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Course Abstract 
 
Computational photography combines plentiful computing, digital sensors, modern optics, many varieties of 
actuators, probes and smart lights to escape the limitations of traditional film cameras and enables novel imaging 
applications. Unbounded dynamic range, variable focus, resolution, and depth of field, hints about shape, 
reflectance, and lighting, and new interactive forms of photos that are partly snapshots and partly videos, 
performance capture and interchangeably relighting real and virtual characters are just some of the new applications 
emerging in Computational Photography. The computational techniques encompass methods from modification of 
imaging parameters during capture to sophisticated reconstructions from indirect measurements. 
 
We will bypass basic and introductory material presented in earlier versions of this course (Computational 
Photography 2005,6,7) and expand coverage of more recent topics. Emphasizing more recent work in computational 
photography and related fields (2006 or later) this course will give more attention to advanced topics only briefly 
touched before, including tomography, heterodyning and Fourier Slice applications, inverse problems, gradient 
illumination, novel optics, emerging sensors and social impact of computational photography. With this deeper 
coverage, the course offers a diverse but practical guide to topics in image capture and manipulation methods for 
generating compelling pictures for computer graphics and for extracting scene properties for computer vision, with 
several examples. 



 
Speaker Info 
 
Paul Debevec 
Research Associate Professor, USC 
 
Paul Debevec is a research associate professor at the University of Southern California and the associate director of 
graphics research at USC's Institute for Creative Technologies. Debevec's Ph.D. thesis (UC Berkeley, 1996) 
presented Façade, an image-based modeling and rendering system for creating photoreal architectural models from 
photographs. Using Facade he led the creation of virtual cinematography of the Berkeley campus for his 1997 film 
The Campanile Movie whose techniques were used to create virtual backgrounds in the 1999 film The Matrix. 
Subsequently, Debevec developed techniques for illuminating computer-generated scenes with real-world lighting 
captured through high dynamic range photography, demonstrating new image-based lighting techniques in his films 
Rendering with Natural Light (1998), Fiat Lux (1999), and The Parthenon (2004); he also led the design of HDR 
Shop, the first high dynamic range image editing program. At USC ICT, Debevec has led the development of a 
series of Light Stage devices for capturing and simulating how objects and people reflect light, recently used to 
create realistic digital actors in films such as Spider Man 2 and Superman Returns. He is the recipient of ACM 
SIGGRAPH's first Significant New Researcher Award and a co-author of the 2005 book High Dynamic Range 
Imaging from Morgan Kaufmann. 
 
 
 
Ramesh Raskar 
Associated Professor, Media Lab, MIT 
 
Ramesh Raskar joined the Media Lab in spring 2008 as head of the Camera Culture research group. He was a a 
Senior Research Scientist at MERL. The group focuses on developing tools to help us capture and share the visual 
experience. This research involves developing novel cameras with unusual optical elements, programmable 
illumination, digital wavelength control, and femtosecond analysis of light transport, as well as tools to decompose 
pixels into perceptually meaningful components. He is a member of the ACM and IEEE. 
 
Jack Tumblin 
Associate Professor, EECS Dept. Northwestern University 
 
Jack Tumblin is an Associate Professor of Computer Science at Northwestern University. His interests include novel 
photographic sensors and lighting devices to assist museum curators in historical preservation, computer graphics 
and visual appearance, and image-based modeling and rendering. During his doctoral studies at Georgia Tech and 
post-doc at Cornell, he investigated tone-mapping methods to depict high-contrast scenes. His MS in Electrical 
Engineering (December 1990) and BSEE (1978), also from Georgia Tech, bracketed his work as co-founder of 
IVEX Corp., (>45 people as of 1990) where he designed flight simulators. He was co-organizer of Computational 
Photography courses at Siggraph 2005 and 2006.  He was an Associate Editor of ACM Transactions on Graphics 
2001-2006, and holds 9 patents. 
 



 
 
 
 
 
 
 
 
 
 
 
Schedule 
 
 
Module 1: 90 minutes 
  9:00:  A.1  Introduction and Overview     (Raskar, 15 minutes) 
  9:15:  A.2  Concepts in Computational Photography   (Tumblin, 15 minutes)   
  9:30:  A.3  Optics: Computable Extensions    (Raskar, 30 minutes)  
10:00:  A.4  Sensor Innovations    (Tumblin, 30 minutes) 
10:30:  Q & A      (5 minutes) 
  
10:35:  Break: 25 minutes 
  
Module 2: 90 minutes 
11:00:  B.1  Illumination As Computing   (Debevec, 25 minutes)  
11:25:  B.2  Scene and Performance Capture   (Debevec, 20 minutes) 
11:45:  B.3  Image Aggregation & Sensible Extensions (Tumblin, 20 minutes) 
12:05:  B.4  Community and Social Impact    (Raskar, 20 minutes) 
12:25:  B.4 Summary and Discussion, Q&A    (All, 10 minutes)  
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Ives’ Camera     

Patented 1903
Array of pinholes 
near image plane



© 2007 Marc Levoy

Devices for recording light fields
(using geometrical optics)

small
baseline

big
baseline

• handheld camera [Buehler 2001]

• camera gantry [Stanford 2002]

• array of cameras [Wilburn 2005]

• plenoptic camera [Ng 2005]

• light field microscope [Levoy 2006]
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Digital Refocusing using 
Light Field Camera

125µ square-sided microlenses



MERL, 
Northwestern Univ.

Mask-Enhanced Cameras: Heterodyned Light Fields & Coded Aperture Veeraraghavan, Raskar, Agrawal, 
Mohan & Tumblin

High performance imagingHigh performance imaging
using large camera arraysusing large camera arrays

Bennett Wilburn, Neel Joshi, Vaibhav Vaish, Eino-Ville Talvala, Emilio Antunez,
Adam Barth, Andrew Adams, Mark Horowitz, Marc Levoy

(Proc. SIGGRAPH 2005)
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Coding and Modulation in Camera Using MasksCoding and Modulation in Camera Using Masks
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MERL, 
Northwestern Univ.

Mask-Enhanced Cameras: Heterodyned Light Fields & Coded Aperture Veeraraghavan, Raskar, Agrawal, 
Mohan & TumblinCaptured Blurred 

Photo



MERL, 
Northwestern Univ.

Mask-Enhanced Cameras: Heterodyned Light Fields & Coded Aperture Veeraraghavan, Raskar, Agrawal, 
Mohan & Tumblin

Refocused on Person



Compound Lens of Dragonfly











Wavefront Coding using Cubic Phase Plate

ʺWavefront Coding: jointly optimized optical and digital imaging systems“, 
E. Dowski, R. H. Cormack and S. D. Sarama , 
Aerosense Conference, April 25, 2000



Depth Invariant Blur

Conventional System  Wavefront Coded System 



Varioptic Liquid Lens: Electrowetting

The Eye’s Lens



Varioptic Liquid Lens

(Courtesy Varioptic Inc.)



““Origami LensOrigami Lens””: Thin Folded Optics (2007): Thin Folded Optics (2007)

“Ultrathin Cameras Using Annular Folded Optics, “
E. J. Tremblay, R. A. Stack, R. L. Morrison, J. E. Ford
Applied Optics, 2007 ‐ OSA 
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OriginalOriginal Compressed ImagingCompressed Imaging

4096 Pixels
1600 Measurements

(40%) 

65536 Pixels
6600 Measurements

(10%) 
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Diffuse optical tomographyDiffuse optical tomography

[Arridge 2003]

female breast with
sources (red) and
detectors (blue)

absorption
(yellow is high)

scattering
(yellow is high)

•• assumes light propagation by multiple scatteringassumes light propagation by multiple scattering
•• model as diffusion processmodel as diffusion process
•• inversion is noninversion is non--linear and illlinear and ill--posedposed
•• solve using optimization with regularization solve using optimization with regularization 

(smoothing)(smoothing)



Optical Projection Optical Projection 
Tomography (OPT)Tomography (OPT)

[Sharpe 2002]
[Trifonov 2006]



Coded aperture imagingCoded aperture imaging

(from Zand)

•• optics cannot bend Xoptics cannot bend X--rays, so they cannot be focusedrays, so they cannot be focused
•• pinhole imaging needs no optics, but collects too little pinhole imaging needs no optics, but collects too little 

lightlight
•• use multiple pinholes and a single sensoruse multiple pinholes and a single sensor
•• produces superimposed shifted copies of sourceproduces superimposed shifted copies of source



Example using 2D imagesExample using 2D images
(Paul Carlisle)(Paul Carlisle)

* =



Computational 
Illumination



‘‘SmarterSmarter’’ Lighting EquipmentLighting Equipment

What Parameters Can We Change ?What Parameters Can We Change ?



ImageImage--Based Actual ReBased Actual Re--lightinglighting

Film the background in Milan,Film the background in Milan,
Measure incoming light,Measure incoming light,

Light the actress in Los AngelesLight the actress in Los Angeles

Matte the backgroundMatte the background

Matched LA and Milan lighting.Matched LA and Milan lighting.

Debevec et al., SIGG2001
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Depth Map
Completion

Acquired Image
(with Francesc Moreno and Peter Belhumeur 07)



Fast Multispectral Imaging

(with J. Park, M. Lee, M. Grossberg)
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A.2 Concepts in Computational Photography 
(Tumblin, 15 minutes)

•The ‘Photographic Signal’
•What is the ideal photograph?
•Ray-based versus pixel-based 
concepts
•Understanding dimensionality of 
rays outside and inside the 
camera



2

Module 1: 90 minutes

9:00:  A.1  Introduction and Overview (Raskar, 15 minutes)
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10:30:  Q & A (5 minutes)
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12:05:  B.4  Community and Social Impact (Raskar, 20 minutes)

12:25:  B.4 Summary and Discussion, Q&A (All, 10 minutes) 
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2D Image:2D Image:
‘Instantaneous’‘Instantaneous’
Intensity Map Intensity Map 

Light + 3D Scene:Light + 3D Scene:
Illumination, Illumination, 

shape, movement, shape, movement, 
surface BRDF,…  surface BRDF,…  

‘‘Center of Center of 
Projection’Projection’

(P(P33 or Por P22 Origin)Origin)

RaysRays

RaysRays

We still hang on to the mistaken notion that we’re ‘copying’ the image formed 
by the lens to the image formed by the display, an intrinsically 2D process to 
approximate the appearance of a 3D scene.

We’ve confused ‘the PROCESS of photography with its PURPOSE and 
GOALS.

At first, it was a wonder we could do it at all:
Now it’s a wonder how easily we take (bad) photos,

how many choices and adjustments we can 
make to our cameras to make them better, but even more importantly, how 
many OTHER CHOICES we have besides a lens and a box holding a 
sensitized plate.  We have many other choices for image formation 
(tomography, coded image methods, structured lighting, coded aperture, etc. 
etc.) for lighting (projectors, movable sources, multispectral sources, 
tuneable lasers, flash, strobe, reflectors, Schlieren retro-reflectors), and for 
display (interactive devices; light-sensitive displays, HDR, etc.)

. 
Yet look at how much of high-quality photography is dominated by 
overcoming device limitations, artful choices of lighting, and adjusting the 
myriad settings our cameras and digital darkrooms offer to us.
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scenescene

displaydisplay

Scene Scene 
LightLight
IntensitiesIntensities

DisplayDisplay
Light Light 
IntensitiesIntensities

‘‘Pixel values’Pixel values’
(scene intensity? display intensity?(scene intensity? display intensity?
perceived intensity? ‘blackness/whiteness’ ?)perceived intensity? ‘blackness/whiteness’ ?)

displaydisplay

Perfect Copy : Perfect Copy : Perfect Photograph?Perfect Photograph?

Digital Photography is almost entirely a matter of copying---just like film!
The underlying assumption is that we copy a 2D scene to a 2D display, and 
if we do it accurately, we’re done.
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‘‘FilmFilm--Like’ PhotographyLike’ Photography
Ideals, Design Goals:Ideals, Design Goals:

–– ‘Instantaneous’ light measurement…‘Instantaneous’ light measurement…
–– Of focal plane image behind a lens.Of focal plane image behind a lens.
–– Reproduce those amounts of light.Reproduce those amounts of light.

Implied:Implied:
““What we see is  What we see is  ≅≅

focalfocal--plane intensities.plane intensities.””
well, nowell, no……we see we see muchmuch more!more!

