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Abstract
Recording technologies, from the phonograph to digital media, have profoundly
reshaped the human experience by enabling the capture and reproduction of our
sensory world. These technologies allow us to relive experiences through artifacts of
remarkable fidelity like photographs and videos, extending the reach of our perception
and memory. Of course, we didn’t stop at the phonograph; we have built a rich
ecosystem of tools for creating, sharing, and exploring recorded media that have had
transformative effects on cognition and culture.

Recently, a new and powerful class of tools has emerged: generative models. Unlike
recorded media, which reproduces external experiences, generative models can trans-
late our ideas directly into artifacts. Here, ideas refer to abstract mental constructs
that seed media creation, externally expressed in text prompts, sketches, vocaliza-
tions, or other intuitive representations. Just as recorded media augmented our
ability to perceive and remember, generative media promises to expand our ability to
imagine and invent by offering a more immediate path from cognition to high fidelity
creation. Creative work often has us operating at our limits, negotiating boundaries
between knowledge and novelty, skill and aspiration, from individual exploration
to collective understanding. Generative models, in principle, have the potential to
scaffold and accelerate how we transcend these limits by increasing the efficiency
with which we discover and pursue new ideas.

In this thesis, I suggest that realizing this potential presents a complex set of challenges
that span computation and design. I argue that it requires us to develop a rich stack
of precision tools for human-AI co-creation, as we have done and continue to do for
recorded media. Specifically, I present contributions across two key dimensions of
this:

1. Computational machinery that supports creative work. I present research

2



on topics including visually-driven acoustic simulation, interpretable and con-
trollable sound generation from descriptions, and audiovisual content under-
standing. Focusing on sound as a case study, I describe systems that effectively
represent and manipulate creative knowledge across modalities and levels of
abstraction.

2. Interactive systems and studies that investigate the integration of human
and machine effort in content creation. This includes work on conceptual
integration in AI-assisted story writing, author-in-the-loop description authoring
for accessibility of complex scientific figures, and generative constraints for
human ideation. In all, this work seeks insights for designing systems that
support human creators through exploration, collaboration, and feedback,
rather than aiming to replace or constrain human agency and expertise.

To conclude this thesis, I present a discussion on bridging AI and HCI to gain insights
into human creative work and develop stable, generalizable design knowledge for
augmenting it. I argue for the design of flexible, parametric tools that enable system-
atic study of creative behavior under different augmentation designs. Based on this, I
propose a conceptual framework to seed the development of a more robust science
of human-AI co-creation.

Thesis Supervisor: Tod Machover
Title: Muriel R. Cooper Professor of Music and Media, Massachusetts Institute of
Technology
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Preface

In 1843, during the immediate aftermath of the industrial revolution, Ada Lovelace
was asked to translate Italian engineer Luigi Menabrea’s notes on Charles Babbage’s
Analytical Engine, a design that would have been the first computer, were its con-
struction completed. Lovelace went far beyond translation, providing detailed and
highly influential notes [314] in which she articulated perhaps the first vision of
the generality of computation. Lovelace’s concept extended beyond calculation with
numbers, envisioning a machine even capable of generating and extending music,
through the symbolic manipulation of relationships between pitches, for example.
This radical notion is often cited in historical discussions of computational creativity.
However, Lovelace’s notes are also known for making a very different (though not
necessarily contradictory) argument:

The Analytical Engine has no pretensions whatever to originate any thing. It
can do whatever we know how to order it to perform. It can follow analysis;
but it has no power of anticipating any analytical relations or truths.

— Lovelace, 1842

This passage, often dubbed Lovelace’s Objection after Alan Turing [518], is frequently
quoted in opposition to claims of machine intelligence. Turing himself reduced it to
the question of whether computers are capable of surprise, posing a now-famous test
of this. Yet, a closer reading of Lovelace’s words reveals a more nuanced perspective.
Lovelace continues:

. . . it is likely to exert an indirect and reciprocal influence on science itself
in another manner. For, in so distributing and combining the truths and
the formulae of analysis. . . the nature of many subjects in that science are
necessarily thrown into new lights. . . This is a decidedly indirect, and a
somewhat speculative, consequence of such an invention: There are in all
extensions of human power, or additions to human knowledge. . .

— Lovelace, 1842

In other words, Lovelace argued that while the Analytical Engine could perhaps
not originate in the sense of independent thought, it could act as a catalyst for

5



human discovery. Lovelace’s formulation can be interpreted within the now-familiar
paradigm of human augmentation [138]. Writing with a recent view of the industrial
revolution, the role of the human in the face of automation was perhaps a salient
subject [541].

Now, we are faced with an automation revolution that more directly affects creative
work: large-scale generative AI models [57] that are increasingly capable of per-
forming tasks traditionally associated with human creativity. These models produce
media like text [61], images [407], and sounds [58], conditioned on abstract and
intuitive outcome specifications like natural language descriptions. As Ludwig and
Mullainathan [315] note, on the generation of scientific hypotheses:

The creative process is so human and idiosyncratic that it would seem to resist
formalism. That may be about to change because of two developments. First,
human cognition is no longer the only way to notice patterns in the world.
Machine learning algorithms can also notice patterns, including patterns
people might not notice themselves. These algorithms can work. . .with the
kinds of inputs that traditionally could only be processed by the mind, like
images or text. Second, . . . data on human behavior is exploding. . . The kind
of information researchers once relied on for inspiration is now machine
readable: what was once solely mental data is increasingly becoming actual
data. — Ludwig and Mullainathan, 2024

The history of computing has not equipped us well to conceptualize this shift. Even
futuristic visions like Vannevar Bush’s Memex concept [69], which foresaw the impor-
tance of information retrieval and has inspired many technological developments,
assumed that computers were capable only of repetitive, not creative, functions. As
such, generative AI models have sparked both excitement and apprehension. Will
these tools devalue human creative work, or can they unlock unprecedented oppor-
tunities for human creators? The end-to-end design of such models hints at potential
automation of human creative work.

Still, the arguments for augmentation are compelling. Creativity occurs in response
to rich, large-scale, essentially human contexts [153]. Humans learn, generalize,
and innovate in remarkably robust and data-efficient ways [501]. Machines lack the
human propensity for causal explanations, and may be brittle in novel circumstances

6



due to factors like hidden biases [465]. Augmentation may also lead to greater
prosperity [64]. In light of these factors, I argue that the most promising approach
lies in developing tools and systems that facilitate effective creative augmentation,
rather than aiming for complete automation. In focusing on augmentation, we can
harness the strengths of both human creators and generative models, enabling new
forms of creative work while ensuring that the process remains grounded in human
values, intentions, and expertise.

The history of recorded media technologies, on the other hand, offers a compelling
analogical lens through which to view the potential of generative AI. Take the phono-
graph, for instance. Initially conceived as a tool for simple sound capture and playback,
it has grown into a rich ecosystem of devices, algorithms, interfaces, and even social
platforms that empower us to record, edit, discover, and share representations of
our world. The camera, once a cumbersome apparatus for static image capture,
has similarly evolved into a complex array of tools and platforms supporting visual
storytelling. By enabling precise manipulation and transformation, these tools have
even extended recorded media beyond the bounds of the physical world, allowing us
to craft artifacts that tell compelling stories, convey complex information, and evoke
deep emotions.

I propose that we adopt a related approach for generative AI, developing a com-
prehensive stack of precision tools that span tasks and modalities. I use this term
as a guiding principle to refer to computational and interactive systems that can
augment and refine human creative processes. It encompasses both tools that directly
manipulate creative outputs and those that operate at a lower level, for example
facilitating extraction of meaningful patterns and structures from data that can be
operationalized in creative work. With this serving as context, I propose and discuss a
number of projects that contribute to this effort in both computational and interactive
ways. Building on this, I propose a path to building more generalizable design knowl-
edge, aiming to better understand how we can design most effectively for expanding
the human creative toolkit leveraging the powerful generative capabilities of modern
machines.
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3-1 (Left) Audiovisual scenes can be perceptually similar even as the words
spoken in them differ, which may be a challenge for self-supervised
audiovisual representation learning. (Right)We propose to leverage
movie dubs during training and show that it improves the quality of
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3-4 Example clips from our pretraining dataset, showing video stills and
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3-5 Pipeline to produce the synthetic counterfactual pairs. . . . . . . . . 75

4-1 Structure of the API. We separate the synthesis modules into Python
modules which group related elements. These modules are shown in
lower-case letters above the relevant classes. The class inheritance
structure, which mirrors torchsynth [516], is indicated by the Title-
Case names. Inner boxes are subclasses of the larger boxes they are
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(Right) an NVIDIA Tesla V100 GPU. Values shown are averaged over
10 runs. We use the Voice synthesizer in both SynthAX and torchsynth,
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Error bars here show min/max results. Overall, SynthAX is more than
double the speed in all cases, and peaks at almost 9× the speed of the
already accelerated torchsynth implementation. As previously, these
results are on the Voice synthesizer, a 78-parameter synthesizer, where
parameters are randomized for each batch. . . . . . . . . . . . . . . 85

21
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1
Introduction
When we marvel at human creativity, we often fixate on the final artifact: a painting
that captures a special moment, or an algorithm that elegantly and efficiently solves a
complex problem. Yet the deepest understanding of how these works come to be often
emerges from examining the creative process. The primacy of process over product
in understanding—and supporting—creative work is not only a theoretical stance.
Rather, it follows from a few key observations and has some important consequences.
First, creative artifacts represent only the successful endpoints of often lengthy,
complex exploratory trajectories, obscuring important decision points and constraints
that shaped their development and could have shaped it differently. Focusing on
the product hides the many ways in which computational augmentation can impact
the creative output. Second, the same output can in principle arise from radically
different processes, suggesting the importance of supporting diverse pathways. Third,
as we increasingly augment human creativity with computational systems, we must
discover how the different technical and design components embedded in them
impact creative work.

As such, our interventions must often examine and decompose this process into
modular parts, to better understand how systems we build might offer a helping
hand. In the process, we find that some parts are better supported through designing
new computational methods. Others may require prototyping new interactions. Still
others may rest on empirical knowledge obtained from studying process, that can
then be translated into abstract design principles.

In this thesis, I present a concerted effort across several such parts towards this
broader goal. To motivate these parts, consider the following scenarios:

• An architectural acoustician wants to estimate what a space might sound like,
but only has access to visual renderings in the early stages of a design. How
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can they reason about the sonic properties of spaces that exist only as visual
abstractions? Though a rich 3D model could drive a physics-based simulation
of how sound might propagate in the space, the connection between a visual
abstraction and its acoustic correlate eludes precise formal description. This is
also true of spaces in the real world: looking at an image of the international
space station’s interior might offer a sense of what it might sound like, but
capturing an imprint with which to simulate it necessitates a costly round-trip.

• A sound designer wants to craft a sound that evokes a sense of birdsong, and
turns to a synthesizer. Though they have an intuition of what the target might
sound like, and can express its high-level semantics (birdsong), they may twist
tens of knobs for hours in frustration trying to bridge the gap between these
intuitions and technical execution. Even with deep expertise, the process is
encumbered by a laborious search for a semantic manifold in a very high-
dimensional parameter space.

• Two writers are working (separately) on fictional stories, and both find them-
selves stuck. One would benefit from a new idea that makes a dramatic twist,
potentially requiring a page one rewrite of core aspects of their story. The other
just needs a nudge as to what comes next. Their individual and situational needs
diverge, but these needs are sometimes hard to know (let alone express clearly).
Should an assistant (human or machine) ignore this important context?

These scenarios are some of the kind considered in this thesis’s contributions. In
particular, they correspond to the three overarching parts that separate the chapters
to come, with an additional fourth part focusing on a synthesis of individual findings
and proposal of a new methodological framework for studying human-AI creative
interaction.

Part I investigates how we can model relationships between visual and auditory
elements of scenes. In particular, we look at situations where our goal is to capture
possible relationships, rather than only observed ones.

• Chapter 2 presents Image2Reverb, a system that learns to generate acoustic
impulse responses directly from images of spaces, enabling rapid acoustic simu-
lation from only visual observations (or renderings) without costly measurement
or complex 3D modeling.
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• Chapter 3 examines how visually similar scenes can have substantially dif-
ferent acoustic characteristics, particularly through language variation, and
demonstrates how leveraging this through the proxy of second-language dubbed
audio tracks (which serve as counterfactual-like augmentations) can improve
audiovisual representation learning.

Part II explores sound synthesis at the intersection of humans and machines. In
all, this work models the synthesizer, and in particular its parameter space, as a
synergistic playground for both humans and machines.

• Chapter 4 introduces SynthAX, a fast modular synthesizer implementation
enabling rapid sound generation.

• Chapter 5 demonstrates how this can be used to create abstract sound interpre-
tations from text descriptions through automated synthesizer programming,
bridging semantic and technical gaps.

• Chapter 6 shows how synthetic audio pairs generated through controlled pa-
rameter variation can improve learned audio representations.

• Chapter 7 explores a very different kind of synthesizer: one modeled on the hu-
man vocal tract, and considers how we might use this to reconstruct recordings
of the human voice by optimization. In principle, this allows the absorption of
the human voice into the synthesis framework that we explore in the previous
chapters.

Part III examines how AI systems can augment creative work while maintaining
human agency.

• Chapter 8 studies how writers integrate multimodal AI suggestions into their
creative process, identifying patterns in how they make “integrative leaps” from
suggestions to story development.

• Chapter 9 investigates how AI can help authors write better alt text descriptions
for scientific figures, improving accessibility while preserving author knowledge
and discretion.

• Chapter 10 zooms out to gain perspective on what the role of AI in music should
be—arguing that it should be to support musical discovery—and presents a
vision of what this might practically look like.
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Finally, Part IV aims towards a synthesis of these investigations.

• Chapter 11 considers what themes recur across the diverse projects presented
in this thesis.

• Chapter 12 considers the knowledge integration problem: how do we build
generalizable design knowledge from such investigations? I argue that we
must move past the current status quo of fragmented theories and empirical
results, and propose a framework for systematically studying human-AI creative
interaction through “meta-prototypes”: flexible systems that enable controlled
experimentation. I lay out a plan for how these might be conceptualized, built,
and studied.

This organization proceeds from computational foundations in cross-modal modeling
and synthesis to investigations of human-AI creative interaction, and culminates in
the design of a broader conceptual framework for understanding and designing AI
creative augmentation systems that embrace the primacy of process over product.
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Part I
Modeling the Audiovisual Scene

40



2
Image2Reverb: Cross-Modal Reverb
Impulse Response Synthesis

The relationship between visual and acoustic properties of spaces has long captivated
us. For example, architects and acousticians often have sophisticated intuitions about
how spaces might sound based on visual inspection alone. Yet, these intuitions are
trapped in their minds, difficult to externalize into real simulations that could be
valuable for various design, engineering, and artistic tasks. While physics-based
acoustic simulation is possible given detailed 3D models of an environment, the
barrier between visual observation and acoustic experience remains high, especially
in early design stages or for spaces that are inaccessible or no longer exist.

This chapter examines whether neural networks can bridge this gap by learning
to simulate acoustic properties directly from images. Rather than pursuing perfect
acoustic recreation, we demonstrate that useful approximations are possible: approx-
imations that support rapid prototyping and creative exploration while leveraging
coarse human intuition in the form of visual specification. In a way, the goal is to
translate an implicit human understanding of visual-acoustic relationships into an
explicit computational model that can support the creation of novel artifacts. The
system accepts diverse visual inputs ranging from photographs to renderings to
paintings, enabling acoustic simulation for both real and imagined spaces.

Abstract
Measuring the acoustic characteristics of a space is often done by capturing its impulse
response (IR), a representation of how a full-range stimulus sound excites it. This
work generates an IR from a single image, which can then be applied to other
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Figure 2-1: Generating audio impulse responses from images. Left: given an image
of an acoustic environment as input, our model generates the corresponding audio
impulse response as output. Right: generated impulse responses are convolved with
an anechoic (free from echo) audio recording making that recording sound as if it
were in the corresponding space. Waveforms and spectrograms are shown of the
source anechoic signal and the same signal after convolution with the corresponding
synthesized IR. All spectrograms are presented on a mel scale. Image2Reverb is the
first system demonstrating end-to-end synthesis of realistic IRs from single images.

signals using convolution, simulating the reverberant characteristics of the space
shown in the image. Recording these IRs is both time-intensive and expensive, and
often infeasible for inaccessible locations. We use an end-to-end neural network
architecture to generate plausible audio impulse responses from single images of
acoustic environments. We evaluate our method both by comparisons to ground truth
data and by human expert evaluation. We demonstrate our approach by generating
plausible impulse responses from diverse settings and formats including well known
places, musical halls, rooms in paintings, images from animations and computer
games, synthetic environments generated from text, panoramic images, and video
conference backgrounds.

2.1 Introduction
An effective and widely used method of simulating acoustic spaces relies on audio
impulse responses (IRs) and convolution [427, 523]. Audio IRs are recorded mea-
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surements of how an environment responds to an acoustic stimulus. IRs can be
measured by recording a space during a burst of white noise like a clap, a balloon pop,
or a sinusoid swept across the range of human hearing [413]. Accurately capturing
these room impulse responses requires time, specialized equipment, knowledge, and
planning. Directly recording these measurements may be entirely infeasible in con-
tinuously inhabited or inaccessible spaces of interest. End-to-end IR estimation has
far ranging applications relevant to fields including music production, speech process-
ing, and generating immersive extended reality environments. Our Image2Reverb
system directly synthesizes IRs from images of acoustic environments. This approach
removes the barriers to entry, namely cost and time, opening the door for a broad
range of applications.

In this work we model IR generation as a cross-modal paired-example domain adap-
tation problem and apply a conditional GAN [192, 197, 346] to synthesize plausible
audio impulse responses conditioned on images of spaces. Next, we will describe
related work that informs our approach.

2.2 Related Work
Artificial reverberation. Historically, recording studios built reverberant chambers
with speakers and microphones to apply reverb to pre-recorded audio directly within
a physical space [418]. Reverberation circuits, first proposed in the 1960s, use
a network of filters and delay lines to mimic a reverberant space [452]. Later,
digital algorithmic approaches applied numerical methods to simulate similar effects.
Conversely, convolution reverb relies on audio recordings of a space’s response to a
broadband stimulus, typically a noise burst or sine sweep. This results in a digital
replica of a space’s reverberant characteristics, which can then be applied to any
audio signal [11].

Convolutional neural networks have been used for estimating late-reverberation
statistics from images [264, 265], though not to model the full audio impulse response
from an image. This work is based on the finding that experienced acoustic engineers
readily estimate a space’s IR or reverberant characteristics from an image [263].
Room geometry has also been estimated from 360-degree images of four specific
rooms [415], and used to create virtual acoustic environments which are compared
with ground-truth recordings, though again IRs are not directly synthesized from the
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Figure 2-2: Impulse response overview. (A) Sound waves propagate across multiple
paths as they interact with and reflect off their environment. These paths include the
direct path from source to listener, early reflections including 1st and higher order
reflections (after reflecting off 1 or more surfaces) and a more diffuse tail as they trail
off and become more densely packed in time. These reflections make up the impulse
response of the environment illustrated (B) schematically and (C) as a waveform.
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images. A related line of work synthesizes spatial audio based on visual information
[168, 256, 294]. Prior work exists on synthesis of IRs using RNNs [442], autoencoders
[483], and GANs: IR-GAN [410] uses parameters from real world IRs to generate
new synthetic IRs; whereas our work synthesizes an audio impulse response directly
from an image.

Generative models for audio. Recent work has shown that GANs are amenable to
audio generation and can result in more globally coherent outputs [127]. GANSynth
[135] generates an audio sequence in parallel via a progressive GAN architecture
allowing faster than real-time synthesis and higher efficiency than the autoregressive
WaveNet [525] architecture. Unlike WaveNet which uses a time-distributed latent
coding, GANSynth synthesizes an entire audio segment from a single latent vector.
Given our need for global structure, we create a fixed-length representation of our
input and adapt our generator model from this approach.

Measured IRs have been approximated with shaped noise [63, 288]. While room IRs
exhibit statistical regularities [511] that can be modeled stochastically, the domain
of this modeling is time and frequency limited [26], and may not reflect all charac-
teristics of real-world recorded IRs. Simulating reverb with ray tracing is possible
but prohibitively expensive for typical applications [448]. By directly approximating
measured audio IRs at the spectrogram level, our outputs are immediately applicable
to tasks such as convolution reverb, which applies the reverberant characteristics of
the IR to another audio signal.

Cross-modal translation. Between visual and auditory domains, conditional GANs
have been used for translating between images and audio samples of people playing
instruments [84]. Our work builds on this by applying state-of-the-art architectural
approaches for scene analysis and high quality audio synthesis, tuned for our purposes.

2.3 Methods
Here we describe the dataset, model, and algorithm.

2.3.1 Dataset
Data aggregation. We curated a dataset of 265 different spaces totalling 1169
images and 738 IRs. From these, we produced a total of 11234 paired examples with
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a train-validation-test split of 9743-154-1957. These are assembled from sources
including the OpenAIR dataset [354], other libraries available online, and web
scraping. Many examples amount to weak supervision, due to the low availability of
data: for example, we may have a “kitchen" impulse response without an image of the
kitchen in which it was recorded. In this case, we augmented with plausible kitchen
scenes, judged by the researchers, gathered via web scraping and manual filtering.
Although this dataset contains high variability in several reverberant parameters, e.g.
early reflections and source-microphone distance, it allows us to learn characteristics
of late-field reverberation.

Data preprocessing. Images needed to be filtered manually to remove duplicates,
mismatches such as external pictures of an indoor space, examples with significant
occlusive “clutter" or excessive foreground activity, and intrusive watermarks. We then
normalized, center-cropped at the max width or height possible, and downsampled
to 224x224 pixels. We converted the audio IR files to monaural signals; in the case
of Ambisonic B-Format sources we extracted the W (omnidirectional) channel, and
for stereo sources we computed the arithmetic mean of channels. In some cases, 360-
degree images were available and in these instances we extract rectilinear projections,
bringing them in line with the standard 2D images in our dataset.

Audio representation. Our audio representation is a log magnitude spectrogram.
We first resampled the audio files to 22.050kHz and truncate them to 5.94s in duration.
This is sufficient to capture general structure and estimate reverberant characteristics
for most examples. We then apply a short-time Fourier transform with window size
(M = 1024) and hop size (R = 256), before trimming the Nyquist bin, resulting in
square 512x512 spectrograms. Finally, we take log(|X|) where |X| represents the
magnitude spectrogram; audio IRs typically contain uncorrelated phase, which does
not offer structure we can replicate based on the magnitude.

2.3.2 Model
Components. Our model employs a conditional GAN with an image encoder that
takes images as input and produces spectrograms. This overall design, with an
encoder, generator, and conditional discriminator, is similar to that which Mentzer et
al. [343] applied to obtain state-of-the-art results on image compression, amongmany
other applications. The generator and discriminator are deep convolutional networks
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Figure 2-3: System architecture. Our system consists of autoencoder and GAN
networks. Left: An input image is converted into 4 channels: red, green, blue and
depth. The depth map is estimated by Monodepth2, a pre-trained encoder-decoder
network. Right: Our model employs a conditional GAN. An image feature encoder
is given the RGB and depth images and produces part of the Generator’s latent
vector which is then concatenated with noise. The Discriminator applies the image
latent vector label at an intermediate stage via concatenation to make a conditional
real/fake prediction, calculating loss and optimizing the Encoder, Generator, and
Discriminator.

based on the GANSynth [135] model (non-progressive variant), with modifications
to suit our dataset, dimensions, and training procedure.

The encoder module combines image feature extraction with depth estimation to
produce latent vectors from two-dimensional images of scenes. For depth estimation,
we use the pretrained Monodepth2 network [189], a monocular depth-estimation
encoder-decoder network which produces a one-channel depth map corresponding
to our input image. The main feature extractor is a ResNet50 [207] pretrained on
Places365 [579] which takes a four-channel representation of our scene including the
depth channel (4x224x224). We add randomly initialized weights to accommodate
the additional input channel for the depth map. Since we are fine-tuning the entire
network, albeit at a low learning rate, we expect it will learn the relevant features
during optimization. Our architecture’s components are shown in Figure 2-3.

Objectives. We use the least-squares GAN formulation (LSGAN) [327]. For the
discriminator:
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Algorithm 1 Forward and backward passes through the Image2Reverb model. Nota-
tion is explained in Table 2.1.

Input:
Monodepth2: x ∼ X; Encoder: x̃ ∼ X̃; Generator: z = E(x̃)⊕ u; Discriminator:
(G(z), E(x̃)) OR (y, E(x̃))
Parameters: (weight variables)
Output:
Monodepth2: xd; Encoder: E(x̃); Generator: G(z); Discriminator: D(G(z), E(x̃))
OR D(y, E(x̃))
for number of epochs do
Sample B training images
Get depth xd = M(x)
Append depth features to RGB channels: y ⊕ yd
Encode image to feature-vector: E(x̃)
Append noise: z = E(x̃)⊕ u
Generate spectrogram: G(z)
Forward pass through discriminator with either fake or real spectrogram:
D(G(z) | E(x̃)) OR D(y | E(x̃))
Backward pass: update parameters for discriminator (WD), generator (WG), and
encoder (WE)

end for

Notation Definition
x input image
xd estimated depth map
⊕ concatenation operator
x̃ image with depth map (x⊕ xd)
y Real spectrogram

E,G,D Encoder, Generator, Discriminator
M Monodepth2 Encoder-Decoder
W∗ weights for a model
u Noise, u ∼ N (0, 1)
z Latent vector, encoder output and noise

(E(x̃)⊕ u)

Table 2.1: Notation and definitions for variables indicated in different parts of this
chapter.
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min
D

V (D) = Ey∼pdata(y)[(1−D(y | E(x̃))2]

+ Ez∼pz(z)[(D(G(z) | E(x̃))2]
(2.1)

For the generator, we add an ℓ1 reconstruction term, scaled by a hyperparameter
(λa = 100 in our case). This is a common approach in image and audio settings. In
all:

min
G

V (G) = Ez∼pz(z) [ (1−D(G(z) | E(x̃))2

+ λa ∥G(z)− y∥1
(2.2)

Training. We train our model on 8 NVIDIA 1080 Ti GPUs. Three Adam optimizers
for each of the Generator, Discriminator, and Encoder were used to optimize the
networks’ parameter weights. Hyperparameters are noted in Table 2.2. We make our
model and code publicly available 1.

Parameter Value
ηG 4e-4
ηD 2e-4
ηE 1e-5
β (0.0, 0.99)
ϵ 1e-8

Table 2.2: Hyperparameters for the Generator, Discriminator, and Encoder initial
learning rates, the optimizer beta (β), and epsilon (ϵ) for the Adam optimizers we
use (one each for D,G,E)

2.4 Results
Using Image2Reverb we are able to generate perceptually plausible impulse responses
for a diverse set of environments. In this section, we provide input-output examples
to demonstrate the capabilities and applications of our model and also review results
of a multi-stage evaluation integrating domain-specific quantitative metrics and

1Model and code: https://github.com/nikhilsinghmus/image2reverb
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expert ratings. Our goal is to examine output quality and conditional consistency,
generally considered important for conditional GANs [123] and most relevant for
our application.

2.4.1 Examples
We present several collections consisting of diverse examples, with inputs curated to
illustrate a range of settings of interest including famous spaces, musical environments,
and entirely virtual spaces. All examples are made available as audiovisual collections2

and were generated with a model trained in around 12 hours, with 200 epochs on
a virtual machine. Figure 2-4 shows examples from our test set that were used in
our expert evaluation (4 of 8, one from each category of: Small, Medium, Large,
and Outdoor). We convolve a spoken word anechoic signal with the generated IRs
for the reader to hear. Figure 2-5 takes images of diverse scenes (art, animation,
historical/recognizable places) as inputs. Figure 2-6 demonstrates how sections of
360-degree equirectangular images are cropped, projected, and passed through our
model to generate IRs of spaces for immersive VR environments.

We strongly encourage the reader to explore these examples on the accompanying
web page. We include examples of musical performance spaces, artistic depictions
(drawings, paintings), 3D animation scenes, synthetic images from OpenAI’s DALL•E,
as well as real-world settings that present challenges (e.g. illusions painted on walls,
reflections, etc.). These are largely created with real-world environments for which
we may not have ground truth IRs, demonstrating how familiar and unusual scenes
can be transformed in this way.

2.4.2 Ablation Study
To understand the contribution of key architectural components and decisions, we
perform a study to characterize how removing each affects test set T60 estimation
after 50 training epochs. The components are the depth maps and the pretrained
Places365 weights for the ResNet50 encoder. Table 2.3 reports descriptive statistics
of the T60 error distributions over the test set for each of these model variants.

Our model reflects better mean error (closer to 0%) and less dispersion (a lower
standard deviation) than the other variants. The former is well within the just
noticeable difference (JND) bounds for T60, often estimated as being around 25-30%

2Audiovisual samples: https://web.media.mit.edu/~nsingh1/image2reverb/
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Figure 2-4: Ground-truth measured IRs vs generated IRs. Columns show input images,
depth maps, measured IRs with corresponding convolved speech, and generated
IRs with corresponding convolved speech. Larger indoor spaces here tend to exhibit
greater T60 times with longer measured impulse responses. The outdoor scene has
a very short measured IR and corresponding generated IR. Input images are all
examples that were used in the expert survey and were drawn from the test set.
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Figure 2-5: Generated IR examples. Columns show input images, depth maps,
generated IRs, and a dry anechoic speech signal before and after the generated IR
was applied via convolution. Input images come from a variety of spaces which
illustrate possible applications of our model. Some images are synthetic, including:
an oil painting, a 3D animation still, and a video game screenshot. Others come
from real-world scenes like a church (where music is often heard), a famous yet
inaccessible space (SpaceX), and an outdoor desert scene. Larger indoor spaces tend
to exhibit longer impulse responses as seen here.
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Figure 2-6: VR. Impulse responses generated from an equirectangular 360-degree
image by sampling points on a sphere, cropping and applying a rectilinear projection
to the resulting image, and feeding them into our model. This demonstrates how
our model directly generates realistic impulse responses of panoramic virtual reality
compatible images. Future work may allow generation of impulse responses using an
entire 360-degree image, though at present there is a lack of paired data available
for training.

Main -Depth -P365 NN

T60 Err
(%)

µ -6.03 -9.17 43.15 149
σ 78.8 83.1 144.3 491.02

Table 2.3: T60 estimation error (%) statistics from each model version. “Main" is our
architecture as described earlier, “-Depth" omits depth maps and “-P365" does not
use the pretrained Places365 weights for the ResNet50 encoder. “NN" indicates a
nearest-neighbor approach with Places365-ResNet50 embeddings for images. For
mean and median, values closer to 0 reflect better performance. For the standard
deviation, lower values reflect better performance.

for a musical signal [342]. Additionally, this is an upper bound on authenticity: a
more rigorous goal than perceptual plausibility [386]. The lower standard deviation
indicates generally more consistent performance from this model across different
examples, even in the presence of some that cause relatively large estimation errors
due to incorrect interpretation of relevant qualities in the image, or inaccurate/noisy
synthesis or estimation.

2.4.3 Expert Evaluation
Following the finding that experienced acoustic engineers readily estimate a space’s
reverberant characteristics from an image [263], we designed an experiment to
evaluate our results. We note that this experiment is designed to estimate comparative
perceptual plausibility, rather than (physical) authenticity (e.g. by side-by-side
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comparison to assess whether any difference can be heard). These goals have been
differentiated in prior work [386]. We selected two arbitrary examples from each
of the four scene categories and recruited a panel of 31 experts, defined as those
with significant audio experience, to participate in a within-subjects study. For each
of these examples, we convolved an arbitrary anechoic signal with the output IR,
as well as the ground truth IR. These 16 samples were presented in randomized
order and participants were instructed to rate each on a scale from 1 to 5 based on 1)
reverberation quality, and 2) realism or “match" between their expected reverb based
on the image and the presented signal with reverb applied. Participants answered one
reverb-related screening question to demonstrate eligibility, and two attention check
questions at the end of the survey. The four scene categories are: Large, Medium,
Outdoor, and Small. These demonstrate diversity in visual-reverb relationships. The
dependent variables are quality and match ratings, and the independent variables
are IR source (real vs. fake) and scene category (the four options listed previously).

