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Figure 1: Visualization on curved quadric surfaces. (Left) Dome with casually aligned overlapping projectors (Middle) Registered images
(Right) Displayed with intensity correction. The parametric approach leads to accurate geometric registration and perceptually seamless
images. (Embedded images are high-resolution. Please zoom with PDF browser.)

Abstract

Curved screens are increasingly being used for high-resolution im-
mersive visualization environments. We describe a new technique
to display seamless images using overlapping projectors on curved
quadric surfaces such as spherical or cylindrical shape. We de-
fine a new quadric image transfer function and show how it can be
used to achieve sub-pixel registration while interactively displaying
two or three-dimensional datasets. Current techniques for automat-
ically registered seamless displays have focused mainly on planar
displays. On the other hand, techniques for curved screens cur-
rently involve cumbersome manual alignment to make the installa-
tion conform to the intended design. We show a seamless real-time
display system and discuss our methods for smooth intensity blend-
ing and efficient rendering.

CR Categories and Subject Descriptors: I.3.3, I.3.7 [Com-
puter Graphics]: Picture/Image Generation, Virtual Reality; I.4.1,
I.4.5

Keywords: camera calibration, seamless display, quadric transfer

1 Introduction

Large seamless displays using overlapping projectors is an emerg-
ing technology for constructing high-resolution semi-immersive vi-
sualization environments capable of presenting high-resolution im-
ages from scientific simulation, large format images for entertain-
ment and surround environment for instruction. In this way, they
complement other multi-projector technologies such as the CAVE
[Cruz-Neira et al. 1993], Blue-C [Staadt et al. 2000] and well de-
fined tiled planar [Jupiter Inc 2002] or curved displays [Trimension
Systems Ltd 2002]. In the last few years, we have seen a num-
ber of ideas for creating seamless displays on planar screens using
electro-optic approaches such as vignetting [Li and Chen 1999] or
using camera in the loop [Surati 1999; Chen et al. 2000; Yang et al.
2001; Brown and Seales 2002; FuturesLab 2002] to determine the
registration and blending parameters. In this paper, we extend the
camera-based techniques to deal with curved screens.

1.1 Overview

Accurate estimation of geometric relationship between overlapping
projectors is the key for achieving seamless displays (Fig 1). They
influence the rendering algorithms and also determine soft edge
blending efforts. General techniques that can handle setups where
projectors have been casually installed and exploit geometric re-
lationship between projectors and display surface eliminate cum-
bersome manual alignment and reduce maintenance costs. While
camera-based approaches for planar screens have exploited the ho-
mography, a 3 by 3 matrix, induced due to the plane of the screen,
as far as we know, there has been no work to exploit a similar para-
metric relationship for curved surfaces.

The relationship for surfaces that adhere to quadric equations,
such as spheres, cylinders, cones, paraboloids and ellipsoids, can be
defined using a quadric image transfer [Shashua and Toelg 1994].

Contributions In this paper, we present a complete set of tech-
niques to generate seamless displays on curved quadric surface.
Our technical contributions are as follows.

- Simplification of quadric transfer
- Calibration methods
- Automatic sweet-spot detection and area of display
- Software blending scheme using parametric approach
- Fast rendering strategy to exploit hardware

The sweet-spot is the ideal viewing location. Parametric approaches
lead to reduced constraints on camera resolution, better tolerance
to pixel localization errors, faster calibration and finally a simpler
parameterized warping process. Non-parametric approaches inter-
polate discrete samples and hence errors in feature localization are
immediately visible. Another advantage is that, unlike [Jarvis 1997;
Raskar et al. 1998], our cameras do not need to be placed at or near
the sweet-spot.

The scope of the paper is limited to description of algorithms re-
lated to quadric transfer, its estimation and use with graphics hard-
ware. We do not focus on photometric issues [Majumder et al.
2000], data distribution [Humphreys et al. 2001] and load balanc-
ing [Samanta et al. 1999] during rendering. Our approach, in the
current form, lacks ease of use because of the time involved in non-
linear optimization involved in estimating the parameters for image
transfer, but this is an active area of research.



1.2 Related Work

Seamless Displays In commercially available planar displays,
alignment is typically performed manually. However, many re-
search groups have exploited camera-based approaches to automate
this process [Surati 1999; Chen et al. 2000; Yang et al. 2001; Brown
and Seales 2002]. In addition, recent software developments ease
the use of PC clusters equipped with graphics cards to power im-
mersive projection environments where multiple video projectors
form a high resolution and large surface display [Humphreys and
Hanrahan 1999].