(seeing is (seeing is deeplydeeply cognitive)cognitive)

A common misconception:



6

Our Definitions Our Definitions 
•• ‘‘FilmFilm--like’ Photography:like’ Photography:

Displayed image Displayed image ≅≅ sensor imagesensor image

•• ‘Computational’ Photography:‘Computational’ Photography:
Displayed image Displayed image ≠≠ sensor imagesensor image

≅≅ visually meaningful visually meaningful 
scene contents scene contents 

AA more expressive & controllable displayed result,more expressive & controllable displayed result,
transformed, merged, decoded data fromtransformed, merged, decoded data from
computecompute--assisted assisted sensors, lights, optics, displayssensors, lights, optics, displays
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What What isis Photography?Photography?

Safe answer:Safe answer:

A wholly new,A wholly new,
expressive medium expressive medium 
(ca. 1830s)(ca. 1830s)

•• Manipulated display of what we think, feel, want, …Manipulated display of what we think, feel, want, …
–– Capture a memory, a visual experience in tangible formCapture a memory, a visual experience in tangible form
–– ‘painting with light’; express the subject’s visual essence‘painting with light’; express the subject’s visual essence
–– “Exactitude is not the truth.“Exactitude is not the truth.” ” ––Henri MatisseHenri Matisse

It’s
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What What isis Photography?Photography?
•• A ‘bucket’ word: a neat container for messy notionsA ‘bucket’ word: a neat container for messy notions

(e.g.  aviation, music, comprehension)(e.g.  aviation, music, comprehension)

•• A record of what we see,A record of what we see,
or would like to see,or would like to see,
in tangible form.in tangible form.

•• Does ‘film’ photography Does ‘film’ photography 
always capture it? always capture it? Um, no...

•• What do we see?What do we see?
Harold ‘Doc’ Edgerton 1936Harold ‘Doc’ Edgerton 1936

Um, er.  This isn’t
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Film or PixelsFilm or Pixels

Humans see basic, partial information about boundaries, shape, occlusion, 
lighting, shadows and texture, with few discernible difficulties with high 
dynamic range, resolution, or noise, lighting, or exposure. 
This basic data is usually difficult or impossible to reliably extract from pixels. 
But why require extraction? Instead, we should encode this information as 
part of the image itself. Towards this goal, Bixels offer a straightforward way 
to represent intensity and gradient discontinuities within images with subpixel
precision, at a fixed cost an additional 8 bits per pixel.

‘BLACKEST OF BLACK BOXES’
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What we would like is something that more directly describes the visual 
experience, 
--something that, with some computing, would allow a computer-equipped 
display to construct a display image,

one that, based on the viewing conditions, has the best chance of evoking 
the desired perceptions of the original scene.
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Photographic Signal: Pixels RaysPhotographic Signal: Pixels Rays
•• Core ideas are ancient, simple, seem obvious:Core ideas are ancient, simple, seem obvious:

–– Lighting: Lighting: ray sourcesray sources
–– Optics:Optics: ray bending/folding devicesray bending/folding devices
–– Sensor:Sensor: measure lightmeasure light
–– Processing:Processing: assess itassess it
–– Display:Display: reproduce itreproduce it

•• Ancient Greeks:Ancient Greeks:
‘eye rays’ wipe the world‘eye rays’ wipe the world
to feel its contents…to feel its contents…

http://http://www.mlahanas.de/Greeks/Optics.htmwww.mlahanas.de/Greeks/Optics.htm

GREEKS:  Photog. SEEMS obvious because what we gather can be 
described by ray geometry—if we think of our retina as a sensory 
organ, we ‘WIPE’ it across the scene, as if light let our retina ‘reach 
out’ and touch’ what is around us.  So let’s look further into that:; lets 
consider light as a way of exploring our surroundings without contact, 
a magical way of transporting the the perceivable properties of our 
surroundings into our brain.  EVEN THE GREEKS knew this idea 
well—they used RAYS in exploration of vision, and described how 
rays going through a small aperture mapped angle to position…
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The Photographic Signal PathThe Photographic Signal Path

Claim:Claim: Computing can improve Computing can improve everyevery stepstep

Light SourcesLight Sources SensorsSensors Data Types,Data Types,
ProcessingProcessing

DisplayDisplay
RaysRays

OpticsOpticsOpticsOptics

SceneScene
RaysRays

EyesEyes

We tend to think of photography as capturing light, not visual impressions.  
BUT VISUAL IMPRESSIONS DEPEND ON EVERY STAGE OF ‘The 
Photographic Signal Path’

If we REPLACE 2D PIXELS WITH NOTIONS OF MEANINGFUL 
CHANGES IN SETS OF RAYS, then ..

remember LIGHT IS LINEAR…
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Review: How many Rays in a 3Review: How many Rays in a 3--D Scene?D Scene?

A 4A 4--D set of infinitesimal members.  D set of infinitesimal members.  
Imagine:Imagine:

–– Convex Enclosure of a 3D scene Convex Enclosure of a 3D scene 
–– InwardInward--facing ray camera at every surface pointfacing ray camera at every surface point
–– Pick the rays you need for ANY camera outside.Pick the rays you need for ANY camera outside.

2D surface of cameras,2D surface of cameras,
2D 2D ray set for each camera,ray set for each camera,
4D set of rays.4D set of rays.

(Levoy et al. SIGG’96)(Levoy et al. SIGG’96) ((GortlerGortler et al. ‘96)    et al. ‘96)    

++



14

44--D Light Field / D Light Field / LumigraphLumigraph
Measure all the Measure all the outgoingoutgoing light rays.light rays.
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44--D Illumination FieldD Illumination Field
Same Idea: Measure all the Same Idea: Measure all the incomingincoming light rayslight rays
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4D x 4D = 84D x 4D = 8--D Reflectance FieldD Reflectance Field

Ratio:Ratio: RRijij = (outgoing = (outgoing rayrayii) / (incoming ) / (incoming rayrayjj))



17

Because Ray Because Ray ChangesChanges Convey AppearanceConvey Appearance

•• These rays   +  all these rays  give me…These rays   +  all these rays  give me…

•• MANY more usefulMANY more useful
details I can examine…details I can examine…
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Missing:Missing:
Expressive Time ManipulationsExpressive Time Manipulations

What other waysWhat other ways
better better revealreveal
appearanceappearance to to 
human viewers?human viewers?

(Without direct shape (Without direct shape 
measurement? )measurement? )

Time for space wiggle. Time for space wiggle. Gasparini, 1998.

Can you understandCan you understand
this shape better?this shape better?
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Missing:Missing:
Viewpoint Freedom Viewpoint Freedom 

““MultipleMultiple--CenterCenter--ofof--Projection ImagesProjection Images”” RademacherRademacher, P, Bishop, G.,  SIGGRAPH '98, P, Bishop, G.,  SIGGRAPH '98

Occlusion often hides visually important features that help us understand 
what we see. 
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Missing:Missing: Interaction…Interaction…
Adjust everything:Adjust everything: lighting, pose, viewpoint, focus, FOV,…lighting, pose, viewpoint, focus, FOV,…

Winnemoller EG 2005: after Malzbender, SIGG2001 
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MildMild Viewing & Lighting Changes; Viewing & Lighting Changes; 
(is true 3D shape necessary?)(is true 3D shape necessary?)

ConvicingConvicing visual appearance:visual appearance:
Is Accurate Depth really necessary? Is Accurate Depth really necessary? 

a few good 2a few good 2--D images may be enough…D images may be enough…

““Image jets, Level Sets, Image jets, Level Sets, 
and Silhouettes“and Silhouettes“
Lance Williams, 
talk at Stanford, 1998.
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Future PhotographyFuture Photography Novel  IlluminatorsNovel  Illuminators

Novel CamerasNovel Cameras

SceneScene: : 8D Ray Modulator8D Ray Modulator

Generalized Generalized 
SensorsSensors

GeneralizedGeneralized
ProcessingProcessing 4D Ray 4D Ray 

SamplerSampler

Ray Ray ReconstructorReconstructor

General Optics:General Optics:
4D Ray Benders4D Ray Benders

Recreated 4D Light fieldRecreated 4D Light field

LightsLights
ModulatorsModulators

4D Incident Lighting4D Incident Lighting
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Generalized DisplayGeneralized Display

Novel DisplaysNovel Displays

THERE ARE  AT LEAST 4 blocks that we can generalize and improve:
lighting, optics, sensors, processing, (display: light sensitive display)
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‘‘The Ideal Photographic Signal’The Ideal Photographic Signal’
I CLAIM IT IS:I CLAIM IT IS:
All Rays? Some Rays? All Rays? Some Rays? ChangesChanges in Some Rays in Some Rays 

Photographic ray space is vast and redundantPhotographic ray space is vast and redundant
>8 dimensions:  4D view, 4D light, time, >8 dimensions:  4D view, 4D light, time, λλ,,

?   Gather only ‘?   Gather only ‘visually significantvisually significant’ ray changes  ?’ ray changes  ?

? What rays should we measure ? ? What rays should we measure ? 
? How should we combine them ?? How should we combine them ?
? How should we display them   ?? How should we display them   ?

Rays are an infinitesimal discrete, computed abstraction—they match what we 
perceive (an infinitely sharp world of disjoint objects), and they also escape a great 
deal inconvenient physics that  entangles photography in practical difficulties– They 
ignore rarely-perceived effects (diffraction, noise, fluorescence) that are 
computationally MUCH more difficult.

ASIDE:  Rays largely abandoned in modern optics & lens design—replaced 
by `Fourier Optics’ methods that properly account for diffraction effects, 
coherent (laser) light and nearly all wave propagation effects (see the classic 
textbook by Goodman, 1968).   WHY USE Rays? They are ENOUGH…

Up until the time of machine-assisted image making, none of these efx of physics 
were a problem—human perception guided image making instead. 
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Beyond ‘FilmBeyond ‘Film--Like’ PhotographyLike’ Photography
Call itCall it ‘Computational Photography’:‘Computational Photography’:

To make ‘meaningful ray changes’To make ‘meaningful ray changes’ tangible,tangible,

•• OpticsOptics can do more…can do more…
•• Sensors Sensors can do more… can do more… 
•• Light SourcesLight Sources can do more…can do more…
•• ProcessingProcessing can do more…can do more…

by applying lowby applying low--cost storage, cost storage, 
computation, and control.  computation, and control.  
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In this presentation I’ll be speaking about some techniques that use Computational 
Photography to measure aspects of the lighting and reflectance of real scenes.  
There’s been a lot of recent work in this area, and I’ll only have a chance to give an 
overview of some of the projects, but hopefully what I have to say will give a 
reasonably clear path through a significant variety of material which will serve as a 
good primer to explore this area further.
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Measuring Geometry with Light:
3D stripe scanning
Measuring Geometry with Light:
3D stripe scanning

laserlaser

Image from the Digital Michelangelo Project
http://graphics.stanford.edu/projects/mich/

sensorsensor

The most traditional 3D scanners use a laser stripe which scans over the object.  
That’s why we traditionally 3D scene capture as scanning, even if nothing actually 
scans across the scene.  The laser hits the object and is imaged back onto a sensor, 
forming a triangle.  The optics of the sensor are calibrated so that triangulation 
allows an entire line of scene points to be constructed in 3D.  The sensors (such as 
this one custom-made by Cyberware) are usually designed so that the laser peak is 
detected for each pixel column in hardware, so that the images do not need to be 
processed for each laser stripe position.

Without such peak detection in hardware, this isn’t very practical since you have to 
take a whole image every time the laser moves.  What if you would prefer to build 
your own scanner with just a video projector and a video camera?
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Projector Camera

Portable 
Computer

Computational Illumination for 3D scanningComputational Illumination for 3D scanning

It turns out this isn’t that difficult, and you don’t even need to take all that many pictures!

Many “computational illumination” techniques make use of video projectors to emit various 
types of coded illumination.  A classic application of coded illumination is for 3D scanning 
using structured light patterns.

Now, as we all know scenes don’t just consist of geometry, they also consist of reflectance 
properties and illumination.
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Gray code patternsGray code patternsGray code patterns

Binary (on/off) pattern
• Unique for every column

Binary (on/off) pattern
• Unique for every column

Column 5Single Pixel:

Chris Tchou. Image-Based Models: Geometry 
and Reflectance Acquisition Systems. 
Master's Thesis, University of California at 
Berkeley, December 2002.

