-flash sequence of a toy example showing a red
square with a green triangle texture moving from left to right. We
are interested in detecting the depth edge in framem. A single
scan line shown in blue is used for the plots. (Middle) The three
scan lines plots. The position of the correct depth edge position
is indicated with a vertical blue line. (Bottom) Plot of minimum
composite and ratio images computed using the static and dynamic
algorithms. The motion induced unwanted edges in the static ratio
image but not in the dynamic ratio image. The correct depth edge
can then be detected from the ratio image using the same traversal
procedure as before.

4.1 Depth Edges in Motion

To simplify the discussion, consider using just the left and right
flashes to find vertical depth edges. Images from three frames,
Im−1, Im andIm+1, from a toy example are shown in Figure 13. In
the sequence, a red square with a green triangle texture is shown
moving from left to right, and the three frames are captured under
left, right, and left flashes, as can be easily inferred from the cast
shadows.

In presence of scene motion, it is difficult to reliably find shadow
regions since the base image to compare with, e.g., the max com-
posite,Imax, exhibits misaligned features. A high speed camera can
reduce the amount of motion between frames but the lack of simul-
taneity cannot be assumed.

We make two simplifying assumptions (a) motion in image space
is monotonic during the image capture from the start of frame m-1
to the end of frame m+1 and (b) the motion is also small enough
that the depth and texture edges in the frames do not cross, i.e., the
motion is restricted to the spacing between adjacent edges on the
scan line.

Due to the left-right switch in illumination, a shadow near
a depth edge disappears in alternate frame images,Im−1 and
Im+1, while a moving texture edge appears in all three frames.
Monotonicity of motion without crossing over edges means

min(Im−1, Im+1) or max(Im−1, Im+1) will both have a flat re-
gion around the depth edge in framem. Similarly, images
min(Im−1, Im, Im+1) and max(Im−1, Im, Im+1) both are bound to
have a flat region around texture edge in framem. Since the cast
shadow region at the depth edge in framem is darker than the fore-
ground and background objects in the scene, the shadow is pre-
served in min(Im−1, Im, Im+1) but not in max(Im−1, Im, Im+1). This
leads to the following algorithm:

• Compute shadow preservingIt = min(Im−1, Im, Im+1)
• Compute shadow freeId = min(Im−1, Im+1)
• Compute ratio image,Rm, whereRm = It/Id
• Traverse along epipolar ray fromem and mark negative tran-

sition

This ratio image is free of unwanted transitions and the same epipo-
lar ray traversal method can be applied to localize the depth edges.

Figure 13 shows the algorithm in action. We tested the algorithm
with synthetic sequences to investigate the set of conditions under
which the algorithm is able to correctly localize the depth edges
and also experimented with this algorithm in real dynamic scenes.
An example frame from a dynamic sequence is shown in Figure 14.
A full stylized example with human subjects can be seen in the ac-
companying video. While we are very encouraged by the simplicity
of the algorithm as well as the results we were able to achieve with
it, the simplifying assumptions made about the monotonicity and
magnitude of motion are still fairly restrictive. For thin objects or
objects with high frequency texture, large motions between succes-
sive frames creates spurious edges. We plan to continue our in-
vestigation in this area and designing algorithms that require fewer
assumptions and work under a wider range of conditions.

 

 

Figure 14: (Left) A frame from a video sequence, shadows due to
left flash. (Right) Detected depth edges merged from neighboring
frames.

4.2 Edges and Colors

The depth edges in a given frame,m, are incomplete since they
span only limited orientations. In a dynamic scene a union of depth
edges from alln successive frames may not line up creating discon-
tinuous contours. We match signed depth edges corresponding to
the same flash i.e.,m andm + n and interpolate the displacement
for intermediate frames. To assign colors, we take the maximum of
three successive frames. Our video results can also be considered as
tools for digital artists who traditionally use rotoscoping for finding
shape boundaries in each frame.

5 Implementation

Our basic prototype makes use of a 4 MegaPixel Canon Power-
shot G3 digital camera. The dynamic response in the images is lin-
earized. The four booster (slaved Quantarray MS-1) 4ms duration
flashes are triggered by optically coupled LEDs turned on sequen-
tially by a PIC microcontroller, which in turn is interrupted by the



hot-shoe of the camera. Our video camera is a PointGrey Dragon-
Fly camera at 1024x768 pixel resolution, 15 fps which drives the
attached 5W LumiLeds LED flashes in sequence. We used aLu-
mina Wolf endoscope with 480x480 resolution camera.

It takes 2 seconds to capture each image. Our basic algorithm
to detect depth edges executes in 5 seconds in C++ on a Pentium4
3GHz PC. The rendering step for 2D Poisson takes about 3 minutes.

6 Results

We show a variety of examples of real scenes, from millimeter scale
objects to room sized environments.

Figure 15: Room sized scene: Right flash image and depth edge
map.

Objects and room sized scenes We examine imaging a me-
chanical (car engine, Figure 1(b)), organic (plant, Figure 1(d)) and
anatomical (bone, Figure 9) object. For organic objects, such as
flower plant, the geometric shape is complex with specular high-
lights, probably challenging for many shape-from-x algorithms.
Note the individual stems and leafs that are clear in the new syn-
thesis. The whitebone with complex geometry, is enhanced with
different shape contour styles. In all these scenes, intensity edge
detection and color segmentation produce poor results because the
objects are almost uniformly colored. The method can be easily
used with room-sized scenes (Figure 15).

Figure 16: (Left) Enhanced endoscope, with only left lights turned
on; input image and depth edge superimposed image. (Right)
Skeleton and depth edge superimposed image.

Milli-scale Scene Medical visualization can also benefit from
multi-flash imaging. We manipulated the two light sources avail-
able near the tip of an endoscopic camera. The baseline is 1mm for
5mm wide endoscope (Figure 16.left). From our discussions with
medical doctors and researchers who with such images, extension
to video appears to be a promising aid in examination [Tan et al.
2004]. A similar technique can also be used in boroscopes that are
used to check for gaps and cracks inside inaccessible mechanical
parts - engines or pipes.

Comparison with other strategies We compared our edge ren-
dering technique for comprehension with intensity edge detection
using Canny operator, and segmentation. We also compared with
active illumination stereo 3D scanning methods, using a state of
the art 3Q scanner. Edges captured viaintensity edge detection
are sometimes superimposed on scenes to improve comprehension.
While this works in high contrast imagery, sharp changes in image

Figure 17: (Left) Intensity edge detection (Canny) for engine of
Figure 1(a). (Right Top) Depth map from 3Q scanner, notice the
jagged depth edges on the neck. (Right Bottom) Depth edge confi-
dence map using our technique.

values do not necessarily imply object boundaries, and vice versa
[Forsyth and Ponce 2002]. The Canny edge detection or segmenta-
tion based NPR approaches unfortunately also fail in low-contrast
areas e.g., in the plant, bone or engine (Figure 17.left) example.
The 3D scanner output is extremely high quality in the interior of
objects as well as near the depth edges. But due to partial occlu-
sions, the depth edges are noisy (Figure 17).

7 Discussion

Feature capture For comprehensible imagery,other shape
cues such as high curvature regions (ridges, valleys and creases)
and self-shadowing boundaries from external point light sources
are also useful, and are not captured in our system. Our method is
highly dependent on being able to detect the scene radiance con-
tributed by the flash, so bright outdoors or distant scenes are a
problem. Given the dependence on shadows of opaque objects,
our method cannot handle transparent, translucent, luminous, and
mirror like objects.

Many hardware improvements are possible. Note that the
depth edge extraction scheme could be used for spectrums other
than visible light that create ‘shadows’, e.g., in infrared, sonar, X-
rays and radars imaging. Specifically, we envision the video-rate
camera to be fitted with infrared light sources invisible to humans
so the resulting flashes are not distracting. In fact, one can use a fre-
quency division multiplexing scheme to create asingle shot multi-
flash photography. The flashes simultaneously emit four different
colors (wavelength) and the Bayer mosaic like pattern of filters on
the camera imager decodes the four separate wavelengths.

Applications of depth edges Detecting depth discontinuity
is fundamental to image understanding and can be used in many
applications [Birchfield 1999]. Although current methods rely pri-
marily on outermost silhouettes of objects, we believe a complete
depth edge map can benefit problems in visual hull, segmentation,
layer resolving and aspect graphs. Aerial imaging techniques [Lin
and Nevatia 1998] can improve building detection by looking at
multiple time-lapsed images of cast shadows from known sun di-
rections before and after local noon. In addition, effects such as
depth of field effect during post-processing, synthetic aperture us-
ing camera array and screen matting for virtual sets (with arbitrary
background) require high qualitysigned depth edges.

Edge-based or area-based stereo correspondence can be im-
proved by matching signed depth edges, constraining dynamic pro-



gramming to segments within depth edges and modifying correla-
tion filters to deal with partial occlusions [Scharstein and Szeliski
2002]. Edge classification can provide confidence map to assist
color and texture segmentation in low-contrast images. Shape con-
tours can also improve object or gesture recognition [Feris et al.
2004].

8 Conclusion

We have presented a simple yet effective method to convey shape
boundaries by rendering new images and videos of real world
scenes. We exploit the epipolar relationship between light sources
and cast shadows to extract geometric features from multiple im-
ages of a scene. By making use of image space discontinuity rather
than relying on 3D scene reconstruction, our method can robustly
capture the underlying primitives for rendering in different styles.

We have presented basic prototypes, related feature capturing
and rendering algorithms, and demonstrated applications in tech-
nical illustration and video processing. Finally, since a depth edge
is such a basic primitive, we have suggested ways in which this
information can be used in applications beyond NPR.

Minor modification to camera hardware enables this method to
be implemented in a self-contained device no larger than existing
digital cameras. We have proposed one possible approach to lever-
aging the increasing sophistication of digital cameras to easily pro-
duce useful and interesting stylized images.
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Abstract

We apply simplified image-based lighting methods to reduce the equipment, cost, time, and specialized skills
required for high-quality photographic lighting of desktop-sized static objects such as museum artifacts. We place
the object and a computer-steered moving-head spotlight inside a simple foam-core enclosure, and use a camera
to quickly record low-resolution photos as the light scans the box interior. Optimization guided by interactive user
sketching selects a small set of frames whose weighted sum best matches the target image. The system then repeats
the lighting used in each of these frames, and constructs a high resolution result from re-photographed basis
images. Unlike previous image-based relighting efforts, our method requires only one light source, yet can achieve
high resolution light positioning to avoid multiple sharp shadows. A reduced version uses only a hand-held light,
and may be suitable for battery-powered, field photography equipment that fits in a backpack.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism I.4.1 [Image Processing and Computer Vision]: Digitization and Image Capture I.3.3 [Com-
puter Graphics]: Picture/Image Generation

1. Introduction

Modern digital cameras have made picture-taking much
easier and more interactive. However, lighting a scene for
good photography is still difficult, and practical methods
to achieve good lighting have scarcely changed at all.
We show that sketch-guided optimization and simplified
forms of image-based lighting can substantially reduce the
cost, equipment, skill, and patience required for small-scale
studio-quality lighting.