Multi-projector alignment for curved screens is sometimes aided
by projecting a ‘navigator’ pattern [Trimension Systems Ltd 2002;
Jarvis 1997]. Then all the overlapping projectors are manually
aligned with the grid [Trimension Systems Ltd 2002]. We have
heard that, at Hayden Planetarium [Hayden Planetarium 2002] in
New York, two technicians spend one hour each morning trying to
adjust the registration between the seven overlapping Trimensions
Prodas projectors.

An automated approach using a non-parametric process involves
putting a camera at the sweet-spot. The camera observes the struc-
tured patterns projected by projector. The sampled readings are
then used to build an inverse warping function between the input
image and projected image by means of interpolation [Jarvis 1997;
Raskar et al. 1998; Surati 1999].

We opt for a parametric method and extend the homography-
based approach for planar screens to an approach based on quadric
transfer. However, curved screens present new challenges. Many
Euclidean quantities are required to be calibrated early in the pro-
cess and non-linear optimization of parameters makes robustness
an issue.

Quadric Surfaces In computer vision literature, some relevant
work has used quadrics for image transfer [Shashua and Toelg
1994; Cross and Zisserman 1998]. In multi-projector systems how-
ever, although several approaches have been proposed for seamless
multi-projector planar displays based on planar transfer (planar ho-
mography) relationships [Yang et al. 2001; Chen et al. 2002; Brown
and Seales 2002], there has been little or no work on techniques
for parameterized warping and automatic registration of higher or-
der surfaces. This is an omission because quadrics do appear in
many shapes and forms in projector-based displays. Large format
flight simulators have traditionally been cylindrical or dome shaped
[Scott and McColman 1999], planetariums and OmniMax theaters
use hemispherical screens [Albin 1994], and many virtual reality
setups use a cylindrical shaped screen.

Recently, we have proposed the use of quadric equations for
curved screen applications. In [Raskar et al. 2003], we described
the basic approach. In this paper, we present a complete solution
for building practical multi-projector systems. We describe new
calibration methods, practical resolution of robustness issues, ren-
dering design and a fully parametric intensity blending scheme.

2 Quadric image transfer

We present the basics of quadric transfer, explain our simplification
and how it is used to register overlapping projector images.

2.1 Basics

Mapping between two arbitrary perspective views of an opaque
quadric surface, Q, in 3D can be expressed using a quadric transfer
function, Ψ. While planar homography transfers can be computed
from 4 or more pixel correspondences, quadric transfer requires 9
or more correspondences. The quadric transfer can be defined in

a closed form using the 3D quadric surface, Q and additional pa-
rameters that relate perspective projection of the two views. The
quadric transfer in our case means image transfer from first view to
the second view.

The quadric, Q, is a surface represented by a 4× 4 symmetric
matrix, such that 3D homogeneous points X (expressed as a 4× 1
vector) that lie on the surface satisfy the quadratic constraint,

XT QX = 0

The quadric, Q, has 9 degrees of freedom corresponding to the
independent elements of the matrix. The matrix is symmetric and
defined up to an overall scale.

The homogeneous coordinates of the corresponding pixels, x in
the first view and x′ in the second view are related by

x′ ∼= Bx−
(

qT x ±
√

(qT x)2 − xT Q33x

)
e

Given pixel correspondences (x,x′), this equation is traditionally
used to compute the 21 unknowns: the unknown 3D quadric Q, a
3x3 homography matrix B and the epipole, e, in homogeneous co-
ordinates. The epipole, e, is the image of the center of projection of
the first view in the second view. The sign ∼= denotes equality upto
scale for the homogeneous coordinates. Matrix Q is decomposed
as follows.

Q =
[

Q33 q
qT 1

]

Thus, Q33 is the top 3 × 3 symmetric submatrix of Q and q
is a 3 vector. Q(4,4) is non-zero if the quadric does not pass
through the origin i.e. the center of projection of the first view.
Hence, it can be safely assigned to be 1.0 for most display sur-
faces. The final 2D pixel coordinate for homogeneous pixel x′ is
(x′(1)/x′(3), x′(2)/x′(3)).

