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Figure 1: Experimental Setup to recover the 3D shape of a hidden object. (a) The capture process. We capture a
series of images by sequentially illuminating a single spot on the wall with a pulsed laser and recording an image
of the dashed line segment on the wall with a streak camera. The laser pulse strikes the wall at a point L, some of
the diffusely scattered light strikes the hidden object (for example at s), returns to the wall (for example at w) and
is collected by the camera. The position of the laser beam on the wall is changed by a set of galvanometer actuated
mirrors. (b) An example of streak images sequentially collected. (c) The 2D projected view of the 3D shape of the
hidden object, as recovered by the reconstruction algorithm.

Table of Contents Abstract

We demonstrate an incoherent ultra-fast imaging tech-
nique to recover 3D shapes of non-line-of-sight objects
using their diffuse reflections from line-of-sight sur-
faces.

Abstract

One goal of scientific imaging is to image objects ob-
scured due to scattering by exploiting, for example, co-
herence, ballistic photons or penetrating wavelengths.

Common methods depend on scattered light through
semi-transparent occluders but fail for opaque occlud-
ers. Instead of scattered light through the occluder,
we use diffuse reflections from neighboring visible sur-
faces. The light from hidden scene points is mixed after
the diffuse reflections before reaching the image sen-
sor. This mixing is difficult to decode using a tradi-
tional camera. We show a time-of-flight (ToF) tech-
nique in combination with computational reconstruc-
tion algorithms to untangle image information mixed
in the diffuse reflections. In effect, we demonstrate a
3D range camera able to “look around a corner” and
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demonstrate an experimental method which achieves
up to sub-millimeter depth precision, and centimeter
lateral precision over 40 cm x 40 cm x 40 cm of hid-
den space.

1 Introduction

The light detected on an image sensor is composed of
light from objects that are in the line of sight as well as
those beyond the line of sight. Light from objects out-
side the line of sight reaches the sensor via multiple dif-
fuse reflections (or bounces) and is usually discarded.
We demonstrate an incoherent ultra-fast imaging tech-
nique to recover 3D shapes of non-line-of-sight objects
using those inter-reflections.

The reconstruction of an image from diffusely scattered
light is of interest in a variety of fields. Change in spa-
tial light distribution due to the propagation through a
turbid medium is in principle reversible [Zahid Yaqoob
and Yang 2008] and allows imaging through turbid
media via computational imaging techniques [Dylov
and Fleischer 2010; Popoff et al. 2010; Vellekoop
et al. 2010]. Careful modulation of light can shape
or focus pulses in space and time inside a scattering
medium [Choi et al. 2011; Katz et al. 2011]. Images
of objects behind a diffuse screen, such as a shower
curtain, can be recovered by exploiting the spatial fre-
quency domain properties of direct and global compo-
nents of scattered light in free space [Nayar et al. 2006].
Our treatment of scattering is different but could be
combined with many of these approaches.

Line-of-sight time of flight information is com-
monly used in LIDAR (LIght Detection And Rang-
ing) [Kamerman 1993] and two dimensional gated
viewing [Busck and Heiselberg 2004] to determine the
object distance or to reject unwanted scattered light. By
considering only the early “ballistic” photons from a
sample, these methods can image through turbid me-
dia or fog [Wang et al. 1991]. We use diffuse reflec-
tions from neighboring surfaces to reconstruct and im-
age around an occluder instead of analyzing volumetric
scattering through an object.

