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Resolution Preserving Light Field Photography Using Overcomplete
Dictionaries And Incoherent Projections

Figure 1: Light field reconstruction from a single, coded sensor image (left). We show how to capture the essence of natural light fields
in learned dictionaries, which—in combination with optical attenuation masks and compressive computational reconstruction—facilitate
resolution-preserving light field recovery. Parallax is preserved both horizontally and vertically (upper right); the lower row demonstrates
applications to refocusing a photograph after capture. As opposed to previous work, our dictionary-based approach to compressive light field
sampling handles specularities, occlusions, and other complex effects as observed on the blue bear’s eye and hand (upper row), respectively.

Abstract1

We present a computational framework and mask-based optical de-2

sign for resolution-preserving light field reconstructions from a sin-3

gle modulated sensor image. Compressive computational recon-4

struction techniques are used in combination with learned overcom-5

plete dictionaries that capture the essential building blocks of natu-6

ral light fields. The mask patterns in the camera create incoherent7

projections of the recorded light field on the sensor image. Unlike8

traditional methods for light field super-resolution, our technique9

can recover fine image details, occlusions, specularities, translucen-10

cies, and other challenging illumination effects. With a prototype11

camera, we demonstrate the practicality of the proposed framework12

and show reconstructed light fields with applications in changing13

viewpoint and focus after an image is captured.14

1 Introduction15

Conventional cameras capture a two-dimensional photograph—the16

projection of the four dimensional radiance function incident on the17

sensor. Affordable light field cameras, capturing the full 4D radi-18

ance function, are emerging on the consumer market [Lytro 2012].19

The main functional advantage offered by these cameras is the abil-20

ity to change viewpoint and focus in post-processing; a feature that21

will be commonplace in next-generation cameras. This flexibility22

is facilitated by the joint design of camera optics and computational23

processing of the recorded data, a concept that has the potential to24

transform both photography and imaging science.25

Existing approaches to light field capture can be divided into four26

categories: (a) camera arrays [Wilburn et al. 2005; Georgiev et al.27

2008; Taguchi et al. 2010] (b) micro-lens arrays on the sensor28

[Adelson and Wang 1992; Ng et al. 2005; Lytro 2012] (c) atten-29

uation masks in front of the sensor [Ives 1903; Lippmann 1908;30

Veeraraghavan et al. 2007; Lanman et al. 2008; Ihrke et al. 2010],31

and (d) CMOS integrated angle-sensitive pixels [Wang et al. 2011;32

Sivaramakrishnan et al. 2011]. While the technologies used for cap-33

turing light fields varies significantly between the four categories,34

they all share a common limitation that significantly hampers their35

widespread adoption: spatial resolution is sacrificed for a gain in36

extra angular resolution. This resolution tradeoff is fixed in the op-37

tical design and represents one of the main limitations of all ex-38

isting light field camera designs. In practice, angular resolution39

required for typical applications such as synthetic refocus varies40

between 7 × 7 to 14 × 14; the image resolution is reduced by a41

factor of 49− 196, turning even a modern 9 megapixel (MP) (e.g.,42

3000 × 3000 px) sensor image into a measly 430 × 430 photo-43

graph or a 215 × 215 thumbnail. This clearly is a huge handicap44

and has resulted in widespread interest in light field super resolu-45

tion techniques [Bishop et al. 2009; Lumsdaine and Georgiev 2009;46

Georgiev and Lumsdaine 2010] for hallucinating the lost plenoptic47

resolution by employing prior knowledge about the structure of the48

light field.49

In this paper, we address the problem of designing a resolution-50

preserving light field camera that overcomes conventional limits51

through incoherent random projections using optical attenuation52

masks combined compressive computational reconstruction.53

1.1 Contributions54

We explore joint optical light attenuation via incoherent projections55

of the light field using attenuation masks and compressive compu-56

tational reconstructions. The latter are demonstrated to benefit from57

learned dictionaries that capture the essential building blocks of nat-58

ural light fields. The proposed approach overcomes traditional res-59

olution tradeoffs. Specifically, our contributions include:60

• We introduce a new approach to capturing compressive sens-61

ing of light fields through attenuation masks that are mounted62

at a slight offset to a sensor image. The measurements are63

incoherent projections of the incident light field on the sensor64

image.65

• We propose a resolution-preserving light field reconstruction66

approach. Using sparse reconstruction routines, we show how67

to overcome traditional resolution tradeoffs in plenoptic cam-68

eras.69

• We explore the space of high-dimensional basis functions and70

demonstrate learned, overcomplete dictionaries to best repre-71
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Figure 2: Reconstructed and refocus scene showing two books.
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Figure 3: Comparing benefits of a variety of light field acquisition
approaches. Existing technologies either reduce the image resolu-
tion or the optical complexity of the system to capture a dynamic
light field. We propose a new resolution-preserving light field cam-
era architecture that overcomes many of the current technological
limitations. The asterisk denotes previous attempts to light field
super-resolution.