2.2 Simplification

The form described above is used in [Shashua and Toelg 1994] and
even in later papers such as, [Wexler and Shashua 1999] and it con-
tains 21 variables, 4 more than needed. A simple observation is that
we can remove part of this ambiguity by defining

A = B− eqT E = qqT −Q33

and obtain the form we use,

x′ ∼= Ax ±
(√

xT Ex
)

e

Here xT Ex = 0 defines the outline conic of the quadric in the
first view. (The Outline conic can be geometrically visualized as
the image of the silhouette or the points on surface where the view
rays are locally tangent to the surface, e.g. the elliptical silhouette
of a sphere viewed from outside the sphere.) A is the homography
via the polar plane between the first and the second view. Note that
this equation contains, apart from the overall scale, only one am-
biguous degree of freedom resulting from relative scaling of E and
e. This can be removed by introducing an additional normalization
constraint, such as E(3,3) = 1. Further, the sign in front of the
square root is fixed within the outline conic in the image. The sign
is easily determined by testing the equation above by plugging in
coordinates for one pair of corresponding pixels.

Note that the parameters of the quadric transfer can be directly
computed from 9 or more pixel correspondences in a projective co-
ordinate system. So it is tempting to follow a approach similar to es-
timating planar homography for planar displays without computing
any Euclidean parameters. However, as described later, in practice



it is difficult to robustly estimate the epipolar relationship in many
cases. Hence, we follow a pseudo-Euclidean approach as described
below.

2.3 Approach

All registration information is calculated relative to a camera stereo
pair. We assume that the stereo camera pair can see the entire 3D
surface. One of the cameras is arbitrarily chosen as the origin. The
cameras here are used to determine only the 3D points on the dis-
play surface and not for any color sampling. Hence, any suitable
3D acquisition system can be used. The outline of our technique is
as follows. The details are in Section 3 and 4.
During pre-processing, the following steps are performed.

• For each projector i
� Project structured light pattern with projector
� Detect features in stereo camera pair and reconstruct

3D points on the display surface, which correspond
with the structured light features.

• Fit a quadric, Q, to all the 3D points detected
• For each projector i

� Find its pose wrt the camera using the correspondence
between projector pixels and 3D coordinates of points
they illuminate

� Find the quadric transfer, Ψ0i, between the camera
and projector

� Find intensity blending weights, Φi, in overlap regions

At run time, the rendering for 2D images or 3D scenes follows the
following steps.

• Read the input image in the 2D video or compute
the input image by rendering a 3D scene from
the virtual viewpoint

• For each projector i
� Pre-warp input image into projectors framebuffer

using quadric transfer, Ψ0i
� Attenuate pixel intensities with blending weights, Φi

This approach, however, involves several issues. The quadric trans-
fer estimation, although a linear operation, requires non-linear op-
timization to reduce pixel re-projection errors. It is difficult to es-
timate projector pose (external parameters) because the 3D points
projected on the quadric are usually nearly planar leading to a de-
generate condition. These plus other issues, and practical solutions
are discussed below.

3 Calibration

The goal is to compute the parameters of quadric transfer, Ψ0i =
{Ai,Ei,ei}, so that the projected images are geometrically regis-
tered on the display surface. The method to calculate quadric trans-
fer parameters directly from pixel correspondences involves esti-
mating the 4x4 quadric matrix, Q, in 3D [Shashua and Toelg 1994],
[Cross and Zisserman 1998] using a triangulation of correspond-
ing pixels and a linear method. If the internal parameters of the
two views are not known, all the calculations are done in projective
space after computing the epipolar geometry, i.e. the epipoles and
the fundamental matrix. However, we noticed that when projectors
rather than cameras are involved, the linear method produces very
large re-projection errors in estimated 3D quadric, Q. The errors are
of the order of 30 pixels for XGA projector. In addition, the fun-
damental matrix is inherently noisy given that the 3D points on the
quadric surface illuminated by a single projector do not have signif-
icant depth variation in display setting such as segments of spher-

ical or cylindrical surfaces. We instead follow a pseudo-Euclidean
approach where the internal and external parameters of the cam-
era and the projectors are known approximately. and are used to
estimate Euclidean rigid transformations. Hence, unlike the planar
case, computation of accurate image transfer for curved screens, in-
volves three-dimensional quantities. We describe our approach and
use of approximate Euclidean parameters for estimating warping
parameters.

3.1 Quadric Surface

We use a rigid stereo camera pair, C0 and C′
0, as a base for comput-

ing all the geometric relationships. We arbitrarily choose one of the
cameras to define the origin and coordinate system. We calibrate
the small baseline stereo pair with a small checkerboard pattern
[Zhang 1999]. Note that the cameras do not necessarily represent
the sweet-spot in this setup which is an important difference with
respect to some of the non-parametric approaches.