Good studio lighting is difficult because it is a 4D inverse
problem that photographers must solve by making succes-
sive approximations guided by years of experience. For non-
experts, good studio lighting can be surprisingly frustrating.
Most people can specify the lighting they want in screen
space (e.g., “get rid of this obscuring highlight, make some
shadows to reveal rough texture here, but fill in the shadows
there”), but determining what kind of lights to use, where to
place them, and how to orient them is never easy.

† ankit@cs.northwestern.edu

We are especially interested in camera-assisted lighting for
human-scale, desktop-sized static objects. We want lighting
that accurately reveals the shape, texture, materials, and most
visually meaningful features of the photographed item. In
particular, we seek a method to help museum curators as they
gather digital photographic archives of their vast collections
of items.

Pioneering work in image-based lighting [DHT∗00,HCD01,
DWT∗02, MPDW03] offers promising approaches that can
help with the photographic lighting problem. Unfortunately,
most require too many precise measurements and adjust-
ments for day-to-day use outside the laboratory. Precision
is required to address more ambitious goals such as recov-
ering shape, BRDF, and appearance under arbitrary view-
ing and lighting conditions. For the much smaller, yet more
widespread problem of photographic lighting, we need a
method that requires less time, expense, and complexity, yet
allows users who are not lighting experts to quickly find the
lighting they want.

This paper offers three contributions. We extend existing

c© The Eurographics Association 2005.
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Figure 1: Light placement for obtaining high quality photographs can be extremely tedious and time consuming (left). Our
system use a simple setup with a steerable spotlight and an uncalibrated enclosure (center) to obtain results comparable to
professional lighting even when used by novice users (right).

image-based lighting ideas to reduce the required equip-
ment to a single light source and single camera; we replace
trial-and-error light repositioning with optimization and on-
screen painting; and we reduce the need for high dynamic
range photography, thus reducing the capture time. The re-
sult is a novel and inexpensive system that a novice can use
to intuitively describe and obtain the desired lighting for a
photograph.

2. Related Work

Lighting has long been recognized as a hard problem in com-
puter graphics and many papers have explored optimization
for light placement and other parameters [SDS∗93,KPC93,
PF95, CSF99, SL01]. Some of these systems used painting
interfaces to specify desired lighting in a 3D scene [SDS∗93,
PF95,PRJ97], and we use a similar approach to make light-
ing for photography more intuitive. The system by Shacked
et al. [SL01] was even able to provide fully automatic
lighting by applying image quality metrics. Marschner et
al. [MG97] used inverse rendering techniques to estimate
and alter the directional distribution of incident light in a
photograph. However, all these systems require 3D informa-
tion unavailable in our photographic application.

Several commercial photographic products have also used
lighting enclosures similar to ours, but they achieve very
soft lighting with limited user controls. Moreover, they do
not help users solve light placement problems. These sys-
tems include diffusive tents [Pho], photo-boxes [MK ] and
translucent back-lit platforms with an array of individually
dimmed light sources [Ast].

Image-based methods have also been used to permit arbi-
trary relighting of well-measured objects. Most methods, in-
cluding ours, perform relighting using a weighted sum of
differently lit basis images, done first by [NSD94]. How-
ever, prior efforts used more elaborate and expensive equip-
ment because their goals were different from ours. These in-
clude measurement of a 4D slice of the reflectance field of

the human face [DHT∗00], museum artifacts measured by a
rotating-arm light stage [HCD01], an ingenious but exten-
sive system by Debevec et al. [DWT∗02] for real-time video
playback and measurement of light fields, a dome of elec-
tronic flashes for real time image relighting [MGW01], a
free form light stage to enable portable gathering of light-
field data with some calibration [MDA02], and full 4D inci-
dent light measurements by Masselus et al. [MPDW03]. In
all of these cases, data-gathering required either customized
equipment or collection times much longer than would be
practical for photographic lighting.

Three recent systems also offered novel sketch guided re-
lighting from basis images. Akers et al. [ALK ∗03] used a
robotic light-positioning gantry to gather precisely lit im-
ages, and like us, provided a painting interface to guide re-
lighting. But unlike us they used spatially varrying weights
that could produce physically impossible lighting. Digital
Photomontage [ADA∗04] used sketch guided graph-cut seg-
mentation coupled with gradient domain fusion to seam-
lessly merge several photographs. They demonstrated merg-
ing differenlty lit photographs to create novel illumination
conditions. Though their interaction scheme worked well
for a small number of images (∼10), it may be impracti-
cal for the hundreds of images required for complete control
over lighting directions. Also, their system does nothing to
help the user with light placement, and may produce phys-
ically unrealizable results. Anrys and Dutre [AD04] used a
Debevec-style light stage with around 40 fixed, low pow-
ered light sources and a painting interface to guide light-
ing. Their optimization only found light intensities, and light
placement was still left up to the user. Also, their point
light sources could cause multiple shadows and highlights
which might be undesirable for archival purposes. The data
capture time was high since they captured high-dynamic-
range (HDR) photos for every light location.

Unlike previous attempts, our system does not require users
to decide on correct or complete light source placement. This
is possible because our capture process is significantly dif-
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Figure 2: All possible lighting angles parameterized by
light position (θp,φp) and direction (θa,φa). Point light
sources (on the left side of the hemisphere) result in mul-
tiple hard shadows, while overlapping area (on the right)
light sources can be used to simulate a larger light source.

ferent, and better suited for the task of photography. We re-
quire less than five minutes to complete the initial image
capture and a few more minutes to get the final result. The
equipment required is minimal and portable, and our hand-
held version can be carried in a backpack. Also, HDR cap-
ture is reduced to a minimum in our system.

3. Simplifications: HDR and 2D lighting

Our goal is to do what a good photographer does, but with
computational help. We want to light a scene for a par-
ticular photograph,not build a calibrated 4D data set to
reconstruct every possible form of illumination. Photogra-
phers make consistent choices about which types of lights
to use, how to adjust them, and where to place them. We
will show how our streamlined image-based method follows
these same choices.

Like most previous image-based lighting methods, we apply
the observations formalized by Nimeroff [NSD94] that lights
and materials interact linearly. If a fixed camera makes an
imageIi from a fixed scene lit only by a lightLi , then the
same scene lit by many lights scaled by weightswi will make
an imageIout = ∑i wi Ii . Adjusting weights lets us “relight”
the image, as if the weights modulate the lights rather than
the images. As we collect more imagesIi , we can simulate
more lighting possibilities.

How many images do we really need to gather? We only
need enough images to span the kind of lighting a skilled
photographer might explore to get good results in a photo
studio. Several common practices in studio lighting can help
us.

First, professional photographers choose lamps with broad,
nearly uniform beams of light, often with a reflector and lens
to help direct more light forward. Second, they adjust light
placement angles carefully, but not their distances from the

object. Distance to the light affects foreshortening of shadow
shapes, but these effects are subtle and rarely noticed. Third,
they adjust lights to control shadow softness versus sharp-
ness. Light sources (or more accurately, the shadows they
form) become ‘softer’ by increasing the angular extent as
measured from the lit object. Fourth, they seek out light-
ing arrangements that produce a simple set of shadows and
highlights that best reveal the object’s shape, position, and
surface qualities. They avoid complex overlapping shadows,
lack of shadows due to overly-soft light, and contrast ex-
tremes due to large specular highlights or very dark shad-
ows. Simpler shadows usually mean fewer lights, and thus
fewer basis images.

Accordingly, we use commercially available light sources
instead of custom or special-purpose devices. We place light
sources at a moderate distance (typically around 1 meter)
from the object. We use small-to-moderate area ‘soft’ light
sources instead of the much sharper point-like sources often
used in earlier approaches. Overlapped soft shadows blend
far less noticeably than sharp shadows from the same light
positions (as shown in Figure2), thus requiring fewer im-
ages to avoid multiple shadow artifacts. Also, overlapping
area light sources can be combined to produce a larger area
light source.

Note that we do not need to know the light positions or their
absolute intensities for our images; we select weightswi and
imagesIi by their ability to match the lighting target images
a user sketches for us. Instead of calibration, we only need
consistency in the aiming direction of a single, commer-
cially available steerable light, and consistency in the light
response curve of a commercially available digital camera.

We also avoid the use of HDR photographs where possible,
as these typically require multiple calibrated exposures and
computation to merge them [DM97]. Instead, we rely on the
camera’s automatic exposure adjustments to capture what
we call light-aiming imagessuitable for interactive lighting
design. We photograph high resolution basis images after-
wards, for construction of the output image, and only resort
to HDR capture methods for a basis image with large over-
exposed regions. Under-exposed regions can be ignored, as
their contributions are already invisible, and are further re-
duced as their weights are less than one (wi ≤ 1).

Formally, arbitrary external illumination is four-dimensional
for a desktop scene:L(θp,φp,θa,φa) = L(Θ). Suppose that
the photographed object receives all its light from a hemi-
sphere of tiny, invisible, inward-pointing video projectors,
each at a distancer from the object. Each projector’s po-
sition in desktop polar coordinates is(θp,φp). Each projec-
tor’s centermost pixelP(θa = 0,φa = 0) forms a ray that illu-
minates the center point of our desktop, and in the projector’s
polar coordinates the other pixels areP(θa,φa), as shown
in Figure2. All projectors’ light output is the 4-D incident
light field, and describes all possible lighting. To simulate all
possible lighting, we would need a new imageIi to capture
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light from each pixel of each video projector! Instead, we use
only broad beams of light (P(θa,φa)∼= cos(θa)cos(φa)), reg-
ular sampling of light placement angles(θp,φp), and specify
‘softer’ to ‘sharper’ shadows by varying the angular extent
(θp,φp) as measured from the lit object. This angular extent
should not be confused with the lamp’s beam width(θa,φa);
in our ‘hemisphere of video projectors’ analogy, beam width
sets the image from a projector, but angular extent sets the
number of adjacent projectors that emit this same image.

In summary, rather than recreate arbitrary 4D incident light
fields, we use weighted sums of basis images that represent
the type of lighting used by professional photographers. This
method is much more practical and efficient, with little, if
any, loss of useful generality.

4. Method

We construct a high quality user-guided picture in three
steps. First the system automatically captures low-resolution
light-aiming photos for densely sampled lighting angles
around the photographed object. These quick photos are
used only to guide the lighting design, not to form the final
output. Second, the user iteratively paints the desired light-
ing by simple lighten-darken operations to generate a target
image. The system finds weightswi for each light-aiming
photo such that their weighted sum matches the target image
in the least-squares sense. Finally the system takes a few se-
lected high resolution basis images by relighting the scene
from light source positions that have weightswi greater than
a threshold. A weighted sum of these high resolution images
gives the final result. If the result is not satisfactory, the user
can sketch on the current result for use as the next iteration’s
target image.

4.1. Enclosed Light Source & Aiming Images

Freed from photometric and angular calibration require-
ments as discussed in Section3, we are able to build a much
simpler and cost-effective controlled light source. We place
the object and a gimbal-mounted moving-head spotlight in-
side an enclosure of almost any convenient size, shape and
material. The powerful computer-aimed light pivots to any
desired pan and tilt angle with good repeatability (≤±0.5◦)
to light any desired spot inside our enclosure. The enclosure
acts as a reflector, and effectively provides a controllable 2D
area light source around the object. The size and shape of
the enclosure is almost irrelevant as long as the light is close
enough to the object to keep parallax low, and the light is
powerful enough for the camera to get a reasonable expo-
sure.

