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Figure 1: Improved seam carving for video sequences combines the frames of the video to form a 3D cube and finds 2D monotonic and
connected manifold seams using graph cuts. The intersection of the manifolds with each frame defines the seams on the frame. The manifolds
are found using a new forward-energy criterion that reduces both spatial and temporal artifacts considerably.

Abstract

Video, like images, should support content aware resizing. We
present video retargeting using an improved seam carving opera-
tor. Instead of removing 1D seams from 2D images we remove
2D seam manifolds from 3D space-time volumes. To achieve this
we replace the dynamic programming method of seam carving with
graph cuts that are suitable for 3D volumes. In the new formulation,
a seam is given by a minimal cut in the graph and we show how to
construct a graph such that the resulting cut is a valid seam. That is,
the cut is monotonic and connected. In addition, we present a novel
energy criterion that improves the visual quality of the retargeted
images and videos. The original seam carving operator is focused
on removing seams with the least amount of energy, ignoring en-
ergy that is introduced into the images and video by applying the
operator. To counter this, the new criterion is looking forward in
time - removing seams that introduce the least amount of energy
into the retargeted result. We show how to encode the improved
criterion into graph cuts (for images and video) as well as dynamic
programming (for images). We apply our technique to images and
videos and present results of various applications.

CR Categories: I.3.0 [Computing Methodologies]: Com-
puter Graphics—General; I.2.10 [Computing Methodologies]: Vi-
sion and Scene Understanding—Video Analysis; I.4.9 [Comput-
ing Methodologies]: Image Processing and Computer Vision—
Applications
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1 Introduction

Seam carving is an effective technique for content aware image re-
targeting. In a similar manner, video should support retargeting
capabilities as it is displayed on TVs, computers, cellular phones
and numerous other devices. A naive extension of seam carving to
video is to treat each video frame as an image and resize it indepen-
dently. This creates jittery artifacts due to the lack of temporal co-
herency, and a global approach is required. The approach we take is
to treat video as a 3D cube and extend seam carving from 1D paths
on 2D images, to 2D manifolds in a 3D volume (Figure 1). Never-
theless, because we need to build a 2D connected manifold through
space-time volume, the dynamic programming approach used for
image resizing is no longer applicable. In this paper we define a new
formulation of seam carving using graph cuts. However, a simple
cut cannot define a valid seam. A seam must be monotonic, includ-
ing one and only one pixel in each row (or column), and connected.
We show how to define a graph whose cut creates a monotonic and
connected seam, which is equivalent to the one created by dynamic
programming on images. Using this formulation, we extend seam
carving to video and define a monotonic and connected 2D mani-
fold seam inside the video cube. We also discuss a multiresolution
approach to speed up the computation time of seams for video.

Seam carving also has other limitations. On images, where salient
spatial structures appear, seam carving can create serious artifacts.
This is magnified in video, where spatial artifacts can be ampli-
fied, and augmented by temporal ones. In fact, because of human
perception, the latter may even be more disturbing in video, as the
human eye is highly sensitive to movement. To address this prob-
lem, we define a novel seam carving criterion that better protects
salient spatial, as well as temporal content. This improves the vi-
sual quality of the retargeted images and videos considerably. The
new criterion takes into account the energy inserted into the image
or video during retargeting, not just the energy removed from it.
We show how to encode the new criterion into both the dynamic
programming and the graph cut solutions.

The difficulties imposed by video resizing using seam carving can
therefore be characterized as algorithmic, dimensional and cardinal.
The algorithmic difficulty follows from the fact that we cannot ex-
tend the original dynamic programming method to a 3D video cube.
Dimensional difficulties originate from the additional, temporal, di-
mension of a video, which enhances spatial artifacts and introduces
new ones involving motion. Cardinal difficulties stem from the fact
that a video is a sequence of frames, and hence any processing of
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a video sequence involves larger amounts of data. This paper ad-
dresses these difficulties and presents results for video resizing ap-
plications such as size reduction and expansion, multi-size videos
for interactive size manipulation and object removal.

2 Background

The increasing need to adapt content to various displays caused a
surge in the number of publications dealing with image, as well as
video, retargeting.

