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Figure 1: Editing a video of a talking head. The input images are automatically converted to an “unwrap mosaic” without an intervening
3D reconstruction. Painting the mosaic and re-rendering the video allows us to add virtual make-up (eyebrows, moustache, and rouge on the

cheeks) to the actor, as if to a texture map on a deformable 3D surface.

Abstract

We introduce a new representation for video which facilitates a
number of common editing tasks. The representation has some of
the power of a full reconstruction of 3D surface models from video,
but is designed to be easy to recover from a priori unseen and un-
calibrated footage. By modelling the image-formation process as
a 2D-to-2D transformation from an object’s texture map to the im-
age, modulated by an object-space occlusion mask, we can recover
a representation which we term the “unwrap mosaic”. Many edit-
ing operations can be performed on the unwrap mosaic, and then
re-composited into the original sequence, for example resizing ob-
jects, repainting textures, copying/cutting/pasting objects, and at-
taching effects layers to deforming objects.
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1 Introduction

We show how to recover dense models of deforming 3D sur-
faces from previously unseen video footage. These models are
not conventional 3D surface models—in one sense they are a
generalization—but they have some very desirable properties. First,
they allow a wide range of editing operations to be performed on
the original video. Second, they are easier to recover from the
video than 3D models, allowing us to work with deforming surfaces
and self-occlusion, two bugbears of conventional computer vision
based approaches. Finally, the model itself provides a reference for
feature-point tracking, yielding long tracks which are resistant to
drift and occlusion, and which could serve as a substrate for many
conventional editing techniques.

*http://research.microsoft.com/unwrap

We are given a video sequence, captured in the real world. Our
model of the world is that it is a collection of deforming 3D sur-
faces, viewed by a moving camera. If we had access to the 3D mod-
els and their texture maps, edits such as resizing objects, repainting
textures, copying/cutting/pasting objects, magnifying motion, at-
taching effects layers to deforming objects, and so on, would be
easy. However, such models are not readily obtained from a priori
unseen and uncalibrated footage: the state of the art in the recovery
of 3D information from images is briefly as follows. The extraction
of sparse 3D information from image sequences of rigid scenes is
by now well understood, with software packages available which
can recover 3D camera trajectories and sparse 3D point clouds from
uncalibrated image sequences [2d3 Ltd. 2008; Thorméihlen and
Broszio 2008]. The mathematical extensions to nonrigid scenes are
understood [Bregler et al. 2000; Brand 2001; Torresani et al. 2008]
but their estimation is somewhat less reliable under occlusion. For
dense reconstruction from video, however, we are firmly restricted
to rigid scenes [Seitz et al. 2006]. Some classes of dense models
can be built using interactive tools [Debevec et al. 1996; van den
Hengel et al. 2007], which aid the recovery of polyhedral surface
models from video, but again, these are restricted to rigid scenes.
Triangulation of the sparse points from nonrigid structure may be
expected to be at least as difficult as from rigid structure, which has
proved surprisingly troublesome: although it is easy to form a tri-
angulation of 2D projections of 3D points, zippering these models
has not been the simple extension of [Turk and Levoy 1994] that
might have been expected.

We introduce a technique which overcomes these difficulties to a
large extent, generating a representation which is in some ways
equivalent to a deforming 3D surface model, but can be extracted
directly from video. To compress the idea into a simple slogan,
our primary goal is to recover the object’s texture map, rather than
its 3D shape. Accompanying the recovered texture map will be a
2D-to-2D mapping describing the texture map’s projection to the
images, and a sequence of binary masks modelling occlusion. The
combination of texture map, 2D-2D mapping, and occlusion masks
is what we call the unwrap mosaic. A video will typically be repre-
sented by an assembly of several unwrap mosaics: one per object,
and one for the background. Once one has the unwrap mosaic for
an object, it is possible in principle to recover the 3D shape, but for
many editing tasks this is not necessary: edits can be performed on
the mosaic itself and re-rendered without ever converting to a 3D
representation.
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Figure 2: Reconstruction overview. Steps in constructing an un-
wrap mosaic representation of a video sequence. Steps 1 to 3a form
an initial estimate of the model parameters, and step 3 is an energy
minimization procedure which refines the model to subpixel accu-
racy.

The main contribution of this paper is the algorithm to recover the
unwrap mosaic from images. This algorithm is an energy minimiza-
tion procedure, and the formal exposition beginning in section 2
shows how each of the algorithmic steps derives naturally from the
fitting of the model to image sequences.

The formal description, even in a simplified form, is long. Before
embarking on it, it may prove valuable to outline at a high level the
steps of the algorithm that will emerge. Despite not having yet set
up our notation, it is hoped that the steps will be comprehensible
to readers familiar with the computer vision and graphics literature.
These steps all correspond to minimization of the model energy via
coordinate descent, with different variables held constant at each
step.

1. Segmentation

The first stage is to segment the sequence into independently mov-
ing objects. This is a subject that has seen recent research, and
we use a variant of “video cut and paste” [Li et al. 2005] which
allows accurate segmentation maps to be obtained with relatively
little effort. Although our system can in some cases compute the
segmentation maps automatically, a general-purpose implementa-
tion must allow for user interaction at this and certain later stages.
These interactions are discussed in section 4.

2. Tracking

We recall that we are trying to recover the texturemap of a deform-
ing 3D object from a sequence of 2D images. The fundamental
assumption is that although the model is changing its shape, the
texture map may be assumed to be constant, as on skin and cloth.
Consider a point on the object (e.g. a surface marking on skin). As
this point moves through the video, it generates a 2D trajectory or
track. Conversely, standard computer vision algorithms for interest-
point detection and tracking [Sand and Teller 2006, for example]
can be used to compute such tracks from the input sequence.