Recent methods in computer vision and inverse light
transport study multiple diffuse reflections in free-
space. Dual Photography [Sen et al. 2005] shows one
can exploit scattered light to recover 2D images of ob-
jects illuminated by a structured dynamic light source

and hidden from the camera. Time gated viewing using
mirror reflections allows imaging around corners, for
example from a glass window [Repasi et al. 2009; Sume
et al. 2009; Chakraborty et al. 2010]. Three bounce
analysis of a time-of-flight camera can recover hidden
1-0-1 planar barcodes [Kirmani et al. 2009] but the au-
thors assume well separated isolated hidden patches
with known correspondence between hidden patches
and recorded pulses. In addition, a time-of-flight cam-
era can recover black and white patterns on a hidden
plane (i.e. a 2D image) if the position of the hidden
plane is known [Kirmani et al. 2011]. Similar to these
and other inverse light transport approaches [Seitz et al.
2005], we use a light source to illuminate one scene
spot at a time and record the reflected light after its
interaction with the scene. But, instead of a 2D im-
age, our goal is to recover the 3D structure of a hid-
den scene. We show that the extra temporal dimension
of the observations under very high temporal sampling
rates makes the hidden 3D structure observable. With a
single or a few isolated hidden patches, pulses recorded
after reflections are distinct and can be easily used to
find 3D position of the hidden patches. However, with
multiple hidden scene points, the reflected pulses may
overlap in time when they arrive at the detector. The
loss of correspondence between 3D scene points and
their contributions to the detected pulse stream is the
main technical challenge. We present a computational
algorithm based on back-projection to invert this pro-
cess.

While most of the previous 2D imaging experiments
are algebraically linear in nature, the reconstruction of
a 3D surface shape is intrinsically a nonlinear algebraic
problem. The 2D hidden image recovery can be viewed
as a simplified special case of our problem statement.

Our main contributions are two-fold. (i) We introduce
the new problem of recovering the 3D structure of a
hidden object and we show that the 3D information is
retained in the temporal dimension after multi-bounce
interactions between visible and occluded parts. (ii)
We present an experimental realization of the ability
to recover the 3D structure of a hidden object, thereby
demonstrating a 3D range camera able to “look around
a corner”. The ability to record 3D shapes beyond the
line of sight can potentially be applied in industrial in-
spection, endoscopic observations, disaster relief sce-
nario or more generally in situations where direct imag-
ing of a scene is impossible.
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Imaging Process The experimental setup is shown
in Figure 1. Our scene consists of a 40 cm high and
25 cm wide wall referred to as diffuser wall. We use
an ultra-fast laser and a streak camera and both are di-
rected at this wall. We place a target object hidden in
the scene (mannequin in Figure 1). We block direct
light paths between the object and the laser or the cam-
era. Our goal is to produce three dimensional range
data of the target object.

The streak camera records a streak image with one spa-
tial dimension and one temporal dimension. We focus
the camera on the dashed line segment on the diffuser
wall shown in Figure 1(a). We arrange the scanning
laser to hit spots on the wall above or below this line
segment so that single bounce light does not enter the
camera. Though the target object is occluded, light
from the laser beam is diffusely reflected by the wall,
reaches the target object, is reflected by multiple sur-
face patches and returns back to the diffuser wall, where
it is reflected again and captured by the camera. In a
traditional camera, this image would contain little or no
information about the occluded target object. In our ex-
perimental setup, the laser emits 50 femtosecond long
pulses. The camera digitizes information in time inter-
vals of 2 picoseconds. We assume the geometry of the
directly visible part of the setup is known. Hence the
only unknown distances in the path of the laser pulses
are those from the diffuser wall to the different points
on the occluded target object and back (paths r2 and r3
in Fig. 1). The 3D geometry of the occluded target is
thus encoded in the streak images acquired by the cam-
era and decoded using our reconstruction algorithm.

The recorded streak images lack correspondence infor-
mation, i.e., we do not know which pulses received by
the camera came from which surface point on the target
object. Hence, a straightforward triangulation or trilat-
eration to determine the hidden geometry is not possi-
ble.

Consider a simple scenario with a small hidden patch as
illustrated in Figure 2a. It provides intuition on how the
geometry and location of the target object are encoded
in the streak images. The reflected spherical pulse prop-
agating from the hidden patch arrives at the points on
the diffuser wall with different time delays and creates
a hyperbolic curve in the space-time streak image. We
scan and successively change the position of the laser
spot on the diffuser wall. The shape and position of

the recorded hyperbolic curve varies accordingly. Each
pixel in a streak image corresponds to a finite area on
the wall and a 2 picosecond time interval, a discretized
space time bin. However, the effective time resolution
is 15 picoseconds due to a finite temporal point spread
function of the camera. A detailed description of image
formation is included in Section 1 of the supplementary
material.