A two-way repeated-measures ANOVA revealed a statistically significant interaction
between IR source and scene category for both quality ratings, F (3, 90) = 7.04, p ≤
.001, and match ratings, F (3, 90) = 3.73, p = .02 (reported p-values are adjusted with
the Greenhouse-Geisser correction [195]). This indicates that statistically significant
differences between ratings for real and fake IR reverbs depend on the scene category.
Per-participant ratings and rating changes, overall and by scene, are shown in Figure
2-7.

Subsequent tests for simple main effects with paired two one-sided tests indicate that
real vs. fake ratings are statistically equivalent (p < .05) for large and small quality
ratings, and large, medium, and small match ratings. These tests are carried out with
an ϵ of 1 (testing for whether the means of the two populations differ by at least 1).
Results are shown in Table 2.4. Notably, outdoor scenes appear to contribute to the
rating differences between real and fake IRs. We conjecture this is due to outdoor
scenes being too different a regime from the vast majority of our data, which are
indoor, to model effectively. Additionally, medium-sized scenes appear to contribute
to differences in quality.

2.4.4 Model Behavior and Interpretation
Effect of varying depth. We compare the full estimated depth map with constant
depth maps filled with either 0 or 0.5 (chosen based on the approximate lower and
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Rating Scene DoF p

Quality Large 56 < .001
Quality Medium 56 .28
Quality Outdoor 56 .62
Quality Small 56 < .001
Match Large 56 < .001
Match Medium 56 .006
Match Outdoor 56 .29
Match Small 56 < .05

Table 2.4: Simple main effect tests for equivalence between real and generated IRs
across different categories of scenes. We use paired two one-sided tests with bounds
(ϵ) of 1 and Bonferroni-adjusted p-values. These results suggest that real vs. fake
ratings are statistically equivalent within one rating unit (the resolution of the rating
scale) for large and small quality ratings, and large, medium, and small match ratings.
Notably, outdoor scenes contribute to the difference between real and fake IRs and
medium-sized scenes contribute to differences in quality.

Figure 2-7: Expert evaluation results. Paired plots showing per-participant quality
and match differences in rating for each scene category. Green lines indicate higher
rating for real IRs, red lines for generated IRs, and grey lines equivalent ratings.
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Figure 2-8: Effect of Depth on T60. Distributions of estimated T60 values for the
model with estimated depth maps, plus constant depth maps set to either 0 (low)
or 0.5 (high). Manipulating the depth value allows us to “suggest" smaller or larger
scenes, i.e. bias the output of the model. Table 2.5 shows corresponding descriptive
statistics. These results indicate a level of “steerability" for the model’s behavior in
human-in-the-loop settings.

Main Depth 0 Depth 0.5

T60 (s)

µ 2.07 2.01 3.62
σ 1.54 0.87 2.36

Mdn. 2.69 2.00 3.07

Table 2.5: Descriptive statistics for the model with estimated depth maps, as well
as constant depth maps set to either 0 or 0.5. The full depth map’s results are
between that of the 0 and 0.5 depth maps. Figure 2-8 visualizes the corresponding
distributions.

upper bounds of our data). We survey the distributions of generated IRs’ T60 values
over our test set, the results of which are shown in Figure 2-8. Table 2.5 reports
descriptive statistics for these distributions, showing that the main model’s output IRs’
decay times are biased lower by the 0-depth input and higher by the 0.5-depth input
respectively. These may indicate some potential for steering the model in interactive
settings. We do note, however, that behavior with constant depth values greater than
0.5 is less predictable. This may be due to the presence of outdoor scenes, for which
the scene’s depth may not be correlated with IR duration.

Effect of transfer learning. To understand which visual features are important to
our encoder, we use Gradient-weighted Class Activation Mapping (Grad-CAM) [455].
Grad-CAM is a popularly applied strategy for visually interpreting convolutional
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Figure 2-9: Grad-CAMs for images passed through the pre-trained Places365 ResNet50
encoder vs. our fine-tuned encoder, showing movement towards significant reflective
areas for (A) a small, and (B) a large environment. The fine-tuned model’s activations
highlight larger reflective surfaces: depth of staircase for (A) vs. railing that may be
more optimal for scene identification, and wall-to-ceiling corner plus surrounding
areas for (B).

neural networks by localizing important regions contributing to a given target feature
(or class in a classification setting). We produce such maps for our test images with
both the ResNet50 pre-trained on Places365 dataset, as well as the final encoder
model. All resulting pairs exhibit noticeable differences; we check for this with the
structural similarity index (SSIM) metric [539], which is below 0.98 for all examples.

We qualitatively survey these and identify two broad change regimes, which are
illustrated with particular examples. First, we observe that the greatest-valued feature
is often associated with activations of visual regions corresponding to large reflective
surfaces. Examples are shown in Figure 2-9. Often, these are walls, ceilings, windows,
and other surfaces in reflective environments. Second, we find that textured areas are
highlighted in less reflective environments. Examples of these are shown in Figure
2-10. These may correspond to sparser reflections and diffusion.

Limitations and future work. Many images of spaces may offer inaccurate por-
trayals of the relevant properties (size, shape, materials, etc.), or may be misleading
(examples in supplementary material), leading to erroneous estimations. Our dataset
also contains much variation in other relevant parameters (e.g. DRR and EDT ) in a
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Figure 2-10: Grad-CAMs for images passed through both the pre-trained Places365
ResNet50 encoder and our fine-tuned encoder, showing movement towards more
textured areas for (A) an indoor, and (B) an outdoor environment. The former seems
to contain significant absorption and the latter has few reflective surfaces. In both
cases, textured areas are highlighted. These may be associated with absorption,
diffusion, and more sparse reflections depending on the scene.

way we cannot semantically connect to paired images, given the sources of our data.
New audio IR datasets collected with strongly corresponding photos may allow us to
effectively model these characteristics precisely.

2.5 Conclusion
We introduced Image2Reverb, a system that is able to directly synthesize audio
impulse responses from single images. These are directly applied in downstream
convolution reverb settings to simulate depicted environments, with applications to
XR, music production, television and film post-production, video games, videocon-
ferencing, and other media. Our quantitative and human-expert evaluation shows
significant strengths, and we discuss the method’s limitations. We demonstrate that
end-to-end image-based synthesis of plausible audio impulse responses is feasible,
given such diverse applications. We hope our results provide a helpful benchmark for
the community and future work and inspire creative applications.
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3
Looking Similar, Sounding Different:
Leveraging Counterfactual Cross-Modal
Pairs for Audiovisual Representation
Learning

Just as humans intuitively grasp visual-acoustic relationships in physical spaces, we
understand how visual scenes relate to their soundtracks in audiovisual media. This
capacity extends beyond simple correspondences: we readily accept that the same
visual scene can host many different sonic environments (e.g. a busy vs. empty
restaurant), and the same sonic environment can host many different conversations,
for example. Yet, most computational approaches to audiovisual learning focus on
discovering consistent relationships between sight and sound, potentially missing
the rich space of valid variations that we so naturally comprehend. This chapter
investigates whether embracing such variations, rather than minimizing them, could
actually improve machine audiovisual understanding. We leverage a unique data
source that naturally encodes this variation: dubbed films, where visually identical
scenes are paired with systematically varying audio tracks. These “counterfactual”
audiovisual pairs provide a controlled way to study how scenes might sound different
while looking similar.

This work challenges conventional wisdom about audiovisual learning in two ways.
First, it suggests that carefully constructed training distributions that deviate from
naturalistic assumptions can sometimes yield more generalizable models. Second, it
shows that a source of apparent inconsistency in human-created media (i.e. different
dubs for the same visual track) can actually encode valuable information about
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the space of possible audiovisual relationships. Like Chapter 2, this suggests that
computational models can benefit from embracing the flexibility and ambiguity
inherent in human sensory understanding. By building models that better represent
possible audiovisual relationships, rather than just the most probable ones, we can
also enable systems that better support human creative work: work that often involves
exploring unlikely but meaningful combinations of sight and sound, guided by our
robust perceptual capabilities.

Abstract
Audiovisual representation learning typically relies on the correspondence between
sight and sound. However, there are often multiple audio tracks that can correspond
with a visual scene. Consider, for example, different conversations on the same
crowded street. The effect of such counterfactual pairs on audiovisual representation
learning has not been previously explored. To investigate this, we use dubbed versions
of movies and television shows to augment cross-modal contrastive learning. Our
approach learns to represent alternate audio tracks, differing only in speech, similarly
to the same video. Our results, from a comprehensive set of experiments investigating
different training strategies, show this general approach improves performance on
a range of downstream auditory and audiovisual tasks, without majorly affecting
linguistic task performance overall. These findings highlight the importance of
considering speech variation when learning scene-level audiovisual correspondences
and suggest that dubbed audio can be a useful augmentation technique for training
audiovisual models toward more robust performance on diverse downstream tasks.

3.1 Introduction
Can two videos look similar while sounding different? Consider the two scenes on
the left in Fig. 3-1. These come from different sources, but share elements like a
violinist in the background, other tables further away, and a couple’s voices in an
upscale restaurant environment; but what are they saying? This can vary considerably
between the two scenes, even without changing other aspects. General-purpose self-
supervised audiovisual representations are often focused on non-speech applications,
evidenced by both existing training datasets and common downstream evaluation
tasks. In audio alone, there is a myriad of applications beyond semantic speech
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Figure 3-1: (Left) Audiovisual scenes can be perceptually similar even as the words
spoken in them differ, which may be a challenge for self-supervised audiovisual
representation learning. (Right) We propose to leverage movie dubs during training
and show that it improves the quality of learned representations on a wide range of
tasks.

processing, leading to recent benchmarks which evaluate generalization across and
trade-offs between types of tasks [517, 536]. How then can we focus on learning
robust representations from audiovisual content with speech mixed into it? Impor-
tantly, there are many non-semantic, or paralinguistic, speech processing tasks of
interest, as speech is much more than audible text. These too require discovering
other similarities beyond words.

Imagine a movie discussion scene, as in Fig. 3-2. Many audiovisual elements are
present: background chatter, glasses clinking, music, footsteps, and characters’ voices,
but a priori this scene could contain many different dialogs without changing the
fundamental scene attributes, beyond local features such as lip movements, and
this indicates an explicitly counterfactual structure. Note that there are also other
counterfactual cross-modal structures which relate to different problems, such as
multiple videos of dancing to the same music. Differences in spoken words are one
specific case of this which we explore.

In this work, we hypothesize that this looking similar, while sounding different problem,
as it can occur in real-world audiovisual data distributions, may inhibit the perfor-
mance of self-supervised audiovisual representation learners. Established approaches,
such as cross-modal contrastive learning, where models learn to discriminate true
audiovisual pairs from false ones, could be affected; linguistically different but oth-
erwise similar audio-video pairs could act as confounders in this case. However,
counterfactual versions of exactly the same scene with only different dialog are gen-
erally not available, even if the distribution of real-world audiovisual scenes exhibits
this overall trend.
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We propose to leverage a data source which naturally resembles this counterfactual-
like structure as a proxy: dubs. Dubs are alternate versions of movie audio tracks
where the speech is replaced with a second-language adaptation, and the rest of
the sounds are generally unchanged. Recent works have shown how training on
movie scenes can yield strong performance [85, 242], since they contain diverse
audiovisual mixtures, compared with popular audiovisual datasets which are curated
to focus on specific objects or actions. Although this distribution may help in learning
representations focused on overall scene attributes rather than the dialog’s semantics,
which is our goal, contrastive training on aligned audio and video from movies does
not explicitly account for scenes that look similar and sound different due to linguistic
variation. We improve upon this strategy by leveraging multilingual dubbed versions
of movies1. Specifically, we create a dataset of movies and television shows, each
with up to seven audio tracks: English (EN), Spanish (ES), French (FR), Japanese
(JA), German (DE), Italian (IT) and Korean (KO). We plug our training strategy into
a well-established self-supervised contrastive learning formulation, i.e. SimCLR [86],
and we show that this can improve performance in both multimodal and unimodal
setups. Overall, this work contributes:

• An approach to improving self-supervised audiovisual representation learning
using dubs, secondary audio language versions of movies.

• Extensive experiments showing that this approach not only improves perfor-
mance on a range of auditory and audiovisual tasks but also yields new state-
of-the-art on multiple benchmarks.

• Additional experiments to investigate potential trade-offs. These show that we
can get an improvement without majorly affecting the performance on language
identification, and semantic speech tasks.

• An example pipeline for producing counterfactual pairs in various languages;
we apply the workflow to the LVU [551] dataset and demonstrate the possi-
bility of creating alternate audio tracks that potentially empower the research
community to further investigate the impact of spoken words in audiovisual
representation learning.

1The pretraining data also includes episodes of television shows. To avoid clutter, we refer to all
long-form content as movies unless it is necessary to specify.
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Figure 3-2: Consider the pictured scene. Which of these dialog examples is more
likely? Both are plausible within the scene, yet their phonetic-acoustic characteristics
would create differences in the soundtrack.

3.2 Related Work
Self-supervised and Multimodal Learning Self-supervised learning relies on pre-
text tasks with engineered supervision based on data structure, rather than human
labels, to learn useful representations [24, 126, 185, 202, 208, 348, 368, 573]. We
focus on contrastive learning, which has shown strong performance by maximizing
mutual information between views of the same instance [24, 86, 169, 208, 505, 505,
514]. These can then be adapted to novel tasks by fine-tuning, or by appending simple
(often linear) models, both with smaller-scale task-specific supervision requirements.
Cross-modal contrastive learning specifically leverages multimodal data like image
and text [402], or, as in our case, video and audio [7, 14, 22, 150, 219, 266, 318,
356, 357, 376, 378, 384, 535, 560, 565].

Audiovisual Learning Audiovisual learning harnesses cross-modal correspondences
for tasks like action [248, 266] and speaker [98, 355] recognition, source sep-
aration [78, 424, 522], media synthesis [166, 198, 377, 488], audio spatializa-
tion [172, 351, 561], acoustic simulation [81, 325, 469], and more. Much work
takes a contrastive approach, recognizing that audio and video can be treated as two
complementary sensory views of a single underlying phenomenon, and focuses on
learning coordinated [29] representations. Prior work has found that cross-modal
training can lead to better results than within-modal training [352], so we use this
cross-modal setup as the basis for our framework. In this work, we rely on multilin-
gual audio dubs and videos from long-form content, e.g. movies and television shows.
Movies contain rich audiovisual correspondences mimicking real-world experiences,
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and are more diverse and novel than user-generated videos while being abundant
and scalable [85, 225, 500].

General-purpose Audio Representation Learning and Evaluation Sound is het-
erogeneous, with speech, music, and environmental sounds having very different char-
acteristics. Even within speech, for example, tasks like speech recognition [93, 299]
and speech emotion recognition [463] differ dramatically. This has motivated de-
veloping general-purpose audio representations [363, 439] and benchmarks like
HARES [536] and HEAR [517]. We focus our audio evaluation on HEAR [517]
since it provides a consistent API. The central hypothesis is that if dub-augmented
training in the cross-modal setting improves the generality of the representations,
performance on various tasks should increase while avoiding a significant trade-off
on language-related tasks.

Multilingual Audio Multilingual speech processing has enabled progress in areas
like speech recognition [70] through pretraining on diverse data [104, 184]. Recently,
speech-to-speech translation has been possible as well [287]. Speech translation
in audiovisual media is often referred to as dubbing. This is a type of audiovisual
translation [80] in which speech content from a media artifact (e.g. a movie) is re-
recorded in another language. Dubs predominate over subtitles in many cultures [79].
This provides naturalistic multilingual data at scale, and offers a specific case for our
hypothesis about audio-visual consistency: a dub’s soundtrack differs from the original
only in spoken language. We seek to leverage dubs’ parallel primary and secondary
audio, differing only in speech, to learn more robust audiovisual representations. We
also produce a synthetic pipeline for creating counterfactual pairs, to demonstrate
the concept of counterfactual cross-modal pairs, while enabling future exploration
and validation from the research community.

3.3 Pretraining Dataset
Our dataset consists of ∼20K movies and ∼33K television episodes, which constitutes
∼59K video-hours in total. We have paid extra attention to the diversity of titles
used in our pretraining dataset in order to minimize the potential implicit biases
in our learned representations, and limited ourselves to only a small part of the
catalog to investigate this question. Fig. 3-3 provides details on the distribution
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Figure 3-3: Movies and television episodes included in our pretraining dataset are
chosen from a diverse set of original languages and genres. Our goal is to minimize
potential content and story biases that could potentially impact our self-supervised
models. Note that beyond curating the dataset, we do not use this metadata for
representation learning. We normalize per column for visualization.

Figure 3-4: Example clips from our pretraining dataset, showing video stills and mel
spectrograms for each of the audio tracks.
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of genre, and original language of the titles included in our dataset2. Each title
contains a video track, as well as up to seven audio tracks: English (EN), Spanish
(ES), French (FR), Japanese (JA), German (DE), Italian (IT) and Korean (KO). Most
titles have only a single audio track, which is almost always their original language
while about a quarter of the dataset is multilingual where on average 2.8 audio
tracks are available for each title. Such a dataset allows us to explore the impact
of spoken words in audio for self-supervised audiovisual representation learning.
Having multiple dub options enables us to investigate trade-offs between secondary
languages, and whether “multilingual” models might further strengthen downstream
performance.

We recognize that this kind of data has the potential to significantly benefit research.
We are actively investigating the necessary legal steps to potentially release a variant
of it for non-commercial use. Fig. 3-4 illustrates a few samples from our dataset but
readers are encouraged to check out our project page for more examples3.

3.4 Methodology

3.4.1 Approach
Our pretraining dataset is denoted by X = {Xn|n ∈ [1 · · ·N ]}, where Xn = {xn,m|m ∈
[1 · · ·Mn]} containsMn non-overlapping snippets which are temporally segmented
from the duration of the nth title in the dataset. Q is a function class which we use to
create quadruplet training instances (vp, ap, vs, as) ∼ Q(xn,m)

4 where vp and vs are
obtained through spatio-temporal augmentation of video modality in xn,m. Similarly
are ap and as for the audio modality, yet, unlike video, we do have the opportunity to
further add dub-augmentation to audio instances. When more than one language is
available this would ensure that ap and as are similar except in their spoken language.

Randomly sampling negatives, the traditional approach in metric and contrastive
learning, has been observed to be suboptimal [318, 446]. A number of recent works
develop methods for so-called hard negative mining, where the goal is to populate
the negative set with challenging examples [370, 426]. In our case, the data is
hierarchical; snippets are naturally nested within source long-form titles, and those

2Further details are given in the appendix.
3nikhilsinghmus.github.io/lssd
4subscripts stand for primary and secondary
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from the same title share several common attributes including characters, places,
objects, voices, and aesthetics. Hence, following prior work [242], to create a mini-
batch B = {xi|i ∈ [1 · · ·B]}, we first uniformly sample a title, n ∼ U(1, N), and
then draw multiple distinct snippets from Xn. This ensures that for each instance
in B, there are always a sufficient number of samples from the same title to act as
hard negatives. This is important since B ≪ N , hence for n ∼ U(1, N) and m ̸= m′,
P(xn,m ∈ B ∧ xn,m′ ∈ B)→ 0. In other words, the naive random sampling policy of
xi ∼

⋃N
n=1Xn would mainly lead to easy cross-title negatives.

We can now formulate the training objective. Considering a cross-modal setup,
B = {(vi, ai)|i ∈ [1 · · ·B]} represents a minibatch of size B, where video and audio
modalities of the ith instance are denoted by vi and ai. We use ziv and zia to rep-
resent their respective embeddings. For the ith element in the minibatch, (ziv, zia)
serves as the positive pair, while assuming negative pairs for both modalities, Ni =

{(ziv, zja), (zjv, zia)|j ∈ [1 · · ·B], i ̸= j} constitutes the set of negative pairs. With that,
Equation 3.1 shows the cross-modal normalized temperature-scaled cross-entropy
objective [86] associated with the ith instance. Since (v, a) ∈ {(vp, as), (vs, ap)}, in
practice we optimize Equation 3.2 which aggregates over all available instances.

ℓi(v, a) = − log
( e((z

i
v)

⊺(zia))/τ

e((ziv)⊺(zia))/τ +
∑

(z′v ,z
′
a)∈Ni

e((z
′
v)

⊺(z′a))/τ

)
(3.1)

L =
1

2

B∑
i=1

(
ℓi(vp, as) + ℓi(vs, ap)

)
(3.2)

Lv =
B∑
i=1

ℓi(vp, vs), La =
B∑
i=1

ℓi(ap, as) (3.3)

Equation 3.3 shows the within-modal variants of the loss function for video and
audio modalities. Unless explicitly mentioned otherwise, we train our models from
scratch and cross-modally, i.e. we compute the contrastive loss between modalities as
shown in Eq. 3.2. We do this based on the observation in our early experiments that,
when training from scratch without tuning additional scaling parameters, the within-
modal contrastive task is too easy comparatively and results in early convergence on
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the corresponding terms. This approach is also supported by prior literature [352].
Despite not directly optimizing for within-modal terms, we trackLv andLa during self-
supervised pretraining and observe that they diminish as a byproduct of minimizing
L. There are variants in our modeling where Lv and La are included in total loss
function (e.g L+ λvLv + λaLa) which we’ll discuss later in Sec. 3.5.2.

3.4.2 Architecture
As we seek to validate the effect of our data and training approach, we rely on standard
backbone architectures. Our video model is a multi-scale vision transformer [144],
specifically MViT-S, and our audio model follows a similar architecture except a slight
modification to allow processing audio spectrograms as input. Note that we train
all our models from scratch on our pretraining dataset detailed in Sec. 3.3. We use
a single (weight sharing) audio backbone which processes all audio spectrograms,
regardless of language. As is common in contrastive learning, we use multi-layer
perceptron (MLP) projection heads, one for each modality, to further reduce the
dimensionality of representations during training, prior to computing the contrastive
loss. These additional layers are discarded after pretraining.

3.5 Experiments

3.5.1 Downstream Tasks
Audio Tasks and Benchmarks We evaluate on a diverse set of auditory tasks
to probe the quality of our learned representations, taken from the HEAR [517]
challenge benchmark. We subselect tasks relevant to our hypotheses, and focus on
those which use pooled (rather than temporally dense) representations.

Sound and Scene Classification: These tasks are firmly non-linguistic, and we hypothe-
size performance on them should benefit from de-emphasizing language in training.
We include ESC-50 [392], FSD50K [157], and Vocal Imitations (VI) [255]. VI is
a query-by-vocalization (QBV) task, however since it is based on AudioSet [179]
ontology sound events, we place it in this category.

Non-Semantic Speech: Many non-semantic or paralinguistic attributes of speech or
vocal signals may be shared between languages, and such signals are important for a
range of tasks. We include here CREMA-D [75] for emotion recognition, GTZAN [520]
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for music/speech discrimination, and LibriCount [486] for speaker count estimation.
We hypothesize performance should improve, if our scheme increases focus on non-
linguistic speech attributes.

Semantic Speech: To probe a potential trade-off, we evaluate on semantic speech tasks.
We consider keyword understanding as a proxy for speech recognition that uses pooled
representations. To do so, we employ the full version of Speech Commands [544]
implemented in HEAR [517].

Language: Another way to measure a possible trade-off is by evaluating how models
perform on an audio-based language identification task, to see if features useful for
this are preserved in learned representations. We include VoxLingua107 Top10 [524]
for this reason.

Visual and Audiovisual Tasks We also evaluate the visual representations indepen-
dently, and coordinated with, the auditory representations. Following recent work
on representation learning from long-form content [85], we include the LVU [551]
benchmark covering various aspects of long-form video understanding to our evalu-
ation suite. LVU [551] contains small-scale tasks covering a wide range of aspects
of long-form videos, including content understanding (relationship, speaking style,
scene/place), and movie metadata prediction (director, genre, writer, movie release
year). Among the LVU tasks, we explore benefits and potential trade-offs using both
visual and auditory representations. In general, we expect improvement except for
speaking style, where it is not a priori clear whether de-emphasizing spoken words
during pretraining is harmful for such a downstream task.

Evaluation Once the self-supervised pretraining is over, we discard the projection
heads and use the backbone architectures to extract features from audio and video
assets. Unless mentioned otherwise, we do spatio-temporal mean pooling on the
output tensors in order to obtain a d-dimensional vector embedding for each data
instance in the downstream tasks. We then train either an MLP or linear probe on
these representations following the prescribed approaches in the relevant benchmarks.
More implementation details can be found in the appendix.

3.5.2 Models
In total, we train 11 model variants, detailed in Table 3.1, and evaluate them on 15
different tasks across audio and video modalities.
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# data init. (λv, λa)
original
language

avg.
# dubs

dub
augment

A.1 4.6M rand. (0,0) ESF 2.8 ✗

A.2 4.6M rand. (0,0) ESF 2.8 ✓

A.3 4.6M A.1 (0,0.2) ESF 2.8 ✗

A.4 4.6M A.2 (0,0.2) ESF 2.8 ✓

B.1 11.8M rand. (0,0) EN 1.0 ✗

B.2 9.8M rand. (0,0) U\EN 0.2 ✗

B.3 19.4M rand. (0,0) U 0.6 ✗

B.4 5.1M B.3 (0,0) U 2.8 ✓

B.5 5.1M B.3 (0.2,0.2) U 2.8 ✓

C.1 19.4M rand. (0,0) U 0.6 ✓

C.2 5.1M C.1 (0.1,0.1) U 2.8 ✓

Table 3.1: Details of different pretraining model variants. Here, ESF := {EN,ES, FR}
is denoting the union of three languages. U represents the universal set including all
the seven languages.

HEAR LVU

ESC LibCnt CREMA VI FSD Speech VoxLng Director Genre Relation Scene Speak Writer Year

A.1 77.20 67.29 59.52 10.37 44.52 74.83 27.16 44.86 54.42 36.59 45.12 42.86 38.10 41.84
A.2 75.95 67.94 59.76 11.14 44.23 73.80 23.87 47.66 56.63 36.59 41.46 40.74 33.33 41.84
A.3 82.00 67.87 62.69 11.39 48.90 79.47 28.70 49.53 57.65 43.90 39.02 43.92 33.93 46.10
A.4 83.05 68.65 61.95 12.57 49.42 74.38 26.55 44.86 59.01 46.34 45.12 48.15 29.17 47.52

B.1 84.15 67.12 61.00 13.05 50.29 82.31 24.69 47.66 57.14 51.22 41.46 42.33 32.14 45.39
B.2 82.00 67.10 61.98 11.86 49.07 82.90 28.09 42.99 55.95 48.78 42.68 47.62 30.36 44.68
B.3 85.60 66.31 62.79 11.55 53.69 83.82 30.35 50.47 60.20 46.34 42.68 48.68 37.50 45.39
B.4 83.75 68.88 63.18 10.82 51.61 77.12 28.19 51.40 59.69 56.10 46.34 49.21 38.10 44.68
B.5 85.25 69.16 63.27 11.38 52.48 76.99 27.98 51.40 58.33 51.22 52.44 48.68 36.31 45.39

C.1 84.10 67.57 63.70 12.12 51.96 81.88 29.42 42.99 58.84 48.78 46.34 41.27 38.69 41.13
C.2 85.50 68.90 64.28 11.90 52.55 77.14 29.94 48.60 57.65 48.78 51.22 50.79 39.88 49.65

Table 3.2: Ablation results with audio. All metrics are top-1 accuracy, except for
FSD50K [157] and Vocal Imitation [255] (Mean Average Precision). We have followed
the prescribed evaluation strategy from HEAR [517] benchmark; training an MLP
on frozen embeddings of the downstream tasks. For LVU [551], we use the official
data splits and train a linear probe. Results are shown on the test split where the
best epoch to report is chosen based on the same metric on the validation set. All
model variants obtained 100.0 top-1 accuracy on GTZAN, hence we did not include
that task here. We denote the top performance(s) within each ablation group with
bold. The HEAR [517] tasks from left to right are ESC-50, LibriCount, CREMA-D,
Vocal Imitation, FSD-50k, SpeechCommands (Full), and VoxLingua107 Top10.
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ESC LibCnt CREMA VI FSD Speech VoxLng GTZAN

Bench [517] 96.65 78.53 75.21 22.69 65.48 97.79 72.02 99.23
Bench (SSL) 80.50 78.53 75.21 18.48 50.88 96.87 71.40 96.86
GURA [558] 74.35 68.34 75.21 18.48 41.32 94.68 71.40 93.59
PaSST [267] 94.75 66.01 61.04 18.20 64.09 63.87 25.93 97.69
CLAP [133] 96.70 77.83 64.36 – 58.59 96.83 – 100.0

Ours

B.3 (A) 85.60 66.31 62.79 11.55 53.69 83.82 30.35 100.0
B.4 (A) 83.75 68.88 63.18 10.82 51.61 77.12 28.19 100.0
B.5 (A) 85.25 69.16 63.27 11.38 52.48 76.99 27.98 100.0

Director Genre Relation Scene Speak Writer Year

Obj Tr [551] 58.90 56.10 54.70 60.00 40.30 35.10 40.60
M2S [85] 70.90 55.90 71.20 68.20 42.20 53.70 57.80
ViS4mer [231] 62.61 54.71 57.14 67.44 40.79 48.80 44.75
SCALE [444] 49.09 58.97 76.47 74.02 42.27 62.76 39.23
STCA [124] 66.70 56.62 59.25 69.15 41.62 52.93 53.30

Ours

B.3 (V) 69.16 60.88 60.98 63.41 46.03 48.81 52.48
B.4 (V) 67.29 61.73 60.98 65.85 47.62 41.67 55.32
B.5 (V) 69.16 64.29 58.54 64.63 46.03 41.07 52.48

Table 3.3: State-of-the-art results across HEAR [517] (adding GTZAN Music/Speech)
and LVU [551] tasks we evaluate on. On HEAR, we compare to (1) the best result
on each task, on the HEAR leaderboard, (2) same as (1) but considering only self-
supervised models, (3) GURA Fuse HuBERT [558], the best performer on average, (4)
CP-JKU PaSST 2lvl+mel [267], the strongest average performer after the GURA mod-
els, (5) the recent CLAP model [133]. On LVU, we compare to the Object Transformer
from the original LVU paper [551], along with recent advances: ViS4mer [231], the
SVT SCALE model [444], STCA [124], and Movies2Scenes [85]. Movies2Scenes
uses movie metadata, which introduces task-specific supervision. When reporting our
results, (A) indicates audio representations only, and (V) means video representations
only.

First (A) group of model variants demonstrates a small-scale multilingual pretraining
regime, as a first study of the impact of dub-augmentation. We sample English (EN),
Spanish (ES), or French (FR) titles which have at least one dub available, so we
can systematically study the effect of dub-augmentation. For each title, we sample
dubs from all seven total languages. A.3 and A.4 variants incorporate an explicit
within-modal term, i.e La. We hypothesize that, with dub-augmentation, λa > 0 may
yield a broader gap on linguistic and language identification tasks. This is because the
optimization explicitly maximizes the similarity of audio embeddings that are only
different in their spoken language, rather than just implicitly through L. Importantly,
the total number of pretraining steps is the same for A.3 and A.4 , similarly when
one compares A.1 and A.2 .
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Director Genre Relation Scene Speak Writer Year

A.1 53.27 54.59 43.90 52.44 34.39 36.90 42.55
A.2 53.27 55.44 41.46 50.00 41.27 35.12 42.55
A.3 57.01 57.48 46.34 57.32 39.68 38.69 46.10
A.4 63.55 57.48 36.59 53.66 36.51 33.93 47.52

B.1 60.75 55.78 48.78 53.66 38.10 35.71 42.55
B.2 54.21 57.65 46.34 51.22 37.04 38.69 44.68
B.3 65.42 57.48 41.46 53.66 39.68 38.10 45.39
B.4 62.62 58.50 36.59 59.76 43.39 35.12 46.81
B.5 62.62 58.16 43.90 59.76 39.15 37.50 49.65

C.1 63.55 55.10 43.90 57.32 40.74 39.29 45.39
C.2 61.68 56.63 46.34 60.98 40.21 36.90 43.97

Table 3.4: Ablation results with video. All metrics are top-1 accuracy. We have
followed prescribed data split from LVU benchmark and trained a linear probe on
frozen video embeddings of the downstream tasks. Results are shown on the test
split where the best epoch to report is chosen based on the validation set. We denote
the top performance within each ablation group with bold.