3a. Embedding

The computational cornerstone of our method is the embed-
ding step.  We view the sparse point tracks as a high-
dimensional projection of the 2D surface parameters, so the point
(u,v) in parameter space generates a vector of image positions
(z1,y1, T2, Y2, ..., xT, yT). We can recover (up to reparametriza-
tion) the surface’s (u, v) parameter space by computing an embed-
ding of the point tracks into 2D, directly yielding (u, v) coordinates
for each track. Analogous embeddings (e.g. multidimensional scal-

ing and locally linear embedding) are widely used in visualization,
and were used by Zigelman et al. [2002] to create texture coordi-
nates for 3D models. Here there is no 3D model, but a related line
of reasoning leads to an algorithm which chooses (u, v) coordinates
for each trajectory such that distances in uv space are commensu-
rate with distances in the image frames at which pairs of tracks are
maximally separated.

3b. Mosaic stitching

The embedding defines a map from the tracked points in each im-
age to the (u,v) parameter space. Interpolating this mapping al-
lows each image to be warped into the common frame. A variation
of the standard mosaic stitching technique [Agarwala et al. 2004]
emerges naturally from the energy formulation. This is the second
crucial stage, and has the very useful property that it often chooses a
good texture map, even when some per-frame mappings have large
errors.

3c. Track refinement

After the above three steps, the mosaic, although not accurate, is
generally good enough to create a reference template to match
against the original frames. Because this matching is to a single
reference, it reduces any drift that may have been present after the
original tracking phase. In essence we are in the situation described
in [Gay-Bellile et al. 2007], but where their texture map is provided
a priori, ours is built automatically from the sequence. Regulariza-
tion of the mapping defines a dense interpolation, so that track in-
formation propagates to occluded areas of the scene, giving a com-
plete description of the object motion.

3d. lterate

Because track refinement has improved the estimate of inter-track
distances, we can hope to compute a better embedding and mosaic
by iterating steps 3a-c. Because, as shall be seen, each stage min-
imizes the same energy function, a consistent global convergence
measure can be defined, and iteration can be terminated easily.

Using the model for video editing

Given the unwrap mosaic, one may proceed for editing as if one had
a planar mosaic [Wang and Adelson 1994; Irani et al. 1995] with
additional occlusion masks. The simplest task is to edit the texture
map, for example by drawing on it, warp it via the recovered map-
ping, and combine with the other layers of the original sequence.
This has the effect of drawing on the object’s surface, and the accu-
racy of registration with the pre-existing surface texture is a good
test of the algorithm. In practice, the re-rendered mosaic will not
exactly match the original sequence, so it is better to represent the
edit as an overlay on the texture map, which is warped by the 2D-
2D mapping, masked by the occlusion masks, and alpha-blended
with the original image. Another possible edit is to remove layers:
the removed area is filled in because the mapping is defined even in
occluded areas.

Limitations

The main limitations of our approach are that it requires quite well-
textured objects in order to work, and that the objects to be recov-
ered must be smooth 3D surfaces which are deforming smoothly
over time. In detail:

e Textured surfaces are required for point tracking. Low texture,
such as on a face, requires good focus and lighting. One-
dimensional textures (stripes, rather than spots) suffer from
the aperture problem. In addition, motion blur reduces the
efficacy of the point tracking.

e The assumption of a smoothly varying smooth 3D surface
means that objects with significant protrusions (the dinosaur
in figure 11) do not yield useful mosaics.
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Figure 3: 3D Projection with and without hidden surface
points. A 3D surface S(u) projects to a 2D image 1(x). (a) With-
out self-occlusion, the mapping from points u on the model texture
map C(u) to the image is a simple 2D-2D mapping w(u). The
red cone represents the point-spread function of the pixel marked
by the red sphere: the colour 1(x) is a function of the colours of
all world points which fall within the cone. (b) With self-occlusion,
we view hidden-surface removal as defining a binary mask b(u),
aligned with the surface parameter space. In this illustration, blue
tinted pixels on the model are invisible, corresponding to b(u) = 0.

e The assumption of smoothly varying lighting means that
strong shadows will disrupt tracking. Although this can be
somewhat mitigated by high-pass filtering as a preprocess, it
would be better dealt with explicitly.

e We are currently limited to disc-topology objects, meaning
that a rotating cylinder will be reconstructed as a long tapestry,
rather than a mosaic with cylindrical topology (see figure 11).

2 The unwrap mosaic model

The above algorithmic steps arise naturally by introducing a new
model of image formation, and fitting that model to the image se-
quence. The next section formally describes the model, and shows
how the fitting algorithm corresponds to a sequence of energy min-
imization processes.

Derivation of the algorithm will comprise three stages: image gen-
eration model, energy formulation, and minimization. First, the
image generation model defines how an image sequence is con-
structed from a collection of unwrap mosaics. The model is intro-
duced in the continuous domain, and then its discrete analogue is
derived. Given such a model, extracting it from a supplied image
sequence becomes a fitting problem, albeit a nonlinear and under-
constrained one. The bulk of the paper deals with this fitting prob-
lem. It is expressed as a problem of energy minimization, which
can be implemented via nonlinear optimization. The key to the un-
wrap mosaic model we develop is that a good initial estimate for
the 2D-2D mapping, and hence for the texture map, can be obtained
from sparse 2D tracking data.

In order to explain the model and its recovery from video, the next
several paragraphs will assume a greatly simplified scenario. Al-
though this ignores many complexities, such as model topology and
lighting, it will be enough to motivate the technique, and later sec-
tions will describe the more complex model. Many topics are dealt
with in more detail in [Rav-Acha et al. 2008].

Despite the difficulties alluded to in the introduction of recovering
3D models from video, let us proceed as if to solve the general 3D
surface reconstruction problem. Let the world be a collection of 3D
surfaces, represented as geometry images [Gu et al. 2002]; that is
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Figure 4: The image generation model. Three frames from a
synthetic sequence of a deforming 3D model. The columns show
the evolution of the binary visibility map b(u, t) (in white) and the
2D-2D mapping w(u, t). Each row may be read as: “the area of C
which is visible is warped by w to give 1”. To aid visualization, the
visibility map is shown modulating the texture map C(u) (which is
constant throughout the sequence). The mapping w is represented
by arrows showing how the texture map is warped to produce each
image. Although only the values of W where b is nonzero are used
in order to render each frame, we emphasize that w is defined for
all values of u and t, and it is shown in gray for occluded surface
points. When reconstructing w from an image sequence, it will be
our goal to recover it at both visible and invisible points.

to say each surface is represented as a function S : Q — R where
Q C R? is the unit square. The surface is also accompanied by a
texture map C : Q — C, where C represents the color space in
use, e.g. RGB. Thus, each point u = (u,v) € Q is associated with
the 3D point S(u, v) and the color C(u, v).