The inverse process to recover the position of the small
hidden patch from the streak images is illustrated in
Figure 2b–e. Consider three pixels p, q and r in the
streak image at which non zero light intensity is mea-
sured (Figure 2a). The possible locations in the world
which could have contributed to a given pixel lie on an
ellipsoid in Cartesian space. For illustration, we draw
only a 2D slice of the ellipsoid, i.e., an ellipse, in Figure
2b. The individual ellipses from each of the three pixels
p, q and r intersect at a single point. In the absence of
noise, the intersection of three ellipses uniquely deter-
mines the location of the hidden surface patch that con-
tributed intensity to the three camera pixels. In practice
we lack correspondence, i.e., we do not know whether
or not light detected at two pixels came from the same
3D surface point.

Therefore, we discretize the Cartesian space into vox-
els and compute the likelihood of the voxel being on
a hidden surface. For each voxel, we determine all
streak image pixels that could potentially have received
contributions of this voxel based on the time of flight
r1 + r2 + r3 + r4 and sum up the measured intensity
values in these pixels. In effect, we let each pixel “vote”
for all points on the corresponding ellipsoid. The signal
energy contributed by each pixel is amplified by a fac-
tor of r2r3 to compensate for the distance attenuation.
This process of computing likelihood by summing up
weighted intensities is called backprojection. The 3D
scalar function on voxels is called a heatmap.

The summation of weighted intensities from all pix-
els in a single streak image creates an approximate
heatmap for the target patch (Figure 2c). Repeating the
process for many laser positions on the diffuser wall,
and using pixels from the corresponding streak images
provides a better approximation (Figure 2d). In prac-
tice, we use approximately 60 laser positions. Tradi-
tional backprojection requires a high-pass filtering step.
We use the second derivative of the data as an effective
filter and recover the hidden surface patch in Figure 2e.
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The reconstruction is described in detail in Sections 2
and 3 of the supplementary material.

Algorithm The outline of our imaging algorithm is as
follows.

• Data Acquisition: Sequentially illuminate a sin-
gle spot on the diffuser wall with a pulsed laser
and record an image of the line segment of the wall
with a streak camera.

• Voxel Grid Setup: Estimate an oriented bounding
box for the working volume to set up a voxel grid
in Cartesian space (see below).

• Backprojection: For each voxel, record the sum-
mation of weighted intensity of all streak image
pixels that could potentially have received contri-
butions of this voxel based on the time of flight.
Store the resulting three dimensional heatmap of
voxels.

• Filtering: Compute a second derivative of the
heatmap along the direction of the voxel grid fac-
ing away from the wall.

• Postprocessing (optional): Compute confidence
value for each voxel by computing local contrast
with respect to the voxel neighborhood in the fil-
tered heatmap. To compute contrast, divide each
voxel heatmap value by the maximum in the lo-
cal neighborhood. For better visualization, apply
a soft threshold on the voxel confidence value.

We estimate the oriented bounding box of the object in
the second step by running the above algorithm at low
spatial target resolution and with downsampled input
data. Details of the reconstruction process and the al-
gorithm can be found in the Methods Section as well as
in the supplementary material in Section 3.

2 Results

We show results of the 3D reconstruction for multi-part
objects in Figures 3 and 4. The mannequin in Figure 3
contains non-planar surfaces with variations in depth
and occlusions. We accurately recover all major ge-
ometrical features of the object. Figure 3i shows the
reconstruction of the same object in slightly different
poses to demonstrate the reproducibility and stability
of the method as well as the consistency in the captured

data. Note that the sporadic inaccuracies in the recon-
struction are consistent across poses and are confined to
the same 3D locations. The stop-motion animation in
the supplementary movie shows the local nature of the
missing or phantom voxels more clearly. Hence, the
persistent inaccuracies are not due to signal noise or
random measurement errors. This is promising as the
voxel confidence errors are primarily due to limitations
in the reconstruction algorithm and instrument calibra-
tion. These limitations can be overcome with more so-
phistication.