Second (B) group of model variants aims at understanding the impact of data scale
and language diversity. We approximately double the number of pretraining instances
compared to experiments in group A and study whether this leads to higher quality
representations. This is important since self-supervised pretraining is computationally
expensive and it is not clear a priori if bigger and more diverse pretraining data
necessarily leads to better models. B.3 is trained on all pretraining instances including
all languages to test the limit of multilingual pretraining without dub-augmentation.
By comparing B.4 and B.5 , we hope to shed light on the behavior of the within-modal
objective function which the latter uses.

Third (C) group of experiments explore the impact of deeper architectures, namely
MViT-B [144] (vs MViT-S [144] as our default). We keep the data scale and diversity
the same as in the B.3 , B.4 and B.5 variants. Similarly to these, here we initially train
on the entire data, then fine-tune from the final checkpoint of C.1 only on a subset
of titles which have more than one audio tracks. This ensures that dub-augmentation
is present in every optimization step of C.2 .

We are now set to comprehensively study various aspects of multilingual and multi-
modal representation learning, thanks to a wide variety of pretrained models and
downstream tasks across audio and video modalities.
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3.5.3 Ablation Study
Does dub-augmented pretraining help? To address this, we start by looking at
the first (A) group of model variants in Table 3.2. We’ve hypothesized that dub-
augmentation should improve the performance on sound/scene classification and non-
semantic speech tasks. On the HEAR [517] benchmark, with the exception of CREMA-
D [75], our quantitative results confirm this. LVU [551] tasks are also considered
non-linguistic and Table 3.2 shows that, in most of them, dub-augmented variants lead
to large performance gains over their baseline counterparts. Our second hypothesis
was that dub-augmentation should impact linguistic and language identification tasks
as it aims at diminishing the influence of spoken words in audio representations.
Indeed, we can see A.4 which utilizes dub-augmentation is underperforming A.3 on
Speech Commands and VoxLingua. Table 3.2 also suggests that dub-augmentation
benefits from within-modal objective i.e. La, and for this approach to be effective,
we actually need as expected, sufficient number of instances with alternative audio
tracks during pretraining.

Can dub-augmented models still recognize language and conduct linguistic
tasks? Results shown in Table 3.2 on VoxLingua demonstrate that enforcing dub-
augmentation in both small (A variants) and large-scale (B variants) regimes clearly
affects language identification performance. We measure this by comparing A.2 vs.
A.1 , or B.4 vs. B.3 . We observe similar behavior for Speech Commands [544], our
proxy for linguistic performance implemented as keyword spotting. However, in both
cases, the degradation is not large enough to prevent dub-augmented models from
recognizing language or conducting linguistic tasks. We hypothesized this modeling
trade-off, i.e. that while performance might reduce, the significance of this would be
limited.

Is the quality of video representations impacted? To answer this, we look at
Table 3.4 where LVU [551] tasks are evaluated via a linear probe on frozen video
embeddings. In the small-scale pretraining regime, we observe a mixed pattern
where dub-augmented variants, i.e. A.2 and A.4 , outperform their counterparts in
3 tasks ("Director", "Speaking Way", and "Year") while being either worse or on par
on the rest. In the large-scale pretraining regime, we see a more clear trend where
B.4 and B.5 show improvements over B.3 in 5 out of 7 LVU tasks demonstrating that
on a diverse evaluation set, dub-augmented pretraining is overall helpful to even
video-only tasks.
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How does language diversity influence pretraining? Properly addressing this
research question demands a closer look at B.1 , B.2 , and B.3 . It is worth reiterating
that despite a different number of pretraining instances (see Table 3.1), we have
trained all three of these model variants with approximately the same number of
gradient optimization steps to establish a fair comparison. In general, across both
audio (ref. Table 3.2) and video (ref. Table 3.4) we observe performance gains when
we maximize language variation (ref. B.3 ). However, the inclusion of English (EN)
language titles, as our most dominant original language (see Fig 3-3), during pre-
training seems to be crucial. Table 3.2 illustrates a clear pattern for VoxLingua [524]
and Speech Commands [544], where greater language diversity during pretraining
leads to significant gains e.g. absolute 5.6% on VoxLingua [524].

Is a deeper architecture better? For each task in Tables 3.2 and 3.4, we can
compare the strongest B model variants against C variants. With a few exceptions,
our quantitative results do not indicate that using MViT-B [144] with ∼40% more
parameters provides a meaningful boost over the smaller MViT-S [144] to justify
the significant additional computation during pretraining. We acknowledge that this
conclusion might not have held if downstream tasks where evaluated by fine-tuning
(instead of linear/MLP probing), especially for large-scale tasks in HEAR [517].

Additional Experiments In the appendix, we provide additional results on a small
dubbed audiovisual dataset with matched smaller backbone architectures, where
we have exact parity between four languages (over 700 EN titles with all of ES,
FR, and JA available). We also compare to a speech-removal strategy, where we
source-separate the full dataset and remove the speech part as an alternate strategy
for de-emphasizing the speech. Since we have language parity, we also evaluate
"bilingual" models with specific dub-augmentation pairs (e.g. EN+ES). These results
show systematically that dub-augmented training is beneficial even in this smaller-
scale setup, that it outperforms the speech removal strategy, and that multilingual
models (with multiple dubs, randomly sampled as in our main results here) can add
further robustness.

3.5.4 Comparison with State-of-the-Art
HEAR Table 3.3 compares our results to several strong results on HEAR [517]
tasks. On ESC-50, FSD50K, and GTZAN Music/Speech, our results beat the top
self-supervised result on the HEAR Leaderboard and at least one more result. On
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most tasks (except Vocal Imitation), we beat at least one of the models, showing
robustness across these different tasks.

LVU Also in Table 3.3, we compare our strongest models with state-of-the-art results
on 7 LVU [551] tasks. Our models achieve new state-of-the-art performance on the
Genre and Speak tasks, showing substantial improvements over prior results. Without
considering Movies2Scenes [85], which uses movie metadata, we also get state-of-
the-art results on Director and Year (4/7 total). On the remaining tasks, our results
are highly competitive. This demonstrates that models pretrained on our dataset
with dub-augmentation can match or exceed the performance of the best available
models on a diverse range of video understanding benchmarks. Overall, these results
highlight the effectiveness of our approach.

3.6 Synthetic Counterfactual Pairs

Figure 3-5: Pipeline to produce the synthetic counterfactual pairs.

To encourage the study of counterfactual pairs in audiovisual representation learning,
we propose a modular pipeline, shown in Fig. 3-5, for simulating dub-like counter-
factual pairs that are similar to the one-to-many audio-visual distribution from our
pretraining data on arbitrary target clips. The proposed pipeline, while being limited
in terms of the synthetic quality, serves as a simple tool to alleviate the data constraint
for the research community when conducting a similar study.

The steps are (1) Isolate speech from background sounds using Demucs [120], (2)
Transcribe and segment the speech using Whisper [403], producing timestamped
segments (3) Translate speech (or, optionally, text) into the target language(s) with
SeamlessM4T [35] (4) Align translations to original segments using stretching (5)
Convert voices to match original actors’ using LVC-VC [244] (6) Loudness-normalize
and EQ-match the output with the original using Pyloudnorm [484] and matchering5

(7) re-place segments into their original locations, remix with background audio, and
5https://github.com/sergree/matchering
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mux with original videos. The pipeline also implements other intermediate steps,
such as resampling, to bridge between the main steps.

As a proof-of-concept resource for the community, we use this pipeline to produce a
multilingual version of LVU [551]. LVU-M demonstrates the feasibility of generating
counterfactual data at scale. We will open-source the pipeline to enable creating such
“looking similar, sounding different" datasets. We also hope that future advancements
can improve the quality and enable deeper research of such data structure.

3.7 Conclusion
In this work, we introduced the looking similar, while sounding different problem,
wherein perceptually similar scenes can have different speech content. We showed
we can leverage a similarly structured counterfactual data source, dubbed movies,
to improve audiovisual representation learning in a well-established cross-modal
contrastive learning scheme. Our experiments with a large pretraining dataset of
movies and television shows demonstrated that this improves performance across
a range of auditory and audiovisual tasks. Dub-augmented training is, as such, a
scalable and effective approach for learning more robust audiovisual representations
without supervision.
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Part II
Synthesizer Programming by Humans

and Machines
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4
SynthAX: A Fast Modular Synthesizer in
JAX

The history of electronic music is, in many ways, a history of human-machine interac-
tion: of artists and engineers developing new interfaces for controlling and shaping
sound. Modern sound synthesis often prioritizes real-time interaction, enabling the
tight feedback loops essential to creative exploration. What new possibilities might
emerge if we could dramatically accelerate synthesis beyond real-time speeds? In
particular, this might hold promise for human-AI interactions; interactions in which
the ability to rapidly tweak and generate sounds could be useful for machines to
iterate in concert with human use. This chapter introduces a high-performance soft-
ware modular synthesizer implementation that serves as technical infrastructure for
several subsequent investigations. The system’s design emphasizes interpretability
and controllability, but seeks the computational efficiency needed for interactive
applications in intelligent audio production.

Abstract
Modern audio production relies heavily on realtime audio synthesis. However, accel-
erating audio synthesis far beyond realtime speeds has a significant role to play in
advancing intelligent audio production techniques. Fast synthesis methods have been
used to generate useful datasets, implement audio matching procedures for automatic
sound design, and infer synthesis parameters for real-world sounds. In this chapter,
we present SynthAX, a fast virtual modular synthesizer written in JAX. At its peak,
SynthAX generates audio over 80,000 times faster than realtime, and significantly
faster than the state-of-the-art in accelerated sound synthesis. We present SynthAX
as an open source1and easily extensible API to stimulate and support applications of
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fast sound synthesis at scale.

4.1 Introduction
Realtime sound synthesis is a cornerstone of modern audio production. It affords
producers the ability to tweak sounds and hear them change; a loop of perception
and action that results in diverse auditory creations to support music, film, and other
media. Modern audio technologies increasingly employ techniques that benefit from
automatically tweaking synthesizers, such as optimization and machine learning.
In these scenarios, the ability to rapidly tweak sounds and compute with them at
scale offers a vast space of opportunities for designing and developing powerful new
audio technologies. As such, fast sound synthesis can be an essential tool. We define
faster-than-realtime as generating more than one second of audio per second of
processing time. In particular, we deal with cases where the processing is a lot faster
than this (i.e. >1000x).

In this chapter, we introduce SynthAX, a fast modular synthesizer written using
the JAX [59] framework for accelerated and differentiable computing. By offering
synthesis at speeds that peak at over 80,000× realtime, SynthAX provides a high-
performance, flexible virtual modular synthesizer in the form of an expanding and
easily extensible open source Python library. Additionally, we implement an API
based on torchsynth [516], a recent high-performing synthesizer written in PyTorch,
to allow for an easy substitution for end-users. Our results in this chapter show
considerable speedups over torchsynth, ranging up to just under 9× depending on
the hardware configuration and batch size.

4.2 Related Work

4.2.1 Programmatic Synthesis
One important element of SynthAX is allowing programmatic control of a synthesizer.
Indeed, many software synthesizers are ultimately written to be controllable by other
software, such as VST plugins by DAW automation. However, not many synthesizers
are designed to be fully specifiable and controllable in code written by end-users.

1https://github.com/PapayaResearch/synthax
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Some well-known options include Surge XT2 and torchsynth [516]. The former is
written as a plugin that offers an API, and the latter is written as a library for non-
realtime synthesis. We implement ours following the latter example, which means
that there is not a direct application of our method to realtime synthesis. However,
since JAX [59] compiles code to XLA, it is likely possible to implement SynthAX
in a realtime synthesizer plugin to have it bridge these two different approaches to
programmatic synthesis.

4.2.2 torchsynth
Developed for audio synthesis, torchsynth [516] serves as a modular synthesizer that
is capable of generating audio on a single GPU at ≥16200× faster than realtime.
It consists of a variety of audio and control modules. The default synthesizer in
torchsynth is Voice, which the authors used to generate a dataset containing a billion
audio clips. As we detail later, we base our API and implementation on torchsynth as
it provides an existing and familiar reference point. We also compare to torchsynth
in our experiments studying the performance of SynthAX.

4.3 System Design
The design of the API is inspired by the inherent modularity of hardware synthesizers.
SynthAX leverages the power of JAX [59] to build on torchsynth [516], which
is a state-of-the-art high-throughput synthesizer implemented in PyTorch to take
advantage of its accelerated computational routines. Maintaining a similar API makes
the transition for end-users seamless without any major rewriting or learning curve.

Each module serves a different function but can be connected together to create
a synthesizer. SynthAX modules mimic their counterparts in analog and digital
synthesizers, consisting of amplifiers, envelopes, filters, keyboards, low-frequency
oscillators (LFOs), mixers, and voltage-controlled oscillators (VCOs). The output
from these modules can represent audio signals or control voltages, depending
on the module’s intended function. Audio modules, such as VCOs, produce audio
signals. Control modules, such as LFOs, produce “control voltages” that modulate
the parameters of other modules. The keyboard outputs parameters that are used as
input for other modules. All modules follow the Flax [209] module system known as

2https://surge-synthesizer.github.io/
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Figure 4-1: Structure of the API. We separate the synthesis modules into Python
modules which group related elements. These modules are shown in lower-case
letters above the relevant classes. The class inheritance structure, which mirrors
torchsynth [516], is indicated by the TitleCase names. Inner boxes are subclasses of
the larger boxes they are embedded in.

Linen to organize the modules into independent components. Figure 4-1 shows the
structure of the API, where a synthesizer consists of modules and a configuration.

In our implementation, we aim for allowing users flexibility in how they specify
synthesizers. Modules with parameters can be initialized in a few different ways.
If only initial values are given, they are expected to be in human-readable (i.e.
unnormalized, e.g. frequency in Hz) rangewithin the default ranges of the parameters.
Alternatively, the modules also accept range objects, which specify only a range within
which parameter values are initialized uniformly randomly. Finally, users can also
provide the initial values and ranges together as an object. In all cases, the parameters
store the values in the (normalized) interval [0, 1].

In addition to the differences between SynthAX and torchsynth that arise from
JAX features such as easy and flexible vectorization, parallelization, and just-in-time
(JIT) compilation, we introduce these additional features: a filter module, currently
containing a simple low-pass filter that can be shaped by control modules; a parametric
definition of a synthesizer to easily explore different synthesizer topologies; functions
to write and load a synthesizer including its hyperparameters and parameters, in the
human- and machine-readable YAML format. This also means that synth specifications
can, in principle, be directly composed in YAML and loaded to a synth with a matching
parameter architecture.
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Listing 1 Code snippet for generating audio with a ParametricSynth. This synthesizer
supports a user-configured architecture, in contrast to the Voice synthesizer which
encodes a fixed topology design (78 parameters). This allows control of the degrees
of freedom available to manipulate the sound synthesis.

1 import jax
2 from synthax.config import SynthConfig
3 from synthax.synth import ParametricSynth
4

5 # Generate PRNG key
6 config = SynthConfig(
7 batch_size=16,
8 sample_rate=44100,
9 buffer_size_seconds=4.0
10 )
11 # Instantiate synthesizer
12 synth = ParametricSynth(
13 config=config,
14 sine=1,
15 square_saw=1,
16 fm_sine=1,
17 fm_square_saw=0
18 )
19 # Initialize and run
20 key = jax.random.PRNGKey(42)
21 params = synth.init(key)
22 audio = jax.jit(synth.apply)(params)

We adhere to JAX’s explicit randomness handling in our design. JAX uses a pseudo-
random number generator (PRNG), an algorithm that produces sequences of numbers
that approximate true randomness given an initial key (i.e. value). Therefore, users
need to provide such random keys to their synthesizers. Though this adds an extra
consideration, it also ensures better reproducibility. Listing 1 shows how to define a
configuration, instantiate a parametric synthesizer and, finally, synthesize audio.

JAX supports a wide variety of hardware and leverages powerful function transfor-
mations such as just-in-time compilation (JIT), auto-vectorization, and hardware
parallelism. We can vectorize (jax.vmap) and parallelize (jax.pmap) in a single
line of code. It also conforms to the Single-Program, Multiple-Data (SPMD) model,
which means that the same computation for different input data runs in parallel on
multiple devices. In order to maximize performance and throughput when using JAX,
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SynthAX renders audio in batches.

Extending SynthAX can be done seamlessly due to its modularity, since the API
is designed to easily integrate other synthesizers or modules. SynthAX joins the
JAX ecosystem and can be easily integrated with other well-known libraries such as
Optax [23], evosax [281], EvoJAX [499], and QDax [296].

4.4 Results

4.4.1 Performance Evaluation
First, we characterized the speed and memory performance of SynthAX. We used
torchsynth [516] as a strong baseline to compare against, since it is the de facto state-
of-the-art fast synthesizer and can take advantage of similar hardware acceleration
capabilities (e.g. GPUs). For both synthesis libraries, we use the Voice synthesizer with
78 parameters. In our setup, we computed the time needed to synthesize 100 batches
of sounds at different batch sizes (powers of 2 from 2 to 1024). We randomized the
synthesis parameters for each batch. As torchsynth does, we also report the speed as
compared with realtime synthesis. We calculated this as

Num. Batches× Batch Size× Sound Duration
t

where t denotes the time taken for one loop of 100 batches. Finally, we also report
memory usage in GB after each 100-batch loop.

We report averages over 10 100-batch loops for all three quantities (time, speed ×
realtime, and memory), to account for variance. Additionally, we computed a full set
of results for a GPU and a CPU, although we expect GPUs to be the primary usage
platform. To account for the effect of JAX’s [59] JIT compilation, we produced one
batch of sounds (for both SynthAX and the torchsynth baseline) at the very beginning,
outside the evaluation loop. This is so that we measure the typical performance, as
the JIT compilation only needs to occur once.

These results are given in Figure 4-2. We do not show error bars as the results are
generally stable, resulting in very small variance. Overall, we see that SynthAX
substantially outperforms torchsynth on time-based metrics for both CPU and GPU.
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At peak performance within this evaluation, SynthAX shows more than 80,000×
realtime synthesis speed. SynthAX shows a comparable memory utilization profile to
torchsynth, especially lower at higher batch sizes on GPU and CPU. We disabled JAX’s
memory preallocation for our experiments to measure the real memory footprint.

Figure 4-2: Results from performance evaluation, compared with torchsynth, on
(Left) a 2017 iMac with an Intel Core i7-7700K CPU @ 4.20GHz, and (Right) an
NVIDIA Tesla V100 GPU. Values shown are averaged over 10 runs. We use the Voice
synthesizer in both SynthAX and torchsynth, randomizing parameters each batch.
(Top) Time to synthesize 100 batches of sound at different batch sizes (given in
seconds). (Middle) Time reinterpreted as speed × realtime, i.e. seconds of sound
generated per second of computation time (see §4.4.1 for details). (Bottom)Memory
utilization in GB. Overall, SynthAX shows significantly faster performance while
retaining a similar memory utilization profile.

For direct comparison, Figure 4-3 plots the speedup over torchsynth. This is computed
as the ratio of time taken to synthesize 100 batches, computed per 100-batch loop,
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Figure 4-3: A direct comparison showing speedups relative to torchsynth [516] per
batch size, again for 100-batch total times averaged across 10 runs. Error bars
here show min/max results. Overall, SynthAX is more than double the speed in
all cases, and peaks at almost 9× the speed of the already accelerated torchsynth
implementation. As previously, these results are on the Voice synthesizer, a 78-
parameter synthesizer, where parameters are randomized for each batch.

and then averaged across the 10 runs. We provide min/max error bars to show the
full range. This figure shows that the speedups range from just over 2× (some batch
sizes on CPU and very large batches on GPU) to almost 9× at the peak speedup level
(batch of 32 sounds on GPU).

4.4.2 torchsynth Replication
We replicated the examples from torchsynth [516] for reproducibility. These include
instantiating ADSR envelopes both randomly and with set parameters, VCOs, LFOs,
VCAs, mixers, and their synthesizer architecture Voice. Figure 4-4 shows some of
the resulting spectrograms considering different VCOs and setups in torchsynth and
corresponding match in SynthAX.

4.5 Applications

4.5.1 Audio Representations
An advantage of synthesized sounds is that they also contain the associated synthesis
parameters. In self-supervised representation learning problems, datasets that result
from synthesis can be used to formulate parameter prediction problems. For instance,
pitch recognition is a prominent auditory processing problem for which synthesized
datasets hold significant promise. Recent work on audio representation learning
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Figure 4-4: Spectrograms for the examples in torchsynth (Top) and the replication
in SynthAX (Bottom). From left to right, we show a simple sine wave, a sine wave
with an ADSR envelope modulating the frequency, a square wave, and an ADSR
envelope-modulated FM patch. The results show clear replication of the output
spectrotemporal features.

has employed the Surge XT pitch dataset [516] to evaluate representations on such
a task [364, 365]. Many other such prediction problems could be formulated for
both training and evaluation, as they expose ground truth information as labels. A
synthesizer can generate a large variety of sounds that vary in timbre while holding
pitch constant, or conversely which vary in pitch but hold timbre constant for a task
such as instrument recognition.

4.5.2 The Synthesizer Programming Problem
One particular area where SynthAX can be useful is in the synthesizer programming
problem [461], and specifically the task of parameter inference [171]. A canonical
formulation of this asks an algorithm to program a synthesizer to match a given
sound. The difficulties of manually programming complex synthesizers are well-
established [454], and as such a variety of techniques [142, 171, 203, 310, 334,
335, 417, 453] and even software libraries [462] have been developed to approach
this through the lens of automatic matching. Typically, algorithms used are those
common to other search and optimization problems, such as genetic algorithms and
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even gradient-based optimizers. Given a sound, these algorithms seek to minimize
some measure (often perceptually-motivated) of the "distance" between the target
sound and a synthesized candidate by tweaking the synthesis parameters. SynthAX
can accelerate such applications by speeding up the synthesis, often the most costly
step in these problems. Additionally, SynthAX can be combined with other parts of
the pipeline written in JAX [59] (such as evosax [281]) to provide a broader speedup
for synthesizer programming by matching target sounds.

4.6 Conclusion
In this chapter, we presented SynthAX, a fast modular synthesizer implemented in
JAX. We showed that SynthAX generates sounds orders of magnitude faster than
realtime, and significantly faster than existing solutions to accelerated sound syn-
thesis. We discussed the possible applications of this synthesizer in research and
production problems involving intelligent sound processing and synthesis. In the
future, we intend to expand it with more modules and a user interface. By open
sourcing this library, we invite contributions towards a high-performance, robust,
and well-documented synthesizer that we hope will eventually parallel commercial
software synthesizers in the range of possible sounds producible, while retaining the
performance benefits which we observe in our experiments on this initial implemen-
tation.
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5
Creative Text-to-Audio Generation via
Synthesizer Programming

Modern generative models have enabled remarkable feats of content synthesis. Yet,
these often come at the cost of interpretability and control. When generating audio
from text descriptions, for instance, end-to-end approaches can produce impressive
acoustic results from even a simple text prompt but offer users little agency over
the generation process. Often, this means tweaking the prompt, with no guarantees
about preserving any desirable aspects. More recently, it may mean using a small
number of post-hoc controls, but these must be learned from correlations at model
training time and therefore have significant limitations. There is another limitation of
current neural audio synthesis models, in that they are trained largely on recordings,
and therefore tend to synthesize acoustically realistic versions of sounds. Often, in
creative sound design work, we instead seek abstractions: more sketch-like ways to
artistically evoke concepts without replicating what we might get from real-world
recordings.

This chapter builds on the synthesizer introduced in Chapter 4 to propose an alterna-
tive. Rather than direct waveform synthesis, we generate interpretable synthesizer
parameters that users can understand and manipulate. This apparent constraint—
working within the bounded space of synthesis parameters rather than unlimited
acoustic possibilities—can actually enable new forms of creative expression. Like
Chapters 2 and 3, it deals with a cross-modal setting for sound. However, here
the second modality is textual, not visual. Additionally, the method uses inference-
time optimization rather than pre-training, relying on a pre-trained text-audio joint
embedding model to facilitate aligning the modalities.
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Abstract
Neural audio synthesis methods now allow specifying ideas in natural language.
However, these methods produce results that cannot be easily tweaked, as they
are based on large latent spaces and up to billions of uninterpretable parameters.
We propose a text-to-audio generation method that leverages a virtual modular
sound synthesizer with only 78 parameters. Synthesizers have long been used by
skilled sound designers for media like music and film due to their flexibility and
intuitive controls. Our method, CTAG, iteratively updates a synthesizer’s parameters
to produce high-quality audio renderings of text prompts that can be easily inspected
and tweaked. Sounds produced this way are also more abstract, capturing essential
conceptual features over fine-grained acoustic details, akin to how simple sketches
can vividly convey visual concepts. Our results show how CTAG produces sounds that
are distinctive, perceived as artistic, and yet similarly identifiable to recent neural
audio synthesis models, positioning it as a valuable and complementary tool.1

5.1 Introduction
“Of course, bubbles don’t make sound, but this is the magic of sound de-
sign...you can create the concept of a sound and it seems real.”

— Suzanne Ciani

In creative sound design, realism isn’t everything. In the late 1970s, composer
Suzanne Ciani famously demonstrated this principle with her iconic Coca Cola pop
and pour sound effect. This sound, which has become synonymous with the refreshing
experience of opening a soda, was not recorded from an actual soda bottle, but
skillfully crafted using a Buchla synthesizer. Ciani’s work illustrates the immense
power of abstraction in auditory representation, where the essence of a concept can
be expressed without mimicking real-world acoustic details, while achieving greater
impact.

This approach extends beyond single examples into the domain of procedural sound
design: creating sounds algorithmically using parameters that can be manipulated to
achieve desired sonic effects. By applying procedural techniques, sound designers
can often transcend what’s physically plausible to obtain by recording real-world

1ctag.media.mit.edu
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Figure 5-1: CTAG leverages a virtual modular synthesizer to generate sounds capturing
the semantics of user-provided text prompts in a sketch-like way, rather than being
acoustically literal. Spectrograms of auditory outputs corresponding to six text
prompts showcase the range of sounds this approach can yield, accompanied by a
fully interpretable and controllable parameter space.

events. These methods can lead to highly evocative and expressive sounds in music,
film, video games, advertising, product design, and other media.

Neural audio synthesis methods have transformed the state of sound design, en-
abling specifying sound ideas using intuitive inputs like textual prompts. However,
there remains unrealized potential in integrating expressive sound design principles
into neural audio synthesis. Current techniques prioritize acoustic recreation and
end-to-end application, often overlooking creative possibilities for evoking emotions
or concepts, and interactive aspects like manipulating, iterating, and interpolating
between sounds. While recent advances showcase remarkable capabilities in repli-
cating real-world sounds, this emphasis can limit the creative palette and expressive
potential of generated audio. We propose a method to bridge this gap.

Overall, this work contributes:
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• A novel method that integrates a virtual modular synthesizer with a pretrained
audio-language model for generating sounds that resonate with human intuition
without being literal representations.

• A lightweight, fully interpretable, and controllable synthesizer resulting from
our approach, allowing for easy inspection and tweaking for creative purposes.

• Extensive experiments evaluating different approaches to solving this problem,
varying optimization algorithms, sound durations, and synthesis architectures.

• Qualitative and quantitative results that highlight how sounds from our method
have distinct features from those produced by other neural audio generators,
while still being identified at similar rates. We conduct a user study as a gold
standard evaluation, given the novelty of the task, which shows the identifiability
and potential artistic value of CTAG’s sounds.

• Examples of this approach generating several datasets of sounds with their syn-
thesis parameters, and interpolating between different sounds in the parameter
space.

We will open-source our approach, both to provide a tool for novices and experts
alike to realize their ideas, as well as to provoke future audio generation paradigms
that recognize abstraction as an important factor for creative expression.

5.2 Related Work

5.2.1 Sound Synthesis
Neural audio synthesis consists of two main strands: approaches that generate audio
waveforms directly in the time domain, and those that do so in the frequency domain.
WaveNet [371] notably introduced an autoregressive approach to audio synthesis
by predicting one sample at a time. This slow iterative sampling approach, later
refined in SampleRNN [339] and WaveRNN [243], reflects the sequential nature
of audio data, in contrast to images wherein GANs with global latent conditioning
and efficient parallel sampling quickly became a dominant method for synthesis.
Later, WaveGAN [127] and GANSynth [136] demonstrated that GANs could in fact
be used to synthesize locally-coherent audio, outperforming sequential models’ speed
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by several orders of magnitude while maintaining a focus on high-fidelity, natural-
sounding audio.

A third strand of so-called oscillatormodels, largely propelled by Differentiable Digital
Signal Processing (DDSP) [137] is physically and perceptually motivated by the rich
history of synthesis and signal processing techniques. Our approach is motivated
by this direction, but relies on a simple synthesizer architecture, CLAP [559], for
text-conditioning, and gradient-free optimization to provide a simple, training-free
solution.

5.2.2 Language-Sound Correspondence
Advances in multi-modal sound-language models have been partly motivated by
CLIP [402] for images. Wav2CLIP [553] builds directly onto CLIP by adding an audio
encoder, and VQGAN+CLIP [109] generates and edits images guided by text prompts.
Audio representation models, such as Microsoft’s CLAP [133] and LAION-CLAP [559],
emulate CLIP’s approach by using contrastive learning on audio-text pairs. We use
LAION-CLAP as our audio-language model in this work.

Other recent approaches cast audio generation as a language modeling task. Audio-
Gen [269] is an autoregressive model conditioned on text inputs. AudioLM [58] uses
a multi-stage Transformer-based language model. WavJourney [308] uses text instruc-
tions to create scripts, which are then used for compositional audio creation. Make-
An-Audio 1 and 2 [222, 226] offer text-to-audio synthesis with prompt-enhanced
diffusion models, using CLAP to map text to latent representations with a spectro-
gram autoencoder. AudioLDM [301] learns continuous audio representations from
CLAP latents and can perform text-guided audio manipulations. We compare to two
state-of-the-art solutions, namely AudioGen and AudioLDM, in our experiments. Our
goals differ significantly from those of these models, as we seek to generate abstract
yet high-quality sounds, rather than literal recording-like renditions.

5.2.3 Abstract Synthesis
Visual sketching offers an intuitive analog to abstract sound synthesis. Minimal repre-
sentations like monochromatic line drawings might use only straight lines and curves
with no additional shading or color. These renderings are non-photorealistic; they
evocatively convey meaning while emphasizing a subject’s essence over its real-world
presentation. They can also reveal insights about a subject’s underlying geometry,
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proportions, and symbolism that may be obscured in more realistic depictions.

The problem of computing recognizable and insightful abstract renderings has seen
more progress in the visual than the audio domain. CLIPasso [530] leverages CLIP
to distill semantic meanings from images and sketches alike and thereby guide text-
to-image generation, varying the number of strokes according to the desired level
of abstraction. CLIPTexture [477] enables a user to manipulate a simple sketch
or layout through textual descriptions. CLIPVG [478] follows the same progressive
optimization approach, but performs image manipulation using vector graphics rather
than pixels. ES-CLIP [504] tackles the problem via evolution strategies, generating
configurations of colored triangles on a canvas, then assessing their fitness for further
iteration. We were inspired by this approach, though we rely on the well-established,
easily interpretable, and tweakable paradigm of modular synthesis.