Attention models, based on human spatiotemporal perception have
been used to detect Regions Of Interest (ROIs) in image and video.
The ROIs are then used to define ”display paths” ([Wang et al.
2004b]) to be used on devices in which the display size is smaller
than the video (or image) size. The least important content of the
video is cropped, leaving the important features in larger scale, es-
sentially creating a zoom-in-like effect ([Fan et al. 2003]). Virtual
camera motions or pseudo zoom-in/out effects are used to present
the content in a visually pleasing manner.

A similar system was proposed by [Liu and Gleicher 2006], where
both cropping and scaling are used together with virtual camera mo-
tion to mimic the process of adapting wide screen feature films and
DVDs to standard TV resolution. Their system minimizes infor-
mation loss based on image saliency, object saliency and detected
objects (e.g. faces). Cropping, however, discards considerable
amounts of information and might be problematic, for instance, if
important features are located at distant parts of the image or frame,
which is common in wide or over-the-shoulder shots in videos.

An alternative approach is to segment the image into background
and foreground layers, scale each one of them independently and
then recombine them to produce the retargeted image. This was
first proposed by [Setlur et al. 2005] for non-photorealistic retar-
geting of images and later extended to video by [Tao et al. 2007].
While this is an appealing approach, it relies crucially on the qual-
ity of segmentation - a difficult and complicated task in itself. For
video, [Pritch et al. 2008] propose an “object-based” approach to
webcam synopsis, where they segment the input video into objects
and activities, rather than frames. Then they compose a short video
synopsis, in response to user query. Their work only deals with
retiming the video, not changing its spatial extent.

Recently, [Wolf et al. 2007] presented a system to retarget video that
uses non-uniform global warping. They concentrate on defining an
effective saliency map for videos that comprises of spatial edges,
face detection and motion detection. Results are shown mainly for
reducing video size. Our work differs since we take a discrete ap-
proach and we also show results for video expansion, object re-
moval, and introduce multisize videos, which are not supported by
their system. We mostly use image edge energies but also show
results using their saliency map.

We build on and extend the work of [Avidan and Shamir 2007].
They proposed seam carving for image retargeting and used dy-
namic programming to find the optimal seam iteratively. We pro-
pose a graph based approach to seam carving, allowing us to handle
video retargeting. This extension defines 2D surfaces to be removed
from the 3D video cube. An alternative approach is to map these
2D manifolds to frames in a new video sequence [Rav-Acha et al.
2007]. This approach, termed Evolving Time Fronts, gives users
the ability to manipulate time in dynamic video scenes.

Graph partitioning and graph-based energy minimization tech-
niques are widely used in image and video processing applications
such as image restoration, image segmentation, object recognition
and shape reconstruction. A graph representing an image, together

Figure 2: Seam carving on each video frame independently creates
locally optimal seams that can be totally different over time. This
creates a jittery resized video. In this example we show the first ten
seams removed. A similar illustration is shown in the accompanied
video.

with some constraints, is partitioned into disjoint subsets by con-
necting pixels or voxels based on their similarity. Traditionally,
similarity is defined by some variation of intensity change or gra-
dients. For videos, it is often convenient to consider the sequence
of frames as a 3D space-time volume [Kwatra et al. 2003; Schödl
et al. 2000; Wang et al. 2004a; Wang et al. 2005]. In such cases,
the extension of energy minimization from 2D images to 3D space-
time video is usually straightforward. We are influenced by [Kwatra
et al. 2003], that use graph cuts to seamlessly patch two 2D or 3D
textures. However, there are differences in the way we construct the
graph, and the terminal nodes in our method are placed differently
than in theirs. The challenge we face is in designing a graph that
produces only admissible cuts, that is, cuts that are monotonic so
that only one pixel is removed from every row and are connected.
As we will show, standard graph cut based construction do not sat-
isfy these constraints and new ones must be defined.

3 Preliminaries

A seam is a monotonic and connected path of pixels going from
the top of the image to the bottom, or from left to right. By re-
moving one seam from an image, the image size is reduced by one
either in the horizontal or the vertical dimension. Seam carving
uses an energy function defined on the pixels and successively re-
moves minimum energy paths from the image. In video, we search
for a resizing operator in the granularity of shots (i.e. a sequence
of frames where the camera shoots continuously). Simply apply-
ing the seam carving operator separately to each frame of the video
introduces serious artifacts (Figure 2).