Figure 4 shows a reconstruction of multiple planar ob-
jects at different unknown depths. The object planes
and boundaries are reproduced accurately to demon-
strate depth and lateral resolution.

The reconstruction is affected by several factors such
as calibration, sensor noise, scene size and time resolu-
tion. Below, we consider them individually.

The sources of calibration error are lens distortions on
the streak camera that lead to a warping of the collected
image, measurement inaccuracies in the visible geome-
try, and measurement inaccuracies in the center of pro-
jection of the camera and the origin of the laser. For
larger scenes, the impact of static calibration errors is
reduced.

The sensor introduces intensity noise and timing un-
certainty, i.e., jitter. The reconstruction of 3D shapes
is more dependent on the accuracy of the time of ar-
rival than the signal to noise ration (SNR) in received
intensity. Jitter correction, as described in the Methods
section, is essential, but does not remove all uncertain-
ties. Improving the SNR is desirable because it yields
better jitter correction and faster capture times. Similar
to many commercial systems, e.g., LiDAR, the SNR
could be significantly increased by using an amplified
laser with a repetition rate in the kHz range and a trig-
gered camera. The overall light power will not change,
but fewer measurements for light collection should sig-
nificantly reduce detection noise.

We can increase the scale of the system for larger dis-
tances and bigger target objects. By using a longer
pulse one could build solutions without any change in
the ratio of received and emitted energy, i.e., the link
budget. When the distance r2 between diffuser wall
and the hidden object (see Fig. 1) is increased, the sig-
nal strength drops dramatically (∝ 1/(r2r3)2) and the
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size of the hidden scene is therefore limited. A configu-
ration where laser and camera are very far from the rest
of the scene is, however, plausible. A loss in received
energy can be reduced in two ways. The laser beam can
be kept collimated over relatively long distances and the
aperture size of the camera can be increased to counter-
balance a larger distance between camera and diffuser
wall.

The timing resolution, along with spatial diversity in
the positions of spots illuminated and viewed by the
laser and the camera affects the resolution of 3D re-
constructions. Additional factors include the position
of the voxel in Cartesian space and the overall scene
complexity. The performance evaluation section of the
supplementary material describes depth and lateral res-
olution. In our system, translation along the direction
perpendicular to the diffuser wall can be resolved with
a resolution of 400 µm – better than the full width half
maximum (FWHM) time resolution of the imaging sys-
tem. Lateral resolution in a plane parallel to the wall is
lower and is limited to 0.5-1 cm depending on proxim-
ity to the wall.

3 Discussion

This paper’s goals are twofold: to introduce the new
challenging problem of recovering the 3D shape of a
hidden object and to demonstrate the results using a
novel co-design of an electro-optic hardware platform
and a reconstruction algorithm. We have demonstrated
the 3D imaging of a non-trivial hidden three dimen-
sional geometry from scattered light in free space. We
compensate for the loss of information in the spatial
light distribution caused by the scattering process by
capturing ultra-fast time of flight information.

The application of imaging beyond the line of sight is
of interest for sensing in hazardous environments such
as machinery with moving parts, for monitoring highly
contaminated areas such as the sites of chemical or ra-
dioactive leaks where even robots can not operate or
need to be discarded after use [Blackmon et al. 1999].
Disaster response and search and rescue planning, as
well as autonomous robot navigation can benefit from
the ability obtain complete information about the scene
quickly [Burke et al. 2004; Ng et al. 2004]

A very promising theoretical direction is in inference
and inversion techniques that exploit scene priors, spar-

sity, rank, meaningful transforms and achieve bounded
approximations. Adaptive sampling can decide the
next-best laser direction based on a current estimate of
the 3D shape. Further analysis will include coded sam-
pling using compressive techniques and noise models
for SNR and effective bandwidth. Our current demon-
stration assumes friendly reflectance and planarity of
the diffuse wall. But our reconstruction method can
easily include non-Lambertian behavior and a different
model for the visible parts.