sent light fields in a sparse manner. These dictionaries capture72

the essential building blocks of natural light fields and allow73

for robust reconstruction routines.74

• We derive theoretical bounds of several aspects the proposed75

camera design, including depth of field and depth-dependent76

reconstruction quality.77

• We build a compressive light field camera prototype. The78

proposed reconstruction approach is demonstrated to success-79

fully recover light fields from the captured data; we detail cal-80

ibration routines and validate the data using synthetic refocus81

of the reconstructed light fields.82

1.2 Overview of Benefits and Limitations83

Inherently, a mask-based design offers several advantages over re-84

fractive optical elements placed on the sensor. Attenuating masks85

are less costly than microlenses, more robust to misalignment, and86

avoid refractive errors such as spherical and chromatic aberrations.87

Furthermore, the optical parameters of lenslets have to match the88

main lens aperture [Ng et al. 2005], whereas our mask-based ap-89

proach is more flexible in supporting varying main camera lenses.90

The proposed compressive camera design allows for a significant91

increase in image resolution as compared to both lenslet-based sys-92

tems and previously proposed mask cameras for in-focus image re-93

gions as well as refocused parts of the scene. The key advantage94

of our approach is the use of natural light field statistics learned95

from datasets as overcomplete dictionaries. While some previous96

work has followed similar ideas (e.g., [Bishop et al. 2009]), the em-97

ployed lenslet arrays optically filter out the visual information that98

is essential for a successful compressive light field reconstruction.99

As most light field cameras, our system requires modifications of100

conventional camera hardware. Although attenuation masks pre-101

serve more visual information than lenslet arrays in the captured102

data, the overall light transmission is reduced by about 50%. The103

proposed reconstruction requires an overcomplete dictionary that104
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Figure 4: Photographs showing the prototype setup. (a) Exploded
view of our mask-based light field camera. The inset shows a
printed random mask pattern attached to the mask holder. (b) Ex-
perimental setup where we placed an LCD in front of the camera
to sample incoming light fields. We moved a pinhole on the LCD to
calibrate mask modulation and also to capture light fields for dic-
tionaries. We reconstructed new light fields from a single-shot with
the LCD showing a square aperture.

captures the essence of natural light fields; this is a one-time pre-105

processing step and we expect improvements of our current dictio-106

naries with an increasing amount of available lights fields, for in-107

stance captured with Lytro cameras. Finally, the increase in image108

resolution comes at the cost of increased computational demands.109

Though theoretically polynomial in time, sparse reconstructions110

practically require computing times ranging from a few minutes to111

hours for a single full-resolution sensor image on a desktop PC.112

2 Related Work113

Light Field Cameras: Light field acquisition has been an active114

area of research; more than a century ago, Frederic Ives [Ives115

1903] and Gabriel Lippmann [Lippmann 1908] realized that the116

light field inside a camera can be captured by placing pinhole or117

lenslet arrays at a slight offset in front of the sensor. Within the118

last few years, lenslet-based systems have been integrated into dig-119

ital cameras [Adelson and Wang 1992; Ng et al. 2005] and are now120

commercially available [Lytro 2012]. The light-attenuating codes121

used in mask-based systems have become much more light effi-122

cient as compared to pinhole arrays [Veeraraghavan et al. 2007;123

Lanman et al. 2008; Ihrke et al. 2010]. All of these approaches124

require modifications of the camera hardware; a popular alternative125

is time-sequential image capture using a moving camera [Levoy126

and Hanrahan 1996; Davis et al. 2012] or programmable camera127

apertures [Liang et al. 2008]. To allow for the acquisition of dy-128

namic scenes, camera arrays have been employed as well [Wilburn129

et al. 2005]. We propose a novel, compressive approach to light130

field acquisition; our technique is similar in spirit to single camera,131

mask-based approaches but significantly increases image resolution132

by using compressive sensing reconstructions in combination with133

optimized mask patterns.134

Traditional Nyquist Sampling: Traditional sampling theory is135

based heavily on the Shannon-Nyquist sampling theorem which136

states that a signal x that is band-limited to W Hz is determined137

completely by uniform discrete samples of the signal provided that138

the sampling rate is greater than 2W . Modern sensors whether they139

are audio, or image sensors and more recently light field imagers140

are all attempting to capture discrete samples of the underlying sig-141

nal. In order to satisfy the Shannon-Nyqusit theorem, these sensor142

architectures typically have prefiltering (or anti-aliasing) that en-143

sures that the incoming signal bandwidth is less than half the sam-144

pling rate of the sensors. There is unfortunately a price that we pay145
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because of this anti-aliasing: it ensures that high frequency detail146