Alternatively, one can search for regions in the image plane that are
of low importance in all video frames. This is done by computing
the energy function on every image independently and then taking
the maximum energy value at each pixel location, thus reducing the
problem back to image retargeting. We call the seams computed
this way static seams, because they do not change along frames.
Specifically, given a video sequence {It}Nt=1 we extend the spatial
L1-norm to a spatiotemporal L1-norm:

Espatial(i, j) =
N

max
t=1
{| ∂
∂x
It(i, j)|+ |

∂

∂y
It(i, j)|}

Etemporal(i, j) =
N

max
t=1
{| ∂
∂t
It(i, j)|}

Eglobal(i, j) = α · Espatial + (1− α)Etemporal

Essentially, this measure can be seen as a (maximum) projection of
the spatial L1-norm to 2D, where α ∈ [0, 1] serves as a parameter
that balances spatial and temporal contribution. In practice, since
motion artifacts are more noticeable, it is good to bias the energy
toward temporal importance, taking α = 0.3. We use a maximum
projection and not average to be conservative in the cost calculation.
Figure 3 shows examples for the global energy map and static seams
removal from videos.
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Figure 3: Static seams for the golf video and ape animation. The
global energy function is shown using color mapping from violet
(low) to red (high). The actual static seams are shown for the golf
sequence at the top. Some representative resized frames are also
shown for both videos (example results can be seen in the accom-
panied video).

The main appeal of such a static method is its simplicity and speed.
It gives good results when the video is created by a stationary cam-
era, and the foreground and background are separated (Figure 3).
However, in more complex video scenes where the camera is mov-
ing or when multiple motions are present, seams must be allowed
to adapt over time.

Towards this end, we define a video seam as a connected 2D man-
ifold “surface” in space-time that cuts through the video 3D cube.
The intersection of the surface with each frame defines one seam in
this frame. Hence, removing this manifold removes, in effect, one
seam from each video frame. On the one hand, because the surface
is flexible, the seams can change adaptively over time in each frame
(Figure 1). On the other hand, because the surface is connected, the
seams preserve temporal coherency. Unfortunately, there is no sim-
ple extension of the dynamic programming algorithm of 2D images
to a 3D space-time volume, and we must employ another algorithm,
namely graph cut.

4 Seam Carving using Graph Cuts

We first discuss a formulation of the seam carving operator as a
minimum cost graph cut problem on images and then extend the
discussion to video. We will further assume that we are search-
ing for vertical seams in the image. For horizontal seams all con-
structions are the same with the appropriate rotation. We refer to
graph edges as arcs to distinguish them from edges in the image.
We construct a grid-like graph from the image in which every node
represents a pixel, and connects to its neighboring pixels. Virtual
terminal nodes, S (source) and T (sink) are created and connected
with infinite weight arcs to all pixels of the leftmost and rightmost
columns of the image respectively.

An S/T cut (or simply a cut) C on such a graph is defined as a
partitioning of the nodes in the graph into two disjoint subsets S
and T such that s ∈ S and t ∈ T . The cost of a cut C = {S, T} is
defined as the sum of the cost of the ‘boundary’ arcs (p, q) where
p ∈ S and q ∈ T . Note that a cut cost is directed as it sums up the
weights of directed arcs specifically from S to T . That is, arcs in
the opposite direction do not affect the cost. To define a seam from
a cut, we consistently choose the pixels to the left of the cut arcs.
The optimal seam is defined by the minimum cut which is the cut
that has the minimum cost among all valid cuts.

Converting dynamic programming to graph cuts was already done
in the past for the purpose of texture synthesis [Kwatra et al. 2003].
However, there is a crucial difference between our work and theirs.

The reason is that a general cut does not define a valid seam for
seam-carving, as it must satisfy two constraints:

Monotonicity the seam must include one and only one pixel in
each row (or column for horizontal seams).

Connectivity the pixels of the seams must be connected.