A generalized camera is a function 7w : R® +— R2, which induces
the 2D-to-2D mapping w(u) = 7 (S(u)). The function w now
maps from the unit square in the surface’s parameter space to the
image domain. Let us assume for the moment a trivial lighting
model where texture-map colors C are simply copied to the image
plane. Let the point-spread function (PSF) of the imaging cam-
era [Seetzen et al. 2004] be the function p : R? — R.

If every point on the surface were visible, as in fig 3a, the rendered
image I(x) would be defined by

I(x) = /p(w(u) —x)C(u)i(u)du (1)

where J(u) is the determinant of the mapping Jacobian.

In practice, of course, parts of the surface are backfacing, or hidden
by other surfaces, or self-occluded by the surface itself. We en-
capsulate all of these processes into an object-space visibility map
b(u), defined as

(@)

0 otherwise

b(u) = {1 if S(u) is visible
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Figure 5: Trajectories. The unwrap mosaic may also be viewed as
defining the trajectory, or motion path, associated with each texture
coordinate. For some example points uy, we show the correspond-
ing trajectories [w(uy,t)],. These are modulated by the point’s
visibility function [b(ug, t)],, so that white portions of the track are
visible (b = 1), and red portions are occluded by another part of
the object (b = 0).

yielding the complete imaging function

I(x) = /p(w(u) —x)C(u)b(u)i(u)du 3)

This is a key step in deriving the new model: the link between b
and the 3D geometry is relaxed. Essentially we will not enforce ge-
ometrically correct hidden-surface relationships, thus simplifying
the recovery of b from images, but the recovered b will nonethe-
less usefully encapsulate the occlusion geometry. When recovering
the model from video, a Markov random field prior on b will re-
place 3D occlusion reasoning to constrain and regularize the model.
Conversely, fitting the model can return a w and b which are not
consistent with any 3D geometry, but if the sequence is correctly
re-rendered by the returned parameters, many editing tasks will not
suffer.

The first extension of the model is to sequences. The object’s colors
remain the same for each frame of video, but the mapping w and
the visibility map b will change. Thus a video sequence of T" frames
{I(x,t)}7_, is defined by

I(x,t) = /p(w(u7 t) — x)C(u)b(u, t)i(u,t)du 4)

Now the trajectory of the point at parameter-space po-
sition u is the sequence of 2D points w(u,:) =
w(u,1);w(u,2);...;w(u,T)]. Figure 5 illustrates the
ground-truth trajectories of the synthetic sequence, while figure 7
shows the sparse trajectories acquired by tracking on the input
images.

The final modification is to deal with multiple objects in the se-
quence. Let the number of surfaces (including the background)
be L, with each object represented by the tuple of functions
(C!, w',b"). Image formation then becomes

I(x,t) = Z/p(wl(u, t) — x)C'(u)b' (u, t)1' (u, t)du  (5)
=1

where the visibility masks b are now encoding inter-object occlu-
sions as well as self-occlusions.

Figure 4 illustrates the model using a synthetic sequence of a de-
forming 3D object.
2.1 Discrete energy formulation

The above description is in terms of continous functions C, b, w
and I. In computation we adopt a discretization onto a regular grid.

The images I(x,t) are received in discrete form, as grids of size
W x H. We choose a discretization of the parameter space Q into
aw X h grid, where w and h are chosen as described in §3.2. For a
sequence of 7' RGB frames, the variables to be recovered are then:

e the w X h X 3 texture map C(1),
e thew X h X T X 2 mapping w(11,t),
e the w X h X T mask sequence b(1, t).

The caret notation means that the indicated variable can take only
integer values. The notation C will refer to the table of values
{C(@,?),a € 0.w,d € 0..h}. There is a rescaling of axes
implicit in the (u,v) discretizations, as the unit cube is mapped
to a w X h rectangle, but we ignore this by redefining Q to be
the rectangle [0, w] X [0, k] in the continuous domain. Any such
reparametrization of the model does not affect the generated se-
quence.

The goal of this paper is to recover the unknown variables C, w, b
from the given data I At first sight, this task seems poorly de-
fined: if we assume w and h are approximately equal to W and H,
the number of unknowns to be estimated is of the order of the video
size: the images provide 3whT measurements, while the unknowns
number 3wh + whT X (2 scalars + 1 bool). However, by casting
the problem as energy minimization, the decomposition into color
and motion allows strong regularizers to be placed on C, w and b.
The energy measures the accuracy with which the parameters ex-
plain the input frames, as well as the a priori plausibility of the
parameters.

The energy, like the image generation process above, is naturally
described in a continuous formulation, with conversion to discrete
form involving a number of simple but tedious integrals. It may
appear that some of the terms will be difficult to optimize, but the
alternating optimization strategy presented in §3 means that only a
subset of the variables appear in each optimization step.

This derivation will assume that the user has provided a good seg-
mentation of the sequence into object layers; the generalization to
unknown or imperfectly known segmentations will be discussed
in §8.1.

2.2 Data cost

The first term in the energy is the data cost, encouraging the model
to predict the input sequence, and in particular to explain every in-
put image pixel. If the input frames are I(x%,t), the basic form of
the data cost is the sum

Eua =Y > L%, 1) = 1(%,1)]|- ©)
t x

The robust norm |le]|; = min(||e||,7) deals with outlier pixels
due to lighting or small unmodelled occlusions. The setting of 7 is
discussed in §5.