(that is larger than half the sampling rate) is irreversibly lost. In147

the context of traditional image sensors, the finite area of the pix-148

els in the detector array act as optical anti-aliasing filters. In the149

case of the various light field camera architectures, the finite sized150

aperture of the microlens array [Adelson and Wang 1992; Ng et al.151

2005; Lytro 2012] and/or the finite size of the pixels in the detec-152

tor act as anti-aliasing filters irrevocably reducing the bandwidth153

of these systems. Recently, light field super resolution techniques154

[Bishop et al. 2009; Lumsdaine and Georgiev 2009; Georgiev and155

Lumsdaine 2010] have proposed methods for hallucinating the lost156

plenoptic resolution by employing prior knowledge about the struc-157

ture of the light field. In this paper, we take a radically different158

approach and draw inspiration from recent advances in sampling159

theory to explicitly recover light fields from a single modulated cap-160

tured image. Since, there is no angular anti-aliasing in our camera,161

subsequently the high resolution information is never suppressed162

and this allows us to recover details both in texture and in specular163

and non-lambertian parts of the light field.164

Compressive Sampling and Dictionary Learning: Recent ad-165

vances in sampling theory have shown that if a signal x ∈ RN166

can be represented as k−sparse in some basis D (usually called a167

Dictionary), then the signal can be robustly and accurately recov-168

ered from O(klog(N
k

)) samples instead of the N samples required169

using traditional Shannon-Nyquist techniques. Compressive sens-170

ing [Candès et al. 2006; Candès and Tao 2006; Donoho 2006a]171

enables reconstruction of such sparse signals from under-sampled172

linear measurements typically using techniques from convex opti-173

mization. The rich image processing and signal processing litera-174

ture has yielded a huge number of data independent basis such as175

wavelets, DCT, and Fourier in which images and other such signals176

have been shown to be sparse. We show that learned dictionaries177

provide sparser representations of natural light fields than conven-178

tional bases.179

Recently, it has been shown that learning and adapting dictionar-180

ies to the specific rich geometric structure of the data results in181

significant performance improvements over traditional data inde-182

pendent dictionaries. Several algorithms [Kreutz-Delgado et al.183

2003; Mairal et al. 2008; Kreutz-Delgado and Rao 2000; Aharon184

et al. 2005] for learning such dictionaries from sample datasets have185

been proposed, most of them iterating between a sparse approxi-186

mation and a model fitting step. We rely on the advances in dictio-187

nary learning and learn patch based dictionaries for light field data.188

Unlike most light field analysis and super-resolution techniques189

[Bishop et al. 2009; Lumsdaine and Georgiev 2009; Georgiev and190

Lumsdaine 2010; Levin and Durand 2010], we do not assume that191

the materials in the scene are lambertian. Instead, we learn a patch192

based dictionary for light fields from available light field data and193

this allows us to tackle more complex optical phenomena such as194

translucency and specularities.195

Compressive Light Field Acquisition Broadly speaking, the idea196

of performing compressive light field acquisition has been at-197

tempted in the past. It could be argued that approaches to per-198

form light field super-resolution [Bishop et al. 2009; Lumsdaine199

and Georgiev 2009; Georgiev and Lumsdaine 2010] are compres-200

sive light field rendering methods. Unfortunately, in these examples201

since the microlens arrays act as anti-aliasing filters reducing the202

spatial resolution of the incoming radiance function before being203

captured on the sensor, these approaches are inherently limited in204

their applicability. Recently, Babacan et al. [2009] showed that rea-205

sonable 7×7 light field reconstructions can be obtained from about206

7 images acquired with random coded apertures. Similarly, Ashok207

et al. [2010] showed that multiple images acquired with coded aper-208

tures placed either at the aperture plane or in front of micro-lens ar-209

rays allows us to reduce the number of measurements required for210

acquiring full resolution light fields. Unfortunately, like all other211

multi-image based methods such techniques cannot handle dynamic212

scenes. In contrast, our technique is a single-shot, single image213

technique and so it has the potential to handle fast moving and dy-214

namic scenes with appropriate short exposure imaging. Further,215

most of the existing results in compressive light field acquisition216

have been predominantly in simulations. Here, we build a work-217

ing prototype of our compressive light field imager. Finally, we218

also perform theoretical analyses of the various designs and show219

that our compressive light field camera has better spatial frequency220

support and depth of field properties.221

3 Light Field Sensing and Reconstruction222

This section presents a framework for compressive light field sens-223

ing. First, we introduce a mathematical model describing how a224

light field is sensed, through a number of light attenuating masks,225

with multiple photographs. Second, we show how this general226

image formation represents the measurement matrix Φ in general227

compressive sensing formulations; we briefly review these formu-228

lations along with their properties and fundamental limitations.229

Third, we introduce an approach to capture the essence of natural230

light fields, as a mathematical prior, in a learned, overcomplete dic-231

tionary and interprete the structure of the fundamental light field el-232

ements captured in the learned dictionaries. We conclude by show-233

ing that natural four-dimensional light fields are more sparse in this234

adaptive basis than in generic bases often used in compressive sens-235

ing reconstructions. The mathematical formulations in this section236

are derived for the 2D spatio-angular flatland case with straightfor-237

ward extensions to the full 4D light field space.238

3.1 Light Field Sensing239

Compressive plenoptic cameras comprise a conventional camera240

with lens and sensor as well as a stack of light attenuating masks241

that optically modulate the four-dimensional light field before it242

reaches the two-dimensional sensor. This design is illustrated in243

Figure 5; for full generality, we assume that multiple photographs244

can be captured with dynamically changing mask patterns.245

The image captured by a conventional sensor i (x) is a projection246

from spatio-angular light field space along the angular dimension:247

i (x) =

∫
V
l (x, ν) dν. (1)

The light field is denoted as l (x, ν). We adopt a two-plane pa-248

rameterization [Levoy and Hanrahan 1996], where x is the spatial249

dimension on the sensor plane and ν denotes the position on the250

aperture plane at distance d (see Fig. 5). A single attenuation mask251

with pattern f(ξ) modulates the light field before the sensor inte-252

grates over the angular dimension as253

i (x) =

∫
V
l (x, ν) f

(
x+

dl
d
ν

)
dν. (2)

In this formulation, dl is the distance between sensor and mask.254

Mounting a stack of N light-attenuating masks f (n), n = 1 . . . N255

at distances dn from the sensor changes the optical image formation256

to257

i (x) =

∫
V
l (x, ν)

N∏
n=1

f (n)

(
x+

dn
d
ν

)
dν. (3)
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Figure 5: Illustration of ray optics, light field modulation through coded attenuation masks, and incoherent projection matrix. Left: ray
diagram illustrating the optical setup. One or more coded attenuation masks are mounted between camera sensor and aperture. Center: the
mask patterns modulate a four-dimensional light field (only two dimensions shown) before the camera sensor optically integrates over the
angular dimensions. Right: in a discretized form, the image formation can be expressed as a sparse, random projection matrix used in a
compressive reconstruction framework.