We built a 1×1×1.5m3 sized box of white 1/2” foam-core
board as our enclosure, and chose an inexpensive moving-
head spotlight. The 150-wattAmerican DJ Auto Spot 150
disco-light, shown in Figure1 can tilt 270◦, pan 540◦, and
includes 9 color filters, gobos and several other fun features.

Figure 3: The disco-light setup. The object and disco light
are both enclosed in a white foam box, with the camera look-
ing in through a window in the enclosure wall farthest from
the light.

Computer control by the DMX512 protocol is easy to pro-
gram with the SoundLight USB DMX controller. Our foam-
core enclosure resembles a hemi-cube around a pair of ta-
bles. We place the gimbal light on a small table that lowers
its rotation center to the plane of an adjacent taller table hold-
ing the photographed object, as shown in Figure3. Using ad-
jacent but separate tables reduces vibration, permits gimbal
angles to approximate hemisphere angles, and separates the
object from the swiveling lamp. We place the camera behind
a small opening cut in the enclosure wall on the end farthest
from the light source.

The system gathers aiming images rapidly and automati-
cally. Through the DMX512 controller we direct the gim-
bal light to scan the upper hemisphere of light aiming direc-
tions in equal-angle increments as we record low-resolution
aiming images, either by collecting viewfinder video (320×
240@10Hz) or by individual computer-triggered pho-
tographs using auto-exposure. We are able to record hun-
dreds of individual aiming images per minute, and can com-
plete all the data gathering in less than five minutes using a
Pentium 2GHz computer, and a Canon Powershot G3 cam-
era.

To the best of our knowledge, no other image-based light-
ing work exploits these movable and controllable lights. En-
closed pivoting lights retain many advantages of the more
sophisticated lighting systems, avoid multiple sharp shad-
ows, can offer variable ‘softness’ by spot size adjustment,
and are much simpler and cheaper to construct. Of course,
they do not easily provide accurate lighting direction cali-
bration or point-light illumination, but these features are not
needed for our goals.

After recording, we linearize each captured frame (RGB) by
applying the camera’s inverse response curve, recovered by
the method of Debevec et al. [DM97], and converted to lu-
minance values. Linear response ensures weighted sums of
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whole images are accurate representations of physically real-
izeable lighting. We then down-sample the linearized aiming
image dataset to 64×64 for use as theaiming basis setfor
the following optimization step.

4.2. Sketch-Guided Lighting Optimization

After gathering aiming images, users can interactively spec-
ify and refine lighting by sketching the desired intensity on
a target intensity image. This grey-scale image (examples in
Figure5) approximates the final output image the user would
like to see. For editing the target image, the user starts off ei-
ther with a simple grey wash (such as uniform grey, or light
grey fading to dark grey across the image, etc.), or the pre-
vious iteration’s result. The user then carries out a series of
lighten and darken operations in the different regions of the
image to approximate the desired results. The process is ex-
tremely simple and intuitive, and takes a few of minutes at
most.

Given a target image, the optimization finds weightswi for
each aiming image that produces the best match to the target
image. We take a constrained least-squares approach, solv-
ing for weightswi for each of the small, luminance-only
aiming basis images. LetN be the number of images in the
aiming image set, each of sizem×n. We formulate the opti-
mization problem as follows:

min
w

|Aw− t|2

subject to 0≤ wi ≤ 1 ∀ i ∈ (1. . .N)

wherew is the N-dimensional vector of weights,A is an
(m×n)×N matrix of basis images (that is, each basis im-
age is treated as a vector),t is the (m× n) vector repre-
senting the target image painted by the user, and|.| repre-
sents theL2 norm of the vector. We solve this bound con-
strained quadratic optimization problem using an active set
method [NW99]. The optimization is quite fast and takes
around 1-2 minutes on a 2GHz Pentium 4 desktop machine.

The result is a least-squares optimal match to the supplied
target image. As the objective function is quadratic, weights
for images with weak contributions are rapidly driven to
zero. In our experience, the number of significant nonzero
weights is consistently small (5−15). This greatly reduces
the number of images needed for the final lighting solution.

After finding the wi weights, we apply them to the lin-
earized color aiming images, then re-apply the camera re-
sponse function to display a preview of the output image.
The user then has the option of replacing the target with a
grayscale version of this result and can repeat the sketching
and optimization cycle until satisfied with the color preview
of the output image.

Figure 4: Light source with attached foam-core diffuse re-
flector used for hand-held data gathering.

4.3. Output Assembly

The user now has the desired visually pleasing, but low-
resolution, image that is a weighted sum of a small sub-
set of the linearized aiming images. For high-quality re-
sults, we wish to replace each of these aiming images with
an image taken at the maximum resolution available from
the camera. We re-takejust those photos that correspond
to the aiming images with significant weightswi , again us-
ing auto-exposure on the camera, and record a set of high-
resolution photos calledbasis images. Recall that we can ex-
actly replicate the lighting using the gimballed spotlight; the
only things that change are the camera settings.

We capture HDR photographs for images that contain large
over-exposed regions as a result of the camera’s autoexpo-
sure. As discussed in Section3, under-exposed regions do
not require HDR photos. We then linearize each basis image
to remove effects of the camera response curve. As before,
we construct a linear output image as a weighted sum of ba-
sis images, using the weights determined by the optimization
to match the target image. Finally, we re-apply the camera’s
response function to the linear output image to get the de-
sired high resolution result.

5. Portable, Hand-held Method

Even a foam-core box and a moving-head spotlight are im-
practical to carry around everywhere. However, the ‘Free-
form light-stage’ [MDA02] showed that it is possible to
gather calibrated image sets suitable for 2D relighting with
nothing more than four small light-probe-like spheres, a
digital camera on a tripod, a hand-held point-light source,
possibly battery-powered, and approximately 30 minutes of
time to take several hundred digital photographs. Pang et
al. [PWH04] also used a similar approach by mounting a
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camera on the light source and used camera calibration tech-
niques to estimate lighting directions with reasonable accu-
racy. While these methods try to meet the ambitious goal of
incident light field capture, they would tax anyone’s patience
to record more than just a few items. We present a faster and
simpler variant that serves our purposes better.

In the method of Section4, we required repeatable light
source positioning. However, if we record all of our ‘aim-
ing images’ at the final output resolution, and if we either
ignore over-exposed specular highlights or record high dy-
namic range images when needed, thenrepeatability is not
needed. This allows us to use a hand-held light source in-
stead. As shown in Figure4, we use a small 250W hand-held
light intended for television news cameras, attached to a dif-
fuse reflector (foam core again), and limit the beam width
with barn-doors to form a well-defined area light source.

To gather all photos, we hold the light outstretched and
“dance” (see video). We sample the hemisphere of lighting
directions by a polar-coordinate scan inφ -major order as the
camera takes sequential photographs. A Nikon D70 camera,
takes a steady stream of photos at about 3 frames per second
using autoexposure for each frame. The user stands facing
the object, and holds the light at arms’ length while moving
the lamp in an arc that passes directly over the object. The
user moves the lamp from one side of the table to the other,
scanning byπ radians inθ axis with constantφ , and the nat-
ural alignment of their shoulders helps aim the light’s cen-
terline directly at the object. After each pass over the object
with the light, the user steps sideways to change theφ angle
for the next scan, and makes enough of these passes to cover
0≤ φ < π radians. In practice the user can be more careless
with the light, as long as the hemisphere of light directions
is well-sampled and the images are not over-exposed. After
the image capturedanceis complete, we downsample all im-
ages to construct aiming photos, and proceed with the sketch
guided lighting design as before.

We find this process is quite simple and pleasing, and in
under three minutes we can gather around 150 high-quality
aiming/basis photos. An experienced user might not need to
scan the whole hemisphere, but can quickly illuminate just
from the useful and interesting lighting directions.

6. Results

Images in Figure5 show results from our sketch guided
lighting system. Both the moving-head light and the hand-
held methods are equally successful at creating arbitrary
cleanly-lit images of desktop-sized objects. The data sets
gathered by either method is sufficiently dense to allow easy
lighting design. Additionally, our system yields reasonable
results even when presented with unrealistic targets or highly
reflective objects.

Figure5(a), demonstrates a user interaction sequence with
the system. Starting from a uniform grayscale image as the

target, the user guides the optimization, iteratively improv-
ing the target until she gets the desired output. Figure5(b)
shows how simple approximate sketching on the target im-
age can give an interesting sidelighting effect. Figure5(c)
shows how the highlight can bring out the underlying tex-
ture in a surface.

Figure5(d) shows lighting for a highly specular object. Good
lighting for such smooth, highly reflective objects is always
difficult, as the light source itself is visible in the reflec-
tion. Our system produces results similar to the target image
without large, objectionable saturated regions. In future sys-
tems we may hide the enclosure seams by constructing wide
smooth rounded corners resembling a photographer’s ‘cyc’.

Figure5(f) shows results from the handheld method of Sec-
tion 5. The data gathering time was under 3 minutes, and
the results are comparable to the moving-head light method.
While the handheld method is not practical for photograph-
ing a large collection of objects, it can be an invaluable tool
for well-lit photography in the field.

7. Discussion and Future Work

The ability to have large area light sources is crucial for pho-
tographing highly specular objects. Light source size also
affects the sharpness of shadows and highlights. Our system
has a unique advantage in that larger area light sources can
be simulated by combining pictures illuminated with over-
lapping light sources. We could extend our optimization to
penalize each distinct light source cluster, thus preventing
disjoint highlights. The softness of the light can also be con-
trolled by varying the beam width between a point-source
and a large area source as it quickly sweeps over the hemi-
sphere of lighting directions. More advanced moving-head
spotlights usually provide controllable spot sizes suitable for
this purpose.

Even though our system is aimed primarily at non-
professional photographers, a few simple additions can make
it a flexible tool for a creative expert to experiment with dif-
ferent lighting designs more easily. For example, the user
might specify a simple weighting mask to set the impor-
tance of different image regions and influence the optimiza-
tion process. While weighting masks would make the sys-
tem more flexible, they would complicate the target sketch-
ing process. We do not know yet if the results would warrant
the increase in complexity. Also, tools to directly tweak the
light position and size on a virtual hemisphere around the
object might also aid expert users.

There are several possible ways of dealing with the ambient
light in the reflective enclosure. Underexposing all images
using exposure compensation on the camera, using a larger
enclosure or one made of materials with special reflective
properties would greatly minimize the ambient component.
Finally, it might also be possible to explicitly subtract the
ambient term from the basis images.
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This paper takes the problem of good lighting for desktop
photography and finds a simple and practical solution us-
ing image-based relighting techniques. More sophisticated
image-based measurements might also be achievable while
maintaining the simplicity and elegance of the system. For
example, we could estimate the incoming light direction by
calibrating the ad-hoc enclosure setup with a light-probe, or
by using dimensionality reduction [WMTG05] for the hand-
held case. Combined with surface normals, such calibration
might suffice for image-based estimates of BRDF.
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(a) Sequence showing successive sketching/optimization iterations to get the desired lighting. The first result uses a constant grayscale target, while 
the others use previous results as starting points for the target image.

