

SIGGRAPH2008

Computational Photography: Advanced Topics

Class: Computational Photography, Advanced Topics

Debevec, Raskar and Tumblin

70.77 1 1	1 4	100	•	
Modii		1()5	minute	2 C
IVIOG G.	\mathbf{r}	TOO		_

1:45: A.1 Introduction and Overview (Raskar, 15 minutes)

2:00: A.2 Concepts in Computational Photography (Tumblin, 15 minutes)

2:15: A.3 Optics: Computable Extensions (Raskar, 30 minutes)

2:45: A.4 Sensor Innovations (Tumblin, 30 minutes)

3:15: Q & A (15 minutes)

3:30: Break: 15 minutes

Module 2: 105 minutes

3:45: B.1 Illumination As Computing (Debevec, 25 minutes)

4:10: B.2 Scene and Performance Capture (Debevec, 20 minutes)

4:30: B.3 Image Aggregation & Sensible Extensions (Tumblin, 20 minutes)

4:50: B.4 Community and Social Impact (Raskar, 20 minutes)

5:10: B.4 Panel discussion (All, 20 minutes)

Class Page: http://ComputationalPhotography.org

Computational Photography: Advanced Topics

A4: Sensor Innovations (30 minutes)

Jack Tumblin
Northwestern University

Film-Like Sensor: Array of Light Meters

Film-like Goals:

- Instantaneous measurement
- Infinite resolution; arc-min, λ
- Infinite sensitivity, Dyn. Range
- Zero noise visible

Film-Like Photo: Photon Arrival Record

- Snapshot: 'flattened' volume of space time
- More volume→ more photons→ "less noise"
- Movie: Repeated snapshots

6 Megapixel 3µm Always Best?

http://www.6mpixel.org/en/

Independent Lab & Photo Enthusiasts site:

Noise In Camera Systems

accurate, beautiful analogy:

Sensor Noise Sources

- Quantum Noise: 'Photon Rain' (signal dependent)
- Thermal-dependent noise in electronics: insulator leakage, phonon effects

(temp dependent)

RFI/EMI noise in electronics: 'crosstalk'

(signal dependent)

Sensor Noise Sources

Fill Factor

Light-Gathering Microlenses

- Counteracts low fill-factor
- Improved light gathering
- Less Aliasing

Suitable for color filters

Micron Technologies, Inc

Color Sensing

• 3-chip: vs. 1-chip: quality vs. cost

http://www.cooldictionary.com/words/Bayer-filter.wikipedia

1-Chip Color Sensing: Bayer Grid, De-Mosaicing

 Estimate RGB at 'G' cels from neighboring values

http://www.cooldictionary.com/words/Bayer-filter.wikipedia

Microlenses + Color Filters

Improved light gathering

Fixed Alignment

Less Aliasing

Backside Illumination

Advantages:

- Better fill-factor → larger pixel sensors
- Less-cramped circuitry (more of it?)
- Seamless Surface → less glare, aliasing

Difficulties:

- Fragile: tough to create, mount, connect
- Opacity, Noise, sub-surface scatter

Back-Illuminated CCD

Started ~2000 (micron tech),

Now High-Performance

Fairchild 4k x 4k CCD486:

- Thinned to 18microns
 + anti-reflective coating
- 100% fill factor, 15um pixels,
- 61.4 x 61.4mm sensor area

Back OR Front illumination

Practical Back-Illuminated CMOS

- Difficult 'Thinning' --bulk substrate removal
- Promising preliminary results:
 1.75μm pixels now → 0.9 μm expected
- (+6dB) sensitivity (~2x)
- (-2db) noise

Color Estimation: RGBW Method

- 2007: Kodak 'Panchromatic' Pixels
- Outperforms Bayer Grid
 - 2X-4X sensitivity (W: no filter loss)
 - May improve dynamic range (W >> RGB sensitivity)
 - Colorimetry: Direct luminance, not computed
- Drawbacks? de-mosaicing more difficult; earlier 4-color systems (JVC: CMYW, Canon: CMGY) earned shrugs

Color mosaic:

• Intensity mosaic:

• Intensity-and-color mosaic:

- Intensity-and-color-and-polarization mosaic:
- Other dimensions:
 - IR? UV?
 - Temporal?(frameless rendering)
 - Viewpoint?(camera arrays, epipolar imaging)

Sony Prototype...