In the auditory domain, the Sound Sketchpad [468] combines sounds together using
audio-visual sketches, and the SkAT-VG project [428] applies vocal and gestural
manipulation as natural sketching tools. In our approach, we focus on language
input, and synthesis rather than the composition of existing sounds.

5.2.4 Interpretable and Controllable Synthesis
Interpretability and controllability of results is essential to human-machine co-
creation, in which it is often desirable to closely examine, understand, and fine-tune
an artifact. For creative sound design using neural synthesis methods, it can be
impossible to retrace decisions made by a complex neural synthesis model en route
to synthesizing an output. The model may also not provide any opportunity to itera-
tively refine the output. Some prior work [571] highlights the potential of program
synthesis for interpretability in sequence data, including music. Some neural synthe-
sis models integrate techniques like timbre-regularization [140] to bridge powerful
synthesis methods with perceptually-motivated organization of latent spaces. By
contrast, our approach offers a fully interpretable and controllable parameter space
without requiring us to develop additional neural infrastructure.

5.2.5 The Synthesizer Programming Problem
Despite the near-ubiquitous presence of synthesized sound in modern music, synthe-
sizer programming—that is, the act of creating new sounds through careful analysis
and modulation of synthesizer parameters—is a complex task that can often impede
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Figure 5-2: High-level overview: we use the LAION-CLAP model [559] to compute
the similarity between a user-provided text prompt and SynthAX’s [89] output. The
optimization procedure iteratively adjusts the parameter settings.

the creative process, if not bar entry entirely. In particular, the conceptual disconnect
between parameter settings and the associated auditory output [461] makes synthe-
sizer programming especially non-intuitive without special training. Recent work
has investigated techniques for inverse synthesis—given a target sound, infer the
parameter setting that will emulate the sound to the closest extent possible—on both
musical sounds [569] and real-world sounds, such as animal vocalizations [203],
including deep learning methods to learn invertible mappings [141]. However, this
task still requires a specific audio clip to start. We provide text-to-parameter inference
to bridge this gap, generalizing beyond specific audio files to broader semantic notions
of arbitrary sounds.

5.3 Methods
Our methodology hinges on three pillars: a synthesizer, implemented via SynthAX
[89], gradient-free optimization methods, implemented via the Evosax [282] evo-
lutionary optimization library, and an objective function based on the LAION-CLAP
[559] model, which we use to estimate semantic alignment between the synthesized
audio and its corresponding text prompt (see Figure 5-2 for an overview of the
pipeline).

5.3.1 Synthesizer
We use a simple synthesizer implementation available in SynthAX, a fast modular
synthesizer written in JAX [59]. We specifically use the Voice synthesizer architecture,
adapted from torchsynth [516], which has already been used for programmatic
resynthesis of sounds [203]. It consists of 78 parameters for a monophonic keyboard,
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two low-frequency oscillators (LFOs), six ADSR envelopes, a sine voltage-controlled
oscillator (VCO), a square-saw VCO, a noise generator, voltage-controlled amplifiers
(VCAs), a modulation mixer and an audio mixer. All parameters are initialized
uniformly, θi ∼ U(0, 1).

In addition to this architecture, we evaluate the following variants in increasing order
of architectural complexity:

• ShapedNoise: An 18 parameter synthesizer consisting of a noise generator, and
two control elements to shape the noise amplitude over time: an ADSR envelope,
and a low-frequency oscillator (LFO). These are combined into a modulation
signal through a modulation matrix, which itself has learnable weights for this
combination.

• OneOsc: A 23 parameter synthesizer consisting of a sine wave voltage-controlled
oscillator (VCO), and the same two control elements as above. These elements
are combined into two signals through a modulation matrix, one each for
frequency and amplitude.

• NoLFO: A 29 parameter two-VCO synthesizer, where one is a sine wave oscillator
and the other is a square-saw wave oscillator with a “shape” parameter which
controls the degree of “square-ness” vs. “saw-ness”. This synthesizer has no LFO
components, all modulation is conducted by two ADSR envelopes combined
into four separate modulation signals (pitch and amplitude controls for each of
the two VCOs).

• NoNoise: A 51 parameter synthesizer with two VCOs (as before), and a more
complex modulation structure. Here, there is a single LFO, but there are ad-
ditional ADSRs to modulate the frequency and amplitude of this LFO. The
modulated LFO and two ADSR envelopes comprise the inputs to the modulation
matrix.

• Voice+FM: A 130 parameter synthesizer which adds a frequency modulation
(FM) component to the original Voice architecture.

For reference, an ADSR envelope is a piecewise control signal consisting of linear
or exponential segments: Attack, Decay, and Release, which specify the duration
of each envelope segment. The Sustain parameter is the level of the control signal
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after the decay phase. An LFO is an oscillator whose frequencies are typically lower
than audible frequencies, i.e. below 20-40 Hz. These are used for periodic control of
synthesis parameters.

In all our experiments, the synthesizer has a control rate of 480 Hz and the audio is
generated in batches at a sample rate of 48 kHz. This sample rate is much higher
than that commonly used for neural audio synthesis systems (often 16 kHz) and
therefore admits much more high-frequency content to be generated.

5.3.2 Optimization

Algorithm 2 Our optimization procedure for producing sounds in CTAG. Note: d is
the number of parameters of the synthesizer S; for simplicity we omit batches.
Require: Text prompt p
Require: Population/batch size N
Require: IterationsM

Components:
CLAP text embedding model Ct(p)→ Ep

SynthAX synthesizer S(Θ)→ Xa

CLAP audio embedding model Ca(X
a)→ EXa

Optimization Strategy: O

Initialize:
Synthesis parameters Θ = {θ1, . . . , θN}, θi ∼ U(0, 1)
Flattened parameters Θf ∈ [0, 1]N×d = Flatten(Θ)

for i = 1 to M do
Θfnew ← Oask(Θ) Generate candidates
Θnew ← Reshape(Θfnew) Reshape
Xa ← S(Θnew) Synthesize audio
EXa ← Ca(X

a) Get audio embeddings
F ← −EXa

EpT Compute fitness
Otell(Θnew, F ) Update optimizer state
Θ← Θnew

end for

θ∗ = argminθ F Select optimal parameters

During initial experiments, we found the gradients of our differentiable synthesizer
to be highly unstable. This instability hindered optimization performance even after
attempting mitigation strategies. Recent works in abstract visual synthesis have
shown that non-gradient methods can achieve state-of-the-art results without relying
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on gradient information [504]. Given these findings, we decided to explore non-
gradient approaches which are more suitable for our synthesizer’s instability and
have demonstrated effectiveness for this task. Focusing efforts here allowed us to
sidestep gradient issues while leveraging successful techniques from related synthesis
domains.

We experimented with several non-gradient optimization algorithms, using implemen-
tations from Evosax [282]. Specifically, we examined simple baselines like random
search and a simple genetic algorithm [489], well-known methods like CMA-ES [204]
and Particle Swarm Optimization [252], and state-of-the-art methods like Learned
and Discovered Evolution Strategies [280]. For each algorithm, we first tuned hy-
perparameters using Bayesian optimization via the Adaptive Experimentation (AX)
platform [27]. We tuned for 50 trials on the ESC-10 dataset, a subset of ESC-50 [391].
Note that the hyperparameter tuning uses no privileged information and can easily
be applied downstream on new prompt sets to maximize the performance.

The optimization procedure is specified in Algorithm 2.

5.3.3 Objective Function
We use LAION-CLAP [559] with an HTSAT-based audio encoder [83] and a RoBERTa-
based text encoder [309]. We used the audioset-best checkpoint for general audio
less than 10 seconds long.

The encoders process the audio data Xa
i in batches of size B where B corresponds

to the optimizer’s population size, along with a prompt p. Note that (Xa
i , p) is one

particular pair of synthesized audio with input text prompt. We extract the audio
embeddings Ea

B ∈ RB×512 and the text embeddings Ep ∈ R1×512 with the encoders
and use them to calculate the similarity score between a batch of audio data and a
specific prompt.

Xa
i = S(θi) (5.1)

θ∗ = argmin
θ

−ES(θi)
i EpT (5.2)

Equation (5.1) shows how the synthesizer S takes parameters θi and produces a sound
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(in practice, this is done batched). Then Equation (5.2) formulates the optimization
problem to optimize the similarity score between each audio in the batch and one
given text prompt using their corresponding embeddings.

5.3.4 Evaluation Metrics
Since we propose a novel synthesis task without existing evaluation metrics, we devise
a principled evaluation suite that allows us to quantitatively assess our contributions,
in addition to qualitatively reviewing synthesized examples.

Classification Experiments To determine whether our generated sounds are more
abstract than neural synthesis methods, we compared results on pretrained classifiers
with sounds generated from their class labels. Lower scores can indicate a distribution
shift from real audio, despite explicitly optimizing for similarity to the label. We
complement with human listener ratings.

Without a perfect synthesis engine, any methods to generate sound will introduce
a distribution shift from real audio. In our case, there is a deliberate domain shift
to abstract audio. We evaluate on two well-known datasets. The first is ESC-50, a
50-class canonical environmental sound classification dataset [391]. The second is a
subset of AudioSet [178]; the full ontology of classes is very large (over 500). We
consider classes from “sounds of things” given that this category contains the most
sub-classes and sub-selected the top 50 classes by number of annotations, removing
duplicates or equivalent classes. We use a pretrained Audio Spectrogram Transformer
(AST) model for AudioSet-50, and fine-tune an AST for ESC-50 classification [191].
When evaluating on AudioSet-50, we mask the remaining logits to effectively make it
a 50-class classifier.

Synthesis Quality A significant benefit of our approach is synthesizing clean audio
using signal generators while keeping attributes like sample rate flexible. We find
synthesized sounds also often exaggerate aspects of the prompts, resulting in large
variations in acoustic properties over time. Evaluating audio quality reference-free is
challenging, so we examine acoustic features that correlate with these aspects (such
as high-frequency content and spectral variation).

User Study We conduct a listening test with human evaluators. We ask them
to classify sounds, rate their confidence, and rate sounds along a scale from re-
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Figure 5-3: Results from our ablation study; all experiments are conducted with ESC-
50. (Top) CLAP maximization curves, averaged across 10 iterations for each of the
50 prompts. Colored bands show 95% confidence intervals. (Bottom) Classification
accuracy, with error bars showing 95% confidence intervals. Top and bottom plots
share colors. (Left) Performance of different algorithms, with hyperparameters tuned
on ESC-10. LES is strongest in both optimization and downstream classification.
(Center) Different sound durations; we find 2 seconds to be strongest. (Right) Impact
of synthesizer architecture, finding strongest results from the Voice model. Parameter
counts are given in parenthesis, such as (78) for Voice.

alistic portrayal to artistic interpretation. This offers us the most direct signal of
our abstraction-related goal. We share details on this study in the next subsection.
We compared against the recent neural generation methods AudioLDM [301] and
AudioGen [269].

From our 50-prompt subset of AudioSet [178] classes, we randomly selected 10 for
this study. We used text embeddings of the labels with a facility location submodular
optimization algorithm from the apricot package [451] to select a modest-sized
semantically representative subset. Within each prompt, we randomly sampled two
of 10 available CTAG sounds. The prompts were: Truck air brake, Water tap, Train
horn, Motorcycle, Microwave oven, Liquid slosh, Chainsaw, Airplane, Bicycle bell, and
Machine gun. For AudioLDM and AudioGen, we used their default parameters to

99



generate two sounds per prompt.

This study was determined to be exempt by our institution’s IRB. Each participant
rated 60 sounds (20 per method) in random order. To examine category-level
recognition, participants were asked to select a category given a list of options and
rate their confidence. To determine whether our generated sounds were perceived
as (abstract) artistic interpretations, we posed the question: “Would you associate
this sound more with a realistic portrayal or an artistic interpretation of the label
that you selected?” with options on a scale from 1 (realistic portrayal) to 5 (artistic
interpretation). We modeled participant responses with mixed-effects logistic and
linear regression models and post-hoc contrasts.

5.4 Results

5.4.1 Ablation Studies
Figure 5-3 shows results from our ablation studies, including, from left to right, (1)
optimization algorithms with tuned hyperparameters, (2) sound durations, and (3)
synthesis architectures. Overall, we observe that the LES algorithm significantly
outperforms our other options within the computation budget of 300 iterations (more
than needed for several prompts). This experiment was conducted with 2-second long
sounds, which we observe in the Durations experiment to yield a higher overall CLAP
score and classification accuracy than 1, 3, or 4-second long generations. Finally, we
see that the Voice architecture yields the best results, offering a balance of flexibility
in its parameters and modular structure, as well as ease of optimization. However, we
note that expanding to larger architectures like VoiceFM could be useful for future
work to explore, with more work on the optimization strategy to obtain the best
results.

Based on these results, we conduct all additional experiments discussed with the
LES optimizer, 2-second sounds, and the Voice architecture. We conducted a full
hyperparameter tuning run with 50 trials of all ESC-50 prompts to obtain the final
optimization hyperparameters.
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5.4.2 Qualitative Results
Examples

Figure 5-1 shows spectrograms of sounds corresponding to six text prompts. The
“spray” shows bands of noisy bursts, reflecting the short, sharp sound of aerosol
being expelled. The “bees buzzing” presents a band of low to high frequencies,
encapsulating the vibrant hum of a bee. The “police car siren” is characterized by
high-frequency oscillations that sharply rise and fall. The “machine gun” reveals rapid,
staccato bursts of energy across a broad frequency range. The “train horn” displays
horizontal bands across mid to high frequencies, illustrating the horn’s fundamental
tone and its partials. Lastly, the “chainsaw” spectrogram is dominated by intense,
continuous mid-range frequencies, punctuated by peaks corresponding to the engine’s
roaring and cutting action.

Interpolation

In sound synthesis, interpretable parameters offer a unique opportunity for deeper
insight. Our method provides a fixed set of parameters that possess this property—a
salient distinction from contemporary models equipped with high-dimensional latent
spaces. This interpretability extends to interpolation between parameters of distinct
sounds, granting auditory access to intermediate acoustical transitions. In Figure 5-
4, we present a systematic series of spectrograms between pairs of prompts: (1)
“Spray” to “Machine gun”, (2) “Train horn” to “Chainsaw”, and (3) “Train wagon” to
“Engine revving,” with three intermediary steps linearly interpolated. This discernible
gradation corroborates the capacity of our parameter space to retain congruence.

5.4.3 Classification Results
Results are shown in Table 5.2. On AudioSet-50, our results are higher than Au-
dioLDM. On ESC-50, the classifier recognizes CTAG’s sounds the least, showcasing
the distribution shift from its training on realistic sounds. We experimented with
constructing concise and descriptive prompts from each sound class from both ESC-
50 and AudioSet-50. We used GPT-4 [372] to automatically produce caption-style
prompts. We also tried a simple template (i.e. “Sound of a/an ...”) to compare.
Table 5.2 also shows results for these template (CTAG+T) and caption-style prompts
(CTAG+C). Introducing such strategies does not appear to greatly influence classifier
identification. However, in a few cases, we observed the elaborated prompts helped
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Spray Machine gun

Train horn Chainsaw

Train wagon Engine revving

Figure 5-4: Spectrogram series as the result of linear interpolation of the synthesizer’s
parameters (1) from “Spray” (left) to “Machine gun” (right), (2) from “Train horn”
to “Chainsaw”, and (3) from “Train wagon” to “Engine revving”. Each spectrogram
in the sequence represents a step in the interpolation, highlighting the systematic
shift in acoustic properties.

to produce qualitatively more accurate results. Overall, CTAG sounds are classified
correctly significantly higher than chance, and competitively with AudioLDM.

5.4.4 Synthesis Quality and Variation
Evaluating the quality of generated examples is challenging for two reasons. First, we
lack auditory references to compare against, as we generate from text directly and
never use text-audio reference pairs. Most audio quality metrics are reference-based.
Second, distance-based metrics such as FAD will likely be confounded by realism.
CTAG’s sounds are high-quality in that they can be generated at high sample rates and
are free of noise or artifacts owing to real-world recording environments or neural
synthesis.

To evaluate, we use auditory descriptors (implemented using Essentia [53]) that are
plausible correlates of these notions of quality, shown in Table 5.1. Spectral complexity
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highlights the presence of more peaks, signaling diversity in the timbral components,
while flux shows greater variation of timbre over time for CTAG compared with
other methods. Following these, HFC (high-frequency content), spectral rolloff, and
spectral centroid provide signals of “brightness” or high-frequency presence in the
sounds. All of these results show our method’s ability to introduce high-frequency
content into generated sounds, likely in part due to the higher sample rate we use.

AudioSet-50 ESC-50
AudioGen AudioLDM CTAG AudioGen AudioLDM CTAG

Complexity 16.50 17.65 18.06 9.60 12.94 17.76
Flux 0.08 0.11 0.18 0.06 0.09 0.15
HFC 53.25 152.06 427.03 34.49 101.32 380.74
Rolloff 2,487.71 1,628.55 7,031.67 2,254.98 1,647.51 6,996.19
Centroid 1,629.95 1,096.16 4,139.99 1,512.55 1,108.42 4,227.08
Compression Ratio 6.42 7.09 9.51 6.46 7.58 9.57

Table 5.1: Comparison of spectral descriptors—complexity, flux, HFC, rolloff,
centroid—and audio compression ratio, across ESC-50 and AudioSet-50. Results are
grouped by the evaluation of three methods: AudioGen, AudioLDM, and our method,
CTAG.

We also report compression ratio, under variable bit rate (VBR) MP3 compression
(quality = 4). Interestingly, CTAG achieves a higher average compression ratio. VBR
generally works by applying lower ratios to more perceptually complex input. Whether
related to high-frequency content or other factors, this suggests CTAG sounds contain
more perceptual redundancy or are perceptually “simpler”.

Note that none of these measures are validated as perceptual metrics of audio quality,
and we do not intend to use them as such. Rather, they help us to quantify the
qualitative differences we observe between CTAG-synthesized sounds and other text-
to-audio generation models’ results.

5.4.5 User Study
We recruited 10 participants via Prolific at $12/h for a total of $53.33, resulting in a
total of 600 observations per outcome variable (i.e. accuracy, confidence, and artistic
interpretiveness). Table 5.3 contains the results, which show that our sounds were
identified by listeners substantially more accurately than those from AudioLDM (odds
ratio = 2.72, 95% CI [1.61, 4.58], p < .0001), and only slightly less than AudioGen
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AudioSet-50 ESC-50
AudioGen AudioLDM CTAG CTAG+T CTAG+C AudioGen AudioLDM CTAG CTAG+T CTAG+C

Acc (Top-1) 51.6 17.4 26.2 25.2 23.6 54.0 23.0 16.4 11.4 13.8
Acc (Top-5) 77.4 44.2 45.2 52.2 51.6 71.8 49.4 30.4 26.4 31.0

Table 5.2: Top-1 and Top-5 classification accuracies (%) for pre-trained classifiers
with AudioSet-50 and ESC-50. We evaluated both models on results collected using
AudioGen, AudioLDM, and our method with just the class labels (CTAG), a simple
template (i.e. “Sound of a ...”) for each sound (CTAG+T) and finally using an LLM
for prompt engineering (CTAG+C).

on average (odds ratio = 0.85, 95% CI [0.51, 1.42], p = 1). Interestingly, though the
confidence ratings replicate the ordering of the accuracy results, respondents were
significantly more confident rating AudioGen sounds, and reported similar, lower
confidence levels for both CTAG and AudioLDM. This underscores the abstractness of
CTAG’s sounds; despite being identified more correctly, they still create uncertainty.

AudioGen AudioLDM CTAG

Accuracy 59.5 34.0 56.0
Confidence 3.48 2.95 2.99
Artistic Interpretation 2.32 2.90 3.54

Table 5.3: User study results for sounds from AudioGen, AudioLDM, and our method,
CTAG. We report accuracy percentage and confidence (1–5) on label identification,
and average rating of the artistic interpretiveness (1–5) of the sound. Overall, CTAG
retains competitive identifiability while being perceived as more artistic.

Results also show CTAG sounds were perceived to be significantly more artistically
interpretive than both AudioGen (contrast = 1.22, 95% CI [0.93, 1.51], t(579) = 10.20,
p < .0001) and AudioLDM (contrast = 0.65, 95% CI [0.36, 0.93], t(579) = 5.39,
p < .0001).

These findings highlight our approach’s benefits in capturing artistic interpretation
compared to both the existing approaches. All p-values are Bonferroni-adjusted. Full
results for post-hoc contrasts are available in the Appendix.

5.4.6 Additional Analyses
In Appendix A.3.1 we provide additional analyses relating to generation time, CLAP
scores, prompting strategies for the baseline models, user study results, and a visual-
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ization of the parameter space of CTAG-generated sounds.

5.5 Limitations
Our method requires iterating for each prompt from random initialization, but tech-
niques like semantic caching to initialize to similar prompts’ parameters, predictive
methods for prompt-to-parameter derivation, and a user interface extension for
tweaking parameters are all potential extensions to make our method more useful in
real-world settings. We also focus on brief, non-mixture sounds as these are what the
synthesizer is suited to modeling. Future work could explore strategies to extend the
duration and complexity of sounds that can be synthesized this way.

5.6 Conclusion
In this work, we proposed a method for text-to-audio generation that offers a fresh
perspective on neural audio synthesis by using a virtual modular synthesizer. This
approach emphasizes the meaningful abstraction of auditory phenomena, contrary to
prevalent methods that prioritize acoustic realism. Our results position this approach
as a distinctive tool in the field of audio synthesis, capable of both expanding the
toolkit of novices and experts, and stimulating new directions in audio generation
research.
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6
Contrastive Learning from Synthetic Audio
Doppelgängers

Driven by the goal of robust machine perception, we have begun to amass ever-larger
datasets of stimuli across modalities. In audio, this often takes the form of recordings,
sampled from sources like Freesound and YouTube. Such recordings are not in infinite
supply, and the human perceptual apparatus seems capable of learning much more
from much less. This chapter asks whether we might similarly endow machines with
better auditory representations by focusing not on the quantity of training examples,
but on the quality of variation between them.

Chapter 5 observes how simple synthesizers can, surprisingly, recover identifiable
concepts related to real-world sound events. That is, the space of sounds implied
by even a relatively small modular synthesizer’s parameters can be quite rich as
it relates to human creative goals. Here, we ask whether this richness might also
benefit machines, in a representation learning problem similar to Chapter 3, albeit
audio-only in this case. Rather than attempting to replicate the surface statistics
of recorded sounds, we construct training data that encodes meaningful variation
in the generative process itself. We show that this approach yields representations
that generalize remarkably well to real-world applications, despite never seeing real
audio during training. Like the dubbed movie pairs in Chapter 3, these synthetic pairs
provide a window into how sounds can differ (in a “counterfactual” manner) while
maintaining essential relationships. The approach also builds directly on the technical
foundation laid in Chapters 4 and 5, leveraging the same synthesis framework and
architecture to generate training data at scale.
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Figure 6-1: (Left) Standard data augmentation techniques for contrastive learning
applied to audio spectrograms (Right) Audio Doppelgängers, our approach synthe-
sizing sounds that are controllably different using perturbed synthesis parameters,
shown for different factors δ. These sounds can vary in causally controllable ways
beyond what data augmentations can achieve.

Abstract
Learning robust audio representations currently demands extensive datasets of real-
world sound recordings. By applying artificial transformations to these recordings,
models can learn to recognize similarities despite subtle variations through techniques
like contrastive learning. However, these transformations are only approximations
of the true diversity found in real-world sounds, which are generated by complex
interactions of physical processes, from vocal cord vibrations to the resonance of
musical instruments. We propose a solution to both the data scale and transformation
limitations, leveraging synthetic audio. By randomly perturbing the parameters of a
sound synthesizer, we generate audio doppelgängers—synthetic positive pairs with
causally manipulated variations in timbre, pitch, and temporal envelopes. These
variations, difficult to achieve through augmentations of existing audio, provide a rich
source of contrastive information. Despite the shift to randomly generated synthetic
data, our method produces strong representations, outperforming real data on several
standard audio classification tasks. Notably, our approach is lightweight, requires no
data storage, and has only a single hyperparameter, which we extensively analyze.
We offer this method as a complement to existing strategies for contrastive learning
in audio, using synthesized sounds to reduce the data burden on practitioners.
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6.1 Introduction
“Noises have generally been thought of as indistinct, but this is not true.”

— Pierre Schaeffer, 1986

The success of modern machine learning algorithms for tasks like audio understanding
often hinges on both the quality and quantity of available data. Self-supervised
learning methods, like contrastive learning, have even been able to leverage unlabeled
data, enabling more human-like learning from patterns without needing explicit
supervision. However, human perceptual processing is remarkably robust beyond
this: for example, the human auditory system can easily recognize sounds across
a wide range of variations, such as changes in pitch, timbre, or background noise.
Moreover, humans can quickly learn to recognize novel sounds that they encounter in
their environment. Replicating this ability to learn from a diverse array of sounds—or
"noises," as we might call them—could significantly enhance the efficiency, scalability,
and adaptability of machine learning models.

Contrastive learning, which operates by recognizing similarities in the data among
negative distractors, often relies on augmentations: transformations of input data that
preserve content semantics. This method has been influential in audio representation
learning, with specific implementations ranging from spectral masking to temporal
jitter to cropping and other methods [4, 224, 326, 363, 439, 481, 534]. Data augmen-
tations, though demonstrably useful, operate at the level of the observed data, not
the underlying data-generating process as would be observed in real-world variation.
They statistically alter data without directly manipulating the causal mechanisms
that produced it, resulting in high correlation between augmented samples, as well
as limited control and interpretability.

In our work, we propose a different strategy: using a synthesizer to overcome this
barrier, in addition to providing the scalability required for modern pretraining
regimes through virtually unlimited data synthesis. A synthesizer can be understood
as a system where parameters (relating to psychophysical attributes like pitch, timbre,
and loudness) causally influence the generated sound. Modifying these parameters
allows us to intervene in the data-generating process in a controllable way to generate
positive pairs that vary in terms of their underlying synthesis parameters. Unlike
traditional data augmentation techniques, our method generates entirely synthetic
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audio data from scratch. This approach allows us to control the underlying data-
generating process directly, offering a perspective distinct from augmentation of real
data.

We formulate an approach in which we randomly synthesize sounds, and then slightly
perturb their parameters to generate positive pairs. We call these audio doppelgängers
(examples in Figure 6-1); they share a resemblance but are in fact distinct enough to
learn from the variation between them. In a way, this approach uses an artificial data
source effectively consisting of random synthetic noises but more “natural” differences
akin to variation in similar sounds; as Pierre Schaeffer put it, noises are not indistinct.
Through a comprehensive set of experiments, we show that models trained this way
can yield strong performance on a wide range of downstream tasks, competitive with
real audio.

Overall, this work contributes:

1. An approach to synthesizing paired audio examples with a continuously con-
trollable degree of dissimilarity, specified by a simple and interpretable hyper-
parameter δ.

2. The first study, to our knowledge, of synthetic data methods for audio represen-
tation learning.

3. Comprehensive experiments in which we train and compare over 20 model
variants across 8 downstream tasks to provide evidence that training with our
approach can yield strong results on a wide range of audio processing tasks.

4. An analysis of how these synthetic datasets differ from realistic audio datasets
in terms of their auditory features, and how this might contribute to learning
effective representations.

6.2 Related Work

6.2.1 Learning from Synthetic Data
Synthetic data, artificially generated information rather than collected from real-world
sources, has emerged as a valuable tool for learning across various domains [273, 307,
341, 467]. By addressing data scarcity, privacy concerns [131, 515], or removing
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biases [405, 496], synthetic data offers a promising avenue to complement scarce
[311] real-world data and further drive progress in machine learning research.

Audio presents unique challenges due to the complexity of waveforms and tempo-
ral dependencies. Synthetic data has found applications in subareas like speech
recognition [151, 167, 220, 284, 437, 438] leveraging text-to-speech systems for
detecting unspoken punctuation [476], recognizing low-resource languages [36],
increasing acoustic diversity [88] or detecting out-of-vocabulary words [578]. How-
ever, non-speech audio domains can be highly diverse, requiring more complex
approaches to data synthesis. In this domain, synthetic data has been used for
specific tasks like timbre-text alignment [237] and vocoding [540]. The partially
synthetic NSynth [134] dataset has also been used for pitch estimation and instru-
ment classification. In our work, we tackle the general audio domain, proposing a
synthetic data approach that can produce diverse sounds for general-purpose audio
representation learning.

In computer vision, synthetic data is more popular and has been employed in different
tasks to improve performance [87, 129, 229, 337, 416, 434, 457, 528]. While initially
focused on using graphics engines to generate photorealistic scenes, recent work has
investigated sampling synthetic data from deep generative models [44, 213, 233, 234,
293, 412, 466, 507, 508, 510, 513, 564, 575]. However, these models aim to produce
realistic images and still depend on real image datasets for training or synthesis.
Thus, recent work has pushed away from realism, generating synthetic data such as
fractals [245], or through other procedural noise models [32, 33] to use as training
data for visual representation learners. In our work, we also abandon realism and
leverage randomly generated synthetic sounds to learn audio representations for
downstream tasks.

6.2.2 Contrastive Learning
A common strategy for learning from unlabeled data is contrastive learning. In this
technique, we seek representations that are invariant to minor differences, i.e. they
encode a space in which similar objects are closer together, and dissimilar objects are
further. A classic strategy for this is to use data augmentations, transformations which
noticeably alter a datapoint (for example, randomly cropping an image) without
changing its essential content (e.g. what the image is of, such as a cat). These
transformed versions then become a positive pair, while other examples (e.g. an image
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of a dog) become negatives. In audio, contrastive learning has been used extensively to
produce high-quality representations for downstream tasks [4, 158, 411, 439, 534].
Our approach differs fundamentally from data augmentation strategies commonly
used in contrastive learning. Instead of applying transformations to existing audio
samples, we generate synthetic audio pairs by perturbing synthesizer parameters,
creating positive pairs with causal variations that are difficult to achieve through
augmentations. This represents a novel application of synthetic data in the context of
general-purpose audio representation learning.

6.2.3 Sound Synthesis
The toolkit of sound synthesis has evolved to include a variety of hardware and soft-
ware [336, 395, 502]. Synthesizers, abstractions of sound synthesis and processing
methods often designed to act as musical instruments, are key to this: they expose
control parameters that let sound designers guide them to produce desirable sounds
for music, film, and many other applications. Accelerated synthesizers [89, 516] have
recently allowed much faster-than-realtime sound generation, offering the ability
to iteratively tweak parameters to reconstruct sounds [203, 461] and even match
textual descriptions [91]. Such approaches highlight the practical utility of synthe-
sizers: lightweight architectures controlled by a limited number of interpretable
parameters are capable of producing a diverse array of sounds, often corresponding
to well-known categories and concepts (e.g. the sound of waves can often be modeled
with time-varying filtered noise). In our work, we leverage SynthAX [89], to rapidly
produce diverse training data with controllable similarity between examples.

6.3 Methods

6.3.1 Data Generation
Our data generation pipeline uses virtual modular synthesizers implemented by
SynthAX [89] in JAX. By default, we use the Voice synthesizer architecture [516],
which can generate perceptually diverse sounds. Our synthesizer consists of several
common modules (with parameter-counts in parenthesis):

• Keyboard (2x): Controls the sound’s fundamental frequency (f0) and duration.
• Low-Frequency Oscillators (LFOs; 8x each): Two LFOs modulate various aspects
of the sound, each with parameters for frequency, modulation depth, initial
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phase, and amplitude weights across waveforms.
• ADSR Envelopes (5x each): Six envelopes shape the amplitude and modulation
signals, each defined by attack, decay, sustain, release, and curvature (α).

• Voltage-Controlled Oscillators (VCOs): Includes a sine VCO (3x) with tuning,
modulation depth, initial phase, and a square-saw VCO (4x) adding waveform
shape.

• Noise Generator: Provides broadband noise without additional parameters.
• Modulations (20x): Weight matrix controlling how modulation sources affect
destinations.

• Audio Mixer (3x): Combines outputs of oscillators and noise generator.