(b) Strategic placement of highlights in the target result in an interesting side-lit 
image.

(c) Positioning of highlights reveals underlying texture in the 
surface.

(d) Lighting a highly specular object by forcing the 
background to be dark.

(f) Data captured by the handheld method. Image on the left uses a smooth grayscale gradient as the target image.

(e) Target  results in image suggesting illumination from the 
right.

Figure 5: Sample target images and lit photographs.
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Abstract. Multi-sampled imaging is a general framework for using pix-
els on an image detector to simultaneously sample multiple dimensions
of imaging (space, time, spectrum, brightness, polarization, etc.). The
mosaic of red, green and blue spectral filters found in most solid-state
color cameras is one example of multi-sampled imaging. We briefly de-
scribe how multi-sampling can be used to explore other dimensions of
imaging. Once such an image is captured, smooth reconstructions along
the individual dimensions can be obtained using standard interpolation
algorithms. Typically, this results in a substantial reduction of resolution
(and hence image quality). One can extract significantly greater resolu-
tion in each dimension by noting that the light fields associated with
real scenes have enormous redundancies within them, causing different
dimensions to be highly correlated. Hence, multi-sampled images can be
better interpolated using local structural models that are learned off-
line from a diverse set of training images. The specific type of structural
models we use are based on polynomial functions of measured image in-
tensities. They are very effective as well as computationally efficient. We
demonstrate the benefits of structural interpolation using three specific
applications. These are (a) traditional color imaging with a mosaic of
color filters, (b) high dynamic range monochrome imaging using a mo-
saic of exposure filters, and (c) high dynamic range color imaging using
a mosaic of overlapping color and exposure filters.

1 Multi-Sampled Imaging

Currently, vision algorithms rely on images with 8 bits of brightness or color at
each pixel. Images of such quality are simply inadequate for many real-world
applications. Significant advances in imaging can be made by exploring the fun-
damental trade-offs that exist between various dimensions of imaging (see Figure
1). The relative importances of these dimensions clearly depend on the applica-
tion at hand. In any practical scenario, however, we are given a finite number
of pixels (residing on one or more detectors) to sample the imaging dimensions.
Therefore, it is beneficial to view imaging as the judicious assignment of resources
(pixels) to the dimensions of imaging that are relevant to the application.

Different pixel assignments can be viewed as different types of samplings of
the imaging dimensions. In all cases, however, more than one dimension is simul-
taneously sampled. In the simplest case of a gray-scale image, image brightness
and image space are sampled, simultaneously. More interesting examples result
from using image detectors made of an assortment of pixels, as shown in Figure
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brightness

spectrum

depth

space

time

polarization

Fig. 1. A few dimensions of imaging. Pixels on an image detector may be assigned to
multiple dimensions in a variety of ways depending on the needs of the application.

2. Figure 2(a) shows the popular Bayer mosaic [Bay76] of red, green and blue
spectral filters placed adjacent to pixels on a detector. Since multiple color mea-
surements cannot be captured simultaneously at a pixel, the pixels are assigned
to specific colors to trade-off spatial resolution for spectral resolution. Over the
last three decades various color mosaics have been suggested, each one resulting
in a different trade-off (see [Dil77], [Dil78], [MOS83], [Par85], [KM85]).

Historically, multi-sampled imaging has only been used in the form of color
mosaics. Only recently has the approach been used to explore other imaging
dimensions. Figure 2(b) shows the mosaic of neutral density filters with different
transmittances used in [NM00] to enhance an image detector’s dynamic range.
In this case, spatial resolution is traded-off for brightness resolution (dynamic
range). In [SN01], spatially varying transmittance and spectral filters were used
with regular wide FOV mosaicing to yield high dynamic range and multi-spectral
mosaics. Figure 2(c) shows how space, dynamic range and color can be sampled
simultaneously by using a mosaic of filters with different spectral responses and
transmittances. This type of multi-sampling is novel and, as we shall show,
results in high dynamic range color images. Another example of assorted pixels
was proposed in [BE00], where a mosaic of polarization filters with different
orientations is used to estimate the polarization parameters of light reflected by
scene points. This idea can be used in conjunction with a spectral mosaic, as
shown in Figure 2(d), to achieve simultaneous capture of polarization and color.

Multi-sampled imaging can be exploited in many other ways. Figures 2(e)
shows how temporal sampling can be used with exposure sampling. This ex-
ample is related to the idea of sequential exposure change proposed in [MP95],
[DM97] and [MN99] to enhance dynamic range. However, it is different in that
the exposure is varied as a periodic function of time, enabling the generation of
high dynamic range, high framerate video. The closest implementation appears
to be the one described in [GHZ92] where the electronic gain of the camera is
varied periodically to achieve the same effect. A more sophisticated implementa-
tion may sample space, time, exposure and spectrum, simultaneously, as shown
in Figure 2(f).

The above examples illustrate that multi-sampling provides a general frame-
work for designing imaging systems that extract information that is most per-



Assorted Pixels 3

R G R G R G R G R G R G

R G R G R G R G R G R G

R G R G R G R G R G R G

R G R G R G R G R G R G

R G R G R G R G R G R G

R G R G R G R G R G R G

G B G B G B G B G B G B

G B G B G B G B G B G B

G B G B G B G B G B G B

G B G B G B G B G B G B

G B G B G B G B G B G B

G B G B G B G B G B G B

R R R

R R R

R R R

B B B

B B B

B B B

G G G

G G G

G G G

G G G

G G G

G G G

R R R

R R R

R R R

B B B

B B B

B B B

G G G

G G G

G G G

G G G

G G G

G G G

R R R

R R R

R R R

B B B

B B B

B B B

G G G

G G G

G G G

G G G

G G G

G G G

R R R

R R R

R R R

B B B

B B B

B B B

G G G

G G G

G G G

G G G

G G G

G G G

R G R G R G R G R G R G

R G R G R G R G R G R G

R G R G R G R G R G R G

R G R G R G R G R G R G

R G R G R G R G R G R G

R G R G R G R G R G R G

G B G B G B G B G B G B

G B G B G B G B G B G B

G B G B G B G B G B G B

G B G B G B G B G B G B

G B G B G B G B G B G B

G B G B G B G B G B G B

R G R G R G R G R G R G

R G R G R G R G R G R G

R G R G R G R G R G R G

R G R G R G R G R G R G

R G R G R G R G R G R G

G R G R G R G R G R G

G B G B G B G B G B G B

G B G B G B G B G B G B

G B G B G B G B G B G B

G B G B G B G B G B G B

G B G B G B G B G B G B

G B G B G B G B G B G B

R G R G R G R G R G R G

R G R G R R G R G

R R G R R G R R G

G R G R G R G

R R G R R G R G R G

R G R R G R R G R G

G B G B G B G B G B G B

G B G B G B G B G B G B

G B G B G B G B G B G B

G B G B G B G B G B G B

G G B G B G B G B G B

G B G B G B G B G B G B

R G R G R G R G R G R G

R G R G R G R G R G R G

R G R G R G R G R G R G

R G R G R G R G R G R G

R G R G R G R G R G R G

R G R G R G R G R G R G

G B G B G B G B G B G B

G B G B G B G B G B G B

G B G B G G B G B G B

G B G B G B G B G B G B

G B G B G B G B G B G B

G B G B G B G B G B G B

B

time
time

(a) (b)

(c) (d)

(e) (f)
Fig. 2. A few examples of multi-sampled imaging using assorted pixels. (a) A color
mosaic. Such mosaics are widely used in solid-state color cameras. (b) An exposure
mosaic. (c) A mosaic that includes different colors and exposures. (d) A mosaic using
color and polarization filters. (e), (f) Multi-sampling can also involve varying exposure
and/or color over space and time.
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tinent to the application. Though our focus is on the visible light spectrum,
multi-sampling is, in principle, applicable to any form of electromagnetic radia-
tion. Therefore, the pixel assortments and reconstruction methods we describe in
this paper are also relevant to other imaging modalities such as X-ray, magnetic
resonance (MR) and infra-red (IR). Furthermore, the examples we discuss are
two-dimensional but the methods we propose are directly applicable to higher-
dimensional imaging problems such as ones found in tomography and microscopy.

2 Learned Structural Models for Reconstruction
How do we reconstruct the desired image from a captured multi-sampled one?
Nyquist’s theory [Bra65] tells us that for a continuous signal to be perfectly re-
constructed from its discrete samples, the sampling frequency must be at least
twice the largest frequency in the signal. In the case of an image of a scene,
the optical image is sampled at a frequency determined by the size of the de-
tector and the number of pixels on it. In general, there is no guarantee that
this sampling frequency satisfies Nyquist’s criterion. Therefore, when a tradi-
tional interpolation technique is used to enhance spatial resolution, it is bound
to introduce errors in the form of blurring and/or aliasing. In the case of multi-
sampled images (see Figure 2), the assignment of pixels to multiple dimensions
causes further undersampling of scene radiance along at least some dimensions.
As a result, conventional interpolation methods are even less effective.

Our objective is to overcome the limits imposed by Nyquist’s theory by using
prior models that capture redundancies inherent in images. The physical struc-
tures of real-world objects, their reflectances and illuminations impose strong
constraints on the light fields of scenes. This causes different imaging dimen-
sions to be highly correlated with each other. Therefore, a local mapping func-
tion can be learned from a set of multi-sampled images and their corresponding
correct (high quality) images. As we shall see, it is often beneficial to use multi-
ple mapping functions. Then, given a novel multi-sampled image, these mapping
functions can be used to reconstruct an image that has enhanced resolution in
each of the dimensions of interest. We refer to these learned mapping functions
as local structural models.

The general idea of learning interpolation functions is not new. In [FP99], a
probabilistic Markov network is trained to learn the relationship between sharp
and blurred images, and then used to increase spatial resolution of an image.
In [BK00], a linear system of equations is solved to estimate a high resolution
image from a sequence of low resolution images wherein the object of interest
is in motion. Note that both these algorithms are developed to improve spatial
resolution, while our interest is in resolution enhancement along multiple imaging
dimensions.

Learning based algorithms have also been applied to the problem of interpo-
lating images captured using color mosaics. The most relevant among these is
the work of Wober and Soini [WS95] that estimates an interpolation kernel from
training data (high quality color images of test patterns and their correspond-
ing color mosaic images). The same problem was addressed in [Bra94] using a
Bayesian method.
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We are interested in a general method that can interpolate not just color
mosaic images but any type of multi-sampled data. For this, we propose the use
of a structural model where each reconstructed value is a polynomial function
of the image brightnesses measured within a local neighborhood. The size of the
neighborhood and the degree of the polynomial vary with the type of multi-
sampled data being processed. It turns out that the model of Wober and Soini
[WS95] is a special instance of our model as it is a first-order polynomial applied
to the specific case of color mosaic images. As we shall see, our polynomial
model produces excellent results for a variety of multi-sampled images. Since it
uses polynomials, our method is very efficient and can be easily implemented
in hardware. In short, it is simple enough to be incorporated into any imaging
device (digital still or video camera, for instance).