Assorted Pixel Camera

Demosaicking Difficulties

Under-sampling, esp. in red, blue ->
Loss of detail, aliasing, zippering:

Many good methods, no perfect answer

"Demosaicing by Smoothing along 1D Features", Ajdin et al., CVPR 2008

FOVEON Sensor

- Multi-layer sensor, no color filter mosaic
- Senses wavelength by absorption depth

FOVEON Sensor

No under-sampling for any color,

Hyper-Acuity Hints & SuperResolution

Human Eye:

- Foveal receptors: 2.5 μm, ~28 arc-sec (Curcio et al, 1990)
- "Hyper-Acuity" can detect ~1arc-sec displacement
- Ocular tremor contributes...

Superresolution:

Multiple photos

Assemble dense sample grid:

Penrose Pixels for SuperResolution

ICCV 2007, Ben-Ezra et al., "Penrose Pixels: Super-Resolution in the Detector Layout Domain"

Periodic: sub-pixel shifts

Non-Periodic: any shift ok

8X super-res; same Back-Projection Reconstruction Method;

5.78 RMS error

2.78 RMS error

How can we choose What Matters?

- Image== 'flattened' spatio-temporal volume
- Choose Integration limits to fit the task
- More volume→less noise? Not always…

Take it all: Very Long Exposure

18 Months

Postdamer Platz, Berlin

26 Months

Note sun track breaks, 'ghost' buildings

Michael Wesely: "Open Shutter" Exhibition, MOMA Museum of Modern Art, NY 2005 http://www.wesely.org/wesely/index.php

Time-Lapse without Ghosts, Jumps

Computational Time-Lapse Video (SIGGRAPH 2007)

Eric P. Bennett, Leonard McMillan (University of North Carolina at Chapel Hill)

Perfect Timing: Casio EXLIM Pro EX F-1

Sports: the right instant to click the shutter?

Time bracketing:

- burst buffer:6Mpix x 60 framesup to 60 Hz
- Data-rate limited:
 at 336 × 96 res
 up to 1,200 Hz

Flash + Light-Source Blur

- Lighting Integration Tricks:
 - Draw light paths in darkness
 - Flash captures one instant

1949 AP: Pablo Picasso, Time Magazine 'Top 100 Artists'

See also: http://www.vpphotogallery.com/photog_mili_picasso.htm

"Lighting Doodle Projects"

http://tochka.jp/pikapika/ 2006/06/report_pikapika_in_kitijoji.html

Factored Time-Lapse Video

Factor Whole-Day Video Seq. into:

Sky-only lighting, and

Users may edit Lighting, Shadows, Reflectance, NPR

Factored Time-Lapse Video

Factor Whole-Day Video Seq. into:

Sky-only lighting, and

Whole-Day, Sun-only lighting

Users may edit Lighting, Shadows, Reflectance, NPR

Factored Time-Lapse Video

Factor Whole-Day Video Seq. into:

Sky-only lighting, and

Whole-Day, Sun-only lighting

Shadow Amount vs time

Users may edit Lighting, Shadows, Reflectance, NPR

Factored Time-Lapse Video

Factor Whole-Day Video Seq. into:

Sky-only lighting, and

Whole-Day, Sun-only lighting

Shadow Amount vs time

Edit Scene Lighting

Users may edit Lighting, Shadows, Reflectance, NPR

Factored Time-Lapse Video

Factor Whole-Day Video Seq. into:

Sky-only lighting, and

Whole-Day, Sun-only lighting

Shadow Amount vs time

Edit Scene Lighting

NPR efx and more ...