The stereo pair observes the structured patterns projected by each
projector (Fig 2) and using triangulation computes a set of N 3D
points, {Xj}, on the display surface. The quadric, Q, passing though
each X j is computed by solving a set of linear equations, XT

j QXj =
0, for each 3D point. This equation can be written in the form

χi V = 0

where, χi, is a 1×10 matrix which is a function of Xi only and V is a
homogeneous vector containing the distinct independent unknown
variables of Q. With N ≥ 9, we construct a N × 10 matrix X and
solve the linear matrix equation

XV = 0

Given points in general position, the elements of V (and hence
Q) are the one dimensional null-space of X.

Figure 2: Images captured by the 640x480 resolution camera during
calibration. The resolution of each projector is significantly higher
at 1024x768 and yet is captured in only a small part of the camera
view.

3.2 Projector View

In addition to the quadric, Q, we need to know the internal and
external parameters of each projector with respect to the camera
origin. We use the correspondence between the projector pixels
and coordinates of the 3D points they illuminate to compute the
pose and internal parameters.

However, finding the pose of a projector from known 3D points
on a quadric is error-prone because the 3D points are usually quite
close to a plane leading to an unstable solution [Faugeras 1993;
Forsyth and Ponce 2002]. Dealing with near-planar points is a dif-
ficult problem. If points are distributed in depth, we can easily use
a linear method to estimate the internals as well as externals of the
projector. On the other hand, if the points are known to be planar,
we can estimate the externals if some of the internals are known.



How about bringing in a temporary surface to add non-planar
points for the sake of calibration? In most cases this is impractical
or cumbersome. The temporary surface will have to be approxi-
mately the same size as the display surface. Our goal is to compute
the quadric transfer completely automatically.

For dealing with near-planar surfaces, we are required to use an
iterative algorithm. If we know the projector internal parameters,
we can first find an initial guess for external parameters based on
homography and then use an iterative algorithm described in [Lu
et al. 2000]. We use Powell’s method for nonlinear refinement of re-
projection error. However, estimating projector internals is equally
difficult. If the projectors cannot be easily moved, as mentioned
above, calibrating them usually requires large surfaces illuminated
in two or more positions.

Our strategy is to use projector internal parameters that are ap-
proximately known. We find internal parameters of just one projec-
tor and use these internal parameters for all projectors for all future
settings. The same projector at a later time and other projectors will
clearly have different zoom settings and have other mechanical or
optical deviations. In addition, the external parameters computed
by iterative method in [Lu et al. 2000], will also be approximate.

3.3 Camera to Projector Transfer

The idea is to use the perspective projection parameters of the cam-
era along with approximate projection matrix of the projector to
find the camera to projector quadric transfer using linear methods.
Then refine the solution using non-linear optimization.

The quadric transfer parameters, Ψ0i = {Ai,Ei,ei}, are easy to
calculate from Q, camera projection matrix [ I |0] and projector
projection matrix [ Pi |ei].

Ai = Pi − eiqT Ei = qqT −Q33

In our tests the parameters found by the linear method turned out
to be far too imprecise for our purpose. We observed misalignment
between the projectors of 15-30 pixels on screen. Since seamless
displays require sub-pixel accuracy, we have to apply a nonlinear
minimization to refine the results obtained via the linear method.
As objective function we take the total squared transfer error for all
pixels

εi = ∑
j

(
x j

i (1,2)

x j
i (3)

− x̂ j
i (1,2)

x̂ j
i (3)

)2

with x̂ j
i being the transferred points for each x j

i

x̂ j
i = Aix

j
i ±

√
x j

i
T

Eix
j
i ei

Note that the sign found using the linear method, which is same
for all the pixels, remains the same during the nonlinear optimiza-
tion. We used Nelder-Mead Simplex and obtained very satisfactory
results.

3.4 Partial Euclidean Reconstruction

There are two questions here. (i) Why not ignore Euclidean ap-
proach altogether and directly go for projective space and non-
linear optimization and (ii) If we have accurate projector internal
parameters, can we avoid non-linear optimization stages?

As mentioned earlier, ignoring Euclidean viewing parameters
and solving the quadric transfer purely from pixel correspondences
leads to poor re-projection errors. The estimated 3D quadric, Q,
cannot be used as a good guess for further non-linear optimization.
In fact, in most of our tests, the solution did not converge.