3 Training Using High Quality Images

Since we wish to learn our model parameters, we need a set of high quality
training images. These could be real images of scenes, synthetic images generated
by rendering, or some combination of the two. Real images can be acquired using
professional grade cameras whose performance we wish to emulate using lower
quality multi-sampling systems. Since we want our model to be general, the set
of training images must adequately represent a wide range of scene features.
For instance, images of urban settings, landscapes and indoor spaces may be
included. Rotated and magnified versions of the images can be used to capture
the effects of scale and orientation. In addition, the images may span the gamut
of illumination conditions encountered in practice, varying from indoor lighting
to overcast and sunny conditions outdoor. Synthetic images are useful as one
can easily include in them specific features that are relevant to the application.

Fig. 3. Some of the 50 high quality images (2000 x 2000 pixels, 12 bits per color
channel) used to train the local structural models described in Sections 4, 5 and 6.

Some of the 50 high quality images we have used in our experiments are
shown in Figure 3. Each of these is a 2000 x 2000 color (red, green, blue) image
with 12 bits of information in each color channel. These images were captured
using a film camera and scanned using a 12-bit slide scanner. Though the total
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number of training images is small they include a sufficiently large number of
local (say, 7 × 7 pixels) appearances for training our structural models.

Given such high quality images, it is easy to generate a corresponding set
of low-quality multi-sampled images. For instance, given a 2000 × 2000 RGB
image with 12-bits per pixel, per color channel, simple downsampling in space,
color, and brightness results in a 1000 × 1000, 8 bits per pixel multi-sampled
image with the sampling pattern shown in Figure 2(c). We refer to this process
of generating multi-sampled images from high quality images as downgrading.

With the high quality images and their corresponding (downgraded) multi-
sampled images in place, we can learn the parameters of our structural model. A
structural model is a function f that relates measured data M(x, y) in a multi-
sampled image to a desired value H(i, j) in the high quality training image:

H(i, j) = f(M(1, 1), ....,M(x, y), ....M(X, Y )) (1)

where, X and Y define some neighborhood of measured data around, or close
to, the high quality value H(i, j). Since our structural model is a polynomial, it
is linear in its coefficients. Therefore, the coefficients can be efficiently computed
from training data using linear regression.

Note that a single structural model may be inadequate. If we set aside the
measured data and focus on the type of multi-sampling used (see Figure 2), we
see that pixels can have different types of neighborhood sampling patterns. If
we want our models to be compact (small number of coefficients) and effective
we cannot expect them to capture variations in scenes as well as changes in the
sampling pattern. Hence, we use a single structural model for each type of local
sampling pattern. Since our imaging dimensions are sampled in a uniform man-
ner, in all cases we have a small number of local sampling patterns. Therefore,
only a small number of structural models are needed. During reconstruction,
given a pixel of interest, the appropriate structural model is invoked based on
the pixel’s known neighborhood sampling pattern.

4 Spatially Varying Color (SVC)

Most color cameras have a single image detector with a mosaic of red, green and
blue spectral filters on it. The resulting image is hence a widely used type of
multi-sampled image. We refer to it as a spatially varying color (SVC) image.
When one uses an NTSC color camera, the output of the camera is nothing but
an interpolated SVC image. Color cameras are notorious for producing inade-
quate spatial resolution and this is exactly the problem we seek to overcome
using structural models. Since this is our first example, we will use it to describe
some of the general aspects of our approach.

4.1 Bayer Color Mosaic

Several types of color mosaics have been implemented in the past [Bay76], [Dil77],
[Dil78], [MOS83], [Par85], [KM85]. However, the most popular of these is the
Bayer pattern [Bay76] shown in Figure 4. Since the human eye is more sensitive
to the green channel, the Bayer pattern uses more green filters than it does red
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and blue ones. Specifically, the spatial resolutions of green, red and blue are
50%, 25% and 25%, respectively. Note that the entire mosaic is obtained by
repeating the 2 × 2 pattern shown on the right in Figure 4. Therefore, given a
neighborhood size, all neighborhoods in a Bayer mosaic must have one of four
possible sampling patterns. If the neighborhood is of size 3 × 3, the resulting
patterns are p1,p2, p3 and p4 shown in Figure 4.

R R R

R R R

R R R

B B B

B B B

B B B

G G G

G G G

G G G

G G G

G G G

G G G

p2

p4

p1

p3

R

B

G

G

2 x 2 Pattern

Fig. 4. Spatially varying color (SVC) pattern on a Bayer mosaic. Given a neighborhood
size, all possible sampling patterns in the mosaic must be one of four types. In the case
of a 3 × 3 neighborhood, these patterns are p1, p2, p3 and p4.

4.2 SVC Structural Model
From the measured SVC image, we wish to compute three color values (red,
green and blue) at each pixel, even though each pixel in the SVC image provides
a single color measurement. Let the measured SVC image be denoted by M
and the desired high quality color image by H. A structural model relates each
color value in H to the measured data within a small neighborhood in M. This
neighborhood includes measurements of different colors and hence the model
implicitly accounts for correlations between different color channels.

As shown in Figure 5, let Mp be the measured data in a neighborhood with
sampling pattern p, and Hp(i+0.5, j +0.5, λ) be the high quality color value at
the center of the neighborhood. (The center is off-grid because the neighborhood
is an even number of pixels in width and height.) Then, a polynomial structural
model can be written as:

Hp(i + 0.5, j + 0.5, λ) =
∑

(x,y)∈Sp(i,j)

∑

(k �=x,l �=y)∈Sp(i,j)

Np∑

n=0

Np−n∑

q=0

Cp(a, b, c, d, λ, n)Mp
n(x, y) Mp

q(k, l) . (2)

Sp(i, j) is the neighborhood of pixel (i, j), Np is the order of the polynomial
and Cp are the polynomial coefficients for the pattern p. The coefficient indices
(a, b, c, d) are equal to (x − i, y − j, k − i, l − j).

The product Mp(x, y)Mp(k, l) explicitly represents the correlation between
different pixels in the neighborhood. For efficiency, we have not used these cross-
terms in our implementations. We found that very good results are obtained
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Fig. 5. The measured data Mp in the neighborhood Sp(i, j) around pixel (i, j) are
related to the high quality color values Hp(i + 0.5, j + 0.5, λ) via a polynomial with
coefficients Cp.
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Fig. 6. The mapping function in (3) can be expressed as a linear system using matrices
and vectors. For a given pattern p and color λ, Ap is the measurement matrix, Cp(λ)
is the coefficient vector and Hp(λ) is the reconstruction vector.

even when each desired value is expressed as just a sum of polynomial functions
of the individual pixel measurements:

Hp(i + 0.5, j + 0.5, λ) =
∑

(x,y)∈Sp(i,j)

Np∑

n=0

Cp(a, b, λ, n)Mp
n(x, y). (3)

The mapping function (3), for each color λ and each local pattern type p,
can be conveniently rewritten using matrices and vectors, as shown in Figure 6:

Hp(λ) = Ap Cp(λ) . (4)

For a given pattern type p and color λ, Ap is the measurement matrix. The
rows of Ap correspond to the different neighborhoods in the image that have the
pattern p. Each row includes all the relevant powers (up to Np) of the measured
data Mp within the neighborhood. The vector Cp(λ) includes the coefficients
of the polynomial mapping function and the vector Hp(λ) includes the desired
high quality values at the off-grid neighborhood centers. The estimation of the
model parameters Cp can then be posed as a least squares problem:

Cp(λ) = (AT
p Ap)−1AT

p Hp(λ) , (5)

When the signal-to-noise characteristics of the image detector are known, (5) can
be rewritten using weighted least squares to achieve greater accuracy [Aut01].
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4.3 Total Number of Coefficients

The number of coefficients in the model (3) can be calculated as follows. Let
the neighborhood size be u× v, and the polynomial order corresponding to each
pattern p be Np. Let the number of distinct local patterns in the SVC image be
P and the number of color channels be Λ. Then, the total number of coefficients
needed for structural interpolation is:

|C| =

(

P + u ∗ v ∗
P∑

p=1

Np

)

∗ Λ . (6)

For the Bayer mosaic, P = 4 and Λ = 3 (R,G,B). If we use Np = 2 and
u = v = 6, the total number of coefficients is 876. Since these coefficients are
learned from real data, they yield greater precision during interpolation than
standard interpolation kernels. In addition, they are very efficient to apply. Since
there are P = 4 distinct patterns, only 219 (a quarter) of the coefficients are used
for computing the three color values at a pixel. Note that the polynomial model
is linear in the coefficients. Hence, structural interpolation can be implemented
in real-time using a set of linear filters that act on the captured image and its
powers (up to Np).

4.4 Experiments

A total of 30 high quality training images (see Figure 3) were used to compute
the structural model for SVC image interpolation. Each image is downgraded
to obtain a corresponding Bayer-type SVC image. For each of the four sampling
patterns in the Bayer mosaic, and for each of the three colors, the appropriate
image neighborhoods were used to compute the measurement matrix Ap and the
reconstruction vector Hp(λ). While computing these, one additional step was
taken; each measurement is normalized by the energy within its neighborhood
to make the structural model insensitive to changes in illumination intensity
and camera gain. The resulting Ap and Hp(λ) are used to find the coefficient
vector Cp(λ) using linear regression (see (5)). In our implementation, we used
the parameter values P = 4 (Bayer), Np = 2, u = v = 6 and Λ = 3 (R,G, B),
to get a total of 876 coefficients.

The above structural model was used to interpolate 20 test SVC images that
are different from the ones used for training. In Figure 7(a), a high quality (8-
bits per color channel) image is shown. Figure 7(b) shows the corresponding
(downgraded) SVC image. This is really a single channel 8-bit image and its
pixels are shown in color only to illustrate the Bayer pattern. Figure 7(c) shows
a color image computed from the SVC image using bi-cubic interpolation. As is
usually done, the three channels are interpolated separately using their respective
data in the SVC image. The magnified image region clearly shows that bi-cubic
interpolation results in a loss of high frequencies; the edges of the tree branches
and the squirrels are severely blurred. Figure 7(d) shows the result of applying
structural interpolation. Note that the result is of high quality with minimal loss
of details.
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Fig. 7. (a) Original (high quality) color image with 8-bits per color channel. (b) SVC
image obtained by downgrading the original image. The pixels in this image are shown
in color only to illustrate the Bayer mosaic. Color image computed from the SVC
image using (c) bi-cubic interpolation and (d) structural interpolation. (e) Histograms
of luminance error (averaged over 20 test images). The RMS error is 6.12 gray levels
for bi-cubic interpolation and 3.27 gray levels for structural interpolation.
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We have quantitatively verified of our results. Figure 7(e) shows histograms of
the luminance error for bi-cubic and structural interpolation. These histograms
are computed using all 20 test images (not just the one in Figure 7). The
difference between the two histograms may appear to be small but
is significant because a large fraction of the pixels in the 20 images
belong to “flat” image regions that are easy to interpolate for both
methods. The RMS errors (computed over all 20 images) are 6.12 and 3.27 gray
levels for bi-cubic and structural interpolation, respectively.