More formally, a vertical seam can be thought of as a (discrete)
mapping S : Y × T → X (where T = {0} for images) from
(row, time) to column. The monotonicity constraint requires this
mapping to be a function, while the connectivity constraint forces
this function to be continuous. Hence, the challenge is to construct a
graph that guarantees the resulting cut will be a continuous function
over the relevant domain.

4.1 Graph Cuts for Images

In a standard grid graph construction, every internal node
pi,j is connected to its four neighbors Nbr(pi,j) =
{pi−1,j , pi+1,j , pi,j−1, pi,j+1}. Following the L1-norm gra-
dient magnitude E1 energy that was used in [Avidan and Shamir
2007], we define the weight of arcs as the forward difference
between the corresponding pixels in the image either in the
horizontal direction: ∂x(i, j) = |I(i, j + 1) − I(i, j)| or in the
vertical: ∂y(i, j) = |I(i+ 1, j)− I(i, j)|. Under this formulation,
Figure 4(a) shows an optimal partition of the waterfall image into
source and target parts. This cut does not satisfy the seam carving
constraints.

To impose the monotonicity constraint on a cut, we use different
weights for the different directions of the horizontal arcs. For for-
ward arcs (in the direction from S to T ), we use the weight as
defined above, but for backward arcs we use infinite weight. Ap-
pendix A gives the proof why the monotonicity constraint is main-
tained under this construction (Figure 4(b)).

The main difference between this graph cut construction and the
original dynamic programming approach is that there is no ex-
plicit constraint on the cut to create a connected path. The cut can
pass through several consecutive vertical arcs, in effect creating a
piecewise-connected seam. Although this behavior is penalized as
more vertical arcs are cut, it does happen in practice. Our empirical
results show that connected seams are important to preserve both
spatial and temporal continuity and to minimize visual artifacts. To
constrain cuts to be connected we use infinite weight diagonal arcs
going “backwards”. Using similar arguments, Appendix A shows
why this construction imposes the connectivity constraint.

In fact, by combining the weights of the vertical and horizontal arcs
together, we can create a graph whose cut will define a seam that
is equivalent to the one found by the original dynamic program-
ming algorithm. For example, we assign the weight E1(i, j) =
∂x(i, j) + ∂y(i, j) to the horizontal forward arc and remove the
vertical arc altogether (Figure 4(c)). A cut in this graph is mono-
tonic and connected. It consists of only horizontal forward arcs (the
rest are infinite weight arcs that pose the constraints and cannot be
cut), hence its cost is the sum of E1(i, j) for all seam pixels, which
is exactly the cost of the seam in the original seam carving operator.
Because both algorithms guarantee optimality, they must have the
same cost, and (assuming all seams have different costs) the seams
must be the same.

This suggests we can use any energy function defined on the pixels
as the weight of the forward horizontal arcs and achieve the same
results as the original dynamic programming based seam carving.
Moreover, high level functions such as a face detector [Viola and
Jones 2004], or a weight mask scribbled by the user, can be used

3



To appear in the ACM SIGGRAPH conference proceedings

(a) Non-monotonic (b) Unconnected (c) Original (backward) (d) Forward

Figure 4: Minimum cut on the waterfall image (top left) for various graph constructions. The seam is composed of the pixels to the left
of the cut. The different graph constructions are illustrated by four nodes representing four pixels in the image. The actual image graph is
created by tiling these sub-graphs across the image (see text for details). Graph (a) creates a general path and not a valid seam, while (b)
creates a monotonic but piecewise-connected seam. The construction at (c) is equivalent to the original seam carving algorithm (with E1).
The construction at (d) represents the new forward energy we present in Section 5.

Figure 5: The intersection of every X × T plane with the seam
surface defines a spatiotemporal seam.

in any of the graph constructions we present. We simply add the
pixel’s energy to the horizontal arc going out of the pixel.

4.2 Graph Cuts for Video

The extension to video is straightforward. Assuming we are search-
ing for a vertical seam, we consider the X × T planes in the video
cube and use the same graph construction as in X × Y including
backward diagonal infinity arcs for connectivity. We connect the
source and sink nodes to all left and right (top/bottom in the hori-
zontal case) columns of all frames respectively. A partitioning of
the 3D video volume to source and sink using graph cut will de-
fine a manifold inside the 3D domain (Figure 5). Such a cut will
also be monotonic in time because of the horizontal constraints in
each frame that are already in place. This cut is globally optimal in
the cube both in space and time. Restricted to each frame, the cut
defines a 1D connected seam.