This cost is a discrete sum over the point samples in I, but contains
a continuous integral in the evaluation of I(%,¢). Evaluating the
integral yields the discrete model
L A(a,x,1)b(0)C(a
T, 1) — Sa Al X 06O .
Yoo Ala, x, t)b(t)

where the weights A(1, x, t) are a function of the mapping w, its
Jacobian, and the PSF. They measure the contribution of each G
point to pixel x, and will be zero at all but a few points t. The data
cost is then

®)

T



At points in the implementation we shall use an approximation to
the correct integrals which is given by

) ~ fi(a) foraeUx,t)
A(d,x,t) = {() otherwise ©

where U (x, t) is the set of all texture-map pixels which project to a
given image pixel, defined by U (x,t) = {a|p(w(a,t) —x) > 0},
i.e. “the points u which map to nonzero values of the point-spread
function at x”.

2.3 Constraints

Simply minimizing the data term can yield a reconstruction which
maps every texture pixel to a single image pixel. That is, if there is
any colour which appears in every frame, then set C'(u) to that
colour for all u, and set the mapping w(u,v,t) = (= — % +
z(t), 2 — 3+ 4 y(t))Vu, where (x(t), y(t)) is a pixel of that colour
in frame ¢. This gives Fgaa = 0, for any setting of b. Thus we must
restrict the search for models to those which explain every pixel.
This is imposed as a soft penalty based on a “count of contributing
pixels”

Clx,t)= Y bd). (10)

aeU(x,t)

This yields an energy term

7. C(x,t)=0
Zt: zx: {0 otherwise (b

where the threshold 7 is a parameter of the algorithm. This formu-
lation may then be tractably optimized using graph-cut.

2.4 Mapping smoothness

The mapping w is a proxy for the projection of a 3D surface, which
we assume to be undergoing smooth deformations over time. We
might further assume a relatively smooth camera motion. However,
these assumptions are not sufficient to ensure that w is smooth, so
conventional smoothness terms, such as thin-plate splines, are not
appropriate.

Instead, we wish to encourage the recovered texture map to be sam-
pled such that each texture pixel is taken from the input frame in
which it is most fronto-parallel. Equivalently, the mapping is en-
couraged to be fronto-parallel in at least one frame. Without camera
roll or zoom this could be expressed as the energy

> min||3(a) — I||%, (12)

saying that, for each u, the mapping Jacobian should be close to
the identity (in Frobenius norm) in at least one frame. As written,
it does not account for rotation about the camera optical centre or
zoom, so in practice we estimate an overall affine transformation
for each frame, called H;, and minimize

By =) min|3(a) - H||7 (13)

Although this appears to offer no spatial smoothing, it can be argued
that in combination with a temporal coherence term of the form

Elemporal - Z Hwt(ﬁ7 t)H2 (14)

a,t

it leads to a spatial regularizer akin to a weak membrane [Blake and
Zisserman 1987]. The compelling feature of this regularizer is that
it leads to an excellent way to initialize the parametrization, as will
be discussed in §3.2.

2.5 Visibility smoothness

We recall that the visibility map b is used to represent the effects
of hidden surface removal, without explicitly modelling the 3D ge-
ometry. Instead, we observe that discontinuities in b are rare, and
define a Potts energy which counts discontinuities, as used in image
segmentation [Boykov and Jolly 2001]:

Ey= Y,

(a,8’)EN,t

Potts(b(11, t), b(d', t)) 15)

where N is the set of 2 x 1 neighbourhoods, and Potts(b1, b2) is 1
if b1 # by and zero otherwise. A similar term is applied temporally,
taking the mapping into account:

Ebtempnral = Z Potts (b(ﬁ7 t)y b(ﬁ + Au(ﬁv t)v t)) (16)

a,t

where Au(u,t) = J(u,t)" (w(u,t 4+ 1) — w(u,t)), using the
Jacobian to convert local displacements in the image into displace-
ments on the mosaic.

2.6 Texture prior

A final regularizing term encourages the texture map C to have the
same texture statistics as the input sequence. Following [Woodford
et al. 2007], we encourage neighbouring pixels in the texture map
to come from the same input image. This energy term is complex
to write down, but simple to implement, so we defer its description
until the next section.

3 Minimizing the energy

A linear combination of the above terms yields the overall energy.
The energy is written as a function of the discrete variables C, w, b:

E(Cv \X/, I;) :Edata(cz W, ZN))“F
AlEW(W) + )\2Ewtcmporal(w)+
A3Eh(b) + )\4Ebtemporal(b) (17)

Here, and later, several tuning parameters appear in the energy,
which must be set. Section 5 discusses the issue of parameter set-
ting in more detail.

The energy is minimized by coordinate descent, optimizing for sub-
sets of the variables in turn. Minimization with respect to each sub-
set of variables yields each of the algorithm steps outlined in the
introduction.

3.1 Minimizing over C: stitching

In stage 3b of the algorithm, we are given the mapping w, and the
occlusion mask b, and must solve for the texture map C. Notice
that only the Fya. term of the energy depends on C, so for fixed w
and b, the minimization is simply C = argming Egaa. Minimiza-
tion under the robust norm (8) can be cast as a graph-cut problem
by restricting the choice of C. Specifically, an integer label s(11)
is associated with each texture map pixel @i, which indicates one of
the input frames from which C(11) is to be chosen. The input im-
ages are warped by the inverse of w, to generate registered images
I¥(1,t), from which C is optimized at any pixel & by computing

s" =argmin » _ [[I*(a,t) — I*(q,s)| (18)
s t

and setting C = I(11, s™). At this point it is easy to add a texture
prior to the original energy, which encourages adjacent pixels in



Figure 6: Maximum distance. Two object points, with (a priori
unknown) texture coordinates w1 and uz. From tracking, we ob-
tain trajectories xi(t) = [w(ug,t)], where k € {1,2}. The em-
bedding energy encourages distances in parameter space to be at
least the farthest separation of the trajectories, i.e. |[lu1 — uz|| >
masx, [x1 (£) — x2 (1)

the texture map to be taken from the same input images, yielding
an energy of the form

E(5) = Z DI () = I8, s(w) ||+
+ Atexture Z

{a,a’}eN

(i, @' )Potts(s(@), s(@))  (19)

where (-, -) measures patch overlap as in [Agarwala et al. 2004].