Again, d is the distance between sensor plane and aperture plane.258

For full generality, we also consider taking M photographs with259

mask patterns f (n)
m that change for each shot m = 1 . . .M but stay260

constant throughout the exposure time of each photo:261

im (x) =

∫
V
l (x, ν)

N∏
n=1

f (n)
m

(
x+

dn
d
ν

)
dν. (4)

This projection can be expressed, in a discretized form, as a matrix-262

vector multiplication:263

i = Φl, Φij =

N∏
n=1

f
(n)

[i]m

(
[i]x +

dn
d

[j]ν
)
, (5)

where all M sensor images are vectorized as i and the light field264

in its vectorized form is l. A row in the projection matrix Φ corre-265

sponds to the contributions of all light field rays to a single sensor266

pixels; a column to a single light field ray and its contribution to267

each sensor pixel. The matrix row index [i]xm corresponds to the268

order of sensor image vectorization—row or column major— and269

[j]ν is the matrix column index for a particular light field ray.270

A ray diagram illustrating the optical setup is shown in Figure 5271

(left) with the corresponding interpretation in light field space272

shown in the central column of Figure 5. Assuming that each mask273

pattern attenuates rays incident on that plane equally for all incident274

directions, each of these patterns corresponds to a sheared copy of275

the corresponding pattern with constant values along the diagonals.276

The corresponding, discretized projection matrix Φ is also visual-277

ized. In the following, this notation makes it convenient to apply278

standard signal processing notation of the compressive light field279

reconstruction.280

3.2 Compressive Light Field Reconstruction281

We begin by providing a brief introduction to compressive sensing282

and then return to the problem of light field capture via compressive283

sensing.284

A brief tour of compressive sensing: Compressive sensing285

[Candès et al. 2006; Candès and Tao 2006; Donoho 2006a] en-286

ables reconstruction of sparse signals from under-sampled linear287

measurements. A vector s is termed K-sparse if it has at most K288

non-zero components, or equivalently, if ‖s‖0 ≤ K, where ‖ · ‖0289

is the `0 norm or the number of non-zero components. Consider a290

signal (in our example the light field l) l ∈ RN , which is sparse in a291

(possibly overcomplete) basis Ψ (a matrix of sizeN×D). Since the292

light field l is k-sparse in Ψ, we can write l = Ψs, where s ∈ RD ,293

and ‖s‖0 ≤ K. Traditional examples of popular sparsifying basis294

Ψ for images includes DCT and wavelets. While 4D extensions295

of such popular basis functions may work reasonably well for light296

fields, here we learn a data-dependent adaptive dictionary that rep-297

resents the geometric structure of light field data better. The details298

regarding the dictionary learning are described in Section 3.3. For299

now, we will assume that Ψ is known.300

The main problem of interest is that of sensing the signal l from301

linear measurements i = Φl. With no additional knowledge about302

l, N linear measurements of l are required to form an invertible303

linear system. The theory of compressive sensing shows that it is304

possible to reconstruct l from M linear measurements even when305

M � N by exploiting the sparsity of s in the basis Ψ.306

Consider the measurements obtained using the mask based light307

field camera design described in the previous section. The mea-308

surement vector i ∈ RM obtained using such a compressive light309

field camera can be represented as310

i = Φl + e = ΦΨs + e = Θs + e (6)

where e is the measurement noise and Θ = ΦΨ. The components311

of the measurement vector i are called the compressive measure-312

ments or compressive samples. For M < N , estimating l from313

the linear measurements is an ill-conditioned problem. However,314

when l is K sparse in the basis Ψ, then CS enables recovery of s315

(or alternatively, l, since l = Ψs) from M = O(K log(N/K))316

measurements, for certain classes of matrices Θ. The guarantees317

on the recovery of signals extend to the case when s is not ex-318

actly sparse but compressible. A signal is termed compressible if319

its sorted transform coefficients delay according to power-law, i.e,320

the sorted coefficient of s decay rapidly in magnitude [Haupt and321

Nowak 2006].322

Signal recovery: Estimating K-sparse vectors that satisfy the323

measurement equation of (6) can be formulated as the following `0324

optimization problem:325

(P0) : min ‖s‖0 s.t. ‖i− ΦΨs‖2 ≤ ε. (7)

with ε being a bound for the measurement noise e in (6). While this326

is a NP-hard problem in general, the equivalence between `0 and327

`1 norm for such systems [Donoho 2006b] allows us to reformulate328

the problem as one of `1 norm minimization.329

(P1) : ŝ = arg min ‖s‖1 s.t. ‖i− ΦΨs‖ ≤ ε (8)
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Figure 6: Learned dictionaries capture the essential building
blocks of natural light fields. The dictionary is a collection of
small four-dimensional patches (closeups) representing the basic
spatio-angular building blocks of a large light field database. The
mosaic shows of the central views of light field patches in a dictio-
nary, whereas the closeups magnify two 4D light field patches. Both
horizontal and vertical parallax is clearly visible in structures that
slightly move over the different viewpoints in each patch.