In total, the Voice synthesizer has 78 parameters. Perturbing these parameters allows
us to generate a wide variety of sounds with controlled variations, such as slightly
lower or higher pitch, a slightly longer onset or release, or a little more or less
noise. In our experiments, we investigate two further architectures: VoiceFM has 130
parameters and includes a frequency modulation (FM) operator, and ParametricSynth
has 2 sine and 2 square-saw oscillators, 1 sine FM and 1 square-saw FM operator,
340 in total. Varying the architecture allows us to investigate whether architectural
complexity could affect the quality of representations learned. We generate 1-second
sounds by default, for compatibility with most encoders (e.g. VGGish [211]). However,
this practice can be extended to longer sounds.

Synthesis perturbation factor (δ) A key contribution of our work is synthesizing
paired positive samples that sound alike, but are dissimilar due to their synthesis
parameters and not only post-hoc effects (e.g. augmentations). This draws on the
canonical definition from contrastive learning of positives that are sampled from the
same latent class [446].

For a single positive pair, we first sample a parameter vector uniformly randomly
θ ∈ [0, 1]mS ∼ U(0, 1) from the normalized synthesis parameter space, where mS is
the number of control parameters in the given synthesizer. Then, we independently
sample two isotropic Gaussian noise vectors z1, z2 ∼ N (0, ImS×mS

). We define a
parameter δ that scales this noise, and then produce two perturbed parameter vectors
θi = θ + δzi ∀i ∈ {1, 2}. From these, we clip values back into [0, 1] to synthesize two
corresponding sounds which serve as positives in the contrastive learning setup.

In principle, δ controls the distance between the positive pairs and therefore the hard-
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ness of the contrastive learning task. Practically, we expect there to be a sweet-spot
for δ, considering prior work on mutual information and redundancy in contrastive
learning problems [506, 509] as with very high δ, the parameter vectors may become
dominated by noise, resulting in difficulty effectively aligning their representations.
Given this, we extensively study the effect of δ on downstream results.

6.3.2 Real Data
To compare to real audio data, we use sounds from VGGSound [82], a well-known
dataset taken from YouTube videos (we only use audio). We use a random sample
of 100,000 10-second files and select a random 1-second segment from each file at
each iteration to augment. This allows us to fairly compare to our synthetic sounds
by keeping duration constant, while still sampling from a variety of real sounds by
randomizing the 1-second segments. Though VGGSound has labels included, we do
not use them in training these models to keep the self-supervised constraint. Note
that VGGSound is currently one of the largest publicly released audio datasets for
pretraining, unlike AudioSet (which only releases URLs, not the content itself).

6.3.3 Preprocessing, Data Augmentations, and Audio Encoder
In our experiments, we use VGGish frontend representations [211]. We resample
audio to 16kHz and obtain mel spectrograms with 64 mel bands and 96 time steps.
We use a chain of effects as augmentations (implemented in torch-audiomentations1):
a high-pass filter (cutoff frequency range 20–800Hz), a low-pass filter (1.2–8kHz),
pitch shift (-2 to 2 semitones), time shift (-25% to 25%, rollover enabled), and
finally reverberation for which we sample randomly from a set of impulse responses.
All augmentations are applied with probability 0.5. We found that this yielded far
stronger results than SpecAugment [382], and so we use this as a comparison point in
all our experiments. More details on the augmentation are given in Appendix A.4.2.
We also test temporal jitter, wherein different 1-second segments are sampled from
within the same source clip and treated as positives [439, 481]. Our audio encoder
is a ResNet18 [207], where we replace the initial layer with a 1-channel convolution
to account for the effectively 1-channel spectrogram.

1https://github.com/asteroid-team/torch-audiomentations
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6.3.4 Contrastive Learning
We train for 200 epochs, generating (or sampling) 100,000 sounds per epoch, with a
90%-10% train-validation split. We use a batch size of 768 per GPU with two V100s.
The training uses the alignment and uniformity objectives [538] used in prior work
on learning with synthetic data [33]. We adopt the default parameters for these:
unift = 2, alignα = 2, and equal weights λ1 = λ2 = 1 for both terms. Following
this work, we use stochastic gradient descent for optimization, with a maximum

learning rate of 0.72 (calculated as 0.12 ×total batch size
256

) and weight decay 10−6.
The learning rate follows a multi-step schedule with γ = 0.1, and milestones at
77.5%, 85%, and 92.5% of the total learning epochs. Detailed steps are provided in
Algorithm 3. Training with our synthetic data takes approx. 1-2 hours, as the data
is generated on the fly in batches, whereas using on-disk datasets with effect chain
augmentations can extend training time up to 6-8+ hours.

6.3.5 Evaluation Tasks
To obtain a broad picture of the quality of our learned representations, we conduct
experiments on a range of audio classification tasks from the HEAR [517] and
ARCH [275] benchmarks. We use evaluation tasks that focus on general audio
understanding, rather than tasks that are highly specialized or domain-specific (e.g.,
tasks exclusively related to speech or music). Our method aims to learn general-
purpose audio representations from synthetic data; therefore, we implement tasks
which encompass a broad range of everyday sounds. This aligns with our goal of
demonstrating the effectiveness of our representations in diverse real-world scenarios.

These tasks cover a wide range of capabilities including sound classification tasks
like ESC-50 [393], FSD-50k [157], and UrbanSound8K [441], vocal affect tasks
with and without speech like VIVAE [215] and CREMA-D [75], musical pitch recog-
nition via NSynth Pitch (5h) [134], vocal sound imitation recognition using Vocal
Imitations [255], and LibriCount [486] for a “cocktail party” style speaker count
estimation task. We conduct linear probing experiments using the Adam optimizer
for the benchmark-specified epochs with the default learning rate of 0.001 and a
batch size of 32.
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Algorithm 3 Our contrastive learning procedure with audio doppelgängers. In the
training loop, we drop the batch index i for simplicity.
Require: Batch size k
Require: Perturbation factor δ
Require: Virtual synthesizer S with mS parameters
Require: Embedding modelM with embedding size mM (512 in our case)
Require: Total number of training batches Nbatches

Require: ℓunif(X ∈ [0, 1]k×mM ) ← log

[
1

k2
exp

(
−t

k∑
j=1

k∑
l=1

∥X[j]−X[l]∥22

)]
where

t = 2

for i = 1 to Nbatches do
Θ ∈ [0, 1]k×mS ∼ U(0, 1) {Random batch of parameters}
Z1,Z2 ∈ Rk×mS ∼ N (0, I) {Isotropic Gaussian perturbation noise}
Θ̂1 ← max(0,min(Θ+ δZ1, 1)) {Clipped perturbed parameters}
Θ̂2 ← max(0,min(Θ+ δZ2, 1))
A1 ← S(Θ̂1), A2 ← S(Θ̂2) {Synthesize audio from parameters}
E1 ←M(A1), E2 ←M(A2) {Embedding from model}

Lalign ←
1

k

k∑
j=1

∥E1[j]− E2[j]∥α2 where α = 2 {Alignment cost}

Luniform ←
1

2
[ℓunif(E1) + ℓunif(E2)] {Uniformity cost}

Ltotal ← λ1Lalign + λ2Luniform {By default, we set λ1 = λ2 = 1}
Update modelM using Ltotal

end for

6.4 Results

6.4.1 Benchmark Results
In Table 6.1, we show results across 8 tasks. The top section features external
baselines from the HEAR [517] leaderboard and ARCH [275] benchmark results,
first the strongest overall and then only self-supervised. It also includes results from
MS-CLAP [132] linear probing experiments, GURA [558] (strongest overall model on
HEAR), and finally the original ResNet18 trained on VGGSound (supervised) [82].
Note that HEAR leaderboard results may use MLP probes, whereas ours are linear. We
add additional internal baselines, including random weights, synthetic data trained
without δ but with augmentations, and variants of ResNet18 we trained on VGGSound
(with augmentations, and alternately with temporal jitter). Finally, we include a
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selection of our results; the best overall score we achieve using our synthetic approach
(first row), followed by the best-performing model trained on data from each of the
synthesizer architectures (including Voice with augmentations). In Appendix A.4.1,
we provide a full set of results from all model variants: all synthetic datasets for all
values of δ, and further baselines less performant than those we present here.

Overall, our best scores uniformly outperform training on VGGSound with augmenta-
tions, and outperform training with temporal jitter (the strongest internal baseline)
in 6/8 cases. In some cases, these results are also competitive with strong baselines,
such as beating the supervised ResNet18 result on 3/8 tasks, CLAP on 2/5, and GURA
on 1/6. Additionally, adding further augmentations to our audio doppelgänger-based
training does not seem to hold significant benefits, despite being highly beneficial
when training with synthetic sounds with no δ, suggesting the δ-based perturbations
are already sufficiently strong. All this is accomplished without these models seeing
any real sounds during pretraining. Finally, Voice with δ = 0.25 is the strongest
synthetic-trained model overall, being the top performer on 5/8 tasks, but we note
that there is some inter-task variability in the best synthesizer and delta.

6.4.2 Characterizing the Data Distribution
Here, we focus on understanding the distribution of synthetic sounds and how they
differ from natural sound properties. We primarily use our alternate training set,
VGGSound [82], for these measures. Unless specified otherwise, we use a randomly
sampled (for VGGSound) or generated (for synthetic) set of 1000 sounds for each
given dataset used for these characterizations. Our goal is to help understand what
properties of the synthetic data make it useful for representation learning, given its
strong performance.

Embedding Similarity

First, we look at the distribution of synthetic sound pairs and establish that δ mean-
ingfully controls (a proxy for) perceptual or semantic dissimilarity. We operationalize
this using LAION-CLAP embeddings [559], since they are trained on a large variety
of sounds with semantic descriptions associated. Figure 6-2A shows how the average
cosine similarity decreases monotonically with increasing δ for all 3 synthesizers.
Figure 6-2B provides a view of how δ affects the geometry of the embedding space.
Here, we plot the first two principal components of the CLAP embeddings along with
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Data/Model ESC US8K VIV NSyn C-D FSD VI LCount

External Baselines

HEAR/ARCH Top 96.65 79.09 44.28 87.80 75.21 65.48 22.69 78.53
HEAR/ARCH SSL 80.50 79.09 44.28 52.40 75.21 50.88 18.48 78.53
MS-CLAP Linear 89.95 82.29 – – 23.15 50.24 – 54.51
GURA (HEAR) 74.35 – – 38.20 75.21 41.32 18.48 68.34
VGGSound Sup. 87.45 77.57 39.38 43.80 54.36 43.76 14.06 56.10

Internal Baselines

Random Init. 22.45 55.03 33.81 36.20 38.91 9.03 2.43 44.91
Voice (Ours, No-δ, Aug.) 48.65 59.46 36.31 32.80 46.32 16.88 7.12 47.64
VGGSound SSL (Aug.) 48.85 61.91 32.67 39.60 47.86 19.63 6.03 53.46
VGGSound SSL (Jitter) 52.95 63.82 38.12 14.20 50.03 24.02 3.43 69.77

Audio Doppelgängers (Ours)

Best Synthetic 58.90 66.71 39.45 44.40 48.43 24.12 9.15 58.60
Voice (δ = 0.25) 58.90 66.71 39.45 32.20 48.24 24.12 9.15 52.95

Voice (δ = 0.25, Aug.) 58.75 65.01 34.81 44.40 46.17 21.76 8.54 50.70
VoiceFM (δ = 0.25) 57.20 65.11 38.48 35.20 48.43 22.15 6.96 54.00

Parametric (δ = 0.25) 50.55 62.83 37.91 37.60 46.77 18.68 5.70 54.72

Table 6.1: Evaluation results on a suite of tasks including (from left to right) ESC-
50 [393], UrbanSound8k [441], VIVAE [215], NSynth Pitch 5h [134], CREMA-D [75],
FSD50k [157], Vocal Imitation [255], and LibriCount [486]. For internal baselines,
we only bold tasks where the baseline beats the best synthetically trained result.
Results for all synthetic variants are in Appendix A.4.1.

the path length for each positive pair of synthesized samples from a Voice synthesizer.
As δ increases, the path lengths increase and overlap more resulting in less clear
separation of positive pairs from negatives. We view this as a signal that we can
effectively control the hardness of the contrastive task using δ, the perturbation factor.

Similarities and Differences from Real Data

Next, we compare the synthetic data distribution to VGGSound [82] data. Figure 6-
3A compares a selection of features’ distributions between several dataset variants.
For synthetic datasets, we have Voice, VoiceFM, and ParametricSynth variants. For
real datasets, we have VGGSound. We first compare to randomly sampled 1-second
chunks. Here, the synthetic sounds match several feature distributions well, such as
Inharmonicity [385], Odd-to-Even Harmonic Ratio [329], Pitch Salience [419], and,
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Figure 6-2: (A: Top) Average CLAP [559] embedding cosine similarity between
positive pairs for different architectures and different values of δ. (B: Bottom)
PCA of CLAP embeddings for sounds generated with the Voice architecture, with
line segments showing distances between paired examples. Red and blue points
are paired positive instances. Across both plots, as δ increases, the positive pairs
systematically become more perceptually dissimilar (via the CLAP embedding proxy).

to a lesser extent, Spectral Flatness [385]. However, the synthetic sounds have higher
Spectral Flux [521] and Complexity [285]. Note that ParametricSynth also has lower
pitch salience. We believe this is due to its larger mixture of sound generators which
reduce salience of particular pitches.

Based on these results, we hypothesize that one potential reason the synthetic sounds
could be useful for training is the informativeness of the samples. The larger amount
of spectral change and higher complexity in terms of peaks could expose the model to
more different kinds of sounds rapidly. To try to match these attributes, we produce
mixtures of VGGSound, since mixed sounds may have more peaks and variation than
individual samples. In VGGSound-Mix 5s, we take 5 arbitrary seconds from each
sound and layer them into a 1-second sample. In VGGSound-Mix 10s, we do the
same with all 10 seconds available. We show (Figure 6-3) that these get closer to the
synthetic distributions on these features, without deviating on other features. These
data distributions allow us to assess whether the benefits of synthetic data are largely
driven by the change and informativeness of the signals. In Appendix A.4.1, we present
results frommodels trained on thesemixture distributions, and obtainedmixed results,
suggesting other factors of the synthesized sounds may also be important beyond
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Figure 6-3: Comparisons of synthetic and real sound data (VGGSound [82]) on
(A: Top) spectral features and (B: Bottom) causal uncertainty. Spectral features of
synthetic sounds partially replicate real sounds, but exhibit differences in complexity
and flux. Synthetic sounds are also more causally ambiguous, indicating a distribution
shift. Using dense mixtures of real sounds partially closes these gaps, suggesting the
synthetic sounds are different in part due to their density of auditory information.

this.

Causal Uncertainty

We also consider causal uncertainty [10, 28, 54], a factor that we intuitively expect
to be different for the synthetic sounds. Helmholtz famously discussed perception in
terms of unconscious causal inference from sensory input [210], but the synthetic
sounds have no physical causes and do not come from well-understood categories. In
Figure 6-3B, we plot 3 proxies for causal uncertainty derived from probabilities of an
AST classifier [190] trained on AudioSet. We use the formulation from prior work
of Hcu, the maximum predicted probability [10, 54]. We also propose two simple
metrics to corroborate this: Hp the (normalized) entropy of the output probability
distribution, and a confidence score Sconf , the difference in probability between
the most and second-most probable classes (log-scaled for the plot). Across all, the
synthetic sounds are more causally uncertain than the real sounds. However, as
with the spectral feature distributions, using mixtures of VGGSound [82] clips moves
the real distribution slightly closer to the synthetic distribution per Hcu and Hp. We
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speculate that exposure to more causally uncertain sounds might be subtly helpful
for representation learning; for example, they may contain diverse features that
aid generalization to more ambiguous sounds present in downstream tasks. We
characterize this as another important distributional difference between the synthetic
sounds and realistic sounds from datasets such as VGGSound.

Similarity to Target Distributions

Another lens we can use to understand the effectiveness of training on synthetic data
is in terms of the distribution of sounds in the target downstream tasks. A common
metric to compare sound distributions is the Fréchet Audio Distance (FAD) [254]. For
simplicity, we use the canonical formulation based on VGGish embeddings, though
there are some limitations of this [196, 495], and we use either the validation sets or
first multi-fold splits of the target task audio. Table 6.2 shows that for ESC-50 [393],
VGGSound is closer in distribution to the target sounds, likely due to ESC-50’s focus
on environmental sounds. For all other tasks, however, the synthetic sounds achieve
a lower FAD, suggesting they may better capture task-relevant features for these
tasks’ sounds. This finding echoes a study of MMDs in torchsynth [516], where
the Voice architecture shows higher-than-expected similarity to FSD50k sounds. We
hypothesize that the synthetic training allows the model to see a wide variety of
spectral behavior rapidly, in a way that supports an array of tasks.

Dataset ESC-50 FSD50k LibriCount NSynth CREMA-D Vocal Imitation

Voice 17.39 13.37 16.67 12.83 18.55 11.64
VoiceFM 18.48 15.91 17.67 14.49 21.24 13.66
ParametricSynth 18.75 19.44 21.04 17.42 25.33 17.32
VGGSound 6.71 25.33 29.09 27.67 33.83 27.75
VGGSound-Mix 5s 8.81 26.17 30.02 28.70 34.35 29.05
VGGSound-Mix 10s 9.30 26.09 30.15 28.88 34.06 29.16

Table 6.2: FAD [254] scores between different synthetic/real datasets and target
downstream task data distributions, computed using either validation sets or the first
fold (for multi-fold datasets). For 5/6 tasks, Voice achieves the lowest FAD despite
containing synthetic sounds. On ESC-50, however, the VGGSound distribution appears
to be closest.
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Figure 6-4: Scores with the Voice architecture and different values of δ for evaluation
tasks in Table 6.1 with and without augmentations. δ = 0.25 tends to give the best
results overall.

6.4.3 Ablations and Sensitivity Analysis
In Figure 6-4, we study the effect of the perturbation factor δ on downstream task
performance across all tasks for the strongest (Voice) architecture with and without
additional (FX chain based) augmentations. Overall, we found in early experiments
that δ = 0.25 gives the best results. This is observed on the full suite of tasks (with
notable exceptions like NSynth without augmentations, and LibriCount overall). In
Appendix A.4.1, we discuss why this value might be strongest from the perspective
of alignment and uniformity results.

6.5 Limitations
Our study demonstrates the efficacy of our approach using established architectures
like ResNets, balancing computational efficiency with the goal of producing gen-
eralizable results. While we focused on these architectures, our findings lay the
groundwork for future investigations with larger encoders such as AST [190]; this
is a straightforward extension. Our research also focused on a clear comparison be-
tween synthetic and real data, which allowed us to rigorously evaluate our method’s
effectiveness. The potential for hybrid approaches, combining synthetic and real
data, has a wide range of possibilities in mixing strategies and fine-tuning techniques.
These can all be explored without changing our method itself.

The isometric Gaussian noise perturbation proved highly effective, despite its sim-
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plicity, since it changes identifiable attributes (e.g. pitch) subtly. This success points
to the robustness of our method, while also highlighting opportunities for more
sophisticated perturbation strategies to further enhance it. Future work could ex-
plore anisotropic perturbations that account for parameter relationships. Adaptive or
learned perturbation strategies could also offer significant advancements. Addition-
ally, our evaluation centered on widely used classification benchmarks to create a
foundational assessment of the method’s performance. Expanding this evaluation
to include metrics such as representation disentanglement could offer additional
insights into the quality and utility of the synthetic data.

On a broader note, we believe it’s important to examine synthetic data-generating
procedures for possible biases, similar to the scrutiny applied to real datasets. Though
we think this procedure can mitigate some of the biases in real datasets, different
synthesizer architectures, values of δ, and other decisions might inadvertently produce
performance gaps for different tasks, applications, and downstream populations of
use. We evaluated on a wide range of tasks in part to explore this possibility, but
further evaluations would be helpful to assess these impacts.

6.6 Conclusion
Further improvements in auditory understanding depend greatly on the data under-
lying new models. In this work, we examined the value of synthetic data for learning
representations of sound. We presented a method that perturbs the parameters of
random synthetic sounds to generate audio doppelgängers, distinct yet similar sounds
that provide a strong signal for contrastive learning. Through a comprehensive set of
experiments, we showed how this approach can yield strong results on a wide range
of tasks. We will release our code and models to enable the community to experiment
with synthetic data sources for audio understanding, and hope this approach will
help expand the machine learning toolkit for audio processing.

122



7
Articulatory Synthesis of Speech and
Diverse Vocal Sounds via Optimization

The human voice represents perhaps the most sophisticated and expressive sound-
generating system we know. Unlike the abstract synthesis explored in Chapters 4
to 6, vocal sound production is constrained by precise physical mechanisms. Human
speakers control such mechanisms with remarkable fluency to produce a tremen-
dous range of sounds. This chapter investigates whether we can computationally
reconstruct these physical processes from real vocal samples, not to replace human
vocalization, but to better understand and potentially extend it.

We introduce VocalTrax, a system that reconstructs speech and vocal sounds by opti-
mizing the parameters of a physical vocal tract model. Unlike black-box approaches
to voice synthesis, this physically-motivated model provides interpretable control.
Like Chapter 4, this chapter implements an accelerated computational synthesizer,
albeit here for the voice. Like Chapter 5, this work produces desired outputs by
inference-time optimization, although here from reference audio rather than text,
and using gradient-based optimization rather than evolutionary strategies. VocalTrax
extends our exploration of interpretable synthesis approaches to the domain of voice.
In principle, this can be embedded into the kinds of generation and representation
learning approaches described in Chapters 5 and 6, extending the toolkit of audio
machine learning techniques.

Abstract
Articulatory synthesis seeks to replicate the human voice by modeling the physics
of the vocal apparatus, offering interpretable and controllable speech production.
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Figure 7-1: Spectrograms showing two target vocalizations with reconstruction via
our approach (VocalTrax) and prior work [490]. (Top) a clip of Frank Sinatra singing
My Funny Valentine. (Bottom) original speech audio from the popular “Oh Look, A
Strawberry” meme.

However, such methods often require careful hand-tuning to invert acoustic signals
to their articulatory parameters. We present VocalTrax, a method which performs
this inversion automatically via optimizing an accelerated vocal tract model imple-
mentation. Experiments on diverse vocal datasets show significant improvements
over existing methods in out-of-domain speech reconstruction, while also revealing
persistent challenges in matching natural voice quality.

7.1 Introduction
The human voice presents a formidable challenge for computational modeling, with
its complex physiology and acoustics. Articulatory speech synthesis [420], which
aims to replicate this complexity by simulating the vocal tract’s physical properties,
has long been a prized goal of speech technology since it results in interpretable and
controllable synthesis. While traditional approaches can be laboriously programmed
to construct longer segments [13], they struggle to match the richness and variability
of natural speech and even text-to-speech models [270]. As such, there is a need for
acoustic-to-articulatory inversion methods that generalize to realistic speech, song,
and other vocalizations.

This chapter introduces VocalTrax, an optimization-based method for matching arbi-
trary vocal signals to articulatory parameters using the Pink Trombone1 (PT) articu-
latory voice synthesizer. At the core of this is a fast, flexible implementation of PT

1https://dood.al/pinktrombone/
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which allows formulating the sound matching problem as an optimization task. Given
an input voice clip, this approach iteratively optimizes the articulatory parameters
of the synthesizer to match the acoustic qualities of a reference clip. This flexibility
allows it to tackle a broad range of speech phenomena, from sustained vowels to
non-linguistic vocalizations and even singing voices.

Overall, this work contributes:

1. An accelerated implementation of the Pink Trombone (PT) articulatory synthe-
sizer in JAX, enabling efficient differentiation and optimization (planned for
open-source release).

2. An approach to reconstructing arbitrary vocal signals, with pre-estimation of
only the F0s and otherwise end-to-end optimization, expanding the range of
vocalizations that can be accurately synthesized.

3. Experiments on challenging out-of-domain (real voice) data showing that this
approach is significantly more capable than existing gradient-based optimization
approaches for vocal tract area function estimation, which are largely limited
to synthesizing vowel sounds.

7.2 Related Work
We have been trying to implement machines and anatomical models to emulate
human speech for centuries [485]. Computational methods for modeling the human
vocal tract to synthesize speech are known as articulatory synthesis [420]. These
methods consist of controlling aspects such as the tongue or lips to shape the vocal
tract and generate speech by simulating the airflow. These simulations recover
the parameters of the tract, which can be controlled and interpreted to assist with
pronunciation [303], speech disorders [576], and speech recognition [304].

An important part of articulatory synthesis consists of modeling the human vocal
tract [49, 145, 230]. One way of tackling this problem is gathering and training on
the combination of speech and corresponding biometric data [95, 114, 306, 554].
Another approach is what is known as analysis-by-synthesis, where parameters are
iteratively refined to match the sound target [19, 420, 480]. This can be done using
zero-order optimization techniques [73, 91, 105, 170, 232, 335, 422, 449], but it
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usually requires more iterations to converge and it’s harder to scale. Gradient methods
are better at this—and previous research has leveraged neural networks to solve this
task [74, 164, 408, 440, 460, 533, 555, 569]—but require large training datasets.

Instead, differentiable vocal tract models can be used to get the best of both worlds:
gradient optimization and no requirement for training data. In prior work [490],
a differentiable mapping between control parameters and the PT synthesizer is
optimized by gradient descent for sound matching vowel sounds. Our approach
follows this concept, extending its capabilities beyond vowel sounds generated by PT;
synthesizing realistic speech, song, and other vocalizations.

7.3 Methods
The Pink Trombone (PT) is a widely used articulatory speech synthesizer, composed
of time-invariant models of the glottal flow derivative (GFD) and vocal tract V . The
source GFD is filtered through V , synthesizing the output. To perform end-to-end
sound matching, we split our audio input into frames, estimate the fundamental
frequency F0 for each frame, and optimize the vocal tract and GFD parameters for all
frames simultaneously. We use a simple objective function involving computing the
L2 distance between the log-mel spectrograms of the target and synthesized audio.

7.3.1 Glottal Flow Derivative
Pink Trombone uses a simplified Liljencrants-Fant (LF) model of the GFD waveform
[146]. The LF model is composed of two parameters, the fundamental frequency F0

and tenseness T , representing the degree of vocal effort. White noise proportional
to 1−

√
T is added to the GFD waveform. We estimate the fundamental frequency

(F0) of each frame using CREPE [257]. The tenseness T for each frame is optimized
alongside the vocal tract parameters.

7.3.2 Vocal Tract
The GFD waveform is filtered through the vocal tract, allowing for the articulation of
consonant and vowel sounds. PT uses the Kelly-Lochbaum [251] piecewise cylindrical
vocal tract model, composed of a sequence of 44 segments of increasing distance
from the glottis with cross-sectional areas A1, A2, . . . , A44. At each segment junction,
the forward and reversed waves are reflected and propagated as described by the
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scattering coefficients:

ki =
Ai − Ai−1

Ai + Ai−1

∀i ∈ {2, . . . , 44} (7.1)

To aim for physiologically plausible vocal tracts, we used a simplified physical vocal
tract model to determine the diameters d1, d2, . . . , d44 shared across all frames. At
each frame, two types of transformations are applied: the tongue and two con-
strictions [490]. The tongue, defined by two parameters, tongue diameter (td) and
tongue position (tp), modifies the base diameter into a sinusoidal shape, mimicking
the behavior of the human tongue. One lip and one tract constriction, defined by
parameters cl and ct scale the base diameters of the subset of diameters furthest from
and closest to the glottis, respectively, by a factor of 1− cl and 1− ct. To simplify the
gradient-based optimization approach, we keep the constriction indices set at 12 and
39.

7.3.3 Optimization
We use a common mel spectrogram representation of the audio signals, and define
our objective L as the L2 distance between the target (T) and synthesized (S) audio:

L(T,S) = ∥ log(|MELSPEC(T)|)− log(|MELSPEC(S)|)∥2 (7.2)

We minimize L over our parameter space using the AdamW [313] optimizer (with
γ = 0.01), and use a box projection to keep the parameters ∈ [0, 1]. We use a
normalized parameter space, back-transformed to each parameter’s respective range
as needed as has been done in other synthesis packages [89]. We initialize the
diameters using the canonical values [490], and other parameters to 0.5 (middle)
except T (tenseness coefficients) to 1, to minimize unnecessary noise at the beginning
of the optimization. Unlike prior work [490], we do not use inverse filtering to recover
any coefficients, and instead perform end-to-end optimization of the full apparatus
(except for pre-estimated F0s).

7.4 Results
We evaluated VocalTrax against Vocal-Tract-Grad [490] and ground truth using auto-
mated metrics and human evaluations on multiple datasets. Table 7.1 shows results
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of automated evaluations on three datasets: TIMIT [173] (subset), AudioMNIST [38]
(subset), and VIVAE [215]. We used match error rate (MER) for TIMIT2 and accuracy
otherwise. Given the distribution shift between target audio and even relatively high
quality reconstructions, we complement the automated evaluation with a human eval-
uation. Table 7.2 shows human accuracy responses. Importantly, all our evaluations
are on out-of-domain data (i.e. data not synthesized with vocal tract models which
can be perfectly reconstructed given the same tract model, but rather recordings of
real speech).

7.4.1 Automated Evaluations

TIMIT [173] (MER ↓) AudioMNIST [38] (Acc ↑) VIVAE [215] (Acc ↑)

Ground Truth 6.4 73.5 29.2
VocalTrax (Ours) 82.9 20.0 18.4
VTG [490] @ 1024 99.5 9.7 17.7
VTG [490] @ 2048 99.4 12.2 17.3
VTG [490] @ 4096 99.6 10.7 15.6

Table 7.1: Results from automated evaluations. TIMIT uses the match error rate.

In our automated evaluations, we use three datasets to capture different capabilities.
AudioMNIST [38] focuses on spoken numbers, which are simple and brief excerpts
but do contain semantic information. Given the scale of this dataset, we use a
stratified random sample of 600 test-set examples to evaluate across the different
methods. By contrast, VIVAE [215] focuses on paralinguistic vocalizations, which
do not contain any words but convey affective information. For both datasets, we
evaluate using the ARCH [275] benchmark protocol, modified to train on real data,
and test on resynthesized (or ground truth) data. This ensures a realistic evaluation,
wherein models are not trained specifically on the resynthesized speech and can
adapt their representations accordingly. Both datasets are for multi-class classification
(10 for AudioMNIST and 6 for VIVAE respectively). For AudioMNIST, given the scale
(30,000 clips), we do a train-test (instead of cross-validated) evaluation. Finally,
we evaluate on a more challenging task: longer-range, higher-vocabulary speech
synthesis. We sub-sample 100 clips from TIMIT [173], which contain multi-word
phrases or sentences, and aim to resynthesize these fully. We use 2000 optimization

2We use MER because word error rate is sensitive to insertions, and thus brief uninformative
responses like “thanks for watching” (a common Whisper hallucination given incoherent inputs) result
in inflated performance.

128



iterations for TIMIT to account for its complexity, vs. 1000 for others.

Results are shown in Table 7.1 for ground truth test set data, our method, and
Vocal-Tract-Grad [490]. For the latter, we evaluate it at multiple matched hop and
frame lengths: 1024 (ours), 2048, and 4096 (their original). Since Vocal-Tract-Grad
focuses on vowel synthesis, AudioMNIST and especially TIMIT are likely to be quite
challenging for it. Overall, we observe that our method is able to deliver improved
reconstructions, judged by their classification and transcription performance, over
these baselines. However, for TIMIT and AudioMNIST, our results remain distant
from the ground truth results due to the significant distribution shift in addition to
reconstruction artifacts present.

7.4.2 Human Evaluations

AudioMNIST [38] VIVAE [215]
Acc ↑ Conf ↑ Acc ↑ Conf ↑

Ground Truth 100.0 (0.0) 4.9 (0.0) 47.8 (3.7) 3.7 (0.1)
VocalTrax (Ours) 48.7 (2.9) 2.9 (0.1) 23.9 (3.2) 2.5 (0.1)
VTG [490] @ 1024 11.0 (1.8) 1.5 (0.1) 14.4 (2.6) 1.7 (0.1)

Table 7.2: Results from human evaluations (N=10 participants, each rating 30
AudioMNIST [38] and 18 VIVAE [215] samples per source). We show both response
accuracy and confidence, each with standard errors (in parenthesis), computed
directly from the sample.