In the future, emerging integrated solid state lasers, new
sensors and non-linear optics should provide practical
and more sensitive imaging devices. Beyond 3D shape,
new techniques should allow us to recover reflectance,
refraction and scattering properties and achieve wave-
length resolved spectroscopy beyond the line of sight.
The formulation could also be extended to shorter
wavelengths (e.g., x-rays) or to ultrasound and sonar
frequencies. The new goal of hidden 3D shape recovery
may inspire new research in the design of future ultra-
fast imaging systems and novel algorithms for hidden
scene reconstruction.

4 Methods

Capture Setup The light source is a Kerr lens mode-
locked Ti:Sapphire laser. It delivers pulses of about 50
femtoseconds length at a repetition rate of 75 MHz. The
laser wavelength is centered at 795 nm. The main beam
is scanned across the diffuser wall via a system of two
galvanometer actuated mirrors. A small portion of the
laser beam is split off with a glass plate and is used
to synchronize the laser and streak camera as shown in
Figure 1.

For time jitter correction, another portion of the beam
is split off, attenuated and directed at the wall as the
calibration spot. The calibration spot is in the direct
field of view of the camera and can be seen in Figure 11
in the Supplementary material.

The calibration spot serves as a time and intensity refer-
ence to compensate for drifts in the synchronization be-
tween laser and camera as well as changes in laser out-
put power. It also helps in detecting occasional shifts in
the laser direction due to, for example, beam pointing
instabilities in the laser. If a positional shift is detected,
the data is discarded and the system is re-calibrated.

The camera is a Hamamatsu C5680 streak cam-
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era [Hamamatsu 2011] that captures one spatial dimen-
sion, i.e., a line segment in the scene, with an effective
time resolution of 15 picoseconds and a quantum effi-
ciency of about 10%. The position and viewing direc-
tion of the camera are fixed. The diffuser wall is cov-
ered with Edmund Optics NT83 diffuse white paint.

Section 4 and 5 of the Supplementary material describe
in detail the experimental setup and its limitations.

Reconstruction Technique We use a set of Matlab
routines to implement the backprojection-based recon-
struction. Geometry information about the visible part
of the scene, i.e., diffuser wall could be collected us-
ing our time of flight system. Reconstructing the three
dimensional geometry of a visible scene using time of
flight data is well known [Busck and Heiselberg 2004].
We omit this step and concentrate on the reconstruction
of the hidden geometry. We use a FARO Gauge digi-
tizer arm to measure the geometry of the visible scene
and also to gather data about a sparse set of points on
hidden objects for comparative verification. The digi-
tizer arm data is used as ground truth for later indepen-
dent verification of the position and shape of hidden
objects as shown via transparent planes in Figure 4f.

We estimate the oriented bounding box around the hid-
den object using a lower resolution reconstruction. We
reduce the spatial resolution to 8 mm/voxel and down-
sample the input data by factor of 40. We can scan a
40 cm x 40 cm x 40 cm volume spanning the space
in front of the wall in 2-4 seconds to determine the
bounding box of a region of interest. The finer voxel
grid resolution is 1.7 mm in each dimension. We can
use the coarse reconstruction obtained to set up a finer
grid within this bounding box. Alternatively we can set
an optimized bounding box from the collected ground
truth. To minimize reconstruction time, we used this
second method in most of the published reconstruc-
tions. We confirmed that apart from the reconstruc-
tion time and digitization artefacts, both methods pro-
duce the same results. We compute the principal axis
of this low resolution approximation and orient the fine
voxel grid with these axes. During back-projection (and
voting), we amplify the contribution of each pixel to a
particular voxel by a factor of r2r3α to compensate for
the attenuation due to spherical divergence. We experi-
mented with various values of α and found that α = 1
is a good choice and avoids excessive amplification and
contribution of noisy pixels.