It can be shown that, when M = O(K log(N/K)), the solution to330

the (P1) — ŝ — is, with overwhelming probability, the K-sparse331

solution to (P0). In particular, the estimation error can be bounded332

as follows:333

‖s− ŝ‖2 ≤ C0‖s− sK‖/
√
K + c1ε (9)

where sK is the best K-sparse approximation of s.334

There exist a wide range of algorithms that solve (P1) to vari-335

ous approximations or reformulations [Candès and Tao 2005; Tib-336

shirani 1996]. One class of algorithms model (P1) as a convex337

problem, and recast it as a linear program (LP) or a second or-338

der cone program (SOCP) for which there exist efficient numerical339

techniques. Another class of algorithms employ greedy methods340

[Needell and Tropp 2009] which can potentially incorporate other341

problem-specific properties such as structured supports [Baraniuk342

et al. 2010]. It has been shown that for overcomplete basis such343

as dictionaries reweighted L1, which solves several sequential L1344

minimization problems each using weights computed from the so-345

lution of the previous problem provides with the best solution for346

(P1).347

3.3 Light Field Dictionaries348

3.3.1 Learning Overcomplete Dictionaries349

In order to effectively apply and exploit principles of sparse repre-350

sentations and compressive sensing, we need to find a dictionary Ψ351

in which the patches from light fields are sparse. One can possible352

use non-adaptive dictionaries such as DCT, wavelet or Fourier bases353

(or a combination of them), but these dictionaries do not model the354

specific geometry of light field patches. Thus, we learn the dic-355

tionary from light field patches themselves. The traditional dic-356

tionary learning algorithms such as K-SVD [Aharon et al. 2005]357

and Focuss [Kreutz-Delgado and Rao 2000; Kreutz-Delgado et al.358

2003] are batch methods and hence are not suitable for learning359

light field patches as the patches are very high-dimensional (of the360

order 6000). Thus, we use the online dictionary learning approach361

proposed in [Mairal et al. 2008] to learn our dictionary.For the sake362

of completeness, we provide a very brief description of the algo-363

rithm.364

Given a finite training set of light field patches, say L =365

[l1, l2, ..., ln], the dictionary learning problem can be formulated366

as jointly optimizing the dictionary Ψ and the coefficient vectors367

S = [s1, s2, ..., sn]:368

min
Ψ,S

n∑
j=1

(||lj −Ψsj||22 + λ||sj||1)/2n (10)

The above equation describes the learning process as the joint opti-369

mization problem with respect to the dictionary and the coefficients370

s1, s2, ..., sn. Note that the above optimization problem is a non-371

convex problem (because of the coupling between Ψ and the coef-372

ficients S). However, this is a bi-convex problem, i.e., if we fix one373

of the variables (say Ψ), then the problem is convex in the other374

variable (S). The online dictionary approach uses the stochastic375

gradient algorithm to solve the problem. Once we learn the dic-376

tionary Ψ, any new light field patch can be described as a linear377

combination of the basis elements of the dictionary. Figure 6 shows378

some of the basis elements of our learned dictionary. It is clear from379

the figure that the learned dictionary captured the specific structure380

of the light field data.381

3.3.2 Reconstructing Light Fields using Dictionaries382

During reconstruction, we extract patches ij, j = 1, 2, ...,m from383

the captured image and reconstruct the corresponding light field384

patches lj. The light field patches can in turn be expressed as385

lj = Ψsj, where sj are the sparse coefficient vectors. To ob-386

tain the sparse coefficent vectors sj (and hence lj), we use use the387

reweighted L1-norm minimization algorithm [Emmanuel J. Cands388

and Boyd 2008], which has been shown to have a superior perfor-389

mance than the standard L1-norm algorithm (basis pursuit). The390

reweighted L1-norm minimization solves the following problem:391

min
sj
||Wsj||1 s.t. ||ij −ΦΨsj||2 ≤ ε, (11)

where W is a diagonal matrix with the diagonal elements being the392

weights. In the first few iterations, the largest signal coefficients are393

identified. The weighting matrix is then updated with these values394

for identifying the remaining small but non-zero coefficients.395

3.3.3 Evaluating Light Field Sparsity396

In this section, we evaluate the sparsity of light fields in a vari-397

ety of commonly used transforms and the over-complete dictionary398

described in Section 3.3. For conventional transforms, including399

the Fourer basis (FFT), wavelets, and the dicrete cosine transform400

(DCT), sparsity of a given light field can be quantified by peak-401

signal-to-noise ratio (PSNR). For this purpose, the light field is402

approximated by its K largest coefficients in that basis. Figure 7403

plots the PSNR of a synthetic light field for an increasing number404

of sparse coefficients in a variety of transforms. The compression405

ratio is given as the ratio between K and the total number of coef-406

ficients.407
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In addition to these conventional transforms, which are all evalu-408

ated in their full four-dimensional form, we also plot the sparsity409

of the same light field in a learned dictionary. Please note that the410

training set necessary to compute the dictionary does not include411

the test case. Evaluating the light field sparsity in the dictionary is412

slightly more involved than for the conventional transforms. In this413

case, an optimization problem (Eq. 8) has to be solved explicitly414

to determine the K dictionary elements that best approximate the415

original light field. Figure 7 plots the sparsity of the test light field416

in the learned dictionary; this choice of a sparsity basis yields a gain417

in PSNR by about 5-10 dB as compared to conventional basis.418

The conclusion of this experiment is that bases such as the419

Fourier transform provide powerful tools for theoretically analyz-420

ing computational cameras and upper bounds on their performance421

(e.g., [Levin et al. 2009]) but for the case of compressive light field422

sensing, learned dictionaries capturing the essence of natural light423

fields provide more robust tools for practical computation.424
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Figure 7: Sparsity of a light field, measured in PSNR, is evalu-
ated for conventional bases (4D DCT, 4D FFT, 4D Haar wavelets)
and a dictionary; the compression ratio is the number of sparse
coefficients divided by the total number of basis coefficients. In
all tested cases, dictionaries lead to a significant improvement in
PSNR, demonstrating that these are usually a better choice for com-
pressive light field reconstruction than conventional transforms.