To complement automated evaluations, we ran a listening study (results are shown in
Table 7.2). We used subsets of AudioMNIST and VIVAE in this study, focusing on (1)
how accurately listeners could identify the category the reconstruction (or original
example) belongs to, and (2) how confident listeners were about their choices. We
recruited 10 participants via Prolific, and estimated that the study took about 20
minutes to complete. The study was determined by our IRB to be exempt. Participants
listened and responded to 90 total AudioMNIST clips (stratified random sample of 3
clips per digit category, and the same 30 for each of ground truth, ours, and Vocal-
Tract-Grad [490]) and 54 total VIVAE clips (similarly, 3 per affect category, and the
same 18 across the 3 sources).

We modeled accuracy using a mixed-effects logistic regression for each dataset, with
random intercepts for digit (AudioMNIST) or category (VIVAE) and for participants.
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Then, we conducted pairwise post-hoc contrasts. For AudioMNIST, participants
were significantly more accurate identifying VocalTrax-synthesized digits compared
to Vocal-Tract-Grad (odds ratio = 10.7, p<.0001). This was also true for VIVAE,
though with a more modest difference (odds ratio = 1.96, p=.019). These p-values
were adjusted using the Benjamini-Hochberg correction for pairwise tests. For both
datasets, participants were also more confident in classifying our reconstructions.
Participants were less accurate and confident with our reconstructions compared
to the ground truth clips, suggesting significant opportunities to further improve
reconstructions of challenging, out-of-domain samples.

7.5 Conclusion
VocalTrax demonstrates how end-to-end optimization can improve articulatory speech
reconstruction of acoustic signals. Our JAX implementation of Pink Trombone and
reconstruction approach can rapidly reconstruct a variety of vocal signals, which
we hope will open up possibilities in speech analysis, therapy, and voice conversion.
However, the quality gap between such synthetic and natural speech persists. Future
work should focus on refining vocal tract models, incorporating perceptual factors,
and expanding to more complex vocal phenomena.
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Part III
Human-AI Interaction and Co-Creation
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8
Where to Hide a Stolen Elephant: Leaps in
Creative Writing with Multimodal
Machine Intelligence

When a writer sits down to craft a story, the possibilities can feel exciting, but also
overwhelming: characters to invent, settings to imagine, plotlines to weave, twists to
devise. Even seasoned writers, with the benefit of experience, encounter moments like
this. Consider Herman Melville, who famously struggled to write his ambitious novel
about a certain great white whale. Melville’s challenges were perhaps compounded
by his desire to push literary boundaries, often toiling in isolation without much
creative support.

Today, assistance for such struggles frequently comes in the form of AI systems
capable of generating material on demand. Imagine having such a system as a writing
assistant: would you use it to complete a stalled sentence, suggest a new plot direction,
or detail a vivid scene? The answers likely depend less on the system’s technical
capabilities than on your writing process, your current needs, and how you make
meaning from external suggestions. In other words, generating content doesn’t solve
your problem. A successful integration of that content with your story, though, might.

While previous chapters examined how AI can augment human creativity in audio
and music, studying real-world creative partnerships requires finding domains where
meaningful human-AI interaction is already unambiguously possible. Writing offers
exactly such an opportunity. Language models can already engage in the core creative
act here (extending a piece of text) in a way that easily composes with human input
and editing. This capability creates a useful setting: we can systematically study how
humans integrate machine suggestions into their writing process, observing both
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the evolving artifact (the story) and the sequence of decisions (integrations) that
produced it.

The study detailed in this chapter, conducted in 2020-2021, predates the release of
large language model-based interactive systems like ChatGPT. This timing proved for-
tunate in some ways, allowing us to conduct such an investigation before widespread
expectations had been established. The patterns we identified in how writers evaluate,
transform, and integrate algorithmic interventions into their stories are, however, not
specific to a specific language model or assistant. Rather, they represent a conceptual
framework for designers to consider when constructing interactive writing assistants,
and more broadly a potentially useful lens for co-creation generally.

Abstract
While developing a story, novices and published writers alike have had to look outside
themselves for inspiration. Language models have recently been able to generate
text fluently, producing new stochastic narratives upon request. However, effectively
integrating such capabilities with human cognitive faculties and creative processes
remains challenging. We propose to investigate this integration with a multimodal
writing support interface that offers writing suggestions textually, visually, and aurally.
We conduct an extensive study that combines elicitation of prior expectations before
writing, observation and semi-structured interviews during writing, and outcome
evaluations after writing. Our results illustrate individual and situational variation in
machine-in-the-loop writing approaches, suggestion acceptance, and ways the system
is helpful. Centrally, we report how participants perform integrative leaps, by which
they do cognitive work to integrate suggestions of varying semantic relevance into
their developing stories. We interpret these findings, offering modeling and design
recommendations for future creative writing support technologies.

8.1 Introduction
Augmented writing systems pervade human-computer interaction in everyday life,
taking various forms to suit specific tasks. From spelling and grammar checkers
to tappable word predictions and suggested email completion, these systems are
typically designed to enhance human performance and productivity. Recent work
in machine learning, intended to improve performance on these tasks and others
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(such as machine translation and text summarization), has given rise to formidable
natural language understanding and generation models [61, 401]. These are often
demonstrated by application to automated or semi-automated narrative generation
tasks [9, 330, 394], an essentially creative domain. Given these advances, some
recent work has begun to investigate the possibility for such models to be applied to
enhancing human creativity, in a machine-in-the-loop setting [72, 101].

Much remains unexplored about how emerging methods in AI, machine learning,
and natural language processing might influence creative writing, in part due to the
ambiguity and variability of human writing processes. These processes go beyond
the linear projection from idea to a full text; research shows how planning narratives,
translating ideas into visible textual material, and reviewing are all happening and
interacting throughout the process rather than simple sequential stages [155, 366].
However, this is a very familiar process for humans when communicating through
writing; as every writer knows, having good ideas does not automatically produce a
good text progression. The need for that "good idea" to be anchored and developed so
that the reader can be invested takes a great deal of effort. In today’s world, language
generation models like GPT-2 [401], GPT-3 [61], and new ones coming down the
line are typically silent on the inner processes of negotiation and decision that a
human writer is working through. Additionally, possible forms contributions from
these systems might take to influence writing are not limited to text; writers are
able to engage multiple perceptual channels through their work: they may activate
multisensory imagination through evocative imagery, invoking auditory and olfactory
phenomena, and other forms of sensory description.

We propose to investigate how participants engage with a system that does the
following: a multimodal writing support interface that bridges generated writing
suggestions with multimedia retrieval to produce concept representations simultane-
ously in sight, sound, and language. We pair this interface with an extensive study
that combines surveys, interaction, and semi-structured interviews during observed,
think-aloud writing sessions.

Through this study, we examine and report in detail how participants receive, consider,
and integrate suggestions from an intelligent tool into their writing. We explore
prominent axes of individual and situational variation in these integrative behaviors,
noting the different kinds of "leaps" participants make to understand suggestions
and make the necessary compositional decisions and actions to incorporate new
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information contained in them, ranging from copying and pasting to re-writing core
aspects of their entire story. We are specifically motivated by the following questions:

RQ1 What kinds of assumptions, expectations, and understanding are brought into
interacting with an AI creative writing system by different users?

RQ2 How do different users process and integrate different kinds of writing sugges-
tions, and how and why do they accomplish this?

RQ3 How does this suggestion-informed interaction compare with unassisted (or
potentially human-assisted) writing?

RQ4 What does the combination and interaction of these three factors mean for
intelligent writing support tools?

We design our study from a hybrid Expectation-Process-Outcome model (a visual
depiction is shown in Fig. 8-1). We seek to capture prior expectations, which we do
through what we call explanatory models, combining aspects of mental models and
folk theories of technology. We study the process by closely observing participants as
they write with the interface, asking questions, and encouraging them to describe
and reflect on their thoughts and decisions. Finally, we include an evaluative survey
through which participants report on their experience both independently and in
comparison to a "blank page" style version of our interface. By combining these
sources of information, we seek to document and communicate a range of behaviors,
needs, creative processes, and results.

Our findings suggest that (1) different interaction approaches affect writer needs from
system suggestions, (2) varied prior assumptions and explanatory models exist and
may be both anchored to and adjusted during the interaction process, (3) suggestions
support writing in more and less visible and direct ways, and (4) participants perform
different kinds of integrative leaps, involving cognitive work to make suggestions
useful to their writing. We interpret these findings and make commensurate design
recommendations for future creative writing support tools.

8.2 Related Work
There is a great deal of related work along multiple axes of this project. Here, we
review significant precedents and influences on our work in six disciplinary areas. We
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Figure 8-1: Our Expectation-Process-Outcome study model. We seek to capture (A)
each participant’s "explanatory models" in areas relevant to our system, (B) the most
salient features of their interaction and sense-making process in writing with it, and
(C) their evaluation of the outcomes and experience.

additionally review relevant conceptual background areas that inform our empirical
methodology and goals.

8.2.1 Studying Writing
Flower and Hayes [155] describe what they term a cognitive process theory of writing.
They model several components as part of this: the task environment includes text
produced upto a given point, as well as the rhetorical problem at hand, and the
writing process(es) involve planning (generating ideas, organizing them, and setting
goals), translating (transforming ideas into visible text), and reviewing (evaluating
and revising). At a theoretical level, these components are of interest to us because
what they seek to model is how writers make decisions while writing and what factors
affect this. We similarly seek to understand how writers make decisions and meaning
through interaction with a supporting AI tool.

At a methodological level, they rely on protocol analysis, wherein participants perform
an assigned rhetorical task as they think about their actions out loud and are recorded
doing so. They note that this avoids the drawbacks of introspective analysis, in which
participants report on their actions after-the-fact, observing that this tends to be
colored by what they think they should have done. Participants are also instructed
not to self-analyze under this method. While this provides a helpful starting point,
our circumstance is different: participants are not following a task they know how to
do and reporting on it. Rather, they are interacting with a new system and engaging
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in a new process (or a new version of a familiar process of writing), and as such
we need more information from them to adequately understand aspects of their
relationship with this system and adapted process. For this, we turn to an interpretive
methodology, informed by thick description as we will describe later in this section.

More recent psychological approaches to studying creative writing have emphasized
the role of retrieval, conceptual combination, and analogical mapping as some of
the fundamental cognitive processes that explain creative cognition [154, 246, 543].
Other work on writing has emphasized social-interactive [369] and sociocultural
models of writing, studied with a range of social scientific empirical methods that
consider how writing activity is "situated in concrete actions that are simultane-
ously improvised locally and mediated by prefabricated, historically provided tools
and practices" [398]. Robertson et al. characterized the conditions under which
email-replies-suggestions generated by an AI system are perceived as problematic
[425]. They highlight how social context, not just content, can influence how "brief
suggestion-like email replies" that ignore social context have the potential to turn
otherwise appropriate replies into inappropriate ones. Recognizing that these fac-
tors are also essential for understanding writing, especially as writing is re-situated
and re-mediated with new technologies, our approach is informed by heterogeneous
empirical studies of writing.

8.2.2 Writing Support
Systems that support writing tasks are ubiquitous, including word prediction, spelling
and grammar checking, dictation (speech-to-text transcription), auto-completion of
emails, and more. These systems have a substantial history, along with empirical
investigations of their effects on writing, productivity, and behavior. For example,
Smith and Goodwin [475] investigated lexicon-based single-key vs. double-key typ-
ing support for numeric keyboards in context-constrained settings, i.e., for jobs that
required such text entry, indicating how computers may help resolve ambiguities
arising from the former. Early work on spelling, punctuation, and grammar checking
as well as additional textual analysis found that computer assistance could improve
writing without substantially increasing writing time, but also found that it prompted
users to think critically about their writing when they might not have prior to inter-
action with such systems [320]. Perhaps in contrast, Woodruff et al. [549] found
that their high-level composition assistance tool was absorbed into a less critical
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sequence-of-suggestions text composition strategy, despite reports that it was helpful.
In modern mobile devices, tools like tap-to-complete word prediction and correc-
tion [45] are commonplace, and have been shown to increase typing accuracy [160],
though recent work has investigated the effects of such tools on other aspects of the
writing experience [72]. Here we will discuss general purpose approaches that are
designed to help develop ideas in writing, or otherwise influence or shape various
writing tasks.

Moving beyond word-level predictions but retaining their contextual role, Arnold et
al. provide methods to generate phrase-level continuations and demonstrate their
impact by showing that phrase completions can be offered in a way that they are
accepted by the user and interpreted as suggestions rather than predictions [16, 17].
More recent work by Arnold et al. examines the effects of predictive text on writing
content, finding that efficiency enhancements apply not just to the process of writing
but to the range of content emerging from this process as well [18]. They found
that predictive text suggestions—even when presented as single words—are taken as
suggestions of what to write. These suggestions often influence the length of the text
generated by the user.

Some prior work has also provided multiple simultaneous suggestions to demonstrate
different directions [16, 400]. Nicolau et al. identify cardinality as an important
design factor for non-visual word completion systems [362]. More recent work
by Buschek et al., conducted in parallel with ours, has examined the effects of
parallel phrase suggestions on writers in an email-writing task [68]. They found
that multiple parallel suggestions increased suggestion acceptance, especially for
non-native English speakers. InkWell is a writer’s assistant designed to help writers
augment their creativity by generating various revisions of a given text, employing a
synonym-based dictionary and a wide variety of soft constraints [163]. InkWell shows
the importance of providing text variations to the user and how this can lead to better
writing. Much of this work points to multiple suggestions being helpful, but these
are often stochastically (or probabilistically) varying and cannot be reasoned about
consistently or causally as complementary channels. Additionally, they do not capture
the hierarchical structure of stories. Based on these findings, we decided to add two
models to our system that can provide the user with suggestions corresponding to
different hierarchical semantic targets in parallel.

For academic writing support, Liu and colleagues [305] introduced G-Asks, a system
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for improving students’ writing skills, e.g., citing sources to support arguments and
presenting evidence persuasively. Their system generates questions with a template-
based approach by using Tregex [292], a robust algorithm used to replace keywords
in a sentence and the Stanford Parser [116], a natural language parser program
that works out the grammatical structure of sentences. As input, the system takes
individual sentences and generates questions for the following citation categories:
Opinion, Result, Aim of Study, System, Method, and Application. By doing this, the
approach supports writing not only to produce content, but also to learn. Inspired
by the implication of such a system we consider how suggestions might provoke
cognitive processes.

Finally, several projects have considered the role of artificial agents or AI tools in
creative story-writing support. Osone et al. found that more writers enjoyed working
with a Japanese generative model than not [374]. Roemmele and Gordon’s Cre-
ative Help system makes suggestions that users can edit to incorporate them into
stories [429]. As part of this work, they evaluate how much suggestions are edited
as a proxy for suggestion helpfulness. In later work, they additionally study how
randomness or unpredictability in suggestion can influence writers’ attitudes, finding
that increased randomness lowers ratings of factors like coherence and increases ones
like perceived originality [430]. Both aspects of this work are relevant to our study,
in which we examine how writers edit both suggestions and their stories to integrate
suggestions, and additionally the relevance-variety trade-off in a more implicit sense,
by observing and reporting the interaction. Gero and Chilton present Metaphoria,
which generates metaphors to support creative writing [181]. Their work discusses
both ownership and what they call "divergent outcomes" resulting from the sugges-
tions, both of which our study addresses. Clark et al. propose a machine-in-the-loop
creative writing system and study its application to stories and slogans [101]. The
authors note several findings and make commensurate recommendations, some of
which we build on. For example, they note the challenge of balancing between the
easily-ignored "pull" interaction, and intrusive automatic suggestions. We build on
this by combining direct invocation with a wait-threshold timer-based hint display.
WordCraft [102] frames the collaboration between a human storyteller and AI within
an open-ended dialog system with more explicit turns and turn types than what is
implemented in this chapter, but the effects of these design choices were not evaluated
in a systematic way. Finally, like the creators of FairyTailor [41], we also introduce
multimodality, which could have significant effects on findings, due to effects on the
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content (how are images or sounds translated to text?), the process (how is this
information integrated into existing text?), and the overall experience. As such, this
work additionally provides helpful background to contextualize our findings.

8.2.3 Language Models
Statistical language modeling has recently made substantial advances through the
application of new techniques [529] to very large models [61] and corpora. The
predominant paradigm in many natural language tasks has, as such, moved to transfer
learning, in which general-purpose models are fine-tuned on downstream tasks. This
mitigates issues of data scarcity, reduces training time, and improves performance. In
our case, we are specifically interested in causal or autoregressive language models,
which probabilistically predict successive tokens from prior ones. We fine-tune two
pre-trained variants of the popular GPT-2 [401] language model in our prototype.
While these models are no longer necessarily the state-of-the-art language modelers
due to rapid developments in a fast-moving field, they are still competitive performers
that are state-of-the-art in interactive systems, where other factors including ease of
fine-tuning (flexibility), speed of response (interactivity), and open availability are
important.

8.2.4 Multimodal Feedback
By presenting various communication channels, multimodal systems are considered
to support human information processing by using a range of cognitive resources.
This assumption is largely based on cognitive theories proposing multiple, modality-
specific processing resources [25, 380]. One goal of a well-designed multimodal
system is to integrate complementary input modes to create a synergistic blend,
permitting each mode’s strengths to overcome weaknesses in the others and support
"mutual compensation" of feedback errors [375].

In addition to these cognitive benefits, multimodal feedback offers us a rich window
into participants’ reasoning and process of sense-making. While language processing
alone demands high engagement to process and to make sense, we aim to study how
a complementary blend of information representations can allow us to uncover varied
aspects of participants’ interaction with an intelligent system for creative enhancement.
In this section, we look into our two non-textual modalities for feedback: still visual
input (images) and auditory input (sound recordings). We review how each of these
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modalities has been used to support users on a given task, and consider how these
approaches might indicate possible benefits for our task.

Imagery

iTell [279] supports retrospective storytelling with digital photos. It employs a
design process based on providing support to help novice storytellers engage in the
composition process like experts. To assist users with creating retrospective narratives
about their personal experiences, iTell presents the users with four steps to complete:
Brainstorm, Organize, Writing, and Add Personal Media. The user must finish each
step before proceeding to the next step and cannot skip a step without completing it
at least once. One interesting finding from the workshop conducted as part of their
user study is the influence of the media modality on the novices’ retrospective story
development, how novices approach retrospective storytelling, and what is needed
to make novices successful retrospective storytellers. In particular, the authors show
benefits for novices to have access to mixed media in the story development process.
One of the significant differences between iTell and our system is that iTell requires
the user to gather any media material beforehand to retrieve and incorporate it
during a writing session. Another significant difference is the lack of text suggestions
to help the user in their writing.

Another example of a support tool for the development of new ideas is Design
Daydreams (DD) [353]. DD is part of a suite of computational design tools that
integrate ambiguity and juxtaposition into systems that users can use to discover new
ideas. Using a low-tech augmented reality system to overlay digital images on top
of objects visually, the Design Daydreams augmented "post-it note" fluidly extends
the inspiration designers find online into the physically-interactive and collaborative
brainstorming environment. Feedback suggested that the low fidelity of the tool
provided a natural ambiguity that left room for interpretation as designers juxtaposed
digital and physical concepts together to create new ideas. Like these projects, our
visual feedback aims to discover mental constructs related to the story. It does
this either indirectly, through the mood created by the image palette, or directly
by layering diverse representations and allowing object or concept features to be
distinguished and integrated into the developing story.
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Audio

Specific attributes of the surrounding environment have been shown to support mem-
ory, foster creativity, enhance sensitivity to details, and balance cognitive load [96].
For instance, Mehta et al. found that moderate noise levels, like a coffee shop’s
ambient sound, facilitate abstract processing [340]. Zhao et al. built a multimodal
mediated work environment, where they demonstrated effects on occupants’ ability
to focus and recover from stressful situations [577]. Sounds with attributable causes
(i.e. where humans are able to aurally discern the source) have also been shown
to impact memory [409], language learning [550], and, as a feedback modality,
attention and information communication [175]. Motivated by this, we integrate an
audio feedback system that retrieves sound by concept (rather than by content), to
offer a semantically relevant aural dimension that may confer these benefits in the
process of writing a story.

8.2.5 Interpretive Approaches
We approach our observation of participants’ interaction through the lens of in-
terpretation. Interpretation as a concept has been used in a number of papers in
HCI [34, 278, 358, 456]. The interpretive perspective we maintain in this work is
informed by anthropological approaches to make visible the alignments of factors of
interaction that would otherwise go unnoticed due to common-sense understanding.
Our theoretical approach is built on the dichotomy of social theory concepts of un-
derstanding as causal explanation (erklären) versus understanding as interpretation
(verstehen).

Following MaxWeber’s distinction [545] between explanation that captures the causal
sequence of actions and understanding that attends to the meaning of those actions,
our research aims to analyze the interaction of the person with the AI system from the
perspective of the latter (i.e. "meaning"). More specifically, the meaning of actions
from the point of view of the participants, who organically construct meaning in the
process of engaging with complex systems. As such, interpretation in this research is
a form of understanding that makes it possible to discern the meaning production
that occurs within the interaction between the human and the AI system. To that end,
we aim to identify and observe how the interaction is influenced by the explanatory
models of AI that users have. We look at what type of conceptualization work is done
on the part of the users in the process of engaging with AI, both in the world (prior
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assumptions and expectations) and locally in our study (impressions, integrative
processes, and interactive reasoning), and how they rely on such conceptions to
navigate the process and products of co-writing with AI.

"Understanding" implies the meaning of actions can be transferred through co-
presence with a participant in one space, being able to build rapport, and engage with
the participant so as to understand how people make sense of the world around them.
For this research we aimed to complement the quantitative and qualitative data
obtained from survey questions with qualitative data from semi-structured in-session
interviews, observation of the participants, and what is called, in the social sciences,
“thick description” [176]. Thick description allows us to go beyond the observation of
causal actions and acquire interpretation by the actors of not only their own actions
but also of the context within which they operate. We detail our specific approach in
a later section on study design.

8.2.6 Explanatory Models and Expectations of AI
We use the term "explanatory models" to refer to the super-set of two kinds of con-
ceptual representations of computational systems, commonly referred to as "mental
models" and "folk theories" respectively. Here we describe each and outline our
rationale for combining them in our work.

Mental and Conceptual Models

Human-AI researchers often use the concept “mental model of AI," a term informed
by psychology and cognitive science. In the context of human-machine collaboration,
and even for human collaboration alone, a great deal of work has illuminated the
importance of mental models in promoting team success [118]. In the case of AI, it
has been shown that optimal inference does not necessarily yield optimal human-AI
team performance. Bansal et al., for example, study mental models of AI performance
in the context of human-AI teams [31]. They do note, however, the relevance of other
types of mental models (such as those of how the system works) to collaborative
settings.

Gero et al. study human-AI collaboration in a game setting, and their results suggest
that understanding of the system alone insufficiently develops appropriate conceptual
models [182]. The same authors distinguish between mental and conceptual models
by indicating that the latter are held by those with extensive knowledge of the
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system, e.g., designers and experts. This follows Norman’s formulation of these
two terms, where he suggests that conceptual models are "invented by teachers,
designers, scientists, and engineers," [367] noting that researchers then conceptualize
the mental models through experiment and observation in order to produce systems
and conceptual models that direct these mental models to be coherent and usable.

Folk Theories

While mental models offer insight into cognitive representations of a system’s op-
eration developed through experience, intuitive theories about the world structure
learning, understanding, and cognition more broadly, in diverse ways despite a com-
mon psychological substrate [177]. Folk theories are a form of expectations that
are based on some experience, but are not necessarily systematically checked [423].
Mental models are structured accounts of a system’s mechanics and behavior, but
folk theories and implicit beliefs arise from a great many sources of information and
interaction, and are not constrained to nor will they necessarily contain an under-
standing of "the relationship between inputs and outputs" [162]. Folk theories may
be especially salient in the domain of AI systems, given their dramatic and continued
impact on culture and society. Few kinds of technical systems are as pervasive in the
collective consciousness, due to rapid advances, news reports, economic incentives
and concerns, and potentially profound implications for human identity and activity.

Folk theories have been captured in the study of cyber-social systems, often relating
to algorithms employed in social media platforms. These theories may be elicited
through direct investigation by researchers, often through interviews and associated
methods, or indirectly, through inferential procedures applied to data "in-the-wild",
such as posts on a social media platform. As an example of the former, Eslami
et al. elicit theories about the operation of Facebook’s news feed algorithm and a
designed alternative [139]. In contrast, DeVito et al. aggregate and analyze over
100,000 tweets to determine user folk theories that contribute to resistance against
changes in Twitter’s algorithmic content curation system [121].

Why combine user mental models and folk theories?

To understand the prior assumptions, expectations, and understanding that our
participants brought into their interaction with our system, we captured their ex-
planatory models in related areas. Specifically, we identified related areas as AI and
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AI creativity, human creativity in writing, and differences between humans and AI in
creativity and writing. Our system is specific enough that they are unlikely to have
encountered a substantially similar system before, and are accordingly unlikely to
have developed intuitive theories or mental models of our system. As such, these
contextually informative areas may have bearing on their experiences, writing and
sense-making processes, and evaluations of the outcome.

Creative processes with AI allow varied creators to expressively produce diverse
artifacts. We aim to similarly capture complex and multidimensional explanatory
models, considering both cognitive and sociocultural factors to obtain extensive
representations of participants’ prior assumptions, expectations, and understanding.
We build on the concept of mental models to consider aspects including the user’s
beliefs about and attitudes towards AI and creativity, about the production of creative
writing artifacts, and consider how these might affect downstream evaluations of the
process of interacting with our system. We believe this approach can work inform
design processes to yield tools that have clear affordances in creative contexts, and
support a diversity of needs and practices.

8.3 System Prototype
Our experimental prototype consists of two writing interfaces: Editor-Green, a
minimal "blank page" tool, and Editor-Red, our augmented multimodal tool. To
minimize cognitive bias when conducting our user study, we chose to give names to
the editors that would seem roughly equivalent. The system also contains a server that
runs language models, as well as a real-time database to track inputs, responses from
the server, and interactions, e.g., interface settings. Fig. 8-2 shows both interfaces,
including an active multimodal response in (B) with images1 and sounds. Fig. 8-3
shows the underlying data flow through the system architecture that makes these
interfaces possible.

1Photos by Alan Ren, Matus Karahuta, Javad Esmaeili, Cassie Lopez (1), Christopher Campbell,
Brooke Cagle (1), Benn McGuinness, Cassie Lopez (2), Claudio Schwarz, purzlbaum, Matheus Ferrero,
Cory Woodward, Tim Photoguy, 2 Bro’s Media, Nature Uninterrupted Photography, Fabe collage,
Brooke Cagle (2), Ronaldo de Oliveira at Unsplash.
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8.3.1 Writing Interface
Editor-Red contains a page-like typing environment, with two suggestion blocks
adjacent to it that contain suggestions (these are below the writing page on mobile
devices). The two blocks offer two different types of suggestions, corresponding
to text generation models fine-tuned on two different datasets. These are returned
and presented through images and sounds in addition to suggested text. There is a
control panel at the top, which contains some basic formatting features (text styles
including heading levels, etc. as well as font formatting), and controls for invoking
language model suggestions and switching multimodal response displays. One switch
selects between two image presentations: by default, (the "on" position), images
are displayed as a "grid" with full opacity behind the writing and response display
elements. When toggled off, images are displayed as an "overlay", with multiple
images stacked on top of each other and their opacity set low enough that they form
an environment together. Two modality switches, one each for images and sounds,
turn on and off the inclusion of these modalities, respectively. A slider can be used to
adjust the volume of retrieved sounds. Finally, a "Suggestion" button launches a query
for a new suggestion, and associated images and sounds, based on the current text of
the user’s story). Suggestions can also be invoked via the tab key, and after about 10
seconds without any writing activity, a hint regarding suggestion availability appears
(indicating that tab can be pressed for suggestions). The suggestion texts are colored
with a gradient to clearly distinguish them from user-written text, and are virtually
"typed out" over a small amount of time to visually illustrate their narrative structure.
A text field at the bottom includes credits for the presented photographs.

Several design features of our writing interface are based on popular word processing
platforms. For example, a paper-shaped writing area, and a toolbar at the top for
text formatting and other controls. The other design choices we made, for the
new features we proposed, were refined through early prototyping and pilot testing
with fourteen users, through which we discovered several usability challenges and
corresponding solutions. We added tab-based suggestion invocation in addition to
re-positioning the button to avoid accidental triggering based on observations made
during these sessions. While we initially designed the image display as an overlaid
blend underneath the writing area, we found that the grid-style display allowed for
more explicit idea borrowing when desired, due to the increased clarity of individual
images, thus making this display the default. We selected a number of images (20)
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that we found yielded sufficient variety from individual searches, but maintained the
individual clarity on typical screen sizes. Finally, we had originally placed suggestions
at the bottom of the interface, but found that this constrained space for writing and
required more scrolling. We moved it to the right of the writing area to both position
it as secondary, and allow quick glancing. We additionally added a gradient to this
text to firmly distinguish it from user-written text.

To parallel this augmented interface, we provide another with the same core fea-
tures, design, and layout that we call Editor-Green. This editor includes the text
formatting features and the page-like writing environment. We use this interface
as a point of comparison, based on the core features of common writing tools. The
additional Editor-Red features are turned on and off, effectively switching between
the interfaces, by clicking the interface title in the top left corner. We did this to allow
flexible switching in the study context, while reducing the likelihood of accidental
switching, which we observed in early iterations.

8.3.2 Language Models
In order to produce relevant suggestions, we expected that a pre-trained language
model would need to be subsequently fine-tuned on a dataset containing many useful
examples. However, narratives develop simultaneously at multiple hierarchical struc-
tural levels, and single suggestions do not capture any variation in this important
property. As noted earlier, prior work has provided and investigated multiple simul-
taneous suggestions to demonstrate different directions, which points to multiple
suggestions being helpful. However, stories allow us to make some domain-specific
assumptions that can make these parallel suggestion channels semantically relevant.
As such, we produce two variants of the base language model to capture overall plot
and local description respectively, offering multiple semantically distinct channels
of suggestions. Stochastic variation is also available by simply requesting additional
suggestions in sequence without any additional writing (though we note this does
introduce additional delay).

We fine-tuned the same language model on two different datasets, producing two
final models. The base model is a medium-sized GPT-2 architecture with pre-trained
weights obtained from huggingface2. The first experimental model is fine-tuned
on a corpus of movie summaries [30], which we observe tend to contain high-level

2https://huggingface.co/
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Figure 8-2: Our experimental writing interfaces. (A) is a "blank page" editor with
only basic formatting features, while (B) augments this with generated suggestions
and multimodal feedback. In the second interface, users write text (C) and can request
suggestion by invoking the Suggestion button (E) or using the tab key (a hint is shown
after about 10 seconds of inactivity). Two types of suggestions, corresponding to
text generation models fine-tuned on two different datasets, are returned (F) and
presented through images and sounds in addition to suggested text. The user can
turn on or off these stimuli, or change the image presentations to an overlay (D).

plot components and event sequences. As such, we label suggestions arising from
this model as "Plot" suggestions. The second is fine-tuned on a writing prompts
dataset [143], which features prompts and story responses taken from a prominent
online forum for amateur fiction. Following the observation by Fast et al. that amateur
fiction "tends to be explicit about both scene-setting and emotion, with a higher
density of adjective descriptors" [149] as well as our own review of this dataset
and the fine-tuned model, we label this second experimental model’s outputs as
"Description" suggestions.