The graph cut algorithm runs in polynomial time, but in practice
was observed to have linear running time on average [Boykov and
Kolmogorov 2004]. For the full video volume, the computation
time depends on the number of nodes times the number of arcs in
the graph, which is quadratic in the number of voxels. Solving min-
imal cut on a graph in which every voxel is represented by a node
is simply not feasible. In fact, performance issues are encountered
already for high resolution images. To improve efficiency, we em-
ploy a banded multiresolution method, similar to the one described
in [Lombaert et al. 2005]. An approximate minimal cut is first com-
puted on the coarsest graph, and then iteratively refined at higher
resolutions. Coarsening is performed by sampling the graph both

(a) (b)

Figure 6: The artifacts seen in video retargeting (top) can also be
seen on a static vase image (bottom). We show an example of the
change in energy after a specific seam is removed (a). In some
pixels (blue) energy is reduced and in others (yellow) increased.
This seam inserts more energy to the image than removes, creating
a step artifact in the stem of the flower. The actual change in energy
∆E after each seam removal is shown in (b).

spatially and temporally, while refinement is done by computing
graph cut on a narrow band induced by the cut that was computed at
the coarser level. The band in our case takes the form of a “sleeve”
cutting through the spatiotemporal volume.

The graph cut approach to seam carving allows us to extend the
benefits of content-aware resizing to video. Still, the method is not
perfect and no single energy function was shown to perform prop-
erly in all cases [Avidan and Shamir 2007]. Therefore, we intro-
duce a new energy function that better protects media content, and
improves video results.

5 Forward Energy

The artifacts created in video frames can actually be seen on static
images as well (Figure 6). They are created because the original
algorithm chooses to remove the seam with the least amount of en-
ergy from the image, ignoring energy that is inserted into the re-

4



To appear in the ACM SIGGRAPH conference proceedings

(a) (b) (c)

Figure 7: Calculating the three possible vertical seam step costs
for pixel pi,j using forward energy. After removing the seam, new
neighbors (in gray) and new pixel edges (in red) are created. In
each case the cost is defined by the forward difference in the newly
created pixel edges. Note that the new edges created in row i − 1
were accounted for in the cost of the previous row pixel.

targeted image. The inserted energy is due to new edges created
by previously non adjacent pixels that become neighbors once the
seam is removed (see e.g. the steps artifacts in Figure 6(a)). Assume
we resize an image I = It=1 using k seam removals (t = 1 . . . k).
To measure the real change in energy after a removal of a seam, we
measure the difference in the energy of the image after the removal
(It=i+1) and the energy of only those parts that were not removed
in the previous image It=i (i.e. the image energy E(It=i) minus
the seam energy). In our new graph cut formulation, the energy
of the image is no longer an attribute of the pixels, but rather an
attribute of the arcs in the graph. Hence, the energy of an image
E(I) is given by the sum of all finite arcs of its induced graph, and
the energy of a seam E(C) is simply the cost of the cut C. The
energy difference after the ith seam carving operation is:

∆Et=i+1 = E(It=i+1)− [E(It=i)− E(Ci)] (1)

As can be seen in Figure 6(b), ∆Et can actually increase as well as
decrease for different seam removals using the original seam carv-
ing approach (the energy measured in this case is E1). The figure
also shows a specific example of a seam that inserts more energy to
the image than it removes.

Following these observations, we propose a new criterion for choos-
ing the optimal seam. The new criterion looks forward at the result-
ing image instead of backward at the image before removing the
seam. At each step, we search for the seam whose removal inserts
the minimal amount of energy into the image. These are seams that
are not necessarily minimal in their energy, but will leave less ar-
tifacts in the resulting image, after removal. This coincides with
the assumption that natural images are piece-wise smooth intensity
surfaces, which is a popular assumption in the literature. We will
show how to define forward energy on images and then discuss the
extension to video.