Chris Tchou. Image-Based Models: Geometry 
and Reflectance Acquisition Systems. 
Master's Thesis, University of California at 
Berkeley, December 2002.
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Gray code patternsGray code patternsGray code patterns

Binary (on/off) pattern
• Unique for every column
• Project inverse patterns to 

neglect indirect illumination
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• Unique for every column
• Project inverse patterns to 

neglect indirect illumination
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Chris Tchou. Image-Based Models: Geometry 
and Reflectance Acquisition Systems. 
Master's Thesis, University of California at 
Berkeley, December 2002.
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Gray code patternsGray code patternsGray code patterns

Binary (on/off) pattern
• Unique for every column
• Project inverse patterns to 

neglect indirect illumination

Robust to blur

Binary (on/off) pattern
• Unique for every column
• Project inverse patterns to 

neglect indirect illumination

Robust to blur

Chris Tchou. Image-Based Models: Geometry 
and Reflectance Acquisition Systems. 
Master's Thesis, University of California at 
Berkeley, December 2002.

Chris Tchou. Image-Based Models: Geometry 
and Reflectance Acquisition Systems. 
Master's Thesis, University of California at 
Berkeley, December 2002.
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Correspondences 
indicate 3D geometry
Correspondences Correspondences 
indicate 3D geometryindicate 3D geometry

Finding out which camera pixels correspond to which projector pixels produces a 
correspondence map, which can be turned into a 3D point cloud or geometric mesh using 
triangulation.  Unfortunately, the geometry can appear aliased to the discretization of pixel 
coordinates.
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Correspondance Map
Sub-Pixel Accuracy

CorrespondanceCorrespondance MapMap
SubSub--Pixel AccuracyPixel Accuracy

Much smoother geometry can be obtained by slightly blurring the projector and 
analyzing the grey levels at pixel boundaries, as described in Chris Tchou’s
Master’s thesis.
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Depth from projector defocus:
Moreno-Noguer, Belhumeur, and Nayar. Active 
Refocusing of Images and Videos.  SIGGRAPH 
2007. 

Depth from projector defocus:
Moreno-Noguer, Belhumeur, and Nayar. Active 
Refocusing of Images and Videos.  SIGGRAPH 
2007. 

optical setup

pattern with 
dots

dots 
removed

depth at 
dots

segmented 
depth

far
n
ear

m
ed

iu
m

refocusing

Here’s a computational illumination technique for obtaining depth using just one 
video projector pattern.  This SIGGRAPH 2007 paper from EPFL and Columbia 
aligns a video projector and a video camera using a beam splitter.  They then project 
a grey pattern into the scene with a grid of white dots.  The projector is focused 
behind everything, so the dots are the sharpest (and smallest) when they hit further 
away objects and larger and appear as larger out-of-focus circles when they hit 
nearer objects.  This gives a depth estimate at each dot position, which can be 
turned into a depth estimate at each camera pixel based on region segmentation.  
The dots can also be removed from the digitally projected image since their 
locations are known.

This computed depth map does not have a great deal of depth fidelity (the person’s 
face reads as a flat card), but it’s enough to actively refocus the otherwise in-focus 
camera image.
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The Bidirectional Reflectance 
Distribution Function (BRDF)
The Bidirectional Reflectance 
Distribution Function (BRDF)

Nicodemus et al 1977, Geometric considerations 
and nomenclature for reflectance.

Nicodemus et al 1977, Geometric considerations 
and nomenclature for reflectance.

ρ(θi, φi, θr, φr)
The BRDF is the ratio of reflected light to incident light for any 
incident and radiant light directions.

In 3D using ‘bv’

But scanning 3D geometry with computational illumination techniques is not the main topic 
today.  Instead, we’re more interested capturing the reflectance properties of objects.

When we traditionally think of reflectance, we think of diffuse and specular components 
and the various reflectance models which have been proposed for them, all of which 
generalize to what are known as Bidirectional Reflectance Distribution Functions, or 
BRDFs.  These say for any incident direction of illumination on the hemisphere, what the 
outgoing distribution of reflected light over the hemisphere is. Mirrors, which simply 
reflect rays, and diffuse Lambertian surfaces, have particularly simple forms of the BRDF.
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Surface reflectanceSurface reflectance
(opaque: BRDF)

Diagram courtesy of Steve Marschner

Here’s a nice graph of how a BRDF is typically parameterized courtesy of Steve 
Marschner.
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Gonioreflectometry for 
BRDF Measurement
Gonioreflectometry for 
BRDF Measurement

Stanford 
Spherical 
Gantry

Li, Foo, Torrance, and Westin. 
Automated three-axis 
gonioreflectometer for computer 
graphics applications.
Proc. SPIE 5878, Aug. 2005.

Infrared Laser Gonioreflectometer
Instrument at NIST
Infrared Laser Gonioreflectometer
Instrument at NIST

Measuring BRDF’s of real materials traditionally requires complex equipment with
well-calibrated moving parts and lots and lots of measurements to capture the 4D 
BRDF of a reflectance sample.  Here are a few successful examples of from 
academia and government.
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Ghosh, Heidrich, Achutha, O'Toole.  BRDF 
Acquisition with Basis Illumination.  ICCV 2007.
Ghosh, Heidrich, Achutha, O'Toole.  BRDF 
Acquisition with Basis Illumination.  ICCV 2007.

This project from UBC captures BRDFs using a small video projector, a video 
camera, and custom reflective optics to illuminate and image a material sample over 
(most of) the hemisphere with no moving parts.  That makes measurement 
potentially much faster.  More importantly, the authors do not just project point 
samples of incident illumination onto the scene.  Instead, they project basis 
illumination functions, which directly measure the surface’s response to basis 
illumination conditions.  This allows the full BRDF, as projected onto a set of Zonal 
basis functions, to be captured in far fewer images than exhaustive BRDF 
measurement.

From: http://www.cs.ubc.ca/labs/imager/tr/2007/BRDFAcquisition/ :

The distinguishing characteristic of our BRDF measurement approach is that it captures the response of the 
surface to illumination in the form of smooth basis functions, while existing methods measure impulse response 
using thin pencils of light that approximate Dirac peaks. For this concept to be practical, we require an optical 
setup that allows us to simultaneously project light onto the sample from a large range of directions, and 
likewise to measure the reflected light distribution over a similarly large range of directions. Developing such 
optics also has the advantage that no moving parts are required, which is one reason for the speed of our 
acquisition. In this work, we choose a spherical zone of directions as the acquisition region for both incident and 
exitant light directions. Spherical zones have several advantages over regions of other shape. First, they allow us 
to develop basis functions that align nicely with the symmetries present in many BRDFs, thus minimizing the 
number of basis functions required to represent a given BRDF. Alignment also simplifies extrapolation of data 
into missing regions. Second, a zonal setup allows us to design optics that could, in principle, cover over 98% of 
the hemisphere, with only a small hole near the zenith, where BRDF values are usually smoother compared to 
more tangential directions. 
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Measured BRDF’s

This technique leverages the fact that BRDF’s can be represented as a sum of 
relatively simple basis functions.  The projector emits a set of Zonal Basis Function 
Illumination conditions, and the camera picks up the result of this light when it is 
reflected.  As a result, BRDF models can be fit to the data.  Here are some of the 
BRDFs which were captured with relatively few measurements.
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object

Now, suppose that we want to capture how a whole object reflects light, instead of 
just a material sample.
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Objects, photometrically, are simply volumes of space which transform a field of 
incident illumination …
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… into a field radiant illumination, reflected back from the object.
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Ri( ui ,vi ,θi ,φi )Ri( ui ,vi ,θi ,φi )
incident light fieldincident light field

We know that incident illumination can be parameterized as a 4D incident light 
field.  To do this we conceptually enclose the object within a convex surface such as 
a sphere, and we use (u,v) to indicate the position on the surface where the light 
enters, and (theta,phi) to indicate the direction in which it enters.
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Rr ( ur ,vr ,θr ,φr )Rr ( ur ,vr ,θr ,φr )Ri( ui ,vi ,θi ,φi )Ri( ui ,vi ,θi ,φi )
incident light fieldincident light field radiant light fieldradiant light field

The radiant light can be described similarly as a radiant light field.  It can be 
parameterized the same way, except we look at how light is leaving the surface that 
surrounds the object.
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The Reflectance FieldThe Reflectance Field

R ( ui ,vi ,θi ,φi ; ur ,vr ,θr ,φr )R ( ui ,vi ,θi ,φi ; ur ,vr ,θr ,φr )
8D reflectance field8D reflectance field

Since it is linear, we can represent as a matrixSince it is linear, we can represent as a matrix

We can thus characterize how an object reflects light as an eight-dimensional 
function called the reflectance field.  For any incident ray of light, it encodes the 4D 
radiant light distribution resulting from the object being illuminated by that ray.  
The reflectance field thus contains the information necessary to rendering the object 
under any illumination condition, from environmental to spatially-varying lighting, 
and seen from any viewpoint.

The reflectance field’s form is similar to that of the BRDF, and it’s almost as if we 
have promoted the BRDF from characterizing light reflection at a point to 
characterizing light transport into and out of a region of space.  The reflectance field 
in fact has the same basic form as the BSSRDF, which represents how light diffuses 
through an inhomogeneous translucent surface such as skin.  However, the surface 
upon which light impinges is not assumed to be coincident with the actual surface of 
the material.

Since light is linear, the radiant distribution of any two simultaneous incident rays is 
the sum of the distributions of the individual rays.  This means that the reflectance 
field is linear, and thus its transport of light can be represented as a matrix operation 
from a vector representing the incident light field to a vector representing the 
radiant light field.  This is sometimes called the transport matrix.



SIGGRAPH 2008 Class: Computational Photography
Debevec: Illumination as Computing / Scene & Performance Capture

August 2008 22

Reflectance Field
Storage Requirements
Reflectance Field
Storage Requirements

360 x 180 x 180 x 180 x 360 x 180 x 180 x 180

= 4.4e18  measurements

x 6 bytes/pixel (in RGB 16-bit)

= 26 exabytes (billion GB)

= 82 million 300GB hard drives

(41 million if we exploit Helmholz Reciprocity)

360 x 180 x 180 x 180 x 360 x 180 x 180 x 180

= 4.4e18  measurements

x 6 bytes/pixel (in RGB 16-bit)

= 26 exabytes (billion GB)

= 82 million 300GB hard drives

(41 million if we exploit Helmholz Reciprocity)

R ( ui , vi , θi , φi ; ur , vr , θr , φr )R ( ui , vi , θi , φi ; ur , vr , θr , φr )

Compared to BRDF’s, the reflectance field is even more daunting to capture and store 
exhaustively.
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A 14D reflectance field described in:

Paul Debevec. Virtual Cinematography: Relighting through Computation.  IEEE 
Computer Special Issue on Computational Photography, August 2006.

Adding Stokes parameters for the indicent and radiant rays to characterize 
polarization would expand the dimensionality even further.

The reflectance field can even be considered more generally.  Parameters (on both 
the incident and radiant rays) for time, wavelength, and 3D position yield a 14D 
function.  Adding Stokes parameters for the incident and radiant rays to characterize 
polarization would expand the dimensionality even further.
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R ( ui ,vi ,θi ,φi ; ur ,vr ,θr ,φr )R ( ui ,vi ,θi ,φi ; ur ,vr ,θr ,φr )

4D Slices of the 
8D Reflectance 
Field

4D Slices of the 
8D Reflectance 
Field

distant
illumination

single 
camera

4D reflectance field4D reflectance field

More often, we actually want to simplify reflectance the consideration of the 
reflectance field.  It is often reduced to a 4D function wherein the viewpoint is fixed 
at a particular camera location, and rays of light are assumed to emanate from far 
away from the object.  This precludes recording the effects of spatially-varying 
illumination, such as dappled light or partial shadow.
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4D Reflectance 
Field
4D Reflectance 
Field

illumination

camera

4D reflectance field4D reflectance field
R ( θi ,φi ; ur ,vr )R ( θi ,φi ; ur ,vr )

In this form, the coordinates on the surface of the reflectance field has a one-to-one 
relationship with camera pixels, so (u,v) is usually thought of as the particular 
camera pixel viewing the radiant illumination.
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4D Reflectance 
Field
4D Reflectance 
Field

illumination

camera

4D reflectance field4D reflectance field
R ( θi ,φi ; ur ,vr )R ( θi ,φi ; ur ,vr )

Since it is easier to capture, this 4D version is often the preferred form of 
reflectance field capture for human subjects.
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Time-Varying 
4D Reflectance 
Field

Time-Varying 
4D Reflectance 
Field

illumination

camera

5D5D
R ( θi ,φi , t ; ur ,vr )R ( θi ,φi , t ; ur ,vr )

Of course, people move, so recording a time-varying 4D reflectance field is of 
interest.
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Light Stage 1Light Stage 1

Debevec, Hawkins, 
Tchou, Duiker, Sarokin, 
and Sagar.  Acquiring 
the Reflectance Field 
of a Human Face.  
SIGGRAPH 2000.