For each query, our system produces responses from both models. When sampling
from the models, we employ a top-k sampling strategy, with k = 5, temperature= 0.5,
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and a repetition penalty of 1.0; these parameter settings were based on initial experi-
ments, i.e. looking at the models’ outputs for different combinations of parameter
values and making subjective judgements about quality, consistency, and relevance
given a variety of input prompts. We decided on a maximum output suggestion length
of 40 tokens (tokens are sub-word units, so there isn’t a direct relationship to the
number of words), finding that this suffices for many scenarios, and weighed against
the time and computation needed for autoregressively sampling longer sequences.
This cost-detail trade-off is one of many we needed to address in the design process
of this prototype. Others included model size, i.e., number of parameters, for which
more parameters typically result in greater coherence in modeling long-term semantic
consistency but slower performance and consequently significantly greater latency,
and the number of model options, with similar constraints. While other work has
hosted multiple different-sized models in order to propagate this trade-off to a user
decision at the interface’s point of querying [40], we wanted to focus our approach on
the specific semantic channels of plot and descriptive detail development to support
story writing and further reason about suggestion incorporation. As such, we opted
to fine-tune two medium-sized models, which balance interactive responsiveness
with expressive language modeling.

8.3.3 Multimedia Retrieval
Retrieving visual and auditory stimuli based on natural language descriptions is a
challenging task. This is compounded for open-domain text, as in our case. Appli-
cations that do this typically need to defer to large internet media databases with
search APIs to adequately support the range of possible queries with high-quality
media objects. While some recent work focuses on learned approaches to semantic
text-image similarity, these approaches are slow, require much data to train, and
don’t scale well to large databases, and so we opt for simple concept-based (rather
than content-based) search of media platforms.

We use two such databases: Unsplash3 for images, and Freesound[159] for audio.
Concept-based searches for media on these platforms are typically performed with
keywords rather than long-form text, and so we use the RAKE algorithm for automatic
keyword extraction [435] as a preprocessing step, pooling the keywords from both
model outputs (plot and description). We then query Unsplash with the output

3https://unsplash.com/
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Figure 8-3: Flow of data through our system. (A) The user enters text into the
interface which is, upon request, transmitted to (B) a backend application. This
operates two causal language models, fine-tuned for plot-level and description-level
suggestions respectively. The text is tokenized and input to both, and generated
suggestions are captured. Keywords are then extracted (using the RAKE algorithm)
for use in the multimedia search queries: (C) calls to the Unsplash and Freesound
APIs retrieve semantically associated image and audio content respectively, and these
are sent back to the interface along with the suggestions to be presented to the user.
In parallel, all use data is logged into (D) a real-time Firebase database. We track
requests (including the state of the story at each request time), system responses
(suggestions, links to media), the latest story state, and changes in settings (e.g.,
turning any specific modalities on and off). The logging system is replicated, for text
only, in Editor-Green as well.

keyword list. We observe that Freesound is sensitive to multi-keyword searches and
often returns no sounds in these cases, so to avoid rate limitation problems we supply
only the first extracted keyword to its API to search for sounds. We apply three
content filters to Freesound queries. First, we limit the duration to be between 10
seconds and 30 seconds to allow for sounds that are both long enough to contribute to
an acoustic environment, and not so long as to extend retrieval time. Second, we filter
out results marked as containing explicit content, after noting that these sometimes
appear even when not necessarily suggested by the query. Finally, we apply a filter
on the "dissonance" feature4, which is extracted directly from each audio signal, so
it is ≤ 0.4. Since sounds need to be combined together, constraining the sensory
dissonance [396] of each independent element helps to layer them effectively into a
coherent soundscape.

4https://essentia.upf.edu/reference/streaming_Dissonance.html
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8.3.4 Data Logging
To allow detailed logging of user interaction with our prototype as well as generated
suggestions, we use a real-time Firebase5 database. This database keeps track of
user-typed text in real-time as well as any changes to settings in the interface (e.g.,
turning sounds or images off or on), time-stamped requests with their associated
input text, and time-stamped responses with text suggestions and links to retrieved
media. This allows us to approximately reconstruct a sequence of writing events from
a session, which we refer to in order to build the later section on integrative leaps.

8.4 Study
To investigate user interaction with our prototype and the role of user explanatory
models of AI within that interaction, we designed a mixed-methods study consisting
of two observed writing tasks, a four-part survey, and extensive logging of interaction
data.

8.4.1 Formative Study
As part of our initial exploration, we conducted a formative study with 14 participants
and an earlier version of the prototype. We called this interface MLVille, an homage
to Herman Melville who famously struggled with writer’s block before it was a well-
documented phenomenon. With 4 out of 14 participants we conducted open-ended,
interpretation-focused interviews, which allowed us to get in-depth data. These
participants interpreted their actions and interactions with our prototype while
performing the study tasks to provide additional context and insight. Through a
broad set of survey questions, analysis of the produced text both computationally
and qualitatively, and extensively documenting usability feedback, we performed
several updates for our second study iteration, which is described in sections to
follow. Specifically, we re-designed our interface, fine-tuned new language models on
different datasets, re-oriented our study around thick description (noting the range
of information and useful perspective it generated), and re-designed our survey to
capture identified factors of variation and interest.

5https://firebase.google.com/
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8.4.2 Recruitment
Potential participants were invited through large mailing lists associated with various
departments and living groups at R1 universities, including one social sciences
department and several Computer Science-adjacent lists, as well as a post on reddit.
As a pre-condition for being recruited, applicants filled out a short survey to confirm
that they meet the requirements of being fluent in English and being over 18 years
old. The survey also contained a video tutorial that explained the features of Editor-
Red and in order to filter for applicants who watched and paid attention to the
video, they were asked to answer two screening attention check questions about the
system’s features. Those applicants who met the requirements were invited so as to
have a balanced pool of participants who identified as native and non-native English
speakers. We also made sure to have a balanced pool of participants with and without
Computer Science backgrounds.

8.4.3 Participant Demographics
27 participants completed the writing task. Data from 4 had to be excluded due to
firewall-related issues, mid-session server problems, and unwillingness to complete
the task as instructed. All participants reported having at least a high school diploma.
When asked about their disciplinary affiliation, 35% replied Another STEM field, 21%
Computer Science, 13% Life Science, 9% Business, 13% Humanities, 4% Social Sciences,
4% Medicine. Participants’ ages ranged from 18 to 45, with 48% of participants in
the range of 18-22. 65% of participants reported that English is their first language.
When asked "Do you struggle with writing?", 78% of the participants responded yes.

8.4.4 Study Structure
Our study design follows the structure shown in Fig. 8-4. We began by sending each
participant a consent form in advance of the scheduled session, allowing them enough
time to read and ask questions. They gave verbal consent at the beginning of the
session with the interviewer and were then given an introductory overview of the
study procedure, which took 3-5 minutes. Participants then completed a 10-minute
introductory survey (SI), designed to elicit the prior knowledge, conceptual frame-
works, and beliefs that participants had about AI and its application in writing, human
creative writing, and their own previous writing experience. Participants began the
first 20 minute writing task, with either Editor-Green or Editor-Red depending
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Figure 8-4: Study design. Our study consists of two writing tasks, one each with
Editor-Green (no augmentation) and Editor-Red (with augmentation) for 20 min-
utes; which interface participants used first was counterbalanced across subjects.
For each task, the participant is given one of two prompts (in randomized order)
to then create a story with. The two writing tasks are interlaced with sections of a
four-part survey, with introductory and background components, as well as one for
each writing task. The study takes approximately 75 minutes in total.

on their group assignment. They were instructed to write a story using one of the
following prompts: The phone began to ring or A train arrives at the station (alternating
prompts between groups to control for the effect of the prompt). Both prompts were
designed to be short, somewhat vague, and contain the beginning of some action
(phone call and train arrival).

Most participants, once given the task ("write a story using the following prompt"),
began writing without asking any questions. Some participants asked if there were
any requirements in terms of genre, structure, or length, and we informed them
that there were none. Participants were informed that they should use suggestions
only if they find them helpful. Deciding when to stop writing was completely up to
participants and we clearly stated that at the very beginning of the task.

After each writing task, participants completed the corresponding follow-up survey,
i.e., SG (< 5 minutes) for participants who wrote in Editor-Green or SR (∼ 10

minutes) for participants who wrote in Editor-Red. In accordance with standard
order-counterbalancing, participants completed a second 20 minute writing task with
whichever editor they had not yet experienced, followed by its corresponding survey.

Finally, all participants completed a survey that invited them to compare the two
writing experiences they had during the session, as well as provide some additional
demographics/background information (SC). The overall duration was about 75
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minutes, and participants were compensated with a $25 Amazon gift card.

Two researchers separately conducted study sessions via Zoom videoconferencing.
The sessions were recorded with permission, and the researchers took notes through-
out the session. Participants shared their screens during the writing sessions, and
they were asked to switch this function off when answering survey questions. While
writing, participants were explicitly encouraged to comment and react aloud as they
wrote, processed information, and responded to incoming suggestions and media.
During the sessions, interviewers observed participants’ interactions with the proto-
type and writing process. Additionally they prompted participants to communicate
about their thought processes and experiences periodically throughout each writing
session.

8.4.5 Survey
The survey consisted of four blocks. The Introductory block of questions (SI) contained
open questions and multiple choice questions. It was designed to elicit the prior
assumptions, expectations, and understanding that participants had about Artificial
Intelligence and the possibility of its application in writing and creative writing,
specifically. Participants were also asked about their own writing and their thoughts
about creativity in human writing.

The block of questions after writing in Editor-Red contained five open questions
on the experience of the interaction, which was followed by a longer section that
contained two grid sections with 7-point Likert-type items relating to general usability.
After this, there were six multiple choice questions asking participants to provide more
detailed information on their experience (e.g."When Editor-Red was giving its ideas,
what were you paying attention to? Text, Images, Sounds, None", "I think I will enjoy
using Editor-Red more, if..."). Finally, there was also one more 7-point Likert-type
grid of items asking participants to rate statements on suggestions provided by Editor-
Red (e.g."The suggestions made by Editor-Red were creative", "The suggestions made
by Editor-Red were coherent", "I enjoyed co-writing with Editor-Red", "I enjoyed
collaborating with Editor-Red"). The block of questions after writing in Editor-
Green (SG) contained two grid sections, with all items relating to the augmentation
features omitted and the rest replicated.

The block on comparison (SC) between Editor-Green and Editor-Red consisted of
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Yes/No and open questions on creative writing ("Do you consider the text that you
wrote in Editor-Red/Editor-Green creative?", "If yes, in a few words, explain how
it was creative. If no, explain in a few words, why not?"). There were also 7-point
ordinal items asking to compare Editor-Green and Editor-Red in terms of creative
writing (e.g. "In which editor was the text that you wrote more creative?") and four
items on cognitive load adapted from the NASA TLX survey [206] (e.g. "Where did
you feel more focused when writing a text?").

The final section contains demographic questions asking participants about their
highest degree, disciplinary affiliation, age, and gender identification. Those par-
ticipants who identify themselves as non-native speakers of English are asked to
provide more information about levels of self-reported proficiency of various skills
and depth of exposure, which we assess based on pre-existing instruments [247, 328].
In this block, there are also supplementary questions asking participants what kinds
of writing they struggle with and how often they do creative writing.

All the questions throughout the four blocks are meant to elicit data for the key
phenomena we were interested in: participants’ prior understanding and anticipations
of AI and writing using AI, how participants understand creativity and creative writing,
participants’ interpretation of the system’s work and their explanation of engagement
with the system’s suggestions. Additional concepts of usability of the system, cognitive
load, and agency were also included. The questions were strategically phrased in
different ways (open questions, closed questions, multiple choice, Likert-type items).

8.4.6 Observation and Thick Description
Participants spent about 20 minutes writing in each editor (within each 75 minute
session). This gave researchers an opportunity to capture a wide range of phenomena:
participants would comment on how they usually write outside the study and how
they are writing within the study, explain their process of coming up with ideas,
their opinions and judgements of the system’s suggestions, talk about how they
were making decisions to incorporate or not incorporate suggestions, and give their
reasons. The ability to be there with participants when they were writing and to
observe immediate reaction and, to the extent possible, raw and unmediated answers,
allowed us to produce "thick description" [176], as noted earlier.

Observing the interaction with the system allows us to capture the reasoning of
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participants for incorporating or ignoring suggestions, and also glean how participants
make sense of the interaction with the system and their strategy on structuring this
interaction to support their writing. In describing the interaction with Editor-Red,
we note that the interaction is not reduced to just getting suggestions from the
system. Participants perform a task of writing a text while existing within a particular
space, which is defined not only by the interface of the system and its multimodal
suggestions, but also those expectations and explanatory models that participants
had prior to the study and were constantly adjusting during the study. As such, we
seek to capture detail about aspects of their experience that go beyond just suggestion
incorporation behaviors.

8.4.7 Data Analysis
Writing sessions

The data from writing sessions consisted of (1) logged data of the texts participants
wrote and suggestions they received, (2) transcripts of sessions where participants
thought out loud during the interaction with the system and answer interviewers’
questions, and (3) the notes that interviewers made during the sessions. After we
finished running the study, interviewers watched the session videos, making additional
notes and comparing them to the notes they made during the sessions. Then we
entered all the data from the writing sessions into a shared document and MAXQDA6

(software for qualitative analysis). In MAXQDA, we first used a deductive approach
to code the data: we employed pre-existing concepts from research questions (such
as conditions for acceptance of a suggestion, creativity, agency and ownership, etc) as
codes. In the second stage of the analysis, we applied an inductive approach to code
the data: in particular, the in-vivomethod (using the words of the participants to create
codes), so as to let the voice of the participants and their actual concepts structure the
themes. Two rounds of inductive coding were done, followed by a process involving
rearranging codes and turning in-vivo codes either into new themes, or adding them
to existing codes. At this point, a second researcher did their round of coding and
partially re-coded the data. The two coders discussed and reached agreement on the
codes. A third round of coding by a third researcher was done to align and streamline
all the codes.

6https://www.maxqda.com/
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Survey responses

For the answers to open-ended survey questions (expectations), one researcher per-
formed an initial open coding (in-vivomethod, i.e. using the words of the participants
to create codes), followed by a second cycle that involved deductively applying do-
main concepts associated with posed questions to the initial codes. For example,
in asking about differences between human and AI text production, we relied on
some concepts from prior literature (such as statistical vs. symbolic processing or
novelty, value, and surprise in creativity) that were closely related to the in-vivo codes.
This was accompanied with a values orientation (i.e. trying to infer participants’
values and beliefs). Then a second researcher reviewed and partially re-coded the
same data, and disagreements were resolved through discussion of instances and
codes themselves (labels and definitions), as well as including secondary codes for
individual responses where appropriate.

8.5 Results
We detail findings from the three primary components of our study: our survey to
capture participants’ prior assumptions and pre-existing explanatory models, observa-
tions and responses during the semi-structured interview process that accompanied
their writing, and questions posed afterwards about their final thoughts and experi-
ences during the sessions. In this section, we focus on detailing each independently
before examining the synthesis of their respective data. We explicitly review specific
examples of how these data interact, but note that our broader findings are informed
by all three sources as they represent different means of inquiry and perspectives on
the experiment.

8.5.1 Prior Assumptions, Explanatory Models
Detail in explanation vs. technical depth and accuracy

We assessed the structure of participants’ prior explanatory models of AI through one
open-ended question, i.e., "How do you think AI works? (For example, where does it
get information? How does it produce information? How does it understand what
you ask it?)", expecting a range in the responses. We observed during the first coding
cycle that the results seemed to actually vary in more than one way (rather than
being more or less structured overall), and so we model this as a two-dimensional
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construct. During the second (deductive) coding cycle, we adjusted code labels to
relate them to prior and parallel work:

1. Type of Explanatory Model

(a) Abstract: What AI does

(b) Operational: How AI works

2. Technical Depth

(a) Sparse: Vague or inaccurate description

(b) Sophisticated: Low-level and accurate description

We based these labels on prior and parallel work. Specifically, DeVito et al. describe
abstract and operational algorithmic folk theories, noting that the former "do not
include specific attempts to theorize how an algorithm might actually operate" [122]
(their sub-codes for these are not applicable to our case). Interestingly, in a study
of mental models of adversarial machine learning, Bieringer et al. found that their
participants’ prior knowledge did not necessarily determine the technical depth of
elicited mental models, pointing to a possibly multidimensional space. They apply
the labels sparse and sophisticated to describe the technical depth in these mental
models [47].

The majority of participants in our study gave Sparse-Abstract models (N = 14). For
example, P3 wrote "I think it gets info from devices and uses language features to
understand us." See Table 8.1 for the full distribution over these label combinations,
and additional examples.

The second most common explanatory type was Sophisticated-Operational (N = 5).
For instance, P1 alluded to both generalization and optimization in their explanation:
"I think that it works by feeding it data. It is then able to use the data that it is fed
and apply the given outcomes for the provided data to novel situations. It is accurate
as it continues to learn and reduce loss between the real and given answer."

Sparse-Operational and Sophisticated-Abstract explanations each occurred twice. We
identified P16’s description as an instance of the former:
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N Example

Sparse-Abstract 14 "I think AI is a software that attempt to resemble the way an
intelligent brain works. I suppose it bases its decision on a set of
situations that are used as possible scenarios."

Sophisticated-Operational 5 "Different kinds of AI work differently. If we’re talking about
machine learning systems, they are trainedwith large corpi of data
that are curated by data scientists or machine learning engineers.
The algorithms for these systems find and exploit patterns in the
data to then accomplish tasks. If I ask an AI something, it will
look for a way to take my input and compare it to patterns in the
corpus of data it was trained on."

Sparse-Operational 2 "i think it works by first being given a set of instructions, or base
algorithms, which are then trained by feeding it various data
sets/ user inputs. For example I‘m pretty sure visual captcha
companies use user input data from instructions like“select all
the traffic lights in this image“ o train or test their own image
recognition algorithms. The data is relayed to the computer in a
format it can interpret, such as code for matlab, and the computer
then recognizes which configurations of code evaluate to true
given the desired condition. For text, it can also scan the input
for key words/tags, that make it branch down a certain path in
the algorithm."

Sophisticated-Abstract 2 "There are different kinds of AI. The most simple is a series of
if/else statements, more complicated AI might use neural net-
works and deep learning. AI could get information from any
source a computer can: file input, cameras, microphones, etc.It
produces information by taking some input, processing it in some
way, and outputting it.It does not "understand" anything in the
same way a human does, but rather algorithmically processes
data it is given."

Table 8.1: Labels for types of elicited explanatory models of AI systems. N is
number of responses, and Example contains a quote associated with the label. Abstract
theories communicate what AI does vs. Operational theories which emphasize how
AI works. Sparse and Sophisticated refer to low and high levels of technical depth and
accuracy in elicited explanations reflectively.
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“ Usually it gets information from big datasets of training examples, similar to ones
it needs to act on. There are different ways for it to produce information - it may do
some clustering algorithm, use neural network, genetic algorithms or simply build
decision tree based on previous answers. Most AI do limited number of tasks, so
they recognise one of few commands. The ones which recognise speech likely try to
represent sentence grammatical structure and use previous users’ dictionaries and
set of predetermined algorithms. But i really do not know ”

P16’s explanation is long and contains examples of machine learning methods and
speech recognition systems, the description of the latter however is ambiguous and
likely inaccurate (by comparison to most existing speech recognition approaches);
moreover, the participant explicitly indicates that they don’t know how it works
despite offering an account.

By contrast, a Sophisticated-Abstract explanation provides accurate description cou-
pled with description of what AI does but not how AI works (despite the questions
specifically asking "How"). For example, P15 wrote:

“ AI is trained on a large amount of data. The training will usually tell the machine
what it needs to know and it will then produce information based on its training. It
will identify similar features from the training dataset and the test dataset to make
an analysis. ”

This participant, like P1, refers to generalization (similarity between train and test
features), which requires knowledge about how machine learning models can be
useful for real-world tasks, but provides no theory about how this is accomplished
despite the posed question explicitly asking for it.

Human creativity in writing

Our two questions relating to human creativity in writing allow us to elicit uncon-
strained thoughts through open responses as well as anchor to classical constructs
such as Novelty (historically new), Surprise (unexpected), and Value (useful to peo-
ple) [51] via a multiple-choice item. We additionally included an Other field in the
multiple-choice item, to allow participants to specify a different dimension if they felt
that their concept was not adequately represented by these three, especially given
the domain constraint. A majority of participants (N = 12) indicated that Novelty
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was most important, followed by Value (N = 6), Surprise (N = 4), and one custom
response: "evocative use of language", a domain specific attribute.

In the open responses, participants identified several features of human creative
writing they considered important, which we coded as follows:

Freedom/Expression Five participants commented on personal expression and
expressive freedom (P1, P3, P10, P20, P22). For example, P3 simply stated "freedom
of expression", while P20 remarked on both aspects: "Creativity in writing for me
is putting down a personal, immersive response to a prompt. So taking a spark of
direction and going wherever I want from there."

Imagination/Fiction/Inspiration Five participants commented on imagination and
fictive writing (P5, P6, P8, P9, P11), such as P5 who wrote "Letting my imagination go
free, creating worlds and scenarios that don’t exist." P6 illustrated this by comparison:
"Creativity writing is the type of writing used in stories, novels, poems, journals. I
keep it separate from scientific writing, which I don’t consider as creative writing."

Additional thoughts: Structure/Clarity/Goal-directedness, Novelty, Unexpected-
ness, and Truth Still others commented on form, structure, flow, and direction. P2
indicated that creative writing involves "having a clear goal and many possible ways
to accomplish that goal." The familiar dimensions of Novelty and Unexpectedness
(surprise) also appeared in several comments. Finally, one participant alluded to
"truth", perhaps indicating not the idea of verisimilitude (or similarity to reality) but
"truth in fiction."

These features of human creative writing participants considered important are also
summarized in Table 8.2 with additional examples.

AI creativity

When asked whether they thought AI could be creative, the majority of participants
(N = 17) indicated Yes. We assessed this through analysis of an open-ended item,
and some participants did indicate uncertainty by using words like "probably." We
obtained the following codes through our analysis:
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N Example

Freedom/Expression 5 "Creative writing, to me, is writing that embodies one’s own
novel artistic expression and is not primarily functional."

Imagination/Fiction/Inspiration 5 "It is an enjoyable activity that involves imagination and allows
one to express his/her feelings."

Structure/Clarity/Goal-directedness 4 "Having words flow out and describe things in a satisfying
way"

Novelty 4 "For me its coming up with new, innovative and engaging
ways to write a story."

Unexpectedness 4 "Creativity in writing is using tropes and ideas in uncommon
ways."

Truth/Reality 1 "Being able to capture truths about the real world through
words"

Table 8.2: Codes re: human creativity in writing. N indicates number of participants,
Example shows a corresponding quote.

Human-based Five participants (P3, P6, P8, P17, P19) noted that ostensibly creative
AI is somehow modeling human creativity, and used this point to indicate that AI
can be creative. For example, P3 wrote "probably, because it can mimic other human
features."

Combinatorial Creativity and Uniqueness/Randomness Others pointed to the
notion of combinatorial creativity [51] (P4, P9, P16, P21), suggesting that "It can
be creative if it happens to combine things in a way that people wouldn’t naturally
consider" (P9). Relatedly, participants noted the opportunity for creativity arising
from randomness. P15 notes that AI-generated ideas "can be completely illogical
which is sometimes the best creativity."

Novelty/Surprise Three participants (P7, P10, P12) implicitly made the connection
to novelty and surprise, remarking that AI "can be creative in the sense that it
can produce novel solutions to problems," but also that "this presupposes a narrow
conception of creativity" (P12).

Additional thoughts: Future creativity, and uncertainty Still others pointed
toward future creative ability, due to the improvement of AI, such as P5: "Eventually,
yes, but I’m not sure it can make big leaps in novelty in a single go." P18 expressed
uncertainty about the question of whether AI can be creative, writing that they were
"unsure what makes humans creative." Other participants expressed different kinds
of uncertainty; P1 wrote that they believe that AI ’can be accurate" but they would
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N Example Yes Unsure No

Human-based 5 "Perhaps. The AI itself is a work of human cre-
ation. It might help a person to be creative in
the same way that automatic writing, random-
ness, or writing constraints do."

4 0 1

Combinatorial 4 "I think that AI can create from a broad set of
information that it has been given, but I do not
think it can make up something new"

3 1 0

Uniqueness/Randomness4 "Yes, it may suggest ideas or connections that a
human might not usually make"

4 0 0

Other 3 "I do believe that AI can not be creative based
off of my understanding. I believe that it can
be accurate but I have a hard time imagining
what a creative AI would look like."

0 1 2

Novelty/Surprise 3 "Yes, in the sense that AI can generate novel and
surprising ideas without input from a human."

3 0 0

Gradually/Future 3 "Yes definitely! But to a certain extent. Because
technology keeps on evolving and the internet
is a very good example of it where it really helps
in building creativity. But nonetheless, i think
there is a limit to its creativity as compared
to human but of course it will help a lot in
enhancing creativity"

3 0 0

Unsure what makes
humans creative

1 "I’m not sure because I’m not sure what pro-
cesses allow humans to be creative"

0 1 0

Table 8.3: Codes from open responses about AI creativity elicited from partic-
ipants. N is number of responses, Example contains a quote associated with the
label, and Yes/No/Unsure are counts of categorical responses, for each label, from
participants about whether they think AI can be creative. Some responses are labeled
with more than one.

have a hard time "imagining what a creative AI would look like." P22 emphasised the
fact that AI depends on "the input humans give to it" and noted that "if humans don’t
keep updating the inputs, it may not be creative anymore."

Table 8.3 provides other examples for codes mentioned above.

Human-AI Differences

We also elicited participants’ thoughts about qualitative differences between human
and AI text production. We assessed this through two items: one multiple choice
to indicate the presence of a difference ("Do you think the way AI produces text
is different from humans?"- Yes/No/Unsure), followed by an open-ended question
prompting them to explain how and why (or why not) human and AI text production
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mechanisms are different.

For the multiple choice item, 16 participants answered Yes (they think the way AI
produces text is different from how humans do it), 5 answered "Unsure", and 2
participants answered "No." In surveying qualitative examples, we found diverse
concepts of what differs between how humans and AI produces text, as well as effects
of such differences.

Statistical/Data vs. Symbolic/Mind Eight participants (P1, P2, P7, P8, P, P15, P17,
P18) pointed to the contents and mechanics of the text producers. They differentiated
between data-driven and mind-driven text production, for example P1 wrote: "AI
is taught to produce text based off of given data, an algorithm is used to produce
text while a human creates text based off of their mind." Participants phrased this by
contrasting generating text "statistically and linearly" with "using mental hierarchy
of words" (P1), or indicating rule-based vs data-driven constraints. For example, P8
noted that "people can produce infinite correct and comprehensible outputs based on
their knowledge of their native language’s grammar and vocabulary, while AI will
only be able to produce content based on its input."

We label this by combining the cues from participant responses and the traditional
AI notions of symbolic processing vs. statistical modeling, two dominant paradigms
in natural language processing.

World model and understanding Another thought from Five participants (P4, P5,
P9, P11, P12) was that AI is lacking sufficient understanding of context, which comes
from experiences in the world. P5 points out that AI "has not learned language by
interacting with society and cultures, learning from family and personal experiences,
or have the ability to draw on memory when responding in the same way humans
do" while P4 appeals to sensorimotor functions:

“ AI produces numbers based on drawing patterns and similarities from the num-
bers in the dataset that it has been fed. It doesn’t understand and have visual
representations in the brain that it then produces into motor action, it’s just
reproducing what it’s already seen. ”

Not sure how humans do it Four participants (P9, P12, P16, P18) remarked that
either they were unsure, or not much is known, about how humans produce text.
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They differed in whether they thought this would extend to similarity or difference
between humans and AI. For instance, P9 answered: "I’m not really sure how people
"produce text"" and continued saying that since "AI learns from previous patterns"
then maybe people in a similar way "learn from past experiences and instructions."
P16 noted: "Not that is known how humans produce texts, so mechanisms developed
independently are unlikely to be the same."

Complexity, performance Three participants (P6, P7, P11) commented on ex-
pected difference in the complexity of the produced text, or performance factors that
might affect quality. P6 emphasized that "it depends on the level of development
of the AI" explaining that "in the ideal case one should not be able to recognize a
human produced text from a machine produced one." P11 used an example of google
translate and it being unable to translate complex terms or understand the context,
to point out that the difference between human and AI producing text might have to
do with the complexity of the language .

Additional thoughts P14 argued that AI lacks "intentionality" due to not having
"desires or beliefs", while P19 relatedly noted that AI cannot be "spontaneous" or
"irrational" in its behavior as compared with humans. Two participants also made
comments about formality in language. For example, P21 noted that "AI can only use
what it has been taught or can access via some database while humans may access
more informal or colloquial writing patterns."

Two comments noted that AI language systems are based on human-provided data.
For example, P6 didn’t expect a difference "because the information is mainly fed
by humans." Finally, three participants made seemingly contradictory or unclear
statements. For example, P22 indicated no difference, but then expressed an opinion
on the difference of a somewhat ontological difference:

“ I think in some ways, each AI and humans communicate with our own languages
and it’s a mean of mutual understanding between them, so it’s not that different.
It’s just, humans don’t operate the way AI does, and vice versa. ”

Table 8.4 provides other examples for examples and ratings mentioned above.
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N Example Yes Unsure No

Statistical/Data vs.
Symbolic/Mind

8 "from my understanding, computers generate text
statistically and linearly (vs. humans using mental
hierarchy of words)"

7 1 0

World model and
understanding

5 "It has not learned language by interacting with
society and cultures, learning from family and per-
sonal experiences, or have the ability to draw on
memory when responding in the same way humans
do."

5 0 0

Not sure how hu-
mans do it

4 "Not that is known how humans produce texts, so
mechanisms developed independently are unlikely
to be the same. Also humans seem to be much
better at text generating but may be it is because
they have more and more diverse experience"

3 1 0

Other 3 "In a sense, yes, because it‘s more or less about
encoding connections in memory, then following
the connections through to retrieve this memory,
or making predictions, based on what you already
know."

1 1 1

Complexity, Perfor-
mance

3 "I guess it depends on the level of development of
the AI. In the ideal case one should not be able to
recognize a human produced text from a machine
produced one."

2 1 0

No intentionality 2 "It seems not as structured as humans? And it
doesn’t seem to have "intentionality" (e.g. they don’t
appear to have desires or beliefs when they try to
make an argument)"

2 0 0

Formal vs.
informal lan-
guage/behavior

2 "AI can only use what it has been taught or can
access via some database while humans may access
more informal or colloquial writing patterns"

2 0 0

Human-based 2 "Because the information is mainly fed by humans" 0 1 1

Table 8.4: Codes re: expected differences between human and AI text production,
before writing. N indicates number of participants, Example shows a corresponding
quote, and Yes/No/Unsure are counts of categorical responses, for each label, from
participants about whether they think AI text production is generally different than
that of humans. Some responses are labeled with more than one.
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8.5.2 Interacting with the system
All the data discussed in this subsection was received through observation of partici-
pants’ interaction with the system and through verbal comments that participants
made during the study. The comments were made either when participants were
thinking aloud during a writing task, or as a reply to the interviewer’s questions.
Throughout the session interviewers asked general questions, like, “What are you
thinking?” and "How is the writing going?”: either once every 2 minutes or, if the
participant seemed to be disturbed by being interrupted often, when the participant
stopped writing. interviewers also asked more specific questions, like, “What do
you think about that suggestion?", "Why are you laughing?", and "Tell me how you
incorporated that suggestion.”

We noted broadly different styles of overall participant writing and engagement with
suggestions, described in detail below. We provide examples of participants who most
clearly embodied the associated characteristics of each.

1. Reactive writing. Through observation, interviewers identified four participants
for whom suggestions were actively shaping their story and helping them decide
where the story was going (P17, P7, P10, P23). They wrote in a way that looked
like a reaction to either suggestions of the system or as a reaction to the task.
There were clearly effects from the pressure of time, conditions of the task, and
their habits of writing. Some participants also mentioned that what they wrote
was more like a “stream of consciousness” (P23).