3.2 Reparametrization and embedding

An important variable which does not appear as an explicit pa-
rameter of the energy functional relates to the parametrization
of u space. The data cost Eyya is—by construction—invariant to
reparametrization, but the warp costs (13), (14) are not. It turns out
that addressing this question leads to the crucial step in initializing
the energy minimization as we now show.

The initialization of the overall algorithm consists in obtaining
sparse point tracks (step 2 above). The " track is the set
{%x(u;,t) | t € T;} where T; is the set of frame indices in which
the point is tracked, and u; is the unknown preimage of the track in
parameter space. Finding these—u; will anchor all other computa-
tions.

Finding the optimal parametrization then consists in assigning the
u; values such that the warp terms Ey, (W) 4+ Ewemporal (W) are min-
imized. For a given pair of tracks, with coordinates u; and uj,
we wish to know the energy of the mapping which minimizes the
regularizer subject to the mapping being consistent with the tracks.
Specifically, we require the value of

I'%‘i]n Ey, (W) + Ewtemporal(w)

such that w(u;,t) = %(u;,t) Vt € T; (20)
W(u]‘,t) = i(u]‘,t) Vit € T;.

Note that only the value of the minimizing energy is required, not
the mapping itself. It can be shown that the minimal energy in the
pairwise case, as a function of u; and uy, is
- - 2
(H(X(uz',ti‘j) — X(uy, ;) — (w; — Uj)ll) |
[[wi — ]

[wi — uy]

where t;; = argmax ||X(u;, t) — %X(uy, ?)]|
teT;NT;

Given several tracks as above, the u; are chosen to minimize the
sum of weighted distances
1

S diy — (i —u) |
P [w; — | (22)
where dij = )N((lli, trj) — )Ni(llj, t;fj)

Note that this is analogous to embedding via multi-dimensional

scaling [Cox and Cox 2001], but with a distance weighting

term ﬁ The minimization is implemented as an iterated
]

reweighted least squares problem. In practice, to avoid numeri-

cal issues when u; and u; become close during optimization, we
. P 2

use an exponential weighting exp(—(||u; — u;||/73)*). The affine

transformation Hy is estimated from sparse tracks and applied be-

fore embedding.

The implementation is as follows. Each pair of tracks is assigned
a random weight 1,5, and the {ux|k = 1..7} which minimize the
quadratic form

> pus||di; — (s — u))||® (23)
i

are found. The p;; are then recomputed with the new u, using
wi; = exp(—(||u; — w;||/73)?), and the process is iterated to a
fixed point. The embedding is restarted several times, with differ-
ent random initialization, and the u’s which minimize the original
energy are retained.

Since we can have many thousands of tracks, we initialize with a
subset of tracks (1000, for example), and solve the embedding for
that subset. Then, those u values are fixed, and the next subset is
minimized, including the pairwise terms which link from the new
set to the set for which we already have a solve. Each subproblem is
a quadratic form of size 1000 x 1000, which allows us to compute
the embedding on a desktop PC in a few minutes.

The mosaic size is naturally selected by this process: because dis-
tances in (u, v) space are measured in pixels, and because pairs of
points are encouraged to be as far apart as their longest separation
in the input sequence, a simple bounding box of the recovered coor-
dinates is ideally sized to store the model without loss of resolution.

Comparison with nonrigid structure from motion It is instruc-
tive to compare this process with the nonrigid structure from mo-
tion algorithms of [Torresani et al. 2008]. There, as here, the in-
put is a set of n tracks, X(u;,¢). In that algorithm the tracks are
concatenated to make a 27 X n measurement matrix, of which a
low-rank approximation is formed. Finding this approximation (to
rank 6, say) amounts to saying that each track is a linear projection
of a point in a RS, effectively finding an embedding of the tracks
into 6D space. In our case, the embedding is not constrained to
be linear, so it can map from a lower dimensional space—indeed it
maps from 2D space, the natural domain of the texture map.

3.3 Minimizing over w: dense mapping

Before step 3b, it is necessary to obtain a dense mapping w, which
is obtained given the tracks and their embedding coordinates. In
this case, (20) is minimized with one constraint per track, and the
resulting w can be shown in 1D to be linear interpolation of the
sparse track data. Although the 2D case has not, to our knowledge,
been characterized, we assume an analogous situation and simply
use MATLAB’s griddata to interpolate. Although this unvali-
dated assumption means that there is no guarantee of minimizing
the original energy, it is a simple matter to check that the overall en-
ergy has reduced at each iteration, and to reject iterations where it



increases. Indeed, to adumbrate the discussion in [Rav-Acha et al.
2008], this is a useful general principle: energy minimization ap-
proaches are attractive because all the system tuning parameters are
clearly defined and visible in the energy, but it is difficult to find
closed-form minimizers for each energy component. However, us-
ing ad-hoc optimizers, even when they may have their own tuning
parameters, will affect only rate of convergence, not correctness, if
reduction of the original energy is verified at each stage.

3.4 Minimizing over w and b: dense mapping with oc-
clusion

Given an initial approximation to w as above, we may solve simul-
taneously for b and a refined mapping. By solving for an update
Aw to the initial estimate, the problem may be cast as one of op-
tical flow computation. The minimization is now over all energy
terms, as all terms depend on w and b.

The energy for the update is implemented as a variant of robust
optical flow [Brox et al. 2004], alternating search for Aw and b on
a multiresolution pyramid.

Let C be the current estimate of the texture map and let w° be the
current mapping estimate. Then we wish to determine the update
Aw which minimizes

Baua(Aw) = Z b(a)||C(a) — I(w' (1) + Aw,1)||>  (24)

under the local regularizers

Eaw =M Y _ [IWoy + Awuul® + W, + Aww[*,  (25)

a

with Ejy, and Eyemporat as above. Linearizing (24) gives a linear
system in Aw which is readily solved.