Using accurate projectors internals only reduces the re-
projection errors but does not eliminate them. This is because,
many kinds of errors are propagated in the three dimensional Eu-
clidean calculations, including estimating 3D points on the display
surface by triangulation, estimating the 3D quadric using linear
methods and finding the projector pose. The non-linear optimiza-
tion attempts to minimize the physical quantity we care about the
most, i.e. pixel re-projection error in image transfer from cam-
era to projector for known corresponding set of pixels. Since
the correspondence between overlapping projector pixels is indi-
rectly defined by this image transfer equation, minimizing pixel
re-projection errors ensures geometric registration between the dis-
played projector pixels.

4 Rendering

The rendering involves a simple two-pass approach. For 2D data,
we extract the appropriate input image. For 3D scenes, we first
render the 3D models from the sweet-spot. In the second pass, the
resultant image is then warped using the quadric image transfer into
the projector image space.

4.1 Virtual View

When 3D scenes are displayed on a curved screen, the images are
perspectively correct from only a single point in space. This 3D
location is popularly known as the sweet-spot or the virtual view-
point. As the viewer moves away from it, the images look distorted.
In addition, one needs to specify the view frustum i.e. the viewing
direction (principal axis) and the extent (field) of view. In some
cases it is possible to automatically determine the sweet spot. For
example, for a concave spherical dome, the center of the dome can
be considered a good sweet-spot. This can be determined directly
from the equation of the quadric, Q i.e. Q(1,1) q. For cylindrical
screen, a point on the axis of the cylinder that is midway along the
extent of the cylinder is a good choice. Sometimes, the sweet-spot
is decided by practical considerations e.g. a spot that is approxi-
mately at the human height is considered ideal. The images are al-
most always aligned with the world horizontal and vertical. In our
case, the virtual viewpoint can be interactively moved (and fixed)
because we have approximate Euclidean reconstruction of the dis-
play geometry. One potential problem is how to physically mark the
sweet-spot location. Since the location’s 3D coordinates are known
in the camera coordinate system, a cheap method is to just use a
tape measure and locate with respect to the camera!

Figure 3: Top row: Image in top-right projector’s framebuffer, be-
fore and after attenuation with alpha map Φi. Bottom row: Other
three projectors with intensity correction. Note the outer black ar-
eas which are automatically generated after quadric transfer.



Sweet-spot from Surface Points A robust strategy, when it
is difficult to determine the parameters of the virtual viewpoint for
rendering i.e. location, lookat and field of view, is to find the best-fit
plane to the set of points found on the illuminated part of the display
surface. We fit an oriented bounding box (OBB) to fit the set of 3D
points {Xi} on the display surface [Gottschalk, S. and Lin, C. and
Manocha, D. 1996]. A point at a suitable distance in front of the
screen, along the vector passing through the center of this box and
normal to the best-fit plane can be chosen as the sweet spot.

The procedure to find the OBB in our case is simple because all
the 3D points on a quadric lie on the convex hull of those 3D points.
Lets say Y is the N×3 matrix of {Xi − X̄} where X̄ = (x̄, ȳ, z̄) is the
centroid of the N 3D points. The eigenvector corresponding to the
smallest eigenvalue of the 3×3 matrix Y TY gives the normal to the
best-fit plane i.e. axis of minimum variance. On the other hand, the
largest side of the oriented bounding box, i.e. the extent of the 3D
points projected in the best-fit plane gives the approximate ‘diame-
ter’ of the screen. The distance of sweet spot in front of the screen
can be chosen to be a proportional to this diameter depending on
the application and the desired field of view. For immersive appli-
cations, one would like to have a large field of view and hence the
distance would be about half of the diameter. For group viewing,
the distance would be comparable to the diameter.

We recalculate the quadric transfer, Ψi, between virtual view im-
age space and each projector framebuffer. The process is very sim-
ilar to computing Ψ0i. We first find projection of 3D points on
quadric surface into the virtual view image space. Then the corre-
sponding pixels between virtual view and projector frame buffer, in
addition to internal and external parameters of the virtual view and
projector are sufficient to update Ψi.

4.2 Display Region

The view frustum for the virtual view is defined using the sweet-
spot and the extents of the OBB. The look-at vector is from the
virtual viewpoint toward the center of the OBB. However, since
the cameras can see beyond the union of the area illuminated by
casually installed overlapping projectors, we need to crop the view
frustum to an aesthetic shape such as a rectangle or a disk.