Debevec, Hawkins, 
Tchou, Duiker, Sarokin, 
and Sagar.  Acquiring 
the Reflectance Field 
of a Human Face.  
SIGGRAPH 2000.

Light Stage 1 was designed to capture 4D reflectance fields of human faces in a tractable 
amount of time with low-cost equipment, with relatively high lighting resolution.
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Light Stage 4D Reflectance FieldLight Stage 4D Reflectance Field

Spinning the light around in a spiral over the course of minute yields images of the face 
illuminated in nearly 2,000 lighting conditions.  Here we see a sub-sampled version of such 
a dataset – about 1/16th of the total number of images acquired.

The data shows the face lit from every direction that light can come from.  Technically, the 
light is always just 5 feet away, but since the head is small we assume that this represents 
the response to a distant lighting environment.  It shows what the fact would look lik with a 
unit intensity white light source from every (theta, phi) direction.

If we want to show the face under a different lighting environment, we first need to 
resample the lighting environment to be in the same coordinate space and lighting 
resolution as the facial reflectance field dataset.  You can see that at the bottom of this slide.
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Light Stage 4D Reflectance FieldLight Stage 4D Reflectance Field

By multiplying the lighting and reflectance datasets together, we get a mosaic of images 
where each face has been tinted to be the color and intensity of the illumination coming 
from that direction in the environment.  For example, the faces in the center left of the 
mosaic are bright and yellow since there is bright and yellow light coming from that 
direction in the environment.

Essentially, we have lit the face by the HDR lighting environment one piece of the 
environment at a time.  To show the face in the entire environment at once, we simply need 
to add all of these images together.
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Adding all the images together, since light is additive, yields an image of the person in the 
novel lighting environment.  It’s even easy to change the lighting environment!
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Relighting ResultsRelighting Results

Here are four other lighting environments from various light probe images.
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Reflectance Functions Reflectance Functions Ri( ui ,vi ,θi ,φi )Ri( ui ,vi ,θi ,φi )

It is informative to also look at the transpose of the 4D data which we just saw as a 
2D grid of faces.  If you pick a particular pixel on the face, we have recorded about 
2000 pixel values for it according to the incident lighting direction.  These can be 
shown in a latitude-longitude 2D image representation.  We call these 2D pixel 
maps reflectance functions, because they encode how a given reflects light from any 
possible incident direction.

Reflectance functions begin to look like slices of the facial pixel BRDFs, since they 
include specular lobes and diffuse lobes of reflectance.  But they also include non-
local reflectance effects such as indirect illumination, self-shadowing, and 
subsurface scattering.  These particular reflectance functions also include some 
shadowing from the phi-bar and glare from the light source in the back.
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Lighting Reflectance 
Functions
Lighting Reflectance 
Functions

incident 
illumination

incident 
illumination

reflectance 
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reflectance 
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lighting 
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rendered 
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1

DCT BasisDCT Basis
Smith and Rowe. Compressed domain processing of JPEG-encoded images. 1996Smith and Rowe. Compressed domain processing of JPEG-encoded images. 1996

We can perform the same lighting calculations in this transposed reflectance 
function space.  The spherical map of incident illumination and the reflectance 
function yields the color of that pixel illuminated by that lighting environment.

Reflectance functions, even more than regular images, tend to be compressible.  In 
the bottom row you can see here that the reflectance function projected onto the 
DCT basis concentrates energy in relatively few lighting coefficients.  The HDR 
lighting environment, in contrast, has a lot more frequency content in comparison.

What’s particularly cool and useful is that you can still do the relighting process 
directly on the transformed coefficients and arrive at the same rendered pixel 
values.  That’s because the particular transform we are using – the DCT – is an 
orthonormal transform.  The techniques of “Precomputed Radiance Transfer” (e.g. 
Sloan et al SIGGRAPH 2002) all leverage this fact to perform real-time relighting 
of CG objects essentially based on pre-rendered light stage datasets of the objects.
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Performing the relighting in frequency space allows high-resolution datasets to be re-
illuminated in real time, such as seen in the real-time face “Facial Reflectance Field Demo” 
at http://gl.ict.usc.edu/Data/FaceDemo/
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Light Stage Data Gallery
http://gl.ict.usc.edu/Data/LightStage/

Light Stage Data Gallery
http://gl.ict.usc.edu/Data/LightStage/
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A number of publicly-available light stage datasets taken with Light Stage 6 are 
available on the graphics lab web site.



SIGGRAPH 2008 Class: Computational Photography
Debevec: Illumination as Computing / Scene & Performance Capture

August 2008 37

How can we improve on 
these techniques?
How can we improve on 
these techniques?

• Faster capture?
• Higher lighting resolution?
• Better image quality?
• Spatially-varying illumination?

• Faster capture?
• Higher lighting resolution?
• Better image quality?
• Spatially-varying illumination?

So let’s think about how we can do better than what we’ve seen so far.  Can we 
improve on these techniques to allow for:

•Faster capture?
•Higher lighting resolution?
•Better image quality?
•Spatially-varying illumination?
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Light Stage 5Light Stage 5

Andreas Wenger, Chris Tchou, Andrew Gardner, Tim Hawkins, Jonas Unger, Paul 
Debevec.  “Performance Relighting and Reflectance Transformation with Time-
Multiplexed Illumination”, SIGGRAPH 2005

Andreas Wenger, Chris Tchou, Andrew Gardner, Tim Hawkins, Jonas Unger, Paul 
Debevec.  “Performance Relighting and Reflectance Transformation with Time-
Multiplexed Illumination”, SIGGRAPH 2005

Faster capture can be done through hardware techniques as it turns out.  You just need a 
light stage with a whole sphere of rapidly-controllable bright LED lights, …
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and a high-speed camera, like this Vision Research Phantom v7.1.  It can capture images at 
800x600 pixel resolution at up to 4800 frames per second.
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156 lighting conditions captured in as little as 1/24th of a second156 lighting conditions captured in as little as 1/24th of a second

The Light Stage 5 apparatus shown in Figure 3 is a 2m sphere of 156 white LED 
light sources that surround an actor. The LED lights are controlled by a 
microcontroller that can change the lighting direction thousands of times per 
second, fast enough that the illumination appears as a fluttering sphere of light 
rather than sequential lighting directions.  Filming the actor with a synchronized 
high-speed video camera yields a stream of images of the actor under the repeating 
sequence of 156 lighting directions, with each complete sequence taking as little as 
1/24th of a second of capture time. 
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Andreas Wenger, Chris Tchou, Andrew Gardner, Tim Hawkins, Jonas Unger, Paul 
Debevec.  “Performance Relighting and Reflectance Transformation with Time-
Multiplexed Illumination”, SIGGRAPH 2005

Andreas Wenger, Chris Tchou, Andrew Gardner, Tim Hawkins, Jonas Unger, Paul 
Debevec.  “Performance Relighting and Reflectance Transformation with Time-
Multiplexed Illumination”, SIGGRAPH 2005

Relighting resultsRelighting results

With this data, the images can be recombined with image-based relighting to show the 
actor’s performance, in motion, in any new lighting environment.

To achieve the sharpest results, some motion warping through optical flow is required to 
give the appearance that each set of 156 images was taken all at the same time.

Later in this talk, we’ll discuss other ways of achieving more time-efficient capture, 
including using gradient illumination patterns, and compressed sensing.



SIGGRAPH 2008 Class: Computational Photography
Debevec: Illumination as Computing / Scene & Performance Capture

August 2008 42

Yoav Y. Schechner, Shree K. Nayar and Peter N. Belhumeur. A theory of 
multiplexed illumination. ICCV 2003

One problem with this kind of high-speed capture is that you become very limited by the amount of 
light available given that there are such short exposures.  The individual lighting direction images 
from the high-speed camera can actually look quite noisy.  Let’s now ask ourselves if we could 
capture our datasets in a different way which could alleviate this problem, and we’ll look to some 
work from Yoav Schechner and his colleagues for this.

When you capture a light stage dataset, there is nothing requiring you to just turn on one light at a 
time (as seen for three lights in the first row).  If you instead turn different sets of lights which are 
linearly independent and thus span the same space as the set of single light sources (as seen in the 
second row, when two lights at a time are turned on).  You just need to run the resulting images 
through an inverse matrix to get back to the images illuminated by single light sources, as seen at the 
bottom for this small example. Why would you want to do this, other than some fun with linear 
algebra and a higher electric bill?

Well, as it turns out, the images you get by demultiplexing will generally have a different signal-to-
noise ratio than the single-light-source images.  Suppose there is additive noise of variance sigma^2 
in each pixel of every image taken.  Then, the demultiplexed images will have a sigma of 
(3/4)sigma^2, which is less than the variance in single light source images.  (For example, the 
variance of a1,2 – a2,3 + a1,3 is three times the variance of the original images since 
Var(a+b)=Var(a)+Var(b) if a and b are uncorrelated, and the variance of half this quantity is one 
quarter that value since Var(k*a)= k^2 Var(a).
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Yoav Y. Schechner, Shree K. Nayar and Peter N. Belhumeur. A theory of 
multiplexed illumination. ICCV 2003

Schechner et al tried this approach with a larger number of light soruces by 
projecting patterns of rectangles of light onto a wall of a room to act as a set of light 
sources reflecting back onto a subject (the pumpkin, in this diagram) over a subset 
of the incident lighting sphere.

In their work they used Hadamard patterns, formed using an S-matrix, to illuminate 
the scene.  There are the same number of Hadamard patterns as there are individual 
lights, but each Hadamard has just over half of the lights turned on.
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Fig. 7. Experimental results. All images are contrast stretched for display purposes. (a) Frames are 
acquired with multiplexed illumination. (b) Decoded images. (c) Corresponding images acquired by single-
source illumination. The single-source images have a significantly lower SNR than their corresponding 
decoded images and low gray-level information.

Yoav Y. Schechner, Shree K. Nayar and Peter N. Belhumeur. A theory of 
multiplexed illumination. ICCV 2003

The top two images show actual images taken under the Hadamard patterns.  The 
have nice noise characteristics, but they are not the final images we are interested 
in.  Instead, we can .  The images are certainly noisier, but still look reasonable.

The bottom two images show images taken under single light sources.  Since a 
single light source is pretty dim, the images are quite dark.  Here they have 
brightened considerably in order to show the image, and it’s clear the signal is so 
small that the quantization noise of the camera has considerably degraded the 
signal.  Since quantization noise is additive noise, it can be reduced using Hadamard
multiplexing.
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Noise curves for three typical cameras, showing close fits to 
an additive-plus-photon-noise model

Noise curves for three typical cameras, showing close fits to 
an additive-plus-photon-noise model

Andreas Wenger, Chris Tchou, Andrew Gardner, Tim Hawkins, Jonas Unger, Paul Debevec.  “Performance 
Relighting and Reflectance Transformation with Time-Multiplexed Illumination”, SIGGRAPH 2005
Andreas Wenger, Chris Tchou, Andrew Gardner, Tim Hawkins, Jonas Unger, Paul Debevec.  “Performance 
Relighting and Reflectance Transformation with Time-Multiplexed Illumination”, SIGGRAPH 2005

There is an issue which arises when applying Hadamard multiplexing with real 
images, which is that typical cameras have both additive noise (due to quantization 
and dark current) plus some amount of photon noise whose variance is proportional 
to the signal.