Temporal smoothness is imposed via a forward/backward imple-
mentation where the mapping w and the mask b of the previous
frame are transformed to the coordinate system of the current frame
using the image-domain optic flow between frames, and added as a
prior to the current estimate, as follows:

Erempora = Y [Wrev(8) = w(@)[| 4 [[bprev () — b(1)]|*.

3.5 Lighting

Lighting has been ignored throughout the discussion above. It is
addressed in two ways. First, when matching interest points from
frame to frame, (or from the mosaic to input frames), we use SIFT
descriptors [Brown and Lowe 2007]. Second, when computing
dense mappings, energy terms of the form

S (w(@) - o)l

are extended to include per-pixel intensity scaling terms «(x), 3(x)
with a strong spatial smoothness prior, so the matching minimizes

S o)L, +8060-16c, 1) +3s 3 1 5G|+ 52860

This gives invariance to smoothly changing lighting without allow-
ing any colour to match with any other. In turn, the above is imple-
mented by defining « and [ in terms of a coarse set of fixed basis
functions whose weights are easily included in the pyramid-based
matching scheme of §3.4. For efficiency, o and ( are solved for
only at coarse pyramid levels, and interpolated at the finest scale.

Figure 7: Reconstruction results, synthetic sequence. (7op)
Frames from a 100-frame synthetic sequence of a deforming sur-
face. (Middle) Point tracks extracted fom the sequence, overlaid on
the same frames. (Bottom) The texture map recovered by embed-
ding point tracks into 2D.

4 User interaction and hinting

Although the above algorithm can work completely automatically
[examples are in figs 7, 8a, and 11], there will generally be situ-
ations where lack of texture, repeated structures, or motion blur,
mean that the recovered mosaic does not cover all of the object. In
this section we present user interactions that can be used to correct
such errors.

The first example interaction is mentioned above: to provide a seg-
mentation of the sequence, the user selects objects in a small num-
ber of frames, and the segmentation is propagated using optical flow
or sparse tracks. Although automatic segmentation is sometimes
possible, a sequence such as the giraffe example has (a) many fore-
ground objects with similar colour statistics and (b) some giraffes
are static, or exhibit similar movement to the foreground object. In
this case, existing automatic segmentation algorithms will require
human assistance.

A second example interaction deals with improving the mosaic cov-
erage. Figure 8 shows a giraffe sequence in which the initial mosaic
does not include all of the giraffe’s head. By brushing on the head
in one (inverse warped) frame I* (1, ), the stitching variable s(1)
is given fixed values for some set of G1. Incorporating these as hard
constraints in the optimization of (19) is trivial—the nodes repre-
senting the fixed values are simply removed from the graph—and
yields better mosaic coverage which means that the mapping re-
finement stage can obtain good motion estimates over more of the
object’s surface.

5 Tuning parameters
For this work, the most important parameters are as follows.

The robust kernel width 7 is set to match an estimate of image
noise. For all experiments it was set to 5/255 gray-levels, which
means that the visibility masks for the noise-free synthetic se-
quence, where the appropriate value is lower, are smoother than
the best that could have been obtained.

The scale parameter in the embedding distance calculation 73 is set
to about 40 pixels for all our test sequences (PAL resolution) except
the face, which had many outlier tracks, and necessitated a higher



(a) Automatic (b) Brush strokes

(c) Recomputed
mosaic

Figure 8: User interaction. (a) Automatically computed mosaic
for giraffe sequence. The far side of the head, and the distal leg, are
not represented as they appear in too few frames. (b) User brush
strokes on an intermediate frame inverse-warped into parameter
space. The strokes indicate parts of this frame which should appear
in the mosaic. (c¢) New mosaic computed with only the brush strokes
in (b) as constraints. The head and leg are now present in the mo-
saic, so can be matched to the original sequence during mapping
refinement.

value. In future work we expect to use this as a convergence control,
starting from a high value and reducing.

The spatial smoothness weight Ay in the proxy regularizer (25)
controls the amount of deformation of the mapping. It was constant
for all but the “boy” sequence, where it was reduced because the
deformations are more vigorous.

The other terms generally define local interpolations whose pre-
cise details are less important, or are mostly designed to improve
convergence and can be left at initial values at the cost of slower
reconstructions.

6 Results

In testing the algorithm, a number of success criteria present them-
selves, but for video editing, the primary criterion is obviously the
range and quality of effects that are enabled by the model. As it
is rather difficult to evaluate these on the printed page, the reader
is referred to the accompanying video, which should be studied in
conjunction with the text below. Computation times for all of these
sequences are of the order of a few hours.

6.1 Synthetic sequence

It is interesting to note that there is no concept of a “ground truth”
model to be recovered, even with synthetic data. The synthetic se-
quence is generated by texture-mapping a deforming 3D surface,
rendered over a static background. As shown in figure 4, the sur-
face exhibits considerable self-occlusion, with about 30% of mo-
saic pixels visible in any one frame. There is also some more
subtle self occlusion near the nose. The texture coordinates obey
a roughly equal-area parametrization, but this does not constitute
ground truth, because the minimum-energy parametrization of the
mosaic minimizes the rather different metric (13). We can, how-
ever, visually evaluate the recovered mosaic (figure 7), confirming
that it is approximately a diffeomorphic reparametrization of the
model texturemap, with compression at the top and bottom, where
the model was seen only obliquely, and some overall twists and
warps. This is effectively a perfect result, as one would hope from
a noiseless sequence, but illustrates the expected performance of
the model fitting.

6.2 Face sequence

The face sequence, used as an example in figure 1, has similar
topology and geometry to the synthetic sequence, with the skin sur-

B

Figure 9: Giraffe sequence. (Top) Several images from the se-
quence. (Row 2) The recovered mosaic for the background layer
(including a static giraffe). (Row 3) Recovered foreground mosaic
and edit layer. (Row 4) Frames from the edited sequence.

face deforming as the jaw moves. The surface texture, however,
is less easy to match, with few high-contrast points coupled with
strong lighting. Nevertheless, a good embedding is found, which
gives a mosaic which is comparable with that which would be ex-
pected from an accurate 3D scan, but is captured here with a single
camera and moving head. Rerendering the images with several su-
perimposed edits leads to a believable augmentation which follows
facial movements (see video).