As the removal of a connected seam affects the image, and its en-
ergy, only at a local neighborhood, it suffices to examine a small
local region near the removed pixel. We consider the energy in-
troduced by removing a certain pixel to be the new “pixel-edges”
created in the image. The cost of these pixel edges is measured as
the forward differences between the pixels that become new neigh-
bors, after the seam is removed. Depending on the direction of the
seam, three such cases are possible (see Figure 7).

5.1 Forward Energy in Dynamic Programming

For each of the three possible cases, we define a cost respectively:

(a) CL(i, j) = |I(i, j + 1)− I(i, j − 1)|+ |I(i− 1, j)− I(i, j − 1)|
(b) CU (i, j) = |I(i, j + 1)− I(i, j − 1)|
(c) CR(i, j) = |I(i, j + 1)− I(i, j − 1)|+ |I(i− 1, j)− I(i, j + 1)|

We use these costs in a new accumulative cost matrix M to cal-
culate the seams using dynamic programming. For vertical seams,
each cost M(i, j) is updated using the following rule:

M(i, j) = P (i, j) + min

 M(i− 1, j − 1) + CL(i, j)
M(i− 1, j) + CU (i, j),
M(i− 1, j + 1) + CR(i, j)

(2)

where P (i, j) is an additional pixel based energy measure, such as
the result of high level tasks (e.g. face detector) or user supplied
weight, that can be used on top of the forward energy cost.

5.2 Forward Energy in Graph Cut

To define the forward energy cost in graph cut, we need to cre-
ate a graph whose arc weights will define the cost of the pixel
removal according to the three possible seam directions. Fig-
ure 4(d) illustrates this construction. A new horizontal pixel-edge
pi,j−1pi,j+1 is created in all three cases because pi,j is removed.
Hence, we assign the difference between the Left and Right neigh-
bors +LR = |I(i, j+1)−I(i, j−1)| to the graph arc between the
nodes representing pi,j and pi,j+1. To maintain the seam mono-
tonicity constraint as before, we connect pi,j+1 and pi,j with a
(backward) infinite weight arc. We also add diagonal backward
infinite arcs to preserve connectivity.

Next, we need to account for the energy inserted by the new ver-
tical pixel-edges. In the case of a vertical seam step (Figure 7(b)),
there are no new vertical edges so no energy is inserted. From the
corollary in appendix A we have that all nodes to the left of the
cut must be labeled S and all nodes to the right of the cut must be
labeled T . By definition, the cost of a cut will only consider arcs di-
rected from nodes labeled S to nodes labeled T . It therefore follows
that only upward vertical arcs will be counted in right-oriented cuts
(Figure 7(a)), and only downward vertical arcs will be counted in
left-oriented cuts (Figure 7(c)). Hence, we assign the difference be-
tween the Left and Up neighbors +LU = |I(i−1, j)−I(i, j−1)|
to the upward vertical arc between pi,j and pi−1,j , and the weight
−LU = |I(i + 1, j) − I(i, j − 1)| to the downward vertical arc
between pi,j and pi+1,j (−LU means the difference between the
Left and Up neighbors with respect to the end point of the arrow).

Figure 8 illustrates the difference between removing seams using
the original algorithm with E1, and removing seams using the new
forward energy we propose. In the original cost map the cost is
increased with every crossing of a bar in the bench, as it defines
an edge in the image. This drives the seams to the image sides
while creating disturbing artifacts. In the improved criterion, verti-
cal seams can intersect the bars without inserting energy to the im-
age, resulting in almost no increase in the cost map in these areas
and a more plausible result. More examples are given in Figure 9
and in the supplemental material. Figures 10 and 13 show some
frames from video sequences retargeted with graph cuts using the
improved forward energy.