These three curves show noise response curves for three cameras we’ve used in our 
laboratory.  We shot 100 images of uniformly lit patches at various brightness 
levels, and graphed the variance for a pixel in each patch against the mean pixel 
value for that patch.  The cameras include the high speed camera from the Light 
Stage 5 project, a Canon D30 still camera, and a cooled QICam machine vision 
camera.  Each curve was well described as a constant amount of additive noise plus 
photon noise with a standard deviation proportional to the square root of the signal, 
i.e. sideways parabolas.  The cooled QICam had the lease dark current noise of all 
the camera, almost negligible.

The problem is that when photon noise dominates, there can actually be a 
multiplexing disadvantage, as bad in theory as doubling the variance of the 
demultiplexed signals in the worst case.
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Noise in shadowsNoise in shadows

One lightOne light Three lightsThree lights Demultiplexed
Hadamard

Demultiplexed
Hadamard

Another problem is that demultiplexed Hadamard images can have visible noise in 
shadow regions, since all areas of the images tend to have an equal amount of noise.
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(Some) Multiplexing advantages 
and disadvantages
(Some) Multiplexing advantages 
and disadvantages

If additive noise dominates, there is an SNR 
advantage

× If photon noise dominates, there can be a SNR 
disdvantage
Scene dynamic range is compressed

× Dark areas in the demultiplexed images have as 
much noise as bright regions, which can be 
visible
Human perception of the patterns can be 
improved

If additive noise dominates, there is an SNR 
advantage

× If photon noise dominates, there can be a SNR 
disdvantage
Scene dynamic range is compressed

× Dark areas in the demultiplexed images have as 
much noise as bright regions, which can be 
visible
Human perception of the patterns can be 
improved

Latest results:
Nenanel Ratner and Yoav Y. Schechner, Illumination 
multiplexing within fundamental limits. CVPR 2007

Hadamard patterns are a clear win when single-light images are very underexposed, 
and quantization or dark current noise dominates.  If you are able to expose your 
images properly, single-lit images may give the most pleasing results due to the 
photon noise effect shadow noise issue.  When we tried Hadamard patterns in Light 
Stage 5, we actually found that the flashing Hadamard patterns were more 
comfortable for the subjects than the single-light patterns since the lights blinked 
well above the rate of perception, bathing the actor in a relatively constant glow.  
Hadamard patterns also have distinct advantages when a scene includes both diffuse 
and sharp specular reflections, since the wide-area patterns bring the brightness of 
the reflections more in line with each other, alleviating problems in capturing the 
full dynamic range of the scene.
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Can we efficiently measure the reflectance of objects 
with arbitrary reflectance properties?
Can we efficiently measure the reflectance of objects 
with arbitrary reflectance properties?

Light Stage reflections Desired relighting result

For now, though, let’s think about achieving higher lighting resolution.

Objects with shiny reflections or translucency can be difficult to capture with light 
stage techniques, since specular reflections can be very sharp. Obtaining better 
lighting resolution would be great for these objects.
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Reflective Light Stage (Peers et al. 
USC ICT Tech.Rep. 2006)

Reflective Light Stage (Peers et al. 
USC ICT Tech.Rep. 2006)

Schechner et al. 2003Schechner et al. 2003

Obtaining continuous coverageObtaining continuous coverage

One approach to continuous illumination uses video projectors.  We saw how 
Schechner used a video projector to light up a wall in front of the object.  The 
Reflective Light Stage of Peers et al. lights up a whole hemisphere surrounding an 
object using an Elumens fisheye video projector.  A rough specular painted surface 
on the inside of the dome increases light efficiency.



SIGGRAPH 2008 Class: Computational Photography
Debevec: Illumination as Computing / Scene & Performance Capture

August 2008 50

Obtaining continuous coverageObtaining continuous coverage

Martin Fuchs, Hendrik P. A. Lensch, Volker Blanz, and 
Hans-Peter Seidel.  Superresolution Reflectance Fields: 
Synthesizing images for intermediate light directions. 
EUROGRAPHICS 2007.

Ankit Mohan, Reynold Bailey, Jonathan Waite, 
Jack Tumblin, Cindy Grimm and Bobby 
Bodenheimer. IEEE Transactions on Computer 
graphics and Visualization (TCGV), 13(4): 652-
662, 2006.

These two projects built light stages out of a single computer-controlled Disco light 
which projected a spot of illumination onto a projection surface surrounding the 
object.  Mohan et al.  At the expense of needed to take longer exposures, Fuchs et al 
projected onto a room of black felt, which greatly reduced the indirect illumination 
on the scene.  They used the width of the beam to acquire adaptively sampled 
resolution patterns, and found ways of interpolating between different lighting 
conditions to given the appearance of super-resolution reflectance fields.
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Helmholtz ReciprocityHelmholtz Reciprocity

fr ( ωi→ ωo) = fr ( ωo→ωi)

Another technique for achieving high-resolution lighting capture leverages Helmholtz 
Reciprocity – the condition that light rays are reversible, in that if you switch a sensor and a 
light emitter in a scene, the same amount of light will still get from one to the other, no 
matter the complexities of the light path(s).
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Tim Hawkins, Per Einarsson, Paul Debevec. A Dual Light Stage.  EGSR 2005.

high-resolution reflectance functions
image-based relighting

With the Dual Light Stage, the object is surrounded in a diffusely painted grey sphere.  A 
very bright laser sweeps across the object, and at each point, the laser reflects, refracts, and 
scatters to form images of each pixel’s reflectance function on the inside of the sphere.  
These complete-sphere images are then recorded by a camera with a fisheye lens at the top 
of the sphere.  The photographed reflectance functions have hundreds of thousands of pixels 
– enough to see clear reflections in still liquid, and sharp .  However, the spatial image 
resolution is not optimized – the images themselves are relatively low resolution (200x200).
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Dual Photography
Sen et al, SIGGRAPH 2005

Video Projector Video Camera

Another project which made use of Helmholz Reciprocity was the Dual Photography 
project from Stanford.  This project showed that an image of an object could be obtained 
from the position of a video projector just as well as from a camera.  Sen et all used a set of 
adaptive patterns to greatly increase the speed at which the light transport matrix could be 
measured, and achieved spatially-varying relighting from up to sixteen points of view.  
However, since the patterns were adaptive, the images could not be taken particularly 
quickly since processing in between the images was required.
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Marco F. Duarte, Mark A. Davenport, Dharmpal Takhar, Jason N. Laska, Ting 
Sun, Kevin F. Kelly and Richard G. Baraniuk, Single Pixel Imaging via 
Compressive Sampling, IEEE Signal Processing Magazine, March 2008.

Marco F. Duarte, Mark A. Davenport, Dharmpal Takhar, Jason N. Laska, Ting 
Sun, Kevin F. Kelly and Richard G. Baraniuk, Single Pixel Imaging via 
Compressive Sampling, IEEE Signal Processing Magazine, March 2008.

original 65536 Pixels
1300 

Measurements
(2%)

65536 Pixels
3300 

Measurements
(5%)

We’ve heard in the last talk a little about compressive sensing (CS) for novel 
imaging application.  With CS, a compressed full-resolution version of a signal 
(such as this image of the letter R from Rice University’s single-pixel camera 
project) can be inferred from a much smaller number of non-adaptive measurements 
than from exhaustive capture, as long as it is sparse in some projectable basis.  
Since CS uses non-adaptive input signals, no online processing is required to obtain 
the reconstructed results, and the patterns are scene-independent.

Can we apply CS to capturing object reflectance as well s regular images?  Of 
course!
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Exploiting Compressibility 
for Acquisition
Exploiting Compressibility 
for Acquisition

The time required to capture a high resolution reflectance field is directly proportional to 
the number of photographs that need to be acquired. The number of photographs is in turn 
directly proportional to the lighting resolution. Thus, for high resolution reflectance fields, 
an impractically large number of photographs need to be recorded.

We will now look at specific properties of reflectance fields, that can help speed up the 
acquisition process.  For this purpose, consider the following scene.
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Exploiting Compressibility 
for Acquisition
Exploiting Compressibility 
for Acquisition

Two randomly selected reflectance functions might look something like this.  Both 
functions are very similar in appearance, and are both relatively simple in content.  In order 
to exploit this apparent simplicity, reflectance functions have often been transformed into a 
different basis to express this simplicity in a more formal way.
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Exploiting Compressibility 
for Acquisition
Exploiting Compressibility 
for Acquisition

For example, if we convert these functions into a wavelet basis, we could get functions that 
look like this.  First thing to note is that these functions contain many zero or near zero 
elements.  The simplicity in appearance of before is now quantitatively expressed by just a 
few important (non-zero) coefficient in the new basis.  Note, that if we set the near-zero 
elements to zero, an approximation of the original function is obtained, that is not exactly 
the same, but very similar.  This method, is for example used in compressing images.

So what does it mean to have just a few non-zero coefficient of reflectance function in a 
specific basis. Well, this means that we only need to measure these coefficients to obtain a 
good approximation of the reflectance functions.  As we have seen before, measuring the 
response of a specific coefficient of a basis is equal to emitting that basis function onto the 
scene and observing its response.  Thus, by only emitting the basis functions that correspond 
to non-zero coefficient, we can potentially measure a reflectance field much faster.



SIGGRAPH 2008 Class: Computational Photography
Debevec: Illumination as Computing / Scene & Performance Capture

August 2008 58

Exploiting Compressibility 
for Acquisition
Exploiting Compressibility 
for Acquisition

However, there is s light problem: we are measuring not just a single reflectance function, 
but a whole reflectance field, which is a collection of many reflectance functions.  Each 
reflectance function might have just a few non-zero coefficients, which is good, but also 
that the set of non-zero coefficients for each function is different. So in the worst case, we 
still have to measure all coefficients, and thus obtain no speed up.  For example, in our 
example here, the green coefficients are shared, and thus emitting the corresponding basis 
functions yields information gain for both pixels.  However, the red marked coefficients are 
not shared. So when you measure on of these red coefficients, you will only measure 
additional information for a single pixel, and not gain any information for the other.

From this it is clear that in order to have a fast acquisition, we need to somehow find a way 
to maximize the information gain for all pixels.  The solution is to emit multiple basis 
functions at the same time, trying to make sure that we know for each functions which basis 
functions has an effect and which ones don’t. 
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Exploiting Compressibility 
for Acquisition
Exploiting Compressibility 
for Acquisition

#Measurement  ~ Compressed Size

Adaptive Non-adaptive
•Decide during 
acquisition (online)

•Explicit parallism

•Little post-
processing

•Decide during post-
processing (offline)

•Implicit parallism

•Easy acquisition

There a two possible solutions.  The first one, tries to explicitly coordinate the parallelism 
of measuring coefficient during the acquisition phase.  This are called an adaptive methods.
An adaptive method, uses the information it has of the reflectance field, to schedule new 
measurements such that information gain is maximized.  This requires some processing 
during acquisition, but usually no after acquisition.  Also, the illumination patterns will 
differ when measuring different scenes.

The second method is called non-adaptive. This method always uses the same illumination 
patterns, which are specially designed to maximize the information gain per measurement. 
In order words, these measure responses for every basis function (but with different 
weights) in each  measurement.  During post-processing, each reflectance functions needs to 
be inferred in an adaptive fashion from the measurement.  In other words, there is an 
implicit parallelism during acquisition.  Non-adaptive methods move the complexity of the 
system from the measurements to the post-processing.