6.3 Giraffe sequence: foreground

The giraffe sequence (figure 9) is archive footage which has been
scanned from 16mm film, and exhibits a moderate amount of noise
due to the film grain. We concentrate on the foreground giraffe and
the far background.

A logo is placed on the foreground giraffe’s back and head, and
deforms with the skin over time. This task provides an interesting
comparison with methods based on optical flow. With optical flow,
the annotation drifts by about 10 pixels in 30 frames, while the
unwrap mosaic shows no visible drift.

6.4 Giraffe sequence: background

An important and difficult example for our technique is the mosaic-
ing of the background of the giraffe movie. It appears the simplest
of the tests, because existing techniques based on homography esti-
mation [Brown and Lowe 2007], would perform excellently. How-
ever, consider what the homography supplies: it is a parametric
model which correctly describes the entire frame-to-frame motion
field; the eight parameters can be robustly estimated given just a
few tracks; and importantly the motion field is propagated easily
through the sequence with relatively little drift simply by multiply-
ing homography matrices. The unwrap mosaic model, in contrast,
has only local track information (average track length is 15 frames,
while the sequence is 380 frames), and a much weaker motion
model. Despite this, the embedding produces texture coordinates
almost as good as would be expected from homography estimation,



and stitching the mosaic gives a representation comparable to the
state of the art with the much simpler model.

6.5 Boy sequence

This sequence is stock footage of a boy walking in the woods. The
protagonist walks through trees, occluding and being occluded, and
then turns through 90 degrees so that both sides of his head and
torso are shown to the camera, at different times. Matching is
complicated by variable focus, motion blur, and considerable fore-
ground occlusion, but again an effective mosaic is produced. The
edits on the textureless areas of the cheek show some drift, but this
is kept in check by the final matching stage, being evident only on
close inspection. Note that the ear is doubled in this mosaic, and
could be fixed by editing as in §4, but for these augmentations this
was not necessary.

Figure 10: Boy sequence. (Top) Several images from the sequence.
(Middle) The recovered mosaic for the boy, and the edit layer. (Bot-
tom) Edited frames.

6.6 Dinosaur sequence

The dinosaur sequence (figures 6, 11) is a difficult case. Although
not deforming, the depicted object has a complex shape with sev-
eral self-occlusions. The recovered mosaic gets the gross layout of
the object parts correct, but the texture represents only a subset of
the model, and is certainly not a smooth reparametrization of the
object’s true “texture map”. This result does not appear to be of
particular use for editing, but does give hope that an iterative auto-
matic segmentation of the sequence might yield separate mosaics
for each model component: arms, torso, tail. We note as an aside
that the unwrap mosaic technique is “deformation agnostic™: rigid
or nonrigid objects are largely equivalent in difficulty.

7 Related work

Even the name “unwrap mosaics” reveals that some of the ideas in
this paper have a long history. Wang and Adelson’s paper [1994] on
layered representations is a clear progenitor of this work. In fact, it
was thinking about how layers might apply to self-occludng objects

that inspired the current model. Two important differences exist
with our model. First is structural: Wang and Adelson’s layers do
not allow b to vary over time, a difference which has significant con-
sequences. In particular, a fixed b means that the same set of texture
map pixels must be visible throughout the sequence, precluding its
application to any 3D object which rotates with respect to the cam-
era. Second, although it is suggested that a dense nonparametric
flow field might be associated with the mosaic, in practice the map-
ping was restricted to an affine transformation per layer. Indeed,
almost all developments of layers have used some form of whole-
image parametric motion estimate. Irani er al. [1995], for exam-
ple, include more elaborate parametric transformations, registering
layers using “6-parameter affine transformations” or “8-parameter
quadratic transformations”, and also demonstrate many of the edit-
ing examples we show in this paper, subject to the limitations im-
posed by the parametric mapping.

Many authors have reported developments of the ideas in these two
papers, for example dealing with non-opaque layers, computing
super-resolution mosaics, computing summary mosaics and other
representations such as Layered Depth Images [Shade et al. 1998].
An excellent recent overview is included in the work on transfer-
ring information from still photos to mosaics [Bhat et al. 2007].
The latter paper shows how, for rigid scenes, dense 3D reconstruc-
tion can give motion fields and occlusion masks which extend the
homography-based work to scenes containing rigid 3D objects. In
parallel to computer vision and graphics research into motion esti-
mation, the effects industry has developed tools and algorithms to
compute optical flow, and to apply it to post-production tasks. Sey-
mour [2006] provides a perspective from the viewpoint of a special
effects artist, which indicates the many uses to which motion esti-
mates can be put.

The measurement of dense motion fields is also an area which has
seen considerable research. A major theme has been the compu-
tation of optic flow, i.e. a dense motion field between successive
pairs of images in a sequence. A recent benchmarking paper [Baker
et al. 2007] cites several surveys and other comparison papers,
and benchmarks a modern energy-based formulation [Bruhn et al.
2005] ahead of the widely used implementation of Black and Anan-
dan [1993]. Characteristic problems that exist even in modern al-
gorithms are that the estimate is poor at depth discontinuites, and
that integrating flow over many frames leads to considerable drift.
In our work, we assume that a segmentation of the scene into lay-
ers is possible using coarse flow information, so drift is the more
important of these two difficulties.

Toklu et al. [2000] is the closest precursor to our work, using optic
flow to update a mosaic representation. The disadvantage of their

Figure 11: Dinosaur sequence. The recovered mosaic of the di-
nosaur. Protrusions such as the snout, arms, and tail are poorly
handled by the model. The cylinder topology is not modelled, so
the right arm appears twice, but this would be an easy extension.



algorithm is that it updates the representation in a somewhat ad-hoc
manner, at every new frame, and is thus subject to drift, and does
not form a mosaic in which errors are consistently distributed over
the sequence.