For video, we examine slices in the 3D video-cube depending on the
seam direction. For vertical seams (Y -direction), the intersection of
every slice on the (X ×T ) dimension with the seam creates a seam
on that plane (Figure 5). We use the same formulation in (X × T )
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Figure 8: Comparison between the original seam carving backward
energy (left) and the new forward energy (right) for resizing an im-
age (original shown in small at the top). At the bottom are the
respective cost maps M of both techniques and the seams removed
from the image. The new results suffer much less from the artifacts
generated using backward energy such as the difference in water
color and the distortions of the bench bars and skeleton.

as we did in (X × Y ). Hence, we define the cost of every pixel
removal as the new temporal pixel-edges created between frames
in the temporal direction, that are introduced to the video when
this pixel is removed. We then create arcs between nodes in the
graph between time-steps with the appropriate costs exactly as in
the spatial X × Y domain.

6 Results

In the accompanied video, we present results for aspect ratio
changes of videos by removing, as well as inserting seams (see also
Figure 10 and Figure 13). We also support multisize videos for in-
teractive resizing (Figure 11, top, and the accompanied video). We
extend the method suggested by [Avidan and Shamir 2007] of pre-
computing seam index maps for images, to each frame in the video.
As we cannot hold the entire index structure in memory, these maps
are stored on disk, and are loaded on demand before the frame is
displayed.

As discussed, we also support other energy functions for retarget-
ing. For example, Figure 12 shows the result of our method on the
football video using the saliency map of [Wolf et al. 2007]. Our
system also supports other energy functions such as object detec-
tors and manually inserted weights. As our approach is global, the
algorithm is relatively robust to cases in which the energy function
is not given for every frame, and to occasional false positive or false
negative detections. An example using face detector is shown in the
accompanied video. By marking pixels with positive weights, the
user can protect certain parts of a video during the retargeting pro-
cess. The user need not mark every frame, but only once every k
frames (in practice we use k ' 10). By supplying negative weights,
the user can also attract seams to desired parts of the video, for ex-
ample, for object removal (Figure 11).

Figure 11: A snapshot of the multisize video interface is shown at
the top. After pre-computation, the user is able to resize the video
interactively while it plays. Below, on the left, is a frame from the
dancers video. On the right is the corresponding frame from the
video in which the left dancer was removed using user markings.
Actual results can be viewed in the accompanied video.

Figure 12: Retargeting using given energy (saliency) function. In
the left column a frame from the football video is shown, and un-
derneath is its saliency map. On the right column, on top is the
rescaled frame, and at the bottom the retargeted frame.

Using our multiresolution graph cut technique, computation times
for retargeting videos are still significant. Precalculating multisize
videos that enable between 50 to 150 percent change in aspect ratio
takes 10 to 20 minutes on average. Typical videos have a resolution
of 400× 300 and 400 frames. We used a 1.8 GHz dual core laptop
with 2GB memory. The memory consumption for such videos av-
erages 300MB, which is reasonable for this kind of processing. The
running time of forward energy dynamic programming on images
is compatible to backward energy.

7 Limitations

The forward energy criteria we propose is designed to protect the
structure of media. However, maintaining the structure can some-
time come at the expense of content. For example, important ob-
jects that can be resized without noticeable artifacts (i.e. inserted
energy) may be jeopardized during resizing. In such cases, a com-
bination of the forward criteria with E1 energy can help to achieve
better results. This is because E1 can better protect content. There
are other situations on video and images where forward energy fails
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Figure 9: Several comparisons between the original seam carving algorithm (left image of pairs) and forward energy (right image of pairs).
At the top the car image (first on the left) was first condensed and then extended. Note how the artifacts on the car and background building
are greatly reduced. In the middle, both height and width reductions are shown. At the bottom, one frame from a video resizing is given for
comparison. The sequence can be seen in the accompanied video.

Figure 10: Examples of video retargeting. Top row, an original frame. In the following rows we show a rescaled frame on the left and a
retargeted one on the right.

7
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Figure 13: Each row shows a different frame from a 100 frames long video sequence. From left to right, the original image, a scaled down
image, a targeted down image, a scaled up image and targeted up image.