Both methods have their advantages and disadvantages, and are capable of measuring a 
reflectance fields in a number of measurements that is proportional to their compressed size. 
This is to some degree independent of the illumination resolution.
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Peers and Dutré
[2005]

Non-adaptive MethodsNon-adaptive Methods

Matusik et al. [2004] Natural Illumination Sum of Box Kernels Split Kernels
Try all comb. Post-process

Authors Patterns Basis Algorithm
Spatial

Coherence

Gaussian Weighted
Haar Wavelets

Haar Wavelets
(Amplitude Normalized)

Child Wavelets
List of Candidates No

Peers et al. [2008] Segregated Binary 
Patterns Haar Wavelets Compressive

Sensing Hierarchical

We will now discuss three non-adaptive methods briefly.  The first method was presented 
by Matusik et al. In 2004.
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Peers and Dutré
[2005]

Non-adaptive MethodsNon-adaptive Methods

Matusik et al. [2004] Natural Illumination Sum of Box Kernels Split Kernels
Try all comb. Post-process

Authors Patterns Basis Algorithm
Spatial

Coherence

Gaussian Weighted
Haar Wavelets

Haar Wavelets
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Child Wavelets
List of Candidates No

Peers et al. [2008] Segregated Binary 
Patterns Haar Wavelets Compressive

Sensing Hierarchical

This method uses natural illumination as illumination patterns (photographs).  These 
photographs are emitted from a CRT monitor onto the scene. They represent the reflectance 
field as a sum a box kernel functions which different sizes and positions. During post-
processing they split the kernel in each reflectance function that explains the observed 
responses under the known natural illumination best.  Furthermore, to improve the results, a 
spatial correction is performed after post-processing to ensure that neighboring pixels have 
similar reflectance functions.
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Patterns Haar Wavelets Compressive

Sensing Hierarchical

Relit (24 subdiv.) Reference Photograph

Here you can see a result of their method.  On the right you see a reference photograph of 
the scene, and on the left the same scene relit using the same illumination and using the 
computed reflectance field.  Each reflectance function is the result of 24 subdivisions.
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Peers et al. [2008] Segregated Binary 
Patterns Haar Wavelets Compressive

Sensing Hierarchical

Relit (24 subdiv.) Reference Photograph

Here you see a different scene. Again, 24 subdivisions were performed to obtain these 
results. The number of measurements was approximately 200.
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Haar Wavelets

Haar Wavelets
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Child Wavelets
List of Candidates No

Peers et al. [2008] Segregated Binary 
Patterns Haar Wavelets Compressive

Sensing Hierarchical

In 2005, Peers and Dutré presented a system that uses Wavelet noise as illumination 
patterns.
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Sensing Hierarchical

Peers and Dutré
[2005]

Here you can see such a wavelet noise illumination pattern.  This allowed them to use a 
Haar wavelet basis instead of the weighted sum of box kernel functions of Matusik et al. A 
Haar wavelet basis has the advantage that it is a real basis, and has been study really well in 
image-compression, and thus a lot of mathematical properties are known.  Their algorithm 
builds a list of candidate coefficients, and at each step adds the best candidate. When adding 
a coefficient to the solution, it children’s coefficients are estimated are added to the list of 
candidates.  No spatial coherence is enforced in their algorithm.



SIGGRAPH 2008 Class: Computational Photography
Debevec: Illumination as Computing / Scene & Performance Capture

August 2008 66

Non-adaptive MethodsNon-adaptive Methods
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Sensing Hierarchical

Relit (64 coeff.) Reference Photograph

Peers and Dutré
[2005]

Here you see a scene lit by a photograph of a stone bridge. On the right a reference 
photograph, and on the left a relit image. Each reflectance function was reconstructed from 
250 photographs, and contained 64 Haar wavelet coefficients.
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Relit (128 coeff.) Reference Photograph

Peers and Dutré
[2005]

Here a different scene is shown. This time inferred from 500 measurements, and each 
reflectance function is reconstructed using 128 Haar wavelet coefficients.
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Sensing Hierarchical

This year, Peers et al., presented a technique that utilizes the mathematical theory of 
compressive sensing (as explained before).  However, directly applying compressive 
sensing does not work well.  For this they made a number of enhancements that make it 
better suited for measuring reflectance fields.
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Patterns Haar Wavelets Compressive

Sensing Hierarchical

ScaleDirection

First they use newly designed measurement patterns called segregated binary patterns.  
These patterns are binary (black and white), and are segregated in two ways. First there is 
scale. As you can see on the three patterns on the right. All three look somewhat similar, but 
have different scales.  Second, each scale is further segregated into three groups, shown on 
the three patterns on the left.  As you can see, the first pattern exhibits more horizontal 
structures, the middle one more vertical, while the third one does not prefer any direction.
By capturing a balanced mix of these patterns, segregated in scale and direction, 
compressive sensing can be used to reconstruct reflectance fields.  Additionally, they 
exploit the spatial coherence of the reflectance field by using a hierarchical algorithm to 
infer the reflectance functions.



SIGGRAPH 2008 Class: Computational Photography
Debevec: Illumination as Computing / Scene & Performance Capture

August 2008 70

Peers and Dutré
[2005]

Non-adaptive MethodsNon-adaptive Methods

Matusik et al. [2004] Natural Illumination Sum of Box Kernels Split Kernels
Try all comb. Post-process

Authors Patterns Basis Algorithm
Spatial

Coherence

Gaussian Weighted
Haar Wavelets

Haar Wavelets
(Amplitude Normalized)

Child Wavelets
List of Candidates No

Peers et al. [2008] Segregated Binary 
Patterns Haar Wavelets Compressive

Sensing Hierarchical

Relit (128 coeff.) Reference Photograph

Here you can see a scene, illuminated by a natural illumination condition (emitted from a 
CRT monitor on the right).  On the right a reference photograph, on the left a relit image. 
The reflectance field contains 128 Haar wavelet coefficients per reflectance function.  
Approximately 1000 measurement were performed to obtain this result.
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Peers and Dutré
[2005]

Non-adaptive MethodsNon-adaptive Methods

Matusik et al. [2004] Natural Illumination Sum of Box Kernels Split Kernels
Try all comb. Post-process

Authors Patterns Basis Algorithm
Spatial

Coherence

Gaussian Weighted
Haar Wavelets

Haar Wavelets
(Amplitude Normalized)

Child Wavelets
List of Candidates No

Peers et al. [2008] Segregated Binary 
Patterns Haar Wavelets Compressive

Sensing Hierarchical

Relit (128 coeff.) Reference Photograph

Here is a final example. In this case the illumination is emitted from the hemispherical 
Reflective Light Stage shown earlier.  Again, 1000 measurements were performed, and 128 
coefficients reconstructed per reflectance functions.
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Can we decompose the 
signal for easier capture?
Can we decompose the 
signal for easier capture?

As we will see, it can be easier to capture and analyze reflectance signals if it is 
possible to separate various reflectance behaviors in the reflectance functions, such 
as diffuse and specular reflections.
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"Fast Separation of Direct and Global Components of a 
Scene using High Frequency Illumination," 
S.K. Nayar, G. Krishnan, M. D. Grossberg, R. Raskar, 
ACM Trans. on Graphics (also Proc. of ACM SIGGRAPH), 
Jul, 2006. 

"Fast Separation of Direct and Global Components of a 
Scene using High Frequency Illumination," 
S.K. Nayar, G. Krishnan, M. D. Grossberg, R. Raskar, 
ACM Trans. on Graphics (also Proc. of ACM SIGGRAPH), 
Jul, 2006. 

Nayar et al. used high-frequency illumination patterns to quickly separate “direct” 
and “global” components.  Basically, the global components stay the same as you 
phase-shift high-frequency illumination on the scene, while the direct components
appear and disappear at different pixels.  Taking the minimum value over a 
sequence of phase shifts yields the global component, multiplied by the fill ratio of 
the patterns; the maximum minus the minimum yields the direct component.
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Separating diffuse and specular reflectance 
with high-frequency illumination
Separating diffuse and specular reflectance 
with high-frequency illumination

Reflective Light Stage (Peers et al. USC 
ICT Tech.Rep. 2006)

Reflective Light Stage (Peers et al. USC 
ICT Tech.Rep. 2006)

Projector
+

fisheye

rough specular reflection

object

occluder

hemispherical 
dome

Lamond, Peers, and Debevec. Fast Image-
based Separation of Diffuse and Specular 

Reflections.  ICT-TR-02.2007

Lamond, Peers, and Debevec. Fast Image-
based Separation of Diffuse and Specular 

Reflections.  ICT-TR-02.2007

This project uses a similar technique to Nayar et al 2006 to separate diffuse and specular 
reflections, rather than direct and global components.  It makes use of the Reflective Light 
Stage.



SIGGRAPH 2008 Class: Computational Photography
Debevec: Illumination as Computing / Scene & Performance Capture

August 2008 75

Object with diffuse and 
(sharp) specular reflectance
Object with diffuse and 
(sharp) specular reflectance

Here is the object whose components we will separate – a marble ball, with both specular 
and diffuse reflections.
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Image based illumination Image based illumination 

stripe 1

Reflected high-frequency 
patterns
Reflected high-frequency 
patterns

The image on the left is an image we will consider projecting into the dome and observing its 
reflections back from the object.  We won’t project the pattern itself, since that would yield both 
diffuse and specular reflections mixed together.  Instead, we will modulate the patter by four phase-
shifted high-frequency illumination patterns and project those instead.  A detail of the reflection of 
one of these patterns is shown at the right.
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Reflectance separationReflectance separation

diffusediffuse specular (+3 stops)specular (+3 stops)

Lamond, Peers, and Debevec. Fast Image-based Separation of 
Diffuse and Specular Reflections.  ICT-TR-02.2007

Lamond, Peers, and Debevec. Fast Image-based Separation of 
Diffuse and Specular Reflections.  ICT-TR-02.2007

Taking the mimimum pixel value over the four-pattern sequence yields the left image showing the 
diffuse reflectance of the subject under the image-based illumination environment.

Finding the difference between the maximum and minimum values for each pixel over the sequence 
yields an estimate of the specular component of the object’s reflectance, shown at the right.  For this 
object, this component reveals a clear image of the image-based illumination environment.
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normal imagenormal imagecross-polarized
subsurface 
component

cross-polarized
subsurface 
component

polarization difference
(primarily)

specular component

polarization difference
(primarily)

specular component

Separating Reflectance Components with
Polarization-Difference Imaging

Separating Reflectance Components with
Polarization-Difference Imaging

Another useful way to separate diffuse (or subsurface) and specular reflections is through 
polarization.  Placing perpendicular polarizers on a light source and the camera removes 
specular reflections, which maintain polarization.  The subsurface and diffuse components 
remain since they depolarize the light.  Turning one of the polarizers so that it becomes 
parallel to the other tunes the specular reflections back in.  The difference between two such 
images shows only the light which maintains polarization, which is primarily the specular 
component of the illumination.
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reflectance function analysis

This polarization separation process can be combined with a gradient illumination
technique to obtain useful estimates of facial surface normals.

Let’s return to looking at a canonical reflectance function, with a diffuse and a specular 
component.
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specular
normal

specular
normal

view vectorview vectorview vectorview vector

diffuse
normal
diffuse
normal

reflection
vector

reflection
vector

diffuse
normal
diffuse
normal

reflectance function analysis

If we wanted to develop a shorthand for the reflectance function, we could say a lot 
about it if we knew the color and centroid of the diffuse lobe, and the intensity and 
centroid of the specular lobe.
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specular
normal

specular
normal

view vectorview vectorview vectorview vector

diffuse
normal
diffuse
normal

reflection
vector

reflection
vector

diffuse
normal
diffuse
normal

reflectance function analysis

If there were a way to separate the reflectance function into its diffuse and specular 
components, and then have each function available, this is relatively 
straightforward.  Debevec et al 2000 used a colorspace separation technique to 
separate the reflectance function seen above.  The surface normal as determined 
from the diffuse reflection is essentially equivalent to the centroid of the diffuse 
normal.  The centroid of the specular reflection actually is an estimate of the 
reflection vector; the corresponding surface normal the lies halfway back to the 
view vector.  Note that this does not necessarily yield the same normal estimate.
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Linear cross-polarization of the entire 
sphere of illumination

polarizer orientation

See also Ma et al. EGSR 2007 circular polarization technique

This pattern of linear polarizers from [Ma et al 2007] allows the entire sphere of 
illumination to be cross-polarized from a particular camera position at the front of the stage.  
Ignoring a few complications regarding the Fresnel equations and in particular the Brewster 
angle, this allows spherical reflectance functions to be separated into diffuse and specular 
components through polarization difference imaging.
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Computing a Centroid in 
1D

Computing a Centroid in 
1D

f(x) x f(x)
=

x

*
0.59

= 0.59

Let’s now build a process for measuring the centroid of reflectance functions (based 
on their diffuse or specular component) using a small number of incident 
illumination patterns.  First let’s simplify the problem to 1D. We can compute the 
centroid of a 1D function by integrating it against a linear function, or gradient, as 
seen in this slide.  We’ll see in a second how we can perform the same process for a 
spherical reflectance function to estimate a surface normal or a reflection vector.
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Computing a Centroid on the SphereComputing a Centroid on the Sphere

*

*

* *,,( )

scale
normalize

To find the centroid of a spherical reflectance function, such as the diffuse one 
shown above, we can integrate it against gradients of spherical illumination across 
the three coordinate axes.  As before, we also integrate the total energy of the 
function in order to normalize the coordinate estimates.

