Computational Photography: Epsilon to Coded Imaging

Ramesh Raskar

Camera Culture

Associate Professor, MIT Media Lab

http://raskar.info

Integration of Cameras in Mobile Phones

TESSERA

How can we create an entirely new class of imaging platforms that have an understanding of the world that far exceeds human ability and produce meaningful abstractions that are well

within human comprehensibility ?

Motion Blurred Photo

Dark and noisy Banding Artifacts and some spatial frequencies are lost

Blurring == Convolution

Traditional Camera: Shutter is OPEN: Box Filter

Sharp Photo

PSF == Broadband Function

 \mathcal{M}

Fourier

Transform

Blurred Photo

Preserves High Spatial Frequencies

Flutter Shutter: Shutter is OPEN and CLOSED

Flutter Shutter Camera

Raskar, Agrawal, Tumblin [Siggraph2006]

LCD opacity switched in coded sequence

Traditio nal

Deblurred Image

Image of Static Object

Coded Exposure

Temporal 1-D broadband code: Motion Deblurring

Coded <u>Aperture</u>

Spatial 2-D broadband mask: Focus Deblurring

Coded Aperture Camera

Insert a coded mask with chosen binary pattern

Rest of the camera is unmodified

In Focus Photo

Out of Focus Photo: Open Aperture

Out of Focus Photo: Coded Aperture

Computational Photography

- 1. Epsilon Photography
 - Low-level Vision: Pixels
 - Multiphotos by bracketing (HDR, panorama)
 - 'Ultimate camera'
- 2. Coded Photography
 - Mid-Level Cues:
 - Regions, Edges, Motion, Direct/global
 - Single/few snapshot
 - Reversible encoding of data
 - Additional sensors/optics/illum
- 3. Essence Photography
 - Not mimic human eye
 - Beyond single view/illum
 - <u>'New artform'</u>

Raskar, Camera Culture, MIT Media Lab

- Ramesh Raskar and Jack Tumblin
- Book Publishers: A K Peters

Computational Photography Mastering New Techniques

Mastering New Techniques for Lenses, Lighting, and Sensors

Less is More

Blocking Light == More Information

Coding in Time

Coding in Space

Larval Trematode Worm

Coded Aperture Camera

Shielding Light ...

Larval Trematode Worm

Turbellarian Worm

Full Resolution Digital Refocusing:

Coded Aperture Camera

4D Light Field from 2D Photo:

Heterodyne Light Field Camera

Stanford Plenoptic Camera [Ng et al 2005]

Contax medium format camera

Adaptive Optics microlens array

Kodak 16-megapixel sensor

 125μ square-sided microlenses

 4000×4000 pixels $\div 292 \times 292$ lenses = 14×14 pixels per lens

Digital Refocusing

[Ng et al 2005]

Can we achieve this with a <u>Mask</u> alone?

Mask based Light Field Camera

[Veeraraghavan, Raskar, Agrawal, Tumblin, Mohan, Siggraph 2007]

How to Capture 4D Light Field with 2D Sensor ?

What should be the pattern of the mask ?

Sensor Slice captures entire Light Field

Computing 4D Light Field

2D Sensor Photo, 1800*1800

2D Fourier Transform, 1800*1800

40 LIGHT FIER 200*200*9*9 Captured 2D Photo

Full resolution 2D image of Focused Scene Parts

divide

Image of White Lambertian Plane

Wavefront Sensing in Any Wavelength !

[Veeraraghavan, Raskar, Agrawal, Tumblin, Mohan, Siggraph 2007]

Lens Flare Reduction/Enhancement using 4D Ray Sampling

Glare Enhanced Captured

Glare Reduced Glare = low frequency noise in 2DBut is high frequency noise in 4DRemove via simple outlier rejection

Rays = Waves for Propagation and Interface

Imaging via volume hologram (Depth-specific Imaging)

Camera Culture Group

Ramesh Raskar http://raskar.info

Computational Photography

- 1. Epsilon Photography
 - Low-level Vision: Pixels
 - Multiphotos by bracketing (HDR, panorama)
 - 'Ultimate camera'
- 2. Coded Photography
 - Mid-Level Cues:
 - Regions, Edges, Motion, Direct/global
- Coded Exposure
 - Flutter Shutter Motion Deblurring
- Coded Aperture
 - Defocus
- Optical Heterodyning
 - Lightfield or Wavefront sensing
- Coded Glare
- 6D Display
- Femto-second Imaging
- Rays = Waves

How can we create an entirely new class of imaging platforms that have an understanding of the world that far exceeds human ability and produce meaningful abstractions that are well

within human comprehensibility ?