For 3D applications, we simply draw a set of black quadrilaterals
to cutout the areas outside the desired display region. For example,
for a rectangular view, the viewport is made by four large quads
near the outer edge of the viewport in the framebuffer. The black
quads along with rest of the 3D models get rendered and warped as
described below (Figure 3).

For 2D applications, areas outside the input image to be dis-
played are considered black.

4.3 Image Transfer

Given a 3D vertex, M, in the scene to be rendered, we find its screen
space coordinates, m, in the virtual view. Then, we find the trans-
ferred pixel coordinate, mi, in the framebuffer of projector i, using
the quadric transfer, Ψi = {Ai,Ei,ei}. The polygons in the scene
are then rendered with vertices M replaced with vertices mi. Thus
the rendering process at each projector is very similar. Each projec-
tor framebuffer automatically picks up the appropriate part of the
virtual view image and there is no need to explicitly figure out the
extents of the projector.

• At each projector, i
� For each vertex M

Compute pixel m via VirtualViewProjection( M )
Compute warped pixel mi via quadric transfer Ψi(m)

� For each triangle T with vertices {M j}
Render triangle with 2D vertices {mj

i }

There are two issues with this approach. First, only the ver-
tices in the scene, but not the polygon interiors, are accurately pre-
warped. Second, visibility sorting of polygons needs a special treat-
ment.

After quadric transfer, the edges between vertices of the poly-
gon, theoretically, should map to second-degree curves in projector
frame buffer. But scan conversion converts them to straight-line
segments between the warped vertex locations. This problem will
not be discernible if only a single projector is displaying the im-
age. But, overlapping projectors will create individually different
deviations from the original curve and hence the edge will appear
mis-registered on the display screen. Therefore, it is necessary to
use sufficiently fine tessellation of triangles. Commercial systems
are already available that tessellate and pre-distort the input models
on the fly [Evans and Sutherland 2002; Idaszak et al. 1997; Kelly
et al. 1994] so that they appear straight in a perspectively correct
rendering on the curved screen. So our method is compatible with
fine tessellation provided by such systems. Pre-distortion of the
scene geometry in commercial systems is used to avoid the two-
pass rendering, which involves texture-mapping result of the first
pass. In our case, instead of pre-distorting the geometry, we pre-
distort the image space projection. Our approach, arguably, is more
practical thanks to the programmable vertex shaders now available
(see Appendix).

Figure 4: A mix of real-time 3D scene displayed in front of a 2D
background with correct depth sort and texture mapping (Please see
the video).

Scan Conversion Issues When pixel locations in the projection
of a triangle are warped, information needs to be passed along so
that the depth buffer will create appropriate visibility computations.
In addition, for perspectively correct color and texture coordinate
interpolation, the appropriate ‘w’ values need to be passed. Our
solution is to post-multiply the pixel coordinates with ‘w’.

m(x,y,z,w) = VirtualViewProjection(M(X))
m′

i(x
′
i,y

′
i,w

′
i) = Ψi(m(x/w,y/w),1)

mi(xi,yi,zi,wi) = [wx′i/w′
i,wy′i/w′

i,z,w]

Thus, mi has appropriate final pixel coordinate (x′i/w′
i,y

′
i/w′

i) due
to quadric transfer along with original depth and w values. Ap-
pendix shows the code for vertex shader and Figure 4 shows a photo
of the dome displaying a sample interactive animation that is syn-
chronized and displayed on the dome with four overlapping projec-
tors.



For rendering 2D input images, we densely tessellate the virtual
view image space into triangles and map the image as a texture
on these triangles. Vertex, m, of each triangle is warped using the
quadric transfer into vertex (and pixel) mi as above. Scan conver-
sion automatically transfers colors and texture attributes at m to mi
and interpolates in between. (3D scenes can also be rendered in this
manner, by first computing the input image.)

Note that warping an image using a quadric transfer is different
than rendering quadric surfaces [Watson and Hodges 1989].

Figure 5: Calculated alpha maps, Φi, for intensity correction of four
overlapping projectors.

4.4 Intensity Blending

Pixels intensities in the areas of overlapping projectors are attenu-
ated using alpha blending of the graphics hardware. Using the para-
metric equations of quadric transfer, the alpha maps are calculated
robustly and efficiently.