Instead of measuring these functions exhaustively, we note that what we really need 
to compute the surface normal is the dot product of the reflectance function with 
each gradient illumination condition.  These we can actually measure directly by 
lighting the subject with the gradient illumination conditions directly, instead of 
measuring the reflectance functions first.  In this way, we will use the illumination 
to compute the surface normals in the scene!
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“diffuse” normal mapdρdρ

“specular” normal map

Four images of the scene under the gradient illumination patterns yield estimates of the 
surface normals from either the diffuse or specular components of the subject’s reflectance.

Gradient Illumination techniques are efficient enough that surface normal maps for a face 
can be recorded in real time with relatively standard camera equipment.  Surface normal 
maps can be used for a variety of normal map relighting tricks.
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The specular normal map in particular provides a great deal of high-resolution geometric 
information about the face, since this measures the reflection of light from .  This high-
resolution facial scan was created from a lower-resolution structured light scan (accurate to 
a millimeter or two) increased in resolution (to perhaps 0.1mm) using the specular normal 
map, as in Ma et al. 2007.
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Rendering Photograph

The specular and diffuse surface normals can also be used for hybrid normal map rendering.  
This rendering of a face on the left, seen from a novel viewpoint and illumination condition, 
uses surface normals computed from the face’s diffuse component to shade the diffuse
reflection, and normals computed from the face’s specular component to shade the specular 
reflection.  The real-time rendering closely resembled the validation photograph to its right.  
The skin-like appearance results from differences in the surface normals due to the 
subsurface scattering properties of the skin.
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Perlman et al. MOVA’s Contour Reality 
Capture.  SIGGRAPH 2006 Exhibitions.  
www.mova.com

Perlman et al. MOVA’s Contour Reality 
Capture.  SIGGRAPH 2006 Exhibitions.  
www.mova.com

Leveraging Phosphorescence
in 3D scene capture

The last two projects I want to mention make clever use of wavelength-altering 
reflectance properties use of for scene capture, which we haven’t yet seen.

MOVA’s “Coutour” system leverages fluorescence to capture 3D facial geometry.  
It uses stereo correspondence from multiple cameras to record the 3D geometry of 
the face, but it avoids a common problem of lacking sufficient facial texture to 
match points between the viewpoints.  They do this by applying a random pattern of 
glow-in-the-dark makeup to the performer, and illuminated the subject with a
combination of ultraviolet and visible lights which turn on approximately thirty 
times per second.  The cameras record a visible texture image when the lights are 
on, and during this time the ultraviolet lights charge the phosphorescent makeup.  
Then, a second image is acquired when the lights are off, observing the makeup 
glowing on its own.  This also alleviates the problem of specular facial reflectance 
in geometry matching, since the emmissive surface has a relatively even light output 
over the hemisphere.  In this way, natural facial shapes can be captured.
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Hullin, Fuchs, Ihrke, Seidel, Lensch. Fluorescent 
Immersion Range Scanning.  SIGGRAPH 2008.
Hullin, Fuchs, Ihrke, Seidel, Lensch. Fluorescent 
Immersion Range Scanning.  SIGGRAPH 2008.

Leveraging Fluorescence in 3D scene capture

Hullin et al’s work being presented at this year’s SIGGRAPH conference presents 
an ingenious technique for 3D scanning otherwise difficult-to-scan objects using 
Fluorescent Immersion Range Scanning. In this technique, a laser stripe moves over the object, 
but object is placed in a liquid with fluorescent dye which glows orange when the 
green laser stripe travels through it.  When the stripe reaches the object, the volume 
no longer fluoresces, and there is a dark contour which indicates the intersection of 
that plane of the laser with the object, easily triangulated into 3D.  The fluorescence 
(and a filter on the camera blocking the wavelength of the laser light) removes the 
effect of multiple scattering, which would be a problem if the laser were traveling 
through a cloudy liquid.
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Optics: Computable Extensions

• Unusual Optics
– Wavefront Coding
– Folded Optics
– Nonlinear Optics

• Material (Refractive Index)
– Graded Index (GRIN) materials
– Photonics crystals
– Negative Index

• Imaging
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– What can we learn 
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Conventional Lens: Limited Depth of Field

Smaller 
Aperture

Open 
Aperture

Slides by Shree Nayar

Conventional lenses have a limited depth of field. One can increase the depth of field and 
reduce the blur by stopping down the aperture. However, this leads to noisy images.
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Wavefront Coding using Cubic Phase Plate

ʺWavefront Coding: jointly optimized optical and digital imaging systems“, 
E. Dowski, R. H. Cormack and S. D. Sarama , 
Aerosense Conference, April 25, 2000

Slides by Shree Nayar

A solution proposed by authors and now commercialized by CDM optics uses a cubic phase 
plate. The effect of cubic phase plate is equivalent so summing images due to lens position 
was different planes of focus. Note that the cubic phase plate can be made up of glass of 
varying thickness OR glass of varying refractive index. The example here shows a total 
phase difference of just 8 periods.
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Depth Invariant Blur

Conventional System  Wavefront Coded System 

Slides by Shree Nayar

Unlike traditional systems, where you see a conical profile of lightfield for a point in focus, 
for CDM the profile is more like a twisted cylinder of straws. This makes the point spread 
function somewhat depth independent.
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Point Spread Functions

Focused Defocused

C
onventional

W
avefrontC

oded

Slides by Shree Nayar

The point spread function is not a point even when the point is in sharp focus. One can say 
it is equally worse over a large range of focus.
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Example

Conventional System 

Open Aperture

Stopped Down

Wavefront Coded System 

Captured Image

After Processing

Slides by Shree Nayar

After software decoding one can recover sharp images. These images show good tradeoff 
between depth of field and image noise.
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Conventional Compound Lens

Slides by Shree Nayar

Traditional lenses are long, the length is close to the focal length in mm.
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“Origami Lens”: Thin Folded Optics (2007)

“Ultrathin Cameras Using Annular Folded Optics, “
E. J. Tremblay, R. A. Stack, R. L. Morrison, J. E. Ford
Applied Optics, 2007 ‐ OSA 

Slides by Shree Nayar

New techniques are trying decrease this distance using a folded optics approach. The 
origami lens uses multiple total internal reflection to propagate the bundle of rays.
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Origami Lens

Conventional
Lens

Origami 
Lens

Slides by Shree Nayar
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Optical Performance

Conventional
Lens Image

Origami 
Lens Image

Conventional

Origami
Scene

Slides by Shree Nayar



Nonlinear Optics 

• Linear Optics
– Light is deflected or delayed without wavelength change 
– (a ‘linear system’)

• High intensity light in non‐linear media
– Think of it as ‘self‐modifying programs’
– Mainly lasers and crystals

• Nonlinear optics 
– Change the color of a light beam
– Change beam’s shape in space and time
– Light intensity refractive index 
– Self‐focussing via gaussien high intensity beam
– Switch and gate telecommunications systems
– Create shortest events (in femtoseconds, 10‐15).

www.physics.gatech.edu/gcuo/UltrafastOptics/3803/OpticsI23NonlinearOptics.ppt

Input: Infrared laser
Output: Green light

Nonlinear optics has been a rapidly growing field in recent decades. It is based on the study 
of effects and phenomena related to the interaction of intense coherent light radiation 
with matter. 

Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in 
nonlinear media, that is, media in which the dielectric polarization P responds nonlinearly 
to the electric field E of the light. This nonlinearity is typically only observed at very high 
light intensities such as those provided by pulsed lasers.
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Why do nonlinear effects occur, in general?

Imagine playing music through a cheap amplifier that just can’t quite 
put out the power necessary to hit the loud notes.

The sharp edges correspond to higher frequencies—harmonics!
www.physics.gatech.edu/gcuo/UltrafastOptics/3803/OpticsI23NonlinearOptics.ppt

Non‐linear effects are always present but usually barely noticeable.
However, when the input signal intensity is high, the system does not behave as a linear 
system. The higher harmonics have progressively smaller amplitude.

13



Nonlinear Optics 

• Interesting Applications
– Change in refractive index (RI), 

• Original RI:  n0
• Nonlinear  RI:  n2
• Incident light intensity, I
• Modified refractive index,  n = n0 + n2*I

– Self‐focusing
• N2 is positive, 
• RI is higher for higher intensity, usually center of beam
• Create a ‘convex’ lens, 
• (But collapsing beam on itself till material is damaged)

www.physics.gatech.edu/gcuo/UltrafastOptics/3803/OpticsI23NonlinearOptics.ppt

For Computational Photography, an interesting future direction could be programmable 
refractive index. We will see more on the next slide.

Self‐focusing is induced by the change in refractive index. A medium whose refractive index 
increases with the electric field intensity acts as a focusing lens for a laser beam. The peak 
intensity of the self‐focused region keeps increasing as the wave travels through the 
medium, until defocusing effects or medium damage interrupt this process. Since n2 is 
positive in most materials, the refractive index becomes larger in the areas where the 
intensity is higher, usually at the centre of a beam, creating a focusing density profile which 
potentially leads to the collapse of a beam on itself.[

Self‐focusing is often observed when radiation generated by femtosecond lasers 
propagates through many solids, liquids and gases. Depending on the type of material and 
on the intensity of the radiation, several mechanisms produce variations in the refractive 
index which result in self‐focusing: a well known example is Kerr‐induced self‐focusing.
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Optical Kerr Effect: Intensity dependent Refractive Index

The refractive index including higher order terms

Now, the usual refractive index (which we’ll call n0) is:

So:

Assume that the nonlinear term << n0 :

So:

Usually, we define a “Nonlinear Refractive Index”:

2(1) (3)1n Eχ χ= + +
(1)

0 1n χ= +

2 22 (3) (3) 2
0 0 01 /n n E n E nχ χ= + = +

2 2(3) 2 (3)1
0 0 0 021 / / 2n n E n n E nχ χ⎡ ⎤≈ + ≈ +⎣ ⎦

2I E∝since 0 2n n n I≈ +

(3)
2 0/ 2n nχ∝

Before 1960, optics mathematical equations manifested a linear system of equations, using 
usual refractive index n0.

The optical Kerr effect, or AC Kerr effect is the case in which the electric field is due to the 
light itself. This causes a variation in index of refraction which is proportional to the local 
irradiance of the light. This refractive index variation is responsible for the nonlinear optical 
effects of self‐focusing and self‐phase modulation, and is the basis for Kerr‐lens 
modelocking. This effect only becomes significant with very intense beams such as those 
from lasers.
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First Demo: Second-Harmonic Generation

P.A. Franken, et al, Physical Review Letters 7, p. 118 (1961)

www.physics.gatech.edu/gcuo/UltrafastOptics/3803/OpticsI23NonlinearOptics.ppt

Input: Ruby laser  (695 nm)  Output: Ruby laser (649nm) + UV (347nm)

Nonlinear materials like quartz crystal create a second harmonic (twice the frequency, i.e. 
half the wavelength) when a high intensity laser is incident.
This figure is borrowed from Margaret Murnane’s HHG talk.
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Gradient Index (GRIN) Optics

Conventional Convex LensGradient Index ‘Lens’

Continuous change of the refractive index 
within the optical material

Constant refractive index but carefully 
designed geometric shape

Refractive Index 
along width

n

x

Change in RI is very small, 0.1 or 0.2

Consider a conventional lens: An incoming light ray is first refracted when it enters the shaped lens 
surface because of the abrupt change of the refractive index from air to the homogeneous material. 
It passes the lens material in a direct way until it emerges through the exit surface of the lens where 
it is refracted again because of the abrupt index change from the lens material to air (see Fig. 1, 
right). A well‐defined surface shape of the lens causes the rays to be focussed on a spot and to 
create the image. The high precision required for the fabrication of the surfaces of conventional 
lenses aggrevates the miniaturization of the lenses and raises the costs of production.