Recently, drift has been addressed by maintaining the “identity”” of
object points over time, for example by tracking interest points and
interpolating dense motion. Sand and Teller [2006] describe a com-
prehensive system based on point tracking, and their experiments
show greatly reduced drift on several example sequences. Dense
motion fields may also be obtained from sparse feature tracks by
fitting motion models corresponding to multiple 3D motions (Bhat
et al. [2007] describe a recent system), or to deformable 3D mod-
els [Bregler et al. 2000, et seq.]. The latter techniques, mentioned
earlier in this paper, are based on the observation that Tomasi-
Kanade factorization extends to multiple motions and deformable
models if the factorization rank r is taken to be higher than 3. The
difficulty with interpolating these tracks is that some 2D neighbour-
hood system must be defined either in the r-D space in which the
latent coordinates live, or in the image. The latter cannot be propa-
gated through occlusions, and the former introduces considerable
difficulties when the density of reconstructed points is not very
close to uniform. Because we embed directly into 2D, we avoid
both issues.

Related to our embedding technique is the family of methods which
discover texture coordinates for predefined 3D surface models, typ-
ically represented as polygon meshes. Zigelman et al. [2002] rep-
resents an example using multi-dimensional scaling and includes
a survey of related methods. Zhou et al. [2005] show how man-
ual specification of texture coordinates allows a set of images to be
texture-mapped onto an arbitrary polygon mesh. They also allude
to the problem of recovering texture maps for rigid 3D models ob-
tained from real images. Lempitsky and Ivanov [2007] present a
recent survey, noting that even with a 3D model acquired directly
from images, the registration of the model will generally not be suf-
ficiently accurate to obtain a seamless texture map. Their method,
like that described here, is built on mosaic stitching, but requires
a rigid 3D object from which to recover camera positions, silhou-
ettes, and ultimately a 2D-2D mapping between texture space and
the images.

An important general principle in related literature is the use of
energy formulations to regularize models and to make modelling
assumptions coherent and explicit. A consistent energy formula-
tion for layers was described by Fleet er al. [2002], while recent
optic flow formulations [Brox et al. 2004; Bruhn et al. 2005] also
benefit from an energy formulation. Energy formulations may also
be derived from a probabilistic viewpoint [Frey et al. 2003], often
yielding optimization algorithms with superior convergence char-
acteristics. Frey et al., for example derive an algorithm which con-
verges from a wide range of starting positions, but is practical only
for short low-resolution sequences with relatively simple motion
models. In contrast, our energy is specifically designed so that a
good initialization can be computed, meaning that conventional op-
timizers can be brought to bear.

8 Discussion

This paper presents a new representation for videos of deforming
3D objects. By making the texture map, rather than the shape,
the primary object of reconstruction, many difficulties which have
hampered earlier representations are resolved. Even without 3D
shape recovery, the representation allows many manipulations of
the video which respect the three-dimensionaliy of the scene, using
only 2D mappings.

The key step in our algorithm is viewing reconstruction as an em-
bedding of tracks into 2D. This gives us the topology of the under-

lying 3D points for free, while other algorithms have either had to
discover it as a post-process, or were limited to simple shapes such
as quadrics and planes. It might be thought that the embedding
would be unstable, especially given that more constrained models
(such as factorization) have difficulties with the large amounts of
missing data that self-occlusion causes. In practice, it is possibly
the most robust component of the system, because the linear algo-
rithm at its core scales to large amounts of data. This means that
it may use all the information in the input tracks, particularly the
information in the very many short tracks.

The other important step is the mosaic stitching. It has the property
that even with quite poor estimates of the warp field, yielding poor
inverse-warp images I (11,¢), a good mosaic is often obtained,
and hence re-mapping can correct the original estimate. Combined
with the manual interaction described in §4, even quite difficult se-
quences can yield useful mosaics.

It should be noted that the approximate algorithms we use to mini-
mize each slice of the energy function offer no guarantees of glob-
ally minimizing the overall energy [Rav-Acha et al. 2008]. We hope
that further research will yield better guarantees.

8.1 Generalizations

A natural generalization is to automatically segment the layers.
This is a subject with a long research history (see [Bhat et al. 2007]
for one review), and many existing methods could be used as a
preprocess here. A class of model that is relevant to our work is
that in which sparse point tracks are clustered into independent
motions by, for example, factorization-based structure from mo-
tion [Costeira and Kanade 1998]. This stage can be replaced by
a robost analogue of our embedding, where the 2-norm in (22) is
replaced by a truncated quadratic cost, marking as “outliers” some
links between track pairs 7. Normalized cuts analysis [Shi and
Malik 1997] on these links yields a segmentation into layers which
separates objects based on their embedding consistency, rather than
any specific motion model. Implementations of this on some of
our sequences can produce qualitatively correct results, but the op-
timization is fragile and requires further investigation. When min-
imizing the overall energy, the constraints on b must now include
contributions from all layers, modifying (10). Optimizing each
layer simultaneously would then be rather more computationally
expensive, but it might be hoped that alternating minimization over
one layer at a time would provide some benefits.

Another natural generalization would appear to be to allow non-
boolean masks b, allowing for alpha-blending of the layers. In the
continuous case, this is unnecessary, because the PSF correctly de-
scribes the colour of mixed pixels. In the discrete case, it may be
valuable to allow continuous visibility, but this remains to be tested.

A simple extension would be to apply matrix factorization to the
input tracks to recover a deformable 3D shape. The 2D mapping
then provides topology which could allow model reconstruction for
shapes which rotate about the vertical in front of the camera (i.e.
turntable-like sequences). This has not, to our knowledge, ever
been demonstrated using nonrigid factorization, due to the missing
data it induces. Conversely the factorization can place constraints
on the mapping which would allow outlier removal. Forming the
3D model would also allow exact visibility to be computed, provid-
ing constraints on b.

A possible difficulty with user interaction is that the recovered mo-
saic may be an arbitrary warp of the mosaic that the editing artist
expects. However, edits may also be performed by painting on a
frame of the original video, and then using the mapping to propa-
gate the edit through the sequence. For self-occluding surfaces, the
edit can be made on one frame and then updated in others.
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