For every projector pixel, xi in projector i, we find the corre-
sponding pixels in projector j using the equation

x j ∼= Ψ0 j (Ψ0i)
−1 (xi)

For cross-fading, pixels at the boundary of the projector frame
buffer are attenuated. Hence, the weights are proportional to the
shortest distance from the frame boundary. The weight assigned to
pixel xi, expressed in normalized window pixel coordinates (ui,vi)
which are in the range [0,1], is

Φi(xi) ∼= d(xi)
/

∑ j d(x j)

where, d(x) is min(u,v,1− u,1− v) if 0 ≤ u,v ≤ 1, else d(x) = 0.
Thanks to a parametric approach, we are able to compute corre-
sponding projector pixels and hence the weights at those locations
at sub-pixel registration accuracy. The sum of weights at corre-
sponding projector pixels accurately adds to 1.0.

At each projector, the corresponding alpha map is loaded as a
texture map and rendered as screen aligned quads as the last stage
of the rendering (Fig 5).

5 Results

Please see http://www.merl.com/people/raskar/Viz03/ for
more images and higher resolution videos of the results. (The sub-
mitted images and videos are lower resolution due to file size lim-
its.)

Figure 6: The setup of four casually installed projectors and stereo
camera pair with a concave dome. The camera pair is not near the
sweet spot.

Our prototype system (Fig 6) involves four Mitsubishi X80
LCD projectors, XGA (1024x768) resolution at 1500 lumens. The
stereo camera pair is built with two cheap low-end Logitech USB
VGA (640x480) resolution webcams which suffer from Bayer color
patterning. The color interpolation negatively affects the accuracy
of feature location. We intentionally chose the lower quality cam-
eras to demonstrate that a parametric approach can overcome fea-
ture localization errors as long as the errors are Gaussian distributed
and independent. Each projector is assigned to a Dell Inspiron
Laptop for flexibility wrt to system setup and location. The lap-
tops lack rendering performance, however they can easily be re-
placed with a cluster of PCs with higher end graphics hardware.
To demonstrate our techniques we use an eLumens VisionStation
hemispherical dome with a diameter of 1.5 meter. The accompa-
nying video shows registration and intensity correction for both a
concave spherical segment, as a well as a convex spherical segment
(the back-side of the eLumens dome).

Figure 7: Registration accuracy. (Left) Four overlapping projec-
tors projecting a grid (Right) Closeup of display region where all
four projectors overlap.The embedded images are 2000x1500 pix-
els. Please zoom with your PDF browser.

Our calibration process is slow compared to the planar homog-
raphy based systems [Raskar et al. 2002], [Brown and Seales 2002]
which take just two seconds per projector. The two time consuming
steps are computing the projector pose from near-planar 3D points
using an iterative scheme in [Lu et al. 2000], and the non-linear
refinement of Ψ0i = {Ai,Ei,ei} to minimize pixel re-projection er-
rors. Currently our non-optimized code takes about 45 - 60 sec-
onds per projector. The linear optimization for projector pose takes
about 4 seconds and the non-linear optimization takes about 40-55
seconds. The time needed for the non-linear optimization increases
with the number of features detected from the projected checker
patterns. Typically around 100-200 iterations are necessary and we
noticed that the iterations converge in most cases.

To determine how well the registration of projectors using pose



estimation from near-planar 3D points performs, we compare our
results to the pixel re-projection errors of a fully calibrated sys-
tem. In the fully calibrated system we determine internals and ex-
ternals for the two cameras and the projectors. We use OpenCV
library [Intel 2002] to determine the camera internals. The exter-
nals are determined from point correspondences of planar surfaces
at multiple depths and orientations. Projector internals and exter-
nals are then found from triangulated 3D points and corresponding
projector image checker corner pixels. Table 1 shows the results of
theoretical pixel re-projection errors for the linear estimation of Q
and after non-linear refinement. The setup contains four projectors,
Proj1 and Proj3 were closer to the camera(-pair). As mentioned
earlier, temporarily installing large surfaces at multiple depth and
orientations in not practical in most of the real settings. Hence, in
our pseudo-Euclidean method, we assume the same approximate
projector internal matrix for all projectors and compute the projec-
tor external parameters from the near-planar points observed in the
given display setting. The RMS re-projection errors after linear es-
timation are large (Fig. 8), but this is a good initial guess. After
nonlinear refinement, the error is about one pixel which is accept-
able. It is important to note that the computed pixel re-projection
errors do not directly predict pixel mis-registration errors on the
display surface. As seen in Fig. 8 and in the video, after linear
estimate the visible errors on display surface are 15 to 30 pixels al-
though predicted projector to projector re-projection error is about
12 pixels (twice the camera to projector transfer error of 6 pixels).