5 Spatially Varying Exposures (SVE)

In [NM00], it was shown that the dynamic range of a gray-scale image detector
can be significantly enhanced by assigning different exposures (neutral density
filters) to pixels, as shown in Figure 8. This is yet another example of a multi-
sampled image and is referred to as a spatially varying exposure (SVE) image. In
[NM00], standard bi-cubic interpolation was used to reconstruct a high dynamic
range gray-scale image from the captured SVE image; first, saturated and dark
pixels are eliminated, then all remaining measurements are normalized by their
exposure values, and finally bi-cubic interpolation is used to find the brightness
values at the saturated and dark pixels. As expected, the resulting image has
enhanced dynamic range but lower spatial resolution. In this section, we apply
structural interpolation to SVE images and show how it outperforms bi-cubic
interpolation.

e

e

e
e

1

4

3

2

p4

p3

p1

p2

Fig. 8. The dynamic range of an image detector can be improved by assigning different
exposures to pixels. In this special case of 4 exposures, any 6 × 6 neighborhood in the
image must belong to one of four possible sampling patterns shown as p1 . . .p4.

5.1 SVE Structural Model

As in the SVC case, let the measured SVE data be M and the corresponding
high dynamic range data be H. If the SVE detector uses only four discrete
exposures (see Figure 8), it is easy to see that a neighborhood of any given size
can have only one of four different sampling patterns (P = 4). Therefore, for
each sampling pattern p, a polynomial structural model is used that relates the
captured data Mp within the neighborhood to the high dynamic range value
Hp at the center of the neighborhood:

Hp(i + 0.5, j + 0.5) =
∑

(x,y)∈Sp(i,j)

Np∑

n=0

Cp(a, b, n) Mp
n(x, y) , (7)
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where, as before, (a, b) = (x − i, y − j), Sp(i, j) is the neighborhood of pixel
(i, j), Np is the order of the polynomial mapping, and Cp are the polynomial
coefficients for the pattern p. Note that there is only one channel in this case
(gray-scale) and hence the parameter λ is omitted. The above model is rewritten
in terms of a measurement matrix Ap and a reconstruction vector Hp, and
the coefficients Cp are found using (5). The number of coefficients in the SVE
structural model is determined as:

|C| = P + u ∗ v ∗
P∑

p=1

Np . (8)

In our implementation, we have used P = 4, Np = 2 and u = v = 6, which
given a total of 292 coefficients. Since P = 4, only 73 coefficients are needed for
reconstructing each pixel in the image.

5.2 Experiments

The SVE structural model was trained using 12-bit gray-scale versions of 6 of
the images shown in Figure 3 and their corresponding 8-bit SVE images. Each
SVE image was obtained by applying the exposure pattern shown in Figure 8
(with e4 = 4e3 = 16e2 = 64e1) to the original image, followed by a downgrade
from 12 bits to 8 bits. The structural model was tested using 6 test images, one
of which is shown in Figure 9. Figure 9(a) shows the original 12-bit image, Figure
9(b) shows the downgraded 8-bit SVE image, Figure 9(c) shows a 12-bit image
obtained by bi-cubic interpolation of the SVE image, and Figure 9(d) shows the
12-bit image obtained by structural interpolation. The magnified images shown
on the right are histogram equalized to bring out the details (in the clouds and
walls) that are lost during bi-cubic interpolation but extracted by structural
interpolation. Figure 9(e) compares the error histograms (computed using all
6 test images) for the two cases. The RMS errors were found to be 33.4 and
25.5 gray levels (in a 12-bit range) for bi-cubic and structural interpolations,
respectively. Note that even though a very small number (6) of images were
used for training, our method outperforms bi-cubic interpolation.

6 Spatially Varying Exposure and Color (SVEC)

Since we are able to extract high spatial and spectral resolution from SVC images
and high spatial and brightness resolution from SVE images, it is natural to
explore how these two types of multi-sampling can be combined into one. The
result is the simultaneous sampling of space, color and exposure (see Figure 10).
We refer to an image obtained in this manner as a spatially varying exposure
and color (SVEC) image. If the SVEC image has 8-bits at each pixel, we would
like to compute at each pixel three color values, each with 12 bits of precision.
Since the same number of pixels on a detector are now being used to sample
three different dimensions, it should be obvious that this is a truly challenging
interpolation problem. We will see that structural interpolation does remarkably
well at extracting the desired information.
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Fig. 9. (a) Original 12-bit gray scale image. (b) 8-bit SVE image. (c) 12-bit (high
dynamic range) image computed using bi-cubic interpolation. (d) 12-bit (high dynamic
range) image computed using structural models. (d) Error histograms for the two case
(averaged over 6 test images). The RMS error for the 6 images are 33.4 and 25.5 gray
levels (on a 12-bit scale) for bi-cubic and structural interpolation, respectively. The
magnified image regions on the right are histogram equalized.
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Fig. 10. A combined mosaic of 3 spectral and 4 neutral density filters used to simulta-
neously sample space, color and exposures using a single image detector. The captured
8-bit SVEC image can be used to compute a 12-bit (per channel) color image by
structural interpolation. For this mosaic, for any neighborhood size, there are only 16
distinct sampling patterns. For a 4× 4 neighborhood size, the patterns are p1 . . .p16.

Color and exposure filters can be used to construct an SVEC sensor in many
ways. All possible mosaics that can be constructed from Λ colors and E exposures
are derived in [Aut01]. Here, we will focus on the mosaic shown in Figure 10,
where 3 colors and 4 exposures are used. For any given neighborhood size, it is
shown in [Aut01] that only 16 different sampling patterns exist (see Figure 10).

6.1 SVEC Structural Model

The polynomial structural model used in the SVEC case is the same as the one
used for SVC, and is given by (3). The only caveat is that in the SVEC case we
need to ensure that the neighborhood size used is large enough to adequately
sample all the colors and exposures. That is, the neighborhood size is chosen
such that it includes all colors and all exposures of each color.

The total number of polynomial coefficients needed is computed the same
way as in the SVC case and is given by (6). In our experiments, we have used
the mosaic shown in Figure 10. Therefore, P = 16, Λ = 3 (R, G, and B), Np = 2
for each of the 16 patterns, and u = v = 6, to give a total of 3504 coefficients.
Once again, at each pixel, for each color, only 3504/48 = 73 coefficients are used.
Therefore, even for this complex type of multi-sampling, our structural models
can be applied to images in real-time using a set of linear filters.

6.2 Experiments

The SVEC structural model was trained using 6 of the images in Figure 3. In
this case, the 12-bit color images in the training set were downgraded to 8-bit
SVEC images. The original and SVEC images were used to compute the 3504
coefficients of the model. The model was then used to map 10 different test
SVEC images to 12-bit color images. One of these results is shown in Figure
11. The original 12-bit image shown in Figure 11(a) was downgraded to obtain
the 8-bit SVEC image shown in Figure 11(b). This image has a single channel
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Fig. 11. (a) Original 12-bit color image. (b) 8-bit SVEC Image. 12-bit color images
reconstructed using (c) bi-cubic interpolation and (d) structural interpolation. (e) Lu-
minance error histogram computed using 10 test images. RMS luminance errors were
found to be 118 and 80 (on a 12-bit scale) for bi-cubic and structural interpolation,
respectively. The magnified images on the right are histogram equalized.
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and is shown here in color only to illustrate the effect of simultaneous color and
exposure sampling. Figures 11(c) and (d) show the results of applying bi-cubic
and structural interpolation, respectively. It is evident from the magnified images
on the right that structural interpolation yields greater spectral and spatial
resolution. The two interpolation techniques are compared in Figure 11(e) which
shows error histograms computed using all 10 test images. The RMS luminance
errors were found to be 118 gray-levels and 80 gray-levels (on a 12 bit scale) for
bi-cubic and structural interpolations, respectively.
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Code A: Matlab Code for Poisson Image Reconstruction from Image Gradients 
 
% Read Input Gray Image 
imgstr = ’test.png’; disp(sprintf(’Reading Image %s’,imgstr)); 
img = imread(imgstr);  [H,W,C] = size(img); img = double(img); 
% Find gradinets 
gx = zeros(H,W); gy = zeros(H,W);  j = 1:H-1; k = 1:W-1; 
gx(j,k) = (img(j,k+1) - img(j,k));  gy(j,k) = (img(j+1,k) - img(j,k)); 
 
% Reconstruct image from gradients for verification 
img_rec = poisson_solver_function(gx,gy,img); 
 
figure;imagesc(img);colormap gray;colorbar;title(’Image’) 
figure;imagesc(img_rec);colormap gray;colorbar;title(’Reconstructed’); 
figure;imagesc(abs(img_rec-img));colormap gray;colorbar;title(’Abs error’); 
 

 
function [img_direct] = poisson_solver_function(gx,gy,boundary_image); 
% function [img_direct] = poisson_solver_function(gx,gy,boundary_image) 
% Inputs; Gx and Gy -> Gradients 
% Boundary Image -> Boundary image intensities 
% Gx Gy and boundary image should be of same size 
[H,W] = size(boundary_image); 
gxx = zeros(H,W); gyy = zeros(H,W); 
f = zeros(H,W); j = 1:H-1; k = 1:W-1; 
 
% Laplacian 
gyy(j+1,k) = gy(j+1,k) - gy(j,k);  gxx(j,k+1) = gx(j,k+1) - gx(j,k); 
f = gxx + gyy;        clear j k gxx gyy gyyd gxxd 
 
% boundary image contains image intensities at boundaries 
boundary_image(2:end-1,2:end-1) = 0; 
disp(’Solving Poisson Equation Using DST’); tic 
j = 2:H-1;     k = 2:W-1; f_bp = zeros(H,W); 
f_bp(j,k) = -4*boundary_image(j,k) + boundary_image(j,k+1) + 

boundary_image(j,k-1) + boundary_image(j-1,k) + boundary_image(j+1,k); 
clear j k  
 
f1 = f - reshape(f_bp,H,W);% subtract boundary points contribution 
clear f_bp f 
 
% DST Sine Transform algo starts here 
f2 = f1(2:end-1,2:end-1);    clear f1 
%compute sine transform 
tt = dst(f2);    f2sin = dst(tt’)’;  clear f2 
 
%compute Eigen Values 
[x,y] = meshgrid(1:W-2,1:H-2); denom = (2*cos(pi*x/(W-1))-2) + (2*cos(pi*y/(H-1)) - 2) ; 
 
%divide 
f3 = f2sin./denom;     clear f2sin x y 
 
%compute Inverse Sine Transform 
tt = idst(f3);    clear f3; img_tt = idst(tt’)’; clear tt 
 
time_used = toc; disp(sprintf(’Time for Poisson Reconstruction = %f secs’,time_used)); 
 
% put solution in inner points; outer points obtained from boundary image 
img_direct = boundary_image; 
img_direct(2:end-1,2:end-1) = 0; 
img_direct(2:end-1,2:end-1) = img_tt; 
 