4 Analysis425

While general compressive reconstructions combined with over-426

complete dictionaries, as described in the previous section, are pow-427

erful tools for practical computations, deriving analytical perfor-428

mance bounds is difficult. One of the most interesting attributes429

characterizing a light field camera is the depth of field in which430

synthetic refocus can be performed. A common approach to such431

an analysis is the evaluation of the reconstruction performance of432

a textured diffuse plane at a distance to the focal plane. A major433

advantage of these assumptions, commonly used for depth of field434

analysis (e.g., [Levin et al. 2009]), is that the dimensionality of the435

analysis reduces to three, instead of four dimensions. In the fol-436

lowing, we show that Gaussian Mixture Models can analytically437

describe this special case and be used to derive upper bounds on the438

depth-dependent reconstruction performance.439

Gaussian Mixture Models (GMMs) make a few simplifying as-440

sumptions: (1) the scene is lambertian and (2) all objects are within441

a depth range of [−tD, tD] around the focal plane of the camera,442

where D is depth of field of traditional camera and t = 20. Un-443

der these assumptions, which are perfectly valid for the above de-444

scribed depth of field analysis, we can learn a GMM prior for the445

light field and then use the GMM model to analytically character-446

ize the compressive light field camera. We use the ’minimum mean447

square error’ (MMSE) for GMM priors as a metric to characterize448

the performance of our camera.449

The GMM prior consists of a mixture of Gaussian priors; consider450

the ithmixture component Pi(x) = N (mi,Σi), wheremi and Σi451

are the mean and covariance matrix respectively. In practice, we452

learn separate Gaussian models mi,Σi for a discrete set of sampled453

depths within the depth range [-tD, tD]. For each depth, we take a454

set of textures ( canonical images such as Lenna, Barbara etc), and455

place these images at the corresponding depth and generate light456

fields corresponding to these scenes. We then learn the Gaussian457

model parametersmi,Σi for this particular depth. We do this over a458

range of depths and this process results in a GMM. In the following459

paragraphs, we first present the expression of MMSE for a single460

Gaussian prior and then for the GMM prior.461

Since the compressive camera is a linear system, we can write it462

as y = Hx + n, where x is the unknown light field signal, y is463

the observed image and n is the noise. If we assume the noise464

n to be Gaussian P (n) = N (0,Σn), then the observation like-465

lihood P (y|x) = N (Hx,Σn) is Gaussian. For Gaussian prior466

Pi(x) = N (mi,Σi), the posterior distribution Pi(x|y) is also467

Gaussian distributed and the mean square errormmsei(H) is given468

by [Kay 1993]:469

mmsei(H) = trace(Σi)−trace(ΣiHT (HΣiH
T+Σn)−1HΣi).

(12)

It can be shown that, for GMM prior P (x) =
∑m
i=1 αiPi(x)470

(where αi, i = 1, 2, ...,m are the mixture weights) and Gaus-471

sian likelihood P (y|x) = N (Hx,Σn), the posterior distribution472

P (x|y) is also a GMM (see [Flam et al. 2011]). The MMSE can be473

lower bounded as follows [Flam et al. 2011; Anon. 2012]:474

mmse(H) ≥
m∑
i=1

αimmsei(H), (13)

where, mmsei(H) are the MMSE for the individual Gaussian pri-475

ors (12). We use this lower bound on MMSE to charaterize the per-476

formance of our camera. Using this expression for MMSE and the477

the average signal power (which can be computed from the GMM478

prior P (x)), we obtain the expected system SNR. For details re-479

garding the derivation and the expression please see [Flam et al.480

2011].481

4.1 Depth-Dependent Reconstruction Performance482

We evaluated the reconstructed SNR for four different cameras483

keeping the number of sensor pixels constant. The four different484

cameras we considered in our analysis are: (1) Traditional Cam-485

era (2) Pinhole Array based Light Field Camera (3) Micro-lens ar-486

ray based light field Camera (Lytro) and (4) Our compressive Light487

field camera with GMM prior. For the existing 2 light field imag-488

ing architectures ( Pinhole array and micro-lens), the reconstructed489

light field is usually lower resolution. We then use PCA to upsam-490

ple these light fields to obtain full-resolution light fields. For our491

proposed compressive light field camera, we the mixing matrix H492

corresponding to the mask used. We then use the GMM model that493

we learned {mi,Σi} and evaluate the lower bound on the mmse494

given by Equation 13. The results are shown in Figure 8.495

When the scene is at the plane of focus of the traditional camera,496

it is clear that a traditional camera outperforms all other light field497

cameras. Notice that all the presented light field cameras have a498

reconstruction performance that is better than a traditional camera,499

as the scene moves away from the plane of focus. It is also clear that500

our compressive light field camera design significantly outperforms501

both micro-lens array based [Adelson and Wang 1992; Ng et al.502

2005; Lytro 2012] and the pinhole [Ives 1903; Lippmann 1908;503

Veeraraghavan et al. 2007; Lanman et al. 2008; Ihrke et al. 2010]504

based designs for acquiring the light field. Figure 8 also shows that505

the depth of field of our compressive light field camera is larger506

than that of other alternatives.507
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Figure 9: Analytical estimates of reconstruction SNR (using GMM
model) for varying number of captured images.