Users may edit Lighting, Shadows, Reflectance, NPR

Spectral Range: Silicon >> Eye

Thermographic Cameras

Two classes: Near-IR and Bolometer

Thermal IR Camera

Uncooled Bolometer Arrays: Temperature-Dependent Conductance

320 x 240pixels typical Slow Temporal Response Often Shutter-free

Millimeter Wave Imaging (Radiometry)

- Sensitive to Temperature AND material's reflectance
- High reflectance from water, metals, etc.
- See thru clouds and weather at some wavelengths
- High sensitivity, phase-sensitive (optical? RF? (1/r, not 1/r²))

1-2mm Imaging Radiometry: Security

- At 1-2mm humans 'glow' very faintly (10⁻¹⁴ joule)
- Metals, conductors, occlude; but clothes don't
- Passive-only imaging: 40-60 ft camera range
- Weapons: Strong Silhouettes

ZCam (3Dvsystems), Shuttered Light Pulse

Resolution:
1cm for 2-7 meters

Figure 1: A light pulse of duration T radiates an object and is reflected back to the sensor. The signal is shuttered at the head, center and tail of the signal. The measured intensities I_h and I_t are functions of the distance travelled by the pulse, while the intensity I_n' is a constant fraction of the unshuttered value I_n .

Fife (2008) Multi-Aperture Imager

- 16x16 pixel overlapped sub-images
- Disjoint apertures, uniform spacing
- Many correspondences -> 3D depth

A Bit of Metrology History

How do I weigh many small parts accurately?

random error ε, zero mean

• Tedious:

Measure N items, one-at-a-time:

Extra-Tedious:
 Measure N items, M times. ^σ/_M

• Tolerable: $2\sigma/N$ Measure N SETS of (~N/2) items.

OLD: Hadamard Transform Imaging

- N sensors, N pixels, but
- Sensors get unique SUMS of pixels
- Each pixel is part of ~N/2 measurements

 Compute pixels using inverse matrix;

Compressive Sensing: "Single Pixel Cam"

- Sense large sums of pixels, not N pixels
- Key notion: number of pixel sums << N
- Support: several ground-breaking proofs

Bio-Inspired Single-Photon Detectors

http://www.eecs.northwestern.edu/hmohseni

- Mohseni, Memis: Bio-Inspired sensor
 - Large photon-absorption region (rhodopsin)
 - Nano-scale hole detection (1-electron injector)

Extremely small, low noise, HDR, no cooling req'd

http://spie.org/x19173.xml

Single-Photon Detectors

- Quantum Wells / Quantum Dots
 - 'traps' 1 electron/hole pair, from 1 absorbed photon
 - No noisy 'avalanche' effect

- Applications:
 - Medical imaging
 - 'Ghost Imaging' ?
 - Secure Quantum communications?

Single-Photon 'Ghost' Imaging

 Create two entangled photons: one to keep, one for scanning

 Kept photon tells direction, scanned photon: reflectance

Covert Sensing:
 Interceptor can't identify
 entangled photon

Shih, Y., Univ Maryland: Physical Review A (DOI: 10.1103/PhysRevA.77.041801)

Flexible-Array Sensor

 John Rogers et al. (Beckman Institute, U of Illinois) (EECS, Northwestern Univ.)

Sensor Fabrics?

Camera-Scale projects in that direction:

"Scene Collages and Flexible Camera Arrays," Y. Nomura, L. Zhang and S.K. Nayar, EGSR 2007.

Other Free-Form Choices?

Andrew Davidhazy, RIT: http://www.rit.edu/~andpph/

Digital Sensor: Array of Light Meters

What is **ABSOLUTELY MANDATORY** here?

- One sample-time? Spatial, Temporal Uniformity?
 Why not many? [Flutter Shutter, 2005 Raskar])? ...
- Perfect Sync, Non-adaptive, all at once?
 rolling shutter? Adaptive Frameless Render[2005 Dayal]? ...
- No Spatial Overlap?
 Why not sinusoids? Wavelets? Gabor functions? ...

Common Thread:

Existing Film-like Camera quality is VERY HIGH, despite low cost.

Existing sensors and cameras are just now escaping film-like assumptions,

?what can we compute with them?

SIGGRAPH2008