 

 
function b=dst(a,n) 
%DST    Discrete sine transform   (Used in Poisson reconstruction) 
%       Y = DST(X) returns the discrete sine transform of X. 
%       The vector Y is the same size as X and contains the 
%       discrete sine transform coefficients. 
%       Y = DST(X,N) pads or truncates the vector X to length N 
%       before transforming. 
%       If X is a matrix, the DST operation is applied to each 
%       column. This transform can be inverted using IDST. 
 
error(nargchk(1,2,nargin)); 
 
if min(size(a))==1 
    if size(a,2)>1 
        do_trans = 1; 
    else 
        do_trans = 0; 
    end 
    a = a(:); 
else 
    do_trans = 0; 
end 
if nargin==1,   n = size(a,1); end 
m = size(a,2); 
 
% Pad or truncate a if necessary 
if size(a,1)<n, 
  aa = zeros(n,m);    aa(1:size(a,1),:) = a; 
else 
  aa = a(1:n,:); 
end 
 
y=zeros(2*(n+1),m); y(2:n+1,:)=aa;  y(n+3:2*(n+1),:)=-flipud(aa); 
yy=fft(y);   b=yy(2:n+1,:)/(-2*sqrt(-1)); 
 
if isreal(a), b = real(b); end 
if do_trans, b = b.’; end 
 
 
 
function b=idst(a,n) 
%IDST   Inverse discrete sine transform (Used in Poisson reconstruction) 
% 
%       X = IDST(Y) inverts the DST transform, returning the 
%       original vector if Y was obtained using Y = DST(X). 
%       X = IDST(Y,N) pads or truncates the vector Y to length N 
%       before transforming. 
%       If Y is a matrix, the IDST operation is applied to 
%       each column. 
 
if nargin==1 
  if min(size(a))==1 
    n=length(a); 
  else 
    n=size(a,1); 
  end 
end 
 
nn=n+1;  b=2/nn*dst(a,n); 
 



Code B: Matlab Code for Graph Cuts on Images 
 
% Read gray scale image 
I = imread(’test.png’); [H,W,C] = size(I); 
 
% Find graph cut 
Ncut = graphcuts(I,33,255); 
 
figure;imagesc(I);colormap gray;title(’Image’); 
figure;imagesc(Ncut);colormap gray;title(’Segmentation’); 
 

 
function [Ncut] = graphcuts(I,pad,MAXVAL) 
%   function [Ncut] = graphcuts(I) 
%   Input: I image 
%          pad: spatial connectivity; eg. 3  
%          MAXVAL: maximum image value 
%   Output: Ncut: Binary map 0 or 1 corresponding to image segmentation 
 
I = double(I); [H,W] = size(I); 
 
% Find weights between nodes I1 and I2, w = exp(a*abs(I1-I2)); 
% Set a to have a weight of 0.01 for diff = MAXVAL 
a = log(0.01)/MAXVAL; x = [0:MAXVAL/100:MAXVAL]’; y = exp(a*x); 
figure;plot(x,y);xlabel(’intensity diff’);ylabel(’weights’); title(’weights’) 
 
ws = 2*pad + 1; 
if(ws <= 3)       ws = 3;  end 
 
%Build the weight matrix  
disp(’Building Weight Matrix’);   close all;   tic 
 
WM = zeros(H*W,H*W); countWM = 0; 
for kk = 1:W 
    for jj = 1:H 
        mask = logical(zeros(H,W)); 
        cs = kk-pad;        ce = kk+pad;        rs = jj-pad;        re = jj+pad; 
        if(cs<1)            cs = 1;  end; 
        if(ce>W)            ce = W;         end; 
        if(rs<1)            rs = 1;         end; 
        if(re>H)            re = H;         end; 
        mask(rs:re,cs:ce) = 1; 
        idx = find(mask==1); 
        p = abs(I(idx) - I(jj,kk));        p = exp(a*p);      
        countWM = countWM + 1;             WM(countWM,idx) = p(:)’;         
    end 
end 
ttime = toc; disp(sprintf(’Time for generating weight matrix = %f’,ttime)); clear countWM 
 
% Weight between a node and iteself is 0 
for jj = 1:H*W  WM(jj,jj) = 0;  end;    WM = sparse(WM); 
 
% Shi and Malik Algorithm: second smallest eigen vector 
disp(’Finding Eigen Vector’); 
d = sum(WM,2);  D = diag(d);   tic 
B = (D-WM);   B = (B+B’)/2;   OPTS.disp = 0; 
[v,d,flag] = eigs(B,D,2,’SA’,OPTS);   ttime = toc; 
disp(sprintf(’Time for finding eigen vector = %f’,ttime));    clear OPTS 
y = v(:,2);  
Ncut = reshape(y,H,W); 
Ncut = Ncut > 0; 
 



Code C: Matlab Code for Bilateral Filtering on Images 
 
 
function [img1] = bilateral_filtering(img,winsize,sigma) 
 
% Bilateral Filtering(img,winsize,sigma) 
% Input   -> Image img 
%         -> winsize: spatial filter width 
%        -> sigma for intensity diff gaussain filter 
%         -> sigma for spatial filter = winsize/6 
% Output  -> Filtered Image 
% Author: Amit Agrawal, 2004 
 
disp(’Bilateral Filtering’); 
 
[H,W] = size(img); 
 
%Gaussian spatial filter 
g_filter = fspecial(’gaussian’,winsize,winsize/6); 
padnum = (winsize-1)/2; 
 
A = padarray(img,[padnum padnum],’replicate’,’both’);    
img1 = zeros(size(img));                 
 
for jj = padnum+1:(padnum+1+H-1) 
    for kk = padnum+1:(padnum+1+W-1)   
         
        % Get a local neighborhood 
        imgwin = A(jj-padnum:jj+padnum,kk-padnum:kk+padnum); 
         
        % Find weights according to intensity diffs 
        Wwin = exp(-abs(imgwin - imgwin(padnum+1,padnum+1))/sigma^2);  
         
        % Find composite filter 
        newW = Wwin.*g_filter; 
         
        t = sum(sum(newW)); 
        if(t>0) 
            newW = newW/t; 
        end 
         
        img1(jj-padnum,kk-padnum) = sum(sum(imgwin.*newW)); 
    end 
end 
 
 
 
 

 



Bibliography 
 
 
Fusion of Images Taken by Varying Camera and Scene Parameters 
 
General 
 
AKERS, D., LOSASSO, F., KLINGNER, J., AGRAWALA, M., RICK, J., AND HANRAHAN, P. 2003. 
Conveying shape and features with image-based relighting. In IEEE Visualization, 349–354. 
 
BURT, P., AND KOLCZYNSKI, R. 1993. Enhanced image capture through fusion. In International Conference on 
Computer Vision (ICCV 93), 173–182. 
 
LEVIN, A., ZOMET, A., PELEG, S., AND WEISS, Y. 2004. Seamless image stitching in the gradient domain. In 
European Conference on Computer Vision (ECCV 04). 
 
MASSEY, M., AND BENDER, W. 1996. Salient stills: Process and practice. IBM Systems Journal 35, 3&4, 557–
574.  
 
MUTTER, S., AND KRAUSE, M. 1992. Surrational Images: Photomontages. University of Illinois Press. 
 
ROBINSON, H. P. 1869. Pictorial Effect in Photography: Being Hints on Composition and Chiaroscuro for 
Photographers. Piper & Carter. 
 
MUYBRIDGE, E. 1955. The human figure in motion. Dover Publications, Inc.  
 
AGARWALA, A., DONTCHEVA, AGRAWALA, M., DRUCKER, COLBURN, CURLESS, SALESIN AND  
COHEN, M. Interactive Digital Photomontage. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2004), 
2004. 
 
Time 
 
BRAUN, M. 1992. Picturing Time: The Work of Etienne-Jules Marey. The University of Chicago Press. 
 
FREEMAN, W. T., AND ZHANG, H. 2003. Shape-time photography. In Conference on Computer Vision and 
Pattern Recognition (CVPR 03), 151–157. 
 
Exposure 
 
FATTAL, R., LISCHINSKI, D., AND WERMAN, M. 2002. Gradient domain high dynamic range compression. 
ACM Transactions on Graphics 21, 3, 249–256. 
 
REINHARD, E., STARK, M., SHIRLEY, P., AND FERWERDA, J. 2002. Photographic tone reproduction for 
digital images. ACM Transactions on Graphics 21, 3, 267– 276. 
 
DEBEVEC, AND MALIK. 1997. Recovering high dynamic range radiance maps from photographs. In Proc. 
SIGGRAPH. 
 
DURAND, AND DORSEY. 2002. Fast bilateral filtering for the display of high-dynamic-range images. ACMTrans. 
on Graphics 21, 3. 
 
MANN, AND PICARD. 1995. Being ’undigital’ with digital cameras: Extending dynamic range by combining 
differently exposed pictures. In Proc. IS&T 46th ann. conference. 
 



TUMBLIN, AND TURK. 1999. LCIS: A boundary hierarchy for detail-preserving contrast reduction. In Proc. 
SIGGRAPH. 
 
DICARLO, J., AND WANDELL, B. 2000. Rendering high dynamic range images. Proc. SPIE: Image Sensors 
3965, 392–401. 
 
Focus 
 
HAEBERLI, P. 1994. Grafica Obscura web site. http://www.sgi.com/grafica/. 
 
MORGAN MCGUIRE, MATUSIK, PFISTER, HUGHES, AND DURAND, Defocus Video Matting, ACM 
Transactions on Graphics, Vol 24, No 3, July 2005, (Proceedings of ACM SIGGRAPH 2005). 
 
 
Passive Illumination 
 
RASKAR, R., ILIE, A., AND YU, J. 2004. Image fusion for context enhancement and video surrealism. In NPAR 
2004: Third International Symposium on Non- Photorealistic Rendering. 
 
WEISS, Y. 2001. Deriving intrinsic images from image sequences. In International Conference On Computer Vision 
(ICCV 01), 68–75. 
 
Polorization 
 
Y. Y. SCHECHNER, S. G. NARASIMHAN and S. K. NAYAR, Instant Dehazing of Images Using Polarization,     
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,      Hawaii, December 2001. 
 
S. K. NAYAR, X. FANG, and T. E. BOULT, Removal of Specularities using Color and Polarization,     Proceedings 
of IEEE Conference on Computer Vision and Pattern Recognition, 
 
Wavelength 
 
D. A. SOCOLINSKY, “Dynamic range constraints in image fusion and realization.” Proc. IASTED Int. Conf. 
Signal and 
Image Process, 349-354 (2000). 
 
Y. Y. SCHECHNER and S. K. NAYAR , Uncontrolled Modulation Imaging, Proceedings of IEEE Conference on 
Computer Vision and Pattern Recognition, Washington DC, June 2004. 
 
Location 
 
B. Wilburn, N. Joshi, V. Vaish, E. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, M. Levoy,  High-
Performance Imaging Using Large Camera Arrays.. ACM Transactions on Graphics, Vol 24, No 3, July 2005, pp 
765-776 (Proceedings of ACM SIGGRAPH 2005). 
 