4.2 Analysis of Multi-Shot Camera Sequences508

If the mask is implemented using an electronically controllable spa-509

tial light modulator, this would allow us to acquire multiple frames510

with different masks. If the scene is static or slow moving during511

the acquisition time, then multiple images can be used to recon-512

struct the light field. Since each successive frame provides new513

additional information about the structure of light field this would514

presumably improve reconstruction performance. We tested this515

thoroughly in simulation by varying the number of frames acquired516

from one to eight using the analytical expression in Equation 13.517

For the kth frame, we use a different mask mk and obtain the cor-518

responding mixing matrix Hk. The combined effect of all these519

frames is equivalent to stacking these mixing matrices to obtain520

an effective mixing matrix H = [H1;H2;H3; ...;HK ], where the521

symbol ; represents vertical concatenation. The results are shown522

in Figure 9, clearly showing that significant benefit is obtained by523

increasing the number of frames used during reconstruction.524

5 Implementation and Assessment525

5.1 Implementation526

5.1.1 Software527

As described in Section 3.3.1, we use the implementation of on-528

line sparse coding [Mairal et al. 2009] algorithm available as a part529

of SPAMS(Sparse Modeling Software) package. Dictionaries with530

varying patch sizes from 8×8×3×3 to 16×16×5×5 are learned.531

Learned basis are ten times overcomplete for patches with angular532

resolution of 5×5. For lower angular resolution of 3×3 we are able533

to learn dictionaries that are hundred times overcomplete. We find534

in simulation that due to high coherency of light fields a coherency535

factor 10× induces enough sparsity for a compressive reconstruc-536

tion. For our reconstructions on real scenes, it takes about 6 hours537

to learn a dictionary with a patch size of 8×8×3×3 overcomplete538

by 10× resulting in about 6000 dictionary elements.539

We used POVRAY a freely available raytracing software to render540

several synthetic light fields. We divided the synthetic light fields541

we rendered into two non-overlapping sets – a training set and a542

test set. Patches from the training set were used to train the dic-543

tionary learning algorithm, while simulation experiments were per-544

formed on the test set of light fields. An example light field from545

the test set is the dice dataset shown in Figure 11. Our reconstruc-546

tion algorithm described in Section 3.3.2 leverages on the software547

base made available by NESTA [Becker et al. 2009] that imple-548

ments reweighted L1 optimizations. All implementations of dic-549

tionary learning and L1 minimization are done in MATLAB. The550

reconstruction algorithm takes about four hours for reconstructing551

a 256× 256× 5× 5 light field on a desktop personal computer.552

5.1.2 Hardware553

Figure 4 (a) shows our prototype compressive light field camera.554

We fabricated a mask holder that fits into the sensor housing of555

a Lumenera Lw11059 camera, and attached a film with a random556

mask pattern, where each dot had an intensity uniformly drawn557

from [0,1] range. As the printer guaranteed 25 µm resolution, we558

conservatively picked a mask resolution of 50 µm, which roughly559

corresponded to 6×6 pixels on the sensor. We therefore downsam-560

pled the sensor image by 6, and cropped out the center 320 × 240561

region for light field reconstruction in order to avoid mask holder562

reflection and vignetting. The distance between the mask and the563

sensor was 1.6mm. A Canon EF 50mm f/1.8 II lens was used and564

focused at a distance of 35cm.565

Calibration: In order to be able to perform the reconstruction, we566

need to know the mixing matrix Φ. Since the mask is only ap-567

proximately positioned at about 1.6 mm away from the sensor, it568

becomes necessary to calibrate and measure the effective mixing569

matrix Φ. To do this, we placed an LCD in front of the camera as570

shown in Figure 4 (b) to obtain control over angular samples of in-571

coming light fields. We used the full aperture size of the lens (8×8572

mm) and divided it into 3 × 3 sub-apertures. For calibration, we573

placed a monitor displaying a white image at the plane of focus (35574

cm depth), and captured that white image modulated by the mask575

for each sub-aperture. We also normalized each of these images by576

an image captured without the mask in order to obtain the effec-577

tive mixing matrix. Once the system is calibrated, i.e., we have Φ578

measured, then we can perform reconstruction on real scenes from579

a single captured image. Note that the calibration process needs to580

be done only once and need not be repeated for every dataset.581

5.2 Experimental Results582

This section assesses the quality of reconstructed results for four583

examples: the teaser scene including a number of diffuse objects584

with specularities, two book scenes (Figs. 2, 10), and a synthetic585

scene that contains translucencies, occlusions, specularities and586

other challenging illumination effects (Fig. 11).587

The scene in Figure 1 contains three objects arranged on three dis-588

tinct distances from the camera. The sensor image shows the effect589

of the random attenuation pattern created by the mask in front of590

the camera. Several views of the reconstructed light field (top row)591

are visualized along with a small mosaic showing all 3 × 3 recon-592

structed light field views (top right). Parallax is visible, as are spec-593

ularities on the bear’s eyes and occlusions between the eye of the594

yellow bird and the blue bear’s hand. The light field can be refo-595

cused by shearing the views and averaging them [Ng 2005] (bottom596

row). From left to right, we see the car in the foreground focused,597

then the blue bear, and finally the yellow bird in the background.598
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Figure 10: Light field reconstruction from prototype camera. The
sensor image (upper left) is optically modulated prior to capture
by a random attenuation mask; using the algorithms described in
this paper, we reconstruct the light field (upper right). While the
individual views of the light field (center row) exhibit slight recon-
struction noise, these artifacts are barely visible in the refocused
images (lower row).