In the postprocessing step, we use a common approach
to improve the surface visualization. We estimate the
local contrast and apply a soft threshold. The con-
fidence value for a voxel is V ′ = tanh(20(V −
V0))V/mloc, where V is the original voxel value in fil-
tered heatmap and mloc is a local maximum computed
in a 20 x 20 x 20 voxel sliding window around the voxel
under consideration. Division by mloc normalizes for
local contrast. The value V0 is a global threshold and
set to 0.3 times the global maximum of the filtered
heatmap. The tanh function achieves a soft threshold.
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R. Raskar, the experiments were designed by A. Vel-
ten, M. G. Bawendi and R. Raskar and performed by
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ten, T. Willwacher, O. Gupta, and R. Raskar and im-
plemented and optimized by A. Velten, T. Willwacher,
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Figure 2: Reconstruction Algorithm An illustrative example of geometric reconstruction using streak camera
images. (a) Data capture. The object to be recovered consists of a 2 cm × 2 cm size patch beyond the line of sight
(i.e. “hidden”). The captured streak images corresponding to each of the three different laser positions are displayed
in the top row. Shapes and timings of the recorded response vary with laser positions and encode the position and
shape of the hidden patch. (b) Contributing voxels in Cartesian space. For recovery of hidden position, consider the
choices of contributing locations. The possible locations in Cartesian space that could have contributed intensity to
the streak image pixels p, q, r are ellipses (ellipsoids in 3D). If there is a single world point contributing intensity
to all 3 pixels, the corresponding ellipses intersect, as is the case here. The white bar corresponds to 2 centimeters
in all sub-figures. (c) Backprojection and heatmap. We use a back-projection algorithm that finds overlayed ellipses
corresponding to all pixels, Here we show summation of elliptical curves from all pixels in the first streak image. (d)
Backprojection using all pixels in a set of 59 streak images. (e) Filtering. After filtering with a second derivative, the
patch location and 2 centimeter lateral size are recovered.
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Figure 3: Complex Object Reconstruction in multiple poses. (a) Photo of the object. The mannequin is approx-
imately 20 cm tall and is placed about 25 cm from the diffuser wall. (b) Nine of the 60 raw streak images. (c)
Heatmap. Visualization of the heatmap after backprojection. The maximum value along the z direction for each
x-y coordinate in Cartesian space. The hidden shape is barely discernible. (d) Filtering. The second derivative of
the heatmap along depth (z) projected on the x-y plane reveals the hidden shape contour. (e) Depth map. Color
encoded depth (distance from the diffuser wall) shows the left leg and right arm closer in depth compared to the
torso and other leg and arm. (f) Confidence map. A rendered point cloud of confidence values after soft threshold.
Images (g-h) show the object from different viewpoints after application of a volumetric blurring filter. (i) The stop-
motion animation frames from multiple poses to demonstrate reproducability. See the supplementary video for an
animation. Shadows and the ground plane in images (f-i) have been added to aid visualization.
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Recovering 3D Shape Around a Corner
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Figure 4: Depth in Reconstructions Demonstration of the depth and lateral resolution. (a) The hidden object to
be recovered are three letters, I, T, I at varying depths. The ”I” is 1.5 cm in wide and all letters are 8.2 cm high. (b)
9 of 60 images collected by the streak camera. (c) Projection of the heatmap on the x-y plane created by the back
projection algorithm. (d) Filtering after computing second derivative along depth (z). The color in these images
represents the confidence of finding an object at the pixel position. (e) A rendering of the reconstructed 3D shape.
Depth is color coded and semi-transparent planes are inserted to indicate the ground truth. The depth axis is scaled
to aid visualization of the depth resolution.
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