Matting 
 
CHUANG, Y.-Y., CURLESS, B., SALESIN, D., AND SZELISKI, R. 2001. A Bayesian approach to digital 
matting. In Proceedings of Computer Vision and Pattern Recognition (CVPR 2001), vol. II, 264 – 271. 
 
PORTER, T., AND DUFF, T. 1984. Compositing digital images. In Computer Graphics (Proceedings of ACM 
SIGGRAPH 84), vol. 18, 253–259. 
 
SMITH, A. R., AND BLINN, J. F. 1996. Blue screen matting. In Proceedings of ACM SIGGRAPH 96, 259–268. 
 



Jian SUN, Jiaya JIA, Chi-Keung TANG and Heung-Yeung SHUM, Poisson Matting, ACM Transactions on 
Graphics, also in SIGGRAPH 2004, vol. 23, no. 3, July 2004, pages 315-321. 
 
 
 
Techniques 
 
General 
 
DANIELSSON, P.-E. 1980. Euclidean distance mapping. Computer Graphics and Image Processing 14, 227–248. 
 
LUCAS, B. D., AND KANADE, T. 1981. An iterative image registration technique with an application to stereo 
vision. In Proceedings of the 7th International Joint Conference on Artificial Intelligence (IJCAI ’81), 674–679. 
 
MORTENSEN, E. N., AND BARRETT, W. A. 1995. Intelligent scissors for image composition. In Proceedings of 
SIGGRAPH 95, Computer Graphics Proceedings, Annual Conference Series, 191–198. 
 
Graph Cuts 
 
BOYKOV, Y., VEKSLER, O., AND ZABIH, R. 2001. Fast approximate energy minimization via graph cuts. IEEE 
Transactions on Pattern Analysis and Machine Intelligence 23, 11, 1222–1239. 
 
KWATRA, V., SCH ¨ODL, A., ESSA, I., TURK, G., AND BOBICK, A. 2003. Graphcut textures: Image and video 
synthesis using graph cuts. ACM Transactions on Graphics 22, 3, 277–286. 
 
SHI, J., AND MALIK, J.  Normalized Cuts and Image Segmentation.    IEEE Conf. Computer Vision and Pattern 
Recognition (CVPR), June 1997, Puerto Rico 
 
Gradient Domain 
 
PEREZ, P., GANGNET, M., AND BLAKE, A. 2003. Poisson image editing. ACM Transactions on Graphics 22, 3, 
313–318. 
 
Smoothing, Bilateral and Trilateral Filter 
 
C. TOMASI, AND R. MANDUCHI, Bilateral Filtering of gray and colored images, Proc. IEEE Intl. Conference on 
Computer Vision, pp. 836-846, 1998. 
 
CHOUDHURY, P., TUMBLIN, J., "The Trilateral Filter for High Contrast Images and Meshes", Proc. of the 
Eurographics Symposium on Rendering, Per. H. Christensen and Daniel Cohen eds., pp. 186-196, 2003 
 
 
 
Feature Extraction 
 
Shape/Material/Illumination, Surface normals 
 
BASRI, R.   JACOBS, D.  Photometric stereo with general, unknown lighting, Computer Vision and Pattern 
Recognition, 2001 
 
B. K. P. HORN, "Shape from shading: A method for obtaining the shape of a smooth opaque object from one view," 
MIT Project MAC Int. Rep. TR-79 and MIT AI Lab, Tech. Rep. 232, Nov. 1970. 
 



TODD ZICKLER, PETER N. BELHUMEUR, AND DAVID J. KRIEGMAN, "Helmholtz Stereopsis: Exploiting 
Reciprocity for Surface Reconstruction." Proc. 7th European Conference on Computer Vision, May 2002. Vol. III, 
pp 869-884. 
 
ANDREAS WENGER, A GARDNER, CHRIS TCHOU, J UNGER, T HAWKINS, P DEBEVEC, Postproduction 
Relighting and Reflectance Transformation With Time-Multiplexed Illumination, SIGGRAPH 2005 
 
 
Depth edges 
 
Ramesh RASKAR , Karhan TAN, Rogerio FERIS, Jingyi YU, Matthew TURK, Non-photorealistic Camera: Depth 
Edge Detection and Stylized Rendering Using a Multi-Flash Camera, SIGGRAPH 2004 
 
Depth 
 
S. K. NAYAR and Y. NAKAGAWA,, Shape from Focus, IEEE Transactions on Pattern Analysis and Machine 
Intelligence, Vol. 16, No. 8, pp. 824-831, 
 
Transfer and denoising 
 
Flash to no-flash 
 
Elmar EISEMANN and Frédo DURAND, Flash Photography Enhancement Via Intrinsic Relighting, SIGGRAPH 
2004 
 
Georg PETSCHNIGG, Maneesh AGRAWALA, Hugues HOPPE, Richard SZELISKI, Michael COHEN, Kentaro 
TOYAMA. Digital Photography with Flash and No-Flash Image Pairs.ACM Transactions on Graphics (Proceedings 
of SIGGRAPH 2004), 2004. 
 
DICARLO, J. M., XIAO, F., AND WANDELL, B. A. 2001. Illuminating illumination. In 9th Color Imaging 
Conference, 27–34. 
 
Noise 
 
P. MEER, J. JOLION, AND A. ROSENFELD, "A Fast Parallel Algorithm For Blind Estimation of Noise Variance," 
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 2, pp. 216-223, 1990. 
 
Eric P. BENNETT  and Leonard McMILLAN  "Video Enhancement Using Per-Pixel Virtual Exposures" 
SIGGRAPH 2005 
 
Geometric Operations 
 
Panorama 
 
DAVIS, J. 1998. Mosaics of scenes with moving objects. In Computer Vision and Pattern Recognition (CVPR 98), 
354–360. 
 
UYTTENDAELE, M., EDEN, A., AND SZELISKI, R. 2001. Eliminating ghosting and exposure artifacts in image 
mosaics. In Conference on Computer Vision and Pattern 
Recognition (CVPR 01), 509–516. 
 
SZELISKI, R., AND SHUM, H.-Y. 1997. Creating full view panoramic mosaics and environment maps. In 
Proceedings of SIGGRAPH 97, Computer Graphics Proceedings, 
Annual Conference Series, 251–258. 
 



Synthetic Aperture 
 
Marc LEVOY, Billy CHEN, Vaibhav VAISH, Mark HOROWITZ, Ian MCDOWALL, Mark BOLAS,  
Synthetic Aperture Confocal Imaging. ACM SIGGRAPH 2004. 
 
REN NG, Fourier Slice Photography, SIGGRAPH 2005 
 
A. STERN and B. JAVIDI, "3-D computational synthetic aperture integral imaging (COMPSAII)," Opt. Express 11, 
2446-2451 (2003), 
 
C. OLIVER and S. QUEGAN, Understanding Synthetic Aperture Radar Images. London: Artech House, 1998. 
 
Deblurring and Superresolution 
 
M. BEN-EZRA AND S. K. NAYAR ,  Motion Deblurring using Hybrid Imaging, In Proc. IEEE Computer Vision 
and Pattern Recognition (CVPR),  Wisconsin, June 2003. 
 
ZHOUCHEN LIN,  HEUNG-YEUNG SHUM   Fundamental Limits of Reconstruction-Based Superresolution 
Algorithms under Local Translation PAMI, January 2004 - (Vol. 26, No. 1) pp. 83-9 
 
O. LANDOLT, A. MITROS, AND C. KOCH, “Visual Sensor with Resolution Enhancement by Mechanical 
Vibrations,” Proc. 2001 Conf. Advanced Research in VLSI, pp. 249-264, 2001. 
 
Smart, Unconventional Cameras  
 
 
MEMS Technology 
 
S. K. NAYAR, V. BRANZOI, AND T. BOULT. Programmable Imaging using a Digital Micromirror Array, 
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Washington DC, June 2004. 
 
 
High Speed Imaging 
 
B. WANDELL, P. CATRYSSE, J. DICARLO, D. YANG AND A. EL GAMAL  Multiple Capture Single Image 
Architecture with a CMOS Sensor , In Proceedings of the International Symposium on Multispectral Imaging and 
Color Reproduction for Digital Archives, pp. 11-17, Chiba, Japan, October 21-22 1999. (Society of Multispectral 
Imaging of Japan.) 
 
S. KLEINFELDER, S.H. LIM, X.Q. LIU AND A. EL GAMAL  A 10,000 Frames/s CMOS Digital Pixel Sensor, In 
IEEE Journal of Solid State Circuits, Vol.36, No.12, Pages 2049-2059, December 2001 
 
X.Q. LIU AND ABBAS EL GAMAL,  Synthesis of High Dynamic Range Motion Blur Free Image From Multiple 
Captures, In IEEE Transactions on circuits and systems (TCASI), VOL. 50, NO. 4, pp 530-539, APRIL 2003 
 
Ramesh RASKAR, Amit AGRAWAL, Jack TUMBLIN, Coded Exposure Photography: Motion Deblurring using 
Fluttered Shutter, ACM SIGGRAPH 2006. 
 
 
Programmable SIMD 
 
JOHANSSON, R., LINDGREN, L., MELANDER, J., AND MOLLER, B. 2003. A multi-resolution 100 gops 4 
gpixels/s programmable cmos image sensor for machine vision. In Proceedings of the 2003 IEEE Workshop on 
Charge-Coupled Devices and Advanced Image Sensors, IEEE. 
 



Advanced, Programmable, Demodulating Cameras and Temporal Correlation 
 
CANESTA Inc, 2004 
 
PIXIM Inc, 2004 
 
FOVEON Inc, 2004 
 
JENOPTIK Inc, 2004 
 
IVP Inc, Ranger Camera, 2004 
 
F. XIAO, J. DICARLO, P. CATRYSSE AND B. WANDELL, Image Analysis using Modulated Light Sources, In 
Proceedings of the SPIE Electronic Imaging '2001 conference, Vol. 4306, San Jose, CA, January 2001. 
 
ANDO, S., K. NAKAMURA, AND T. SAKAGUCHI. Ultrafast Correlation Image Sensor: Concept, Design, and 
Applications,. in Proc. IEEE CCD/AIS Workshop. 1997. Bruges, Belgium: IEEE. 
 
ANDO, S. AND A. KIMACHI. Time-Domain Correlation Image Sensor: First CMOS Realization of Demodulator 
Pixels Array. in Proc. '99 IEEE CCD/AIS Workshop. 1999.  
 
 
 



i 

Computational Photography 
 

SIGGRAPH 2006 Course 15 Notes 
 
 
 

Organizers 
 

 

Ramesh Raskar 
Senior Research Scientist 

MERL - Mitsubishi Electric Research Labs 
201 Broadway 

Cambridge, MA 02139 
Email: raskar@merl.com 

http://www.merl.com/people/raskar/ 
 

Jack Tumblin 
Assistant Professor 

Computer Science Dept., Northwestern University 
1890 Maple Avenue, Evanston IL 60201,  

Email: jet@cs.northwestern.edu 
http://www.cs.northwestern.edu/~jet 

 
 

Course Web Page 
 

http://www.merl.com/people/raskar/photo/ 
 