GRIN lenses represent an interesting alternative since the lens performance depends on a 
continuous change of the refractive index within the lens material. Instead of complicated shaped 
surfaces plane optical surfaces are used. The light rays are continuously bent within the lens until 
finally they are focussed on a spot. Miniaturized lenses are fabricated down to 0.2 mm in thickness 
or diameter. The simple geometry allows a very cost‐effective production and simplifies the 
assembly. Varying the lens length implies an enormous flexibility at hand to fit the lens parameters 
as, e.g., the focal length and working distance. For example, appropriately choosing the lens length 
causes the image plane to lie directly on the surface plane of the lens so that sources such as optical 
fibers can be glued directly onto the lens surface.
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Photonic Crystals
• Photonic Crystal

– Nanostructure material with ordered array of holes
– A lattice of high‐RI material embedded within a lower RI 
– High index contrast
– 2D or 3D periodic structure 

• Photonic band gap
– Highly periodic structures that blocks certain wavelengths
– (creates a ‘gap’ or notch in wavelength)

• Applications
– ‘Semiconductors for light’: mimics silicon band gap for electrons
– Highly selective/rejecting narrow wavelength filters (Bayer Mosaic?)
– Light efficient LEDs
– Optical fibers with extreme bandwidth (wavelength multiplexing)
– Hype: future terahertz CPUs via optical communication on chip

Current explosion in information technology has been derived from our ability to control 
the flow of electrons in a semiconductor in the most intricate ways. Photonic crystals 
promise to give us similar control over photons ‐ with even greater flexibility because we 
have far more control over the properties of photonic crystals than we do over the 
electronic properties of semiconductors. 
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Negative Refractive Index
• Left‐handed material

– Refractive index N = +/‐ sqrt(ε μ)
– Usual matter, both permittivity ε and permeability μ are positive
– NIM: both ε and μ are negative

• Usually over a limited wavelength band
– Incident and refracted waves are on the same side of the normal to the boundary
– The electric field, magnetic field and wave vector follow a left‐hand rule

• Applications
– Perfect Lens

• A planar slab of NIM,  
• Imaging beyond diffraction limits
• No glare (lens reflection)

– Sub‐wavelength imaging

• Implementations
– ‘Metamaterials’
– So far only in lower frequencies, microwave
– Array of wires and spring‐ring resonators
– Carefully designed photonic crystal (glass rods in air)

All transparent or translucent materials that we know of possess positive refractive index‐‐
a refractive index that is greater than zero. However, is there any fundamental reason that 
there should not be materials with negative refractive index?
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http://www.ee.duke.edu/~drsmith/nim_pubs/pubs_2004/he_prb_2004.pdf

Perfect Lens* using 
Photonic Crystal Slab

Rods in Air

NIM Slab

*Only points whose distance from 
the lens surface does not exceed 
the thickness of the lens have real 
images

http://www.ee.duke.edu/~drsmith/nim_pubs/pubs_2004/bliokh_physics_uspekhi_2004.pdf

Refraction of a plane wave at the interface of a left‐handed medium and a right‐handed 
one looks quite unusual.
The fact that the incident and refracted waves are on the same side of the normal to the 
boundary enables one to manufacture quite unusual optic elements of left‐handed media. 
For instance, a plane‐parallel plate made of a left‐handed material works as a collecting 
lens.

21



Optics: Computable Extensions

• Unusual Optics
– Wavefront Coding
– Folded Optics
– Nonlinear Optics

• Material (Refractive Index)
– Graded Index (GRIN) materials
– Photonics crystals
– Negative Index

• Imaging
– Schlieren Imaging
– Agile Spectrum Imaging
– Random Lens Imaging

• Animal Eyes
– What can we learn 
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Schlieren Photography

• Image of small index of refraction gradients in a gas

• Invisible to human eye (subtle mirage effect)

Collimated Light 

Knife edge blocks half the light 
unless 

distorted beam focuses imperfectly
Camera

Changes in the index of refraction of air are made visible by Schlieren Optics. This special 
optics technique is extremely sensitive to deviations of any kind that cause the light to 
travel a different path.

In schlieren photography, the collimated light is focused with a lens, and a knife‐edge is 
placed at the focal point, positioned to block about half the light. In flow of uniform density 
this will simply make the photograph half as bright. However in flow with density variations 
the distorted beam focuses imperfectly, and parts which have focussed in an area covered 
by the knife‐edge are blocked. The result is a set of lighter and darker patches 
corresponding to positive and negative fluid density gradients in the direction normal to 
the knife‐edge. 

Clearest results are obtained from flows which are largely two‐dimensional and not 
volumetric.
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http://www.mne.psu.edu/psgdl/FSSPhotoalbum/index1.htm

Full‐Scale Schlieren Image Reveals The Heat Coming off of a Space Heater, Lamp and 
Person 
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http://www.mne.psu.edu/psgdl/FSSPhotoalbum/index1.htm

Full‐Scale Schlieren Image Reveals A Gas Leak.

For amateur photography, the setup is surprisingly simple and one can record stunning 
images.
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Agile Spectrum Imaging

Ankit Mohan, Jack Tumblin
Northwestern University

Ramesh Raskar
MERL / MIT
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Random Lens Imaging, Fergus, Torralba, Freeman, 2006

What if the input to output relationship of the light rays were randomized? How could you 
use such a camera? What would
be the benets and the drawbacks of such an approach? The ability to use a camera with 
those
characteristics would open new regions of the space of possible optical designs, since in 
many cases
it is easier to randomize light ray directions than to precisely direct them. Authors show 
applications in super‐resolution and depth estimation.
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Community and Social Impact

Ramesh Raskar
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Community and Social Impact

• Crowdsourcing
– Object Recognition
– CMU's captcha‐like games
– MIT’s LabelMe
– Distributed Search

• Cross‐sources Image Visualization
– Google/Virtual Earth problems
– From street maps to street‐level photos to 3D models 

• Trust and Privacy 
– Verification and Forensics
– Privacy‐preserving Computation

• Mobile Phones
– ZoneSurger: social tagging of photos
– Govt forms in developing counties

• Social/Political Goals



Crowd Sourcing

• Get Help from Crowd for Tasks That Tax Computers
– Object Recognition/Labeling

• Image‐based Applications
– Fight Spam using CAPTCHAs
– Completely Automated Turing Test To Tell Computers and Humans Apart

– reCAPTCHAs
• For OCR of old text

– LabelMe
• Segmentation and object recognition

– Distributed Search

Crowdsourcing is a new online strategy for converting a task difficult for computers and 
too expensive for a team of dedicated humans, and outsourcing it to an undefined, 
generally large group of people, in the form of an open call. Thanks to Web2.0 online 
technologies make participation of thousands of synchronous or asynchronous users 
possible to solve a talk.
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Example: Digitizing Old Books

• Optical Character Recognition for Old Text
– Poor visibility

http://news.bbc.co.uk/2/hi/technology/7023627.stm

• reCAPTCHA project at CMU
• Human solves CAPTCHA and solves difficult OCR problems

http://recaptcha.net/ http://en.wikipedia.org/wiki/Captcha

Original goal: making segmentation and OCR 
difficult by adding an angled line

The CMU team is involved in digitising old books and manuscripts supplied by a non‐profit 
organisation called the Internet Archive, and uses Optical Character Recognition (OCR) 
software to examine scanned images of texts and turn them into digital text files which can 
be stored and searched by computers. 
But the OCR software is unable to read about one in 10 words, due to the poor quality of 
the original documents. 
Computers cannot read words as easily as humans
The only reliable way to decode them is for a human to examine them individually ‐ a 
mammoth task since CMU processes thousands of pages of text every month. 
To solve this problem the team takes images of the words which the OCR software can't 
read, and uses them as CAPTCHAs. 
These CAPTCHAs, known as reCAPTCHAS, are then distributed to websites around the 
world to be used in place of conventional CAPTCHAs. 
When visitors decipher the reCAPTCHAs to gain access to the web site, the answers ‐ the 
results of humans examining the images ‐ are sent back to CMU. 
Every time an Internet user deciphers a reCAPTCHA, another word from an old book or 
manuscript is digitised. 
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LabelMe

• Recognition performance increases dramatically when more 
labeled training data is made available

• Goal: Create a massive high quality database for research on 
object recognition.

• Multiple users label as many objects and regions as they can 
within the same image.

http://labelme.csail.mit.edu/

Bryan Russell, Antonio Torralba and William T. Freeman at MIT

The authors seek to build a large collection of images with ground truth labels to be used 
for object
detection and recognition research. Such data is useful for supervised learning and 
quantitative
evaluation. To achieve this, they developed a web‐based tool that allows easy image 
annotation
and instant sharing of such annotations. Using this annotation tool, they have collected a 
large
dataset that spans many object categories, often containing multiple instances over a wide 
variety
of images. They quantify the contents of the dataset and compare against existing state of 
the
art datasets used for object recognition and detection. Also, they show how to extend the 
dataset
to automatically enhance object labels with WordNet, discover object parts, recover a 
depth ordering
of objects in a scene, and increase the number of labels using minimal user supervision
and images from the web.
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Distributed Patch‐wise Image Search

• Example: Steve Fossett’s plane, 2007

• Divide and Conquer
– Hires imagery from DigitalGlobe

– Amazon’s Mechanical Turk splits into small patches

– Volunteers each review individual patches

– Report back and aggregate info for professionals

http://www.wired.com/software/webservices/news/2007/09/distributed_search

The search for aviator Steve Fossett, whose plane went missing in Nevada in 2007, in 
which up to 50,000 people examined high‐resolution satellite imagery from DigitalGlobe 
that was made available via Amazon Mechanical Turk. The helpers are issued squares that 
represent 278‐foot‐square pieces of the search area. If they see something worth closer 
study, participants flag it. Since each square is issued to 10 different people, squares that 
are flagged by several volunteers are given greater scrutiny. 
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User Generated Content Visualization

• Google Map overlayed 
with geo‐tagged photos

• Image‐based Mashups

http://phototour.cs.washington.edu/

Microsoft Photosynth and U‐Washington’s Phototourism software takes a large collection 
of photos of a place or an object, analyzes them for similarities, and then displays the 
photos in a reconstructed three‐dimensional space, showing you how each one relates to 
the next. 
New options on Google Maps allows users to post and view populated map with geo‐
tagged photos provided by Panoramio.
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Mobile Photography

• ZoneSurfer 
– (Yahoo Research)
– Spatial ‐ social ‐ topical mobile photo 

browser
– Mobile window to the world of multimedia
– Social interface based on Flickr

• Mobile phone‐based entrepreneurship
– Developing countries
– Many examples:  

http://nextbillion.mit.edu/

Zurfer from Yahoo Research uses channel metaphor to give users contextual access to 
media of interest according to key dimensions: spatial, social, and topical. Elements of 
social interaction and communication aroundcthe photographs are built into the mobile 
application, to increasecuser engagement. The application utilizes Flickr.comc as an image 
and social‐network data source (From http://yahooresearchberkeley.com/blog/wp‐
content/uploads/2007/09/sp50a‐hwang.pdf)
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Developing Countries: 
CAMForms
• Paper forms with 
barcodes

• 83‐bit 2D codes 
(including seven bits 
of error correction) 

Parikh (2005)

The camera phone provides an easy interface to fill in and verify government forms. The 
paper form is printed with 2D bar‐codes which are decoded by camera phone and info is 
transmitted to a central location.
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Socio‐Political Goals: B’Tselem

From websiteof : Israeli Information Center for Human Rights in the Occupied Territories 

Israeli Information Center for Human Rights in the Occupied Territories captures photos of 
events.
From their website: Goal is to Document and educate Israeli public and policymakers about 
human rights violations in Occupied Territories.
Second goal is to combat phenomenon of denial prevalent among Israeli public.
They hope to create human rights culture in Israel 
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Module 1: 90 minutes

9:00:  A.1  Introduction and Overview (Raskar, 15 minutes)

9:15:  A.2  Concepts in Computational Photography (Tumblin, 15 minutes)  

9:30:  A.3  Optics: Computable Extensions (Raskar, 30 minutes) 

10:00:  A.4  Sensor Innovations (Tumblin, 30 minutes)

10:30:  Q & A (5 minutes)

10:35:  Break: 25 minutes

Module 2: 90 minutes

11:00:  B.1  Illumination As Computing (Debevec, 25 minutes) 

11:25:  B.2  Scene and Performance Capture (Debevec, 20 minutes)

11:45:  B.3  Image Aggregation & Sensible Extensions (Tumblin, 20 minutes)

12:05:  B.4  Community and Social Impact (Raskar, 20 minutes)

12:25:  B.4 Summary and Discussion, Q&A (All, 10 minutes) 
Course Page : http://computationalphotography.org/

Course:  Course:  Computational PhotographyComputational Photography
Advanced TopicsAdvanced Topics
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