Figure 14: Cases where forward energy can fail. On the upper
left, a snapshot from vertical resizing of a bicycle video sequence
is shown, together with a zoom in on the bicycle rider. The bicy-
cles are shrunk as the algorithm abstains from cutting the textured
rocks. On the upper right, a grainy background texture is consid-
ered as important content, while the matchbox is distorted. On the
second row, a frame from the highway video is shown with its cor-
responding frame from the retargeted video. Forward energy fails
to achieve plausible result in this case due to the nature in which the
camera and objects are moving. The actual result can be viewed in
the accompanied video.

to achieve plausible results. Some are illustrated in Figure 14. In
general, due to motion and camera movement, the problem of video
resizing is more challenging than image resizing. To solve some of
those challenges, it may be better to revert to other methods of re-
sizing such as scaling or cropping or combine them together with
seam carving. Lastly, our current method runs on the video in batch
mode. In contrast, online techniques could also support resizing
while streaming the video.

8 Conclusions and Future Work

We propose an improved seam carving operator for image and
video retargeting. Video retargeting is achieved using graph cuts
and we have shown a construction that is consistent with the
dynamic programming approach. Furthermore, we offered new
insight into the original seam carving operator and proposed a
forward-looking energy function that measures the effect of seam
carving on the retargeted image, not the original one. We have
shown how the new measure can be used in either graph cut or
dynamic programming and demonstrated the effectiveness of our
contributions on several images and video sequences.

We have outlined some future extensions in the Limitation section.
Also, by switching to graph cut based representation we could rely
on some advances to speed up computations. For example, [Kohli
and Torr 2007] proposed a method for computing minimum cuts on
an updated graph, which can hopefully yield speed gains of up to
two orders of magnitude.

Our methods can also be adapted to resize videos temporally. By
rotating the video cube to Y ×T view, we can find seam manifolds
that cut through the temporal domain. Each manifold, when re-
moved, will decrease the length of the video by one, thus resulting
in a shorter video. A similar method was recently proposed also by
[Chen and Sen 2008]. They too use graph cuts for finding low gradi-
ent sheets to remove. A basic difference between their method and
ours is that they remove an approximation to the minimal energy
surface, while our method guarantees optimality under the seam
constraints (Section 4.2). Their graph construction is similar to the
one described in Figure 4(a), which yields non-monotonic and un-
connected cuts. Moreover, they counter the cardinality problem by
splitting the input video into smaller pieces and removing one frame
at a time from each piece. By using a multiresolution scheme, we
target a more global solution. We are currently experimenting with
the application of our method for video summarization.

Finally, another future issue we plan to investigate is the relation-
ship between seam carving, scaling and cropping. These all ad-
dress the problem of fitting content to display, but take different
approaches to solve it. It would be interesting to try and combine
all three into a single framework.
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A Seam Constraints Proof

We show that the graph construction introduced in section 4 using
horizontal backward infinite arcs induces a minimal cut which nec-
essarily maintains monotonicity.

The optimal cut must pass all rows: This follows directly from the
definition of a cut and from the construction. As S is connected to
all pixels in the leftmost column, and every pixel in the rightmost
column is connected to T , every row has to be cut in some place in
order to create disjoint subsets.

The optimal cut passes each row only once: W.l.g. assume that
there exists a row j in the grid in which the cut passes twice (in fact
it must then cut the row an odd number of times). Let us examine
two consecutive cuts in row j. Let node pi,j be labeled S, the
nodes pi+1,j to pk−1,j will be labeled T and the nodes pk,j will
be labeled S again. However, this also means that the arc pk,j →
pk−1,j , which is an infinite weight arc, must be included in the cut
(figure 15(a)). This makes it an infinite cost cut, which contradicts
optimality since it is always possible to cut only horizontal arcs at
some column of the grid and achieve a finite cost cut.

Corollary: if the source node is connected to the left column of the
image and the target node to the right column, then all nodes on the
left of the minimal cut must be labeled S, and all nodes on the right
of the cut must be labeled T .

If we want the cut to be connected as well (as shown in Figure 4(c-
d)), we use backward-going diagonal arcs. The same argument as
above can prove connectivity as illustrated in Figure 15(b-c).

(a)

(b) (c)

Figure 15: Using infinity edges (red) in the graph construction
maintains the seam constraints. Horizontal infinity arcs maintain
monotonicity (a) - see details in text. Diagonal infinity arcs main-
tain connectivity. If the cut skips more than one pixel to the left (b)
or right (c) - a diagonal infinity arc from a source node (white) to a
target node (black) must be cut.

9