Figure 2 shows a refocused scene containing two books at distinct599

distances in front of the camera. The photograph on the left is fo-600

cused on the front book, while the right image is focused on the rear.601

As visible in these examples, the limited angular resolution of the602

reconstructions, in this case 3× 3 views, introduces a limited depth603

of field for each view corresponding to a finite-sized sub-aperture.604

The image resolution in the refocused images is limited to the depth605

of field of the individual views.606

A single book, slanted in depth, is shown in Figure 10. In addition607

to the captured sensor image (top left) we show a mosaic of the re-608

constructed light field (top right), two of the light field view (center609

row), and two images with synthetic refocus applied (bottom row).610

While slight reconstruction artifacts in the light field views prevail,611

the refocus operation averages all of them and, hence, mitigating612

any such artifacts.613

Finally, in Figure 11 we show a simulation using a povray rendered614

dataset. This result demonstrates that even challenging scenes with615

strong occlusions, specularities, and translucent objects can suc-616

cessfully be reconstructed with the proposed approach. Effects such617

as these are not handled directly using existing light field priors618

such as the dimensionality gap [Levin et al. 2009; Levin and Du-619

rand 2010].620

6 Discussion621

In summary, we present a novel approach to single-shot, resolution-622

preserving light field acquisition. Facilitated by the joint design623

Figure 11: As seen in this simulated reconstruction, our algo-
rithm handles occlusions and translucencies as well as speculari-
ties (Fig. 1) among other effects not captured by previous light field
super-resolution approaches.

of optical light modulation and compressive computational recon-624

struction, our approach has the potential to overcome one of the625

major limiting factors of current light field camera technology: the626

inherent resolution tradeoff. Our technique is the first to explore627

overcomplete dictionaries learned from a database of synthetic light628

fields; we show that these capture the essential building blocks629

of natural light fields and allow for sparser representations and630

higher-quality reconstructions as compared to conventional high-631

dimensional bases used in the compressive sensing literature. Using632

Gaussian Mixture Models, we derive upper bounds for the expected633

reconstruction quality of diffuse scenes at a varying distance to the634

focal plane; this analysis allows for intuitive interpretations of the635

camera’s expected depth of field. Using a prototype camera, we636

demonstrate the practicality of our approach.637

6.1 Benefits and Limitations638

While humble in its initial image quality, we demonstrate the first639

compressive camera architecture that allows for compressive recon-640

structions of real world data. Full parallax, four-dimensional light641

fields are recovered from two-dimensional sensor image. One of642

the key insights of this paper is that mask-based camera designs of-643

fers more flexibility for processing recorded data as aliasing, which644

is critical for compressive reconstructions, is optically preserved.645

Light attenuating masks are less costly than high-quality refractive646

optical elements, more robust to misalignment, and avoid refractive647

errors such as spherical and chromatic aberrations. Furthermore,648

the optical parameters of lenslets mounted on the sensor have to649

match the main lens aperture [Ng et al. 2005], whereas our mask-650

based approach is more flexible in supporting varying main camera651

lenses. In theory, the proposed compressive camera design allows652

for a significant increase in image resolution as compared to both653

lenslet-based systems and previously proposed mask cameras for654

in-focus image regions as well as refocused parts of the scene. The655

key advantage of our approach is the use of overcomplete dictio-656

naries that capture the essence of natural light fields and allow for657

robust sparse reconstructions.658

The proposed systems has the potential to overcome resolution659

limits inherent in current plenoptic camera design; due to lim-660

ited computational resources, current results demonstrate the con-661

cept at a reduced resolution. With the growing availability of662

cloud computing, we hope to significantly increase the size of the663

datasets we can practically process. Currently, processing times664

take about 1 − 2 hours for a light field with moderate resolution665
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(e.g., 256 × 256 × 5 × 5) on a standard workstation. Although666

mask-based camera designs have many advantages over lens arrays,667

they also reduce the optical light transmission. Random attenuation668

patterns, as used in our experiments, practically reduce the image669

brightness by half. Diffraction certainly limits the lower bound of670

mask pixel size. Finally, calibration of the capture setup is critical671

but only needs to be performed once as a pre-processing step.672

6.2 Future Work673

In the future, we plan to explore compressive acquisitions of the674

full plenoptic function, adding temporal and spectral light varia-675

tion to the equation. While significantly increasing the dimen-676

sionality of the dictionary learning and reconstruction problem,677

we believe that exactly this increase in dimensionality will fur-678

ther improve compressibility and sparsity of the underlying sig-679

nal. For this purpose, dynamically changing attenuations patterns680

and programmable spectral transmission as well as more efficient681

dictionary learning and reconstruction routines will have to be ex-682

plored. Another avenue of future work is the exploration of content-683

adaptive sensing. Can optimal attenuation masks or, more gener-684

ally, plenoptic sensing codes be derived for particular materials or685

different scene properties?686

7 Conclusion687

The proposed camera architecture is an integral step toward the “ul-688

timate” camera, which can be argued to be a device capable of cap-689

turing the full plenoptic function, including spatial, angular, and690

temporal light variation as well as the color spectrum, at a high691

resolution with a single image. We believe that the joint design692

of camera optics and compressive computational processing of the693

recorded data is the key to facilitate next-generation camera tech-694

nology; in combination with dictionary learning and reconstruction695

techniques discussed in this paper, compressive computational pho-696

tography paves the road for practical exploitation of the correlations697

between the plenoptic dimensions—the future of plenoptic camera698

technology.699
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CANDÈS, E., AND TAO, T. 2006. Near optimal signal recovery724

from random projections: Universal encoding strategies? IEEE725

Trans. Inf. Theory 52, 12, 5406–5425.726
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