Fully Calibrated Pseudo-Euclidean
Linear NL Optim Linear NL Optim

Proj1 3.5 0.3 5.4 0.73
Proj2 5.3 0.5 7.1 1.02
Proj3 3.7 0.35 5.6 0.79
Proj4 4.8 0.45 6.5 0.91

Table 1: Comparing results with an ideal system. RMS re-
projection pixel error in quadric transfer of camera pixels to pro-
jector pixels.

We have used different resolution m× n checker patterns to de-
termine the optimal one wrt to detection reliability, computation
time to compute the quadric transfer, and pixel re-projection error.
Higher resolution patterns typically result in smaller re-projection
errors, but detection reliability decreases and non-linear refinement
time significantly increases. Lower resolution patterns decrease
computation time, but are too coarse for a 3D quadric surface and
result in larger re-projection errors . We have found that a 11× 9
checker pattern best matched our criteria (Fig. 2).

The casual placement of the dome surface results in a small de-
viation from its intended spherical form. However we demonstrate
that our technique still produces accurate results (Fig. 7). The ac-
companying website contains more images demonstrating registra-
tion quality.

We have also applied our technique for registering the projec-
tions on the convex side of the dome surface. This demonstrates the

Figure 8: Registration after linear estimate of quadric transfer. The
errors on screen are 15 to 30 pixels.

generality of our technique. Projecting on the convex side would
be particularly useful if the dome was made of transparent mate-
rial. The rear-projection with user inside the dome will provide full
immersive experience without blocking projectors. Fig. 9 shows
a setup of three overlapping projectors. The left image shows reg-
istration, the right image also has intensity correction applied. We
observed that projected patterns are more distorted due to the con-
vexity of the surface in all directions. Therefore feature detection
using checker patterns is more difficult in this case.

Figure 9: Three projector system on a convex quadric surface, be-
fore and after intensity blending.

6 Conclusion

We have presented techniques that are ideal for building multi-
projectors curved displays for 2D or 3D visualization without ex-
pensive infrastructure and casual alignment. Our automatic reg-
istration exploits quadric image transfer and eliminates tedious
setup and maintenance, and hence reduces cost. The techniques
could simplify the construction, calibration and rendering process
for widely used applications in flight simulators, planetariums and
high-end visualization theaters. New possible applications are low-
cost and flexible dome displays, shopping arcades and projection
on cylindrical columns or pillars. The approach and proposed ideas
can also be treated as an intermediate step between planar to arbi-
trary free form shaped displays.

The new parametric approach allows an elegant solution to a
problem that has so far been solved by discrete sampling. An ad-
vantage is that, unlike [Jarvis97][Raskar98], our cameras do not
need to be placed at the sweet-spot. This is important in real-world
applications where sweet-spot is usually a busy area crowded with
observers and where expensive equipment cannot be kept. In some
cases, keeping a camera at the sweet-spot means using a very wide-
field of view camera which is expensive and will have radial or
fish-eye distortion.

We are currently working on extending our technique to work for
general curved surfaces or surfaces that have minor deviations from
quadric properties. We also would like to extend to the case where
quadric transfers cannot be easily cascaded using a small num-
ber of cameras, such as wrap-around displays in traditional inside-
looking-out and translucent or opaque outside-looking-in convex
surfaces.

(Please see Paper Videos and Images
http://www.merl.com/people/raskar/Viz03/)

7 Appendix

Code for Vertex Shader for quadric transfer (in Cg language)

vertout main( appin IN, uniform float4x4 modelViewProj, uniform float4 constColor,
uniform float3x3 A, uniform float3x3 E, uniform float3 e) {

vertout OUT;
float4 m1 = float4(IN.position.x, IN.position.y, IN.position.z, 1.0f );
float4 m, mi ; float3 m2,mp; float scale;



m = mul( modelViewProj, m1);
m2.x = m.x/m.w; m2.y = m.y/m.w; m2.z = 1;
scale = mul(m2, mul(E,m2));
mp = mul(A,m2) + sqrt(scale)*e;
mi.x = m.w * (mp.x)/(mp.z);
mi.y = m.w * (mp.y)/(mp.z);
mi.zw = m.zw;
OUT.position = mi;
OUT.color0 = IN.color0; // Use the original per-vertex color specified
return OUT;

}
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