2. Proactive writing (with suggestions). Participants with clearly proactive writing
(P2, P11, P15, P18, P20) wrote having a clear idea of what they wanted to write
(having some horizon of their story) and how they wanted to do it (having
their own process). They incorporated suggestions of Editor-Red at some
particular points of their stories, either when there was the end of the scene
or after they had exhausted the story horizon they had in mind. They did not
let Editor-Red take over their process of writing. This type of writing was
characterized by longer writing periods and hitting suggestions fewer times.
For example, P18 requested suggestions only two times, and had a 15 minute
writing process non-stop. P19 requested suggestions three times, and had
longer writing periods, with one period being 9 minutes.

3. Actively opposed to suggestions. Four participants (P6, P8, P16, P22) were
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generally not willing to incorporate the suggestions of Editor-Red. For example,
P8 had their own idea of how they wanted to do things and explained the
resistance to incorporate the system’s suggestions, saying “I’m not a super
suggestible person.” P16 and P22 did not like the suggestions and did not
include them in the writing. P6 wrote so as to improve the suggestions by the
system, waiting for this to occur, and so didn’t engage with the suggestions in
the duration of writing their story with it.

We begin by exploring overall reasons, given certain types of suggestions and contexts,
to incorporate or not to incorporate suggestions in the view of our participants.
Subsequently, we describe and characterize instances of suggestion integration, often
from more reactive and proactive writers (who did accept suggestions), in detail
through the lens of integrative leaps.

Reasons to incorporate suggestions

Making a judgment as to whether the system’s suggestions are in line with the
participant’s writing or too “out there” seemed to be an important axis along which
participants, in the process of writing, were constantly making decisions about
suggestion incorporation. Five participants specifically commented on the system’s
suggestions being in line with their writing (P1, P3, P4, P20, P21, P5). For example,
P1 explained their decision to incorporate a suggestion because it was “thematically
accurate and kind of good-to-keep-the-story-going description." P20 set a scene in
their story and then hit the suggestions, as they wanted to see how Editor-Red "would
interpret that." One of the suggestions of Editor-Red was “...I’m calling to let you
know that you’ve been selected to the next round of the lottery,” and P20 exclaimed:
"Wow... it’s a bit scary because I had thought of the lottery idea or just some other
kind of news... yeah, so it’s interesting that it immediately followed that train of
thought about a lottery.”

At the same time, some participants appreciated that the system was providing
suggestions that were unexpected and not immediately related to their previous
writing. For example, one participant explained that some suggestions, even though
they seemed “absurd,” were also so “detailed” and “specific” that it was “inspiring.”
As a result, even though some suggestions were “a little bit out there” to the extent
that they would make them laugh, the suggestions would still give them “something
to go” (P1).
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We observed a subtle and variable trade-off between how creative or unusual sugges-
tions were thought of as being by participants and how easy it was to incorporate
them. The possibility of an easy transition towards incorporating the suggestions
seemed to be a crucial factor. For example, P1 commented on one of the suggestions:

“ Some of the suggestions, would be either so similar to what I wrote that it doesn’t
seem worth incorporating or too creative, or I guess too hard to transition to. But
that [suggestion] would logically be the next thing that I write about. ”

Along these lines, some suggestions that might have been incorporated under the
right circumstances by the corresponding writers were not integrated because of
the time and effort it would require. P9, when choosing one of the two suggestion
types (Plot and Description) that they equally liked, acknowledged that though they
liked the suggestion that was “more fun, weird, crazy,” it was such “a divergent
shift” that the suggestion looked “too effortful to incorporate.” Another participant
explained that if they were to take “a much longer route” they might follow the
system’s suggestion of monster hunting (Description suggestion: “You are a member
of a group of monster hunters.”) as “it seems fun” but since they were short on time
they decided not to explore this plot line (P5).

Reasons to not incorporate suggestions

Participants gave a wide variety of reasons as to why they might have been unwilling
to incorporate suggestions. Some participants commented that the textual suggestions
of Editor-Red looked “basic” (P15), “plain” (P6), “redundant” (P4), or were not
“picking up the tone” of the story they were writing (P6). At some points in their
writing, six participants commented that suggestions were not in line with what they
wrote (P2, P6, P7, P8, P12, P22), complaining that the system was not able to see that
“this is not where I’m going” (P7). Some of the suggestions also did not make sense to
participants and were repetitive (P2, P6, P17), whereas for some participants the fact
that some of the suggestions were not coherent was not an obstacle to engaging with
their content. For example, when P7 was interacting with the system, it experienced
a number of delays in producing suggestions, and finally a plot suggestion came out
as: "not sure where to end Train to MIT for the first time not sure where to end Train
to MIT for the first time not sure where to end Train to MIT for the first time not."
The participant said laughing: "That’s fine. I don’t necessarily need it to be coherent"
and expressed the readiness to carry on the writing.
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One of the four participants who did not incorporate the system’s suggestions found
that the suggestions contained tropes and led to more “stereotype writing” (P8). Four
participants also specifically pointed out that the system’s suggestion distracted them
from pursuing their own ideas (P2, P8, P12, P14). P8 explained that they felt they
had “to tune out” the system’s suggestions as they already had a picture of what they
wanted to write in their head and it was easier for them to write “without the extra
stuff.” Some suggestions also did not come at the right time in the narrative: “Oh,
wow, I would not think of cryogenic sleep! That’s an interesting idea, but I didn’t use
it. I don’t think it came at a good time in the story.” (P1).

Visual suggestions were not incorporated if they were perceived as unrelated to the
current writing (P14, P15, P6, P4). Participants also commented that some of the
images were not only unrelated to the writing but also seemed arbitrarily constrained
or homogeneous (e.g., demographically): “It’s kind of strange, there’s just a bunch
of white guys staring at me and I don’t know why” (P2) and “I’m confused ...And
I’m curious as to why all the suggestions are very similar, and they are all images of
straight blonde Caucasian women” (P5).

P14 considered the images “aesthetic” and “cute” but was following the idea they
had in mind already. Some of the image suggestions, similarly to the text, did not
come at the right time: “The pictures are cool. . . but this doesn’t really fit with the
character I have right now” (P15). P3 commented that even though they were not
using visual suggestions, having them seemed “less daunting than having a white
space in front of you.”

Sound suggestions were the least used, sometimes due to a lack of relevance to the
writing, either in content or in tone and style, and sometimes for other reasons. P5
described the sounds being not relevant and “random” (P5), and P9 explained why
they were going to switch off the sounds:

“The sounds are a bit dystopian. I feel if I use the sounds as an inspiration, I’d end
up thinking of some sort of totalitarian government that’s using lots of walkie talkies
all the time and tracking people. It sounds very different to the vibe I was thinking
in my mind. ”

The sounds were also described as “aggressive” making it hard to focus (P8), “too
much” (P9), and “distracting” (P12). All participants, at least once, switched off the
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sounds at some point of their writing, although we observed instances where sounds
were related to the story and/or resulted in incorporated suggestions.

Editor-Red as "support system"

Some participants described the overall experience of the system, which is not limited
to just the relevance of the suggestions. For instance, some reported that they felt
Editor-Red supported the writing process. P3 commented that the system was giving
“good lines” and admitted that it helped “to continue along, where otherwise I think
I will just stop writing.” P3 continued saying that when they had absolutely no idea
what to write, taking a word or a line from Editor-Red gave them “something to add”
and then they "kept going, and kinda went from there.” Two participants explained
that Editor-Red helped them to feel less stuck in their writing (P12, P16). Even
though P16 did not incorporate any of the suggestions, and during the experiment
commented on the suggestions being “dumb,” they expressed their surprise that, in
the end, writing in Editor-Red did seem to help them feel “less stuck.” P12 explained
their feelings about one of the suggestions: “Although I wouldn’t word-for-word take
that, it, at least, redirects my attention from just being stuck in the kind of the crucial
little loop to having somewhere else to go. So that’s helpful to get unstuck, I suppose.”

P23, reflecting on their experience of writing after the end of the session, admitted that
they felt that inspiration came not directly from suggestions but rather suggestions
made them think of something else and this is where ideas came from. P6 admitted
that even though they did not use the suggestions of Editor-Red, writing in it actually
“relieved some of the stress of writing.” P6 further explained that even though the
suggestions were not helpful to them personally, the system was still “creating that
distraction, that was good for making the task a little bit more relaxing.” They noted
that interacting with Editor-Red really helped in mitigating the stress of writing,
comparing it to a feeling of “petting a cat.”

P1 described how interacting with the system changed their process of writing as
they would “write for the suggestions.” P1 explained that when they didn’t want to
continue writing as they could not think of what to say, being in the system would be
a motivation to “write a few additional sentences in order to get a better suggestion”
and to continue writing if they were unhappy with the suggestions that I received till
the get a better suggestion. P1 found it "very helpful."
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All in all, observing participants’ interaction with the system enables us to map out
the multiplicity of tactics that participants engage in while performing the task of
writing a text. Participants borrow words and lines from the system’s suggestions,
get inspired by the system’s suggestions directly or indirectly, use ideas from the
suggestions as reference points to produce their own ideas, or receive psychological
support from the system (e.g. reducing the stress of writing by, for example, giving
them something to focus on besides their own feelings of getting stuck).

Willingness to cooperate with Editor-Red

Participants practiced different patterns of engagement with the system hoping that
it would provide suggestions that better served their purposes. Some were willing to
wait longer for the system to start giving better suggestions, occasionally under the
assumption that allowing more time would give the system an opportunity to catch
up with the participant’s writing. For instance, P1 said: “This makes me think I didn’t
wait long enough because now everything’s about phones. So maybe I should wait a
little longer.”

Some also decided to keep writing in order to give more information to the system
(P1, P19, P8). P1 reasoned that the information that they were "feeding it" might be
"not substantial now”. When P7 received another round of suggestions, one sentence
that particularly got her attention was the phrase “I could feel the horn blaring in
the distance.” This phrase was almost identical to what the participant had already
written, with the system having changed precisely one thing: the original sentence
was “I hear the horn blaring in the distance." P7 pondered:

“ I see it changed some of the words around. I could feel the horn blaring, which is
interesting. It’s much more visceral than I can hear it blaring. . . Yeah, hear is not
quite the right word. . . I will just put feel for now. ”

This is an example of how a participant is willing to cooperate with the system
and make sense of its contributions, even when someone else might consider the
re-phrasing to be overly subtle (merely a lexical substitution) and not valuable to
developing the story further.
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Integrating the system’s suggestions

To provide a more granular exposition of the suggestion integration patterns we
observed, we enumerate and detail a collection of integrative leaps. These leaps
describe the different kinds of interpretation and expression involved in incorporating
aspects of suggestions into the developing story, in particular how and how much
participants alter the meaning and structure of their narratives when doing so. We
use them as fine-grained windows into the mechanics of the most visible examples
of this incorporative process, those we are able to access through our observational
methodology.

Our data on suggestion integration contains 47 instances of integrative leaps from
19 (out of 23) participants; P6, P8, P16, and P22 did not appear to incorporate
Editor-Red’s suggestions in any identifiable way). These are examples that the
researchers conducting study sessions identified of participants engaging with and
actively incorporating suggestions from the system. Participants often explicitly
commented and explained why and how they incorporated suggestions, as they were
encouraged to do, and we report on their interpretation of this process in addition to
our observations and analysis.

Types of integrative leaps

The integrative leaps can be analyzed along a number of axes. First, we consider the
"edit" distance (e.g. lexical, semantic, etc.) between the suggestion as presented to
the user and as incorporated into the story. We broadly characterize these as direct
integration (N = 30; e.g., verbatim or restructured verbatim for a textual suggestion or
a textual analogue of the object or idea represented in a visual or auditory suggestion)
or indirect integration (N = 17), where it often would be impossible to capture this
integration if we did not have the participants’ explanations, due to the modifications
they made in the process of suggestion incorporation.

Second, we look at how incorporated suggestions relate to global aspects of their
story’s direction and most prominent elements. When participants used suggestions
to explore new lines of narration, we call it exploratory integration (N = 28, shown
on left half of both figures), in contrast to taking suggestions to continue with their
chosen narrative by adding more details, which we call confirmatory integration
(N = 19, shown on right half of both figures).
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Finally, with the view that suggestions are intended to ease cognitive inertia in the
writing process, we attend to the role they play in creative problem solving. Do
they simply solve a localized problem by "closing" some aspect of the narrative in a
necessary, analytical, or expected way? For example, naming a character that has
already been described, or explaining why a character went from place A to place
B if both of those events have been established. Or do they "open" up options to
consider, resulting in abstract, novel, or unexpected events, patterns, or directions?
We describe these as convergent integration (N = 31, shown on the bottom half of
both figures) and divergent integration, shown on the top half of both figures (N = 16)
respectively. While these often overlap with confirmatory and exploratory integrations
respectively, there were a few cases in our coding process where we found it useful
to explicitly make a distinction between these two dimensions, in order to better
explain behaviors that we observed. For example, two of the six integrations we
detail in the following section are ones we labeled, through an iterative process, as
exploratory and convergent. In these leaps, participants may use suggestions to both
pivot at a narrative level, and solve a local problem within this context. Although
our categories are still relatively broad and cannot cover all the differences between
integrations that we observed, we sought to sufficiently represent the most prominent
aspects of integrations with these labels.

Integrative leaps

In this section we review several examples of integrative leaps, identifying them along
the aforementioned axes as well as describing the participants’ interpretation and
comments. We summarize each instance in a discrete box that clearly identifies the
input text (before the suggestion), the suggestion at hand, the text after integration,
the participants’ explanation, and our labels (for example, Integration 1). When
participants identified that they were prompted by visual or auditory suggestions, we
include thumbnails or links for the reader to review.

P3, following the "The phone began to ring” prompt, was writing an intense story of
a mother getting a phone call from her estranged son. Through a number of previous
suggestion interactions, the participant wrote a story where the son on the phone
call was in trouble, as some people were holding a gun to his head and demanding
some information he didn’t have. The next round of suggestions contained "I’m just
a normal person who is in a hurry to get home." Following that, the participant
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wrote "She freezes. What is he talking about? This isn’t making any sense. . . yes,
she has an estranged relationship with her son, but they are normal people." As
the participant explained, the phrase in the suggestion "I’m just a normal person"
stood out to them and prompted them to develop it into the mother’s inner thoughts
trying to come to terms with the fact that her son and she herself are probably in
big trouble. We labeled this example as direct (almost verbatim integration: normal
person to normal people), exploratory (the participant did not have a clear idea of
the narrative) and convergent (solving a local question of how the main character
reacts to the news that her son is in trouble). See integration 1 for more details.

Integration 1
Input (summary): [Emotional dialogue, son is held captive. . . ] . . . “What?” She replied back.
“Who are you talking about?” “It’s them,” he whimpered. “But I-I don’t have anything to tell
them. I don’t have the information they’re looking for.”
Suggestion: Plot. I’m just a normal person who is in a hurry to get home. . .
Integration: She freezes. What is he talking about? This isn’t making any sense. . . yes,
she has an estranged relationship with her son, but they are normal people. “You’re not
making any sense.” “It’s not normal. None of this is normal” he responds shakily. She hears
a scream and the phone cuts out.
Explanation:

“. . . I’m just thinking about how to continue this story but I don’t really have much. . .
but the suggestion under Plot is giving me some. . . you know, "I’m just a normal
person" line. . . I still don’t have any sort of direction with the story. . . this feature
seems to be good to help me, like, continue along, where otherwise I think I will
just stop writing. . . ”
“ . . . it just kinda stood out to me in relationship to this story... cause this story, it
seems like again the mom is just a normal person, so if she is getting this phone call
from her son, it doesn’t make any sense, we are just normal people, so I thought I
would incorporate that" ”

Our labels:

• Direct: the incorporation is almost verbatim (I’m just a normal person to they are
normal people).

• Exploratory: the writer, from their own remarks, does not have a clear narrative
direction that this suggestion would reinforce. Rather, it gives them a possible next
step to build on.

• Convergent: the suggestion helps to solve a local problem in a concrete way (continuing
the story further).

P21 was developing a story from the prompt "The phone began to ring" and was
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describing a call from the best friend of the main character. P21 wrote the first part
of the dialogue "“Wait why were you in the hospital?” I asked my friend” and the
subsequent round of the suggestions contained images with cars. The participant
immediately took on the idea: “I’m seeing cars, so maybe he was in a car crash.”
and to continue the dialogue, P21 wrote: “My sister was in a car crash. She’s okay,
but she broke a rib.” Since the suggestions helped to keep the writing going and did
not prompt the participant into a new avenue of thought, as well as being a textual
representation of a suggested visual object, this entry is labeled as direct (images of
cars to car crash), confirmatory (reinforces the existing narrative), and convergent
(closes a local question of why the person is in the hospital). We report details in
integration 2.

Integration 2
Input (summary): [Best friend phone call. . . ] . . . “I ran into your ex-boyfriend at the hospital”.
I was in shock. I hadn’t seen him since 4 years ago when he left me to run away to Cuba with
some new woman.

Suggestion: (Images)
Integration: “Wait why were you in the hospital?” I asked my friend. “My sister was in car
crash. She’s okay, but she broke a rib.” I completely forgot about what she said about my ex
being in the area, assuming it was hours ago, and rushed to the hospital. We were neighbors
growing up, so I was pretty close with her sister too.
Explanation: “I’m seeing cars, so maybe she was in a car crash.”
Our labels:

• Direct: direct representation of visually represented object.

• Confirmatory: reinforces the existing narrative.

• Convergent: closes a local question: i.e. "why?", "what happened?" regarding a charac-
ter in the story.

P4, following the prompt "The phone began to ring," was developing a story about a
police detective who called the main character and asked to come to the police station
because their sister was in trouble. P4 felt unsure as to how to continue and what it
could be that the detective could have been accusing their sister of. This participant
was really perplexed with what in their previous writing could have prompted the
subsequent suggestions involving zoos, animals, and tropical places (these were in
the retrieved images) but still decided to go ahead and integrate the suggestions into
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their story. In the end, P4 wrote (about the police detective): “He appeared a bit
nervous. He told me that he suspects my sister may have stolen an elephant from
the zoo when she was studying abroad in India. I felt shocked.” P4 explained their
reasoning in integrating the system’s suggestion: “I don’t know why these images
popped up and how they are related to what I wrote before. But I saw the elephants
and some kind of more tropical places and so it kind of made me think of ...I don’t
know I was thinking what could it she possibly have done wrong that she could be in
trouble and so the elephant was standing out to me, so I chose to say that “she stole
an elephant” and I was thinking where elephants are and I know that there are a lot
of elephants, like Indian elephants, so that’s why I said that.” See integration 3 for
more details.

The participant concluded their story by writing, in an attempt to rationalize and
make sense of the participation of the elephant in their story:

“ I knew my sister loved animals, especially larger ones, but I never would have
expected this. Where would she have left it? I had so many questions. I asked if I
could talk to my sister. "Did you steal an elephant??" "I don’t know what he’s talking
about. I’ve never seen it before." ”

Later on in P21’s story (previously described in integration 2), they were describing
a character driving to the hospital and the system gave auditory suggestions that P21
described as chanting and explained: “There is chanting happening, it makes me
think she got into traffic because there’s a protest happening, ...or a parade.” So P21
wrote in their text: “In my mad dash to get to the hospital, I forgot that the 4th of
July parade was happening today just blocks down from the hospital. I’m stuck at an
intersection where the parade is passing by...” In this example, sound suggestions
prompted the participant to think about what could have caused the traffic, so call
the integration indirect. The integration of this suggestion also significantly altered
the course of the plot (exploratory) creating new avenues of the story development
(divergent). More details are in integration 4.

P5 was writing a slow-paced descriptive story using the prompt "A train arrives at
the station." At some point, the protagonist was stopped by an officer and told that
the train would not be boarding as there was some issues. P5 requested a suggestion
and one of the suggestions was “I had been waiting for this moment for years." The
participant continued developing their story and wrote: “The train was already late
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Integration 3
Input (summary):[Going to meet detective] . . . I took the train to get to the police station.
When I arrived, the detective met me at the door. He appeared
Suggestion:
Plot. to be a little bit nervous but seemed to calm down when I asked him. . .

(Images)
Integration: He appeared a bit nervous. He told me that he suspects my sister may have
stolen an elephant from the zoo when she was studying abroad in India. I felt shocked.
Explanation:
“ I guess I used the first section of the plot to write “he appeared a bit nervous". . .
these images I don’t know why they popped up and how they are related to what I
wrote before. But I saw the elephants and some kind of more tropical places and so
it kind of made me think of ...I don’t know I was thinking what could it she possibly
have done wrong that she could be in trouble and so the elephant was standing
out to me, so I chose to say that “she stole an elephant” and I was thinking where
elephants are and I know that there are a lot of elephants, like Indian elephants, so
that’s why I said that ”

Our labels:

• Direct: elephant (from images), nervous (from text)

• Exploratory: the elephant, India, studying abroad are substantially new aspects of the
plot at this point

• Divergent: does somewhat "close" a local question (what did she do?), however in a
very unexpected way that raises many more questions than it answers
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Integration 4
Input (summary): [Continuation (see integration 2] . . .We were neighbors growing up, so I
was pretty close with her sister too.
Suggestion: Sound 1 (crowd call and response); Sound 2 (crowd cheering)
Integration: In my mad dash to get to the hospital, I forgot that the 4th of July parade was
happening today just blocks down from the hospital. I’m stuck at an intersection where the
parade is passing by, so I have no choice but to watch the high school band and floats made
by various organizations go by.
Explanation: “There is chanting happening, um It makes me think she got into traffic because
there’s a protest happening, . . . or a parade.”
Our labels:

• Indirect: no words or concepts are directly applied; abstract link must be explained by
participant (sound of crowd chanting to 4th of July parade)

• Exploratory: altered the course of the plot significantly; narrator eventually turned
around and went home after several experiences in the parade

• Divergent: not necessary or expected; creates a twist to develop further; opens up new
questions for story

and now this; who knows how long before I get on board?! I can’t be late. . . maybe
if I start now, I can drive over to. . . no, no, no. I’ll never make it that way.” To
the interviewer who ran the session, there was no obvious connection between the
suggestion and what the participant subsequently wrote. However, P5 explained that
the suggestion "I had been waiting for this moment for years" made them think "more
of a frustration for the train being late" and they imagined that there was something
that the character was supposed to get to on time in another city. So this idea was
translated into making the character impatient.

Following the prompt "A train arrives at the station" P9 started writing a fantasy story
about frogs waiting for their tadpoles to get back from Tadpole Kindergarten. Another
round of suggestions read: “sound of a bell ringing and the frog who was holding the
bell was holding a tray of frogs. . . ” As the participant explained, the specific "sound
of a bell ringing" in the suggestion made them think about sounds in general and
what kind of sounds can be in the setting of their story. The participant wrote “Once
inside the parlour they were all taken back by the ringing and clattering of dishes
and trays. ” Here, the participant took a concrete description of sound (sound of a
bell ringing) and then made a shift from concrete description to the general concept
of sound and made a decision about what kind of particular sound will be in their
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Integration 5
Input (summary): [Train is running late. . . ] ". . . There is a matter we have to attend to first
before we will let anyone be checked in,” said the officer calmly.
Suggestion: Description. I had been waiting for this moment for years.
Integration: The train was already late and now this; who knows how long before I get on
board?! I can’t be late. . . maybe if I start now, I can drive over to. . . no, no, no. I’ll never
make it that way.
Explanation: “So in this case rather than “waiting for this moment for years,” I’m thinking
more of, like, a frustration for the train being late and now more delays and there’s like
something that character was supposed to be trying to get to on time in another city. So it’s
going to [make] the character impatient.”
Our labels:

• Indirect: waiting for years to frustration, impatience

• Exploratory: switches from describing scene and events to narrating internal dialogue
about the character’s feelings

• Convergent: an expected reaction to the situation that describes the effect of the train’s
lateness

story (“clattering of dishes and trays”).

We summarize these axes of integrative leaps in two figures. Fig. 8-5 shows direct
integrative leaps, and Fig. 8-6 shows indirect integrative leaps. In both figures,
left is exploratory, right is confirmatory, top is divergent, and bottom is convergent.
Participant IDs are noted along the horizontal axis, aligned to the corresponding
instances. We can see a few patterns when surveying these leaps in total. For
example, participants generally made more direct leaps than indirect leaps, but
these are also related to the other dimensions: most direct leaps were also convergent,
addressing necessary and local narrative features, though there are several exceptions.
Conversely, indirect leaps are slightly biased toward divergent integrations. Similarly,
the exploratory label often coincides with divergent, but we can see several exceptions
to this. On the sides, we include high-level descriptions of what each integration
contributes to the developing story, with illustrative examples provided for each
quadrant.

8.5.3 Outcome Evaluations
In addition to participants commenting on their experience during the interaction
with the system, we were also interested in capturing overall impressions and specific
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Integration 6
Input (summary): [Tadpoles taking the train back home from Kindergarten. . . ] . . .Once
inside the parlour they were all taken back by the
Suggestion: sound of a bell ringing and the frog who was holding the bell was holding a
tray of frogs and he was holding a tray of tadpoles who were all waiting for the new tadpoles
Integration: Once inside the parlour they were all taken back by the ringing and clattering of
dishes and trays. Frogs and toads were excitedly gulping down the various fly filled delights
inside. “Georgia! Barry! Tadette!” beamed Mr Willeker. “You all look so well!” Please take a
look at the menu.
Explanation:
“ I found that interesting as I guess it made me think more of like the sounds that
could be inside this parlor or something . . . because, basically, I was going to end
up doing another long description that’s probably quite boring. Probably similar
to my previous thing I was writing, but I could then think about the sounds like
clattering plates. ”

Our labels:

• Indirect: sound of a bell + tray to ringing and clattering of dishes and trays; tray
is shared, but most of it is indirect

• Exploratory: participant uses it to lead in a different description (see their explanation)

• Divergent: a level of description that opens up commentary about the food and envi-
ronment, etc.; not necessary or expected
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Add details (Suggests a prop)

Restructured Verbatim

Clean Verbatim

Better Phrasing

Elicits a mood

Elicits an idea of a character

Elicits a thought about Location

Elicits a thought about atmosphere

Elicits a thought about a new plot direction

Elicits a thought about a plot development

Better PhrasingBetter Phrasing

Suggestion : IMAGE - many masks, one is half mask

Participant wrote: “... Half his face is masked by 

shadow, the other half brilliantly painted by the rainbow 

light in my room.”

Participant Reported: “This mask reminds me of 

the Phantom of the Opera, so I’m going to make the 

mask of the character, like, half of it you can see, 

half of it you can’t”

Suggestion : SOUND (Subway train announcer)

Participant wrote: First wrote: “The repeating 

message was announced…” then deleted and wrote: 

“Last call for…” I put on my headphones as the doors 

closed and this branch point in my life has closed its 

options. There’s no turning back anymore.

Participant Reported: “That was helpful, I think… It 

really brings me to...Like, the announcer… I wasn’t 

thinking about the announcer”

Suggestion :The river that I know? The river 
that I never knew? I was in the river, and 
the river was me. I was in the river
Participant wrote: The train was passing by blueness 

when I opened my eyes again. Which river is this?

[pressed TAB] A river that I know? The river that I never 

knew?
Participant Reported: “I kind of like the plot part being 

philosophical and moody, cause this and, in general, me 

writing is like very… [laughs]  kind of more like mystery, 

intrigue, being thoughtful...” 

Suggestion : IMAGES: of tropical places and  an elephant

Plot: to be a little bit nervous but seemed to calm 
down when I asked him if he could help me I 
asked him if he could help me I told him that I 
was in trouble and he told me

Participant wrote: “He appeared a bit nervous. He told me that 

he suspects my sister may have stolen an elephant from the zoo 

when she was studying abroad in India. I felt shocked.”
Participant Reported: .. “he appeared a bit nervous.  I saw the 

elephants and some kind of more tropical places and so it kind of 

made me think of ...[The main characheter] possibly have done 

wrong, the elephant was standing out to me, so I chose to say 

that “she stole an elephant” ...

Direct

P4 P4 P5 P21 P9 P10 P10 P13 P14 P14P14 P17 P7 P21P14 P11 P4 P19 P14 P12 P9 P21 P4 P17 P3 P7 P19 P15 P4

N=11
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Figure 8-5: Diagram of exploratory/confirmatory and divergent/convergent direct
integrative leaps made by the participants.

thoughts post-writing related to aspects of the prior assumptions and participant
explanatory models we captured.

General Impressions

We obtained general impressions with one open-ended question ("What are your
impressions from using Editor-Red?"), and subsequently tagged these with overall
sentimental valence (summary in Table 8.5). We found that a majority of participants
(N = 13) noted largely positive experiences with the interface, offering considerably
different reasons. Some participants felt the suggestions were impressive or surpris-
ingly relevant; for example, P20 noted that they were "pleasantly surprised by how
spot on the predictions were at times," and P12 wrote "I was impressed by its ability
to generate sentences based on the context."

Some participants indicated that suggestions were directly helpful. P1 made an ex-
plicit connection to writer’s block, saying "I really enjoyed the visuals and suggestions.
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Elicits a thought about Location

Elicits a thought about atmosphere

Elicits a thought about a new plot direction

Elicits a thought about a plot development

Suggestion : The train leaves the station and the 
girl is left alone She looks up and sees a man 
in a suit and tie standing by the window ...
Participant wrote: “... a whole group of people filter out of the 

train and she snatches a seat in the far corner and plugs her 

ears with some headphones. ... two stops later, and the train 

empties. The girl finds herself nearly alone, except for a 

stranger at the far end of the train staring right at her. Her heart 

jumps and she clenches the fabric of the bag.”

Participant Reported: “I might like use this sort of suggestion, 

like meeting someone, ”

Suggestion : SOUND (eerie sound)

Participant wrote: “I was replied by a deep, hoarse voice 

who said calmly yet sinisterly,” [switched on SOUNDS] " I 

killed your little sister"

Participant Reported:“Just now I turned on the sound 

and it actually kind of, like, gives me...this kind of 

like….eerie sound like music, so it kind of gives that kind 

of… you know, scary vibe. It kinda gives me this emotional 

feeling, so it kind of helped me ...”

Suggestion : Plot: “sound of a bell ringing and the frog 
who was holding the bell was holding a tray of frogs”

Participant wrote: ““Once inside the parlour they were all taken back 

by the ringing and clattering of dishes and trays. Frogs and toads were 

excitedly gulping down the various fly filled delights ..”

Participant Reported: .“I found that interesting as I guess it made me 

think more of like the sounds that could be inside this parlor or 

something … because, basically, I was going to end up doing another 

long description that's probably quite boring. Probably similar to my 

previous thing I was writing, but I could then think about the sounds like 

clattering plates.”

Indirect

P10 P5 P11P23 P18 P5 P5 P20P21 P19 P17 P8 P3 P2 P1 P1

N=4

N=9

N=3

Figure 8-6: Diagram of exploratory/confirmatory and divergent/convergent indirect
integrative leaps made by the participants.

I’m not a very visual person and struggle with writer’s block, so this was very helpful."

Others found suggestions indirectly helpful, due to mood enhancement or some other
affective effects. P11 wrote that it was "Very helpful in bringing the mood up in
writing. It helps create the ambience and emotions needed for the writing." P5 and P9
both noted that the interaction was "fun" in addition to noting other effects beyond
helpfulness of suggestions. P9 wrote:

“ It was fun/funny. The plot suggestions often didn’t make sense but the description
ones were either useful/thought-provoking or amusing to read even if I didn’t
use any part. The sound wasn’t directly influencing my ideas but having background
noise was relaxing. The pictures sometimes were relevant and sometimes not, so I
didn’t stare at them too long when they changed. ”

P15 indicated that suggestions weren’t always relevant, but that they were willing
to do the work to find ways to incorporate them, which ultimately did make them
helpful:
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“ It was definitely a place to draw inspiration from. I would not use the suggestions
as they are, but with some modifications, the ideas presented were definitely
helpful. The sounds are calming and peaceful. The background images are a hit or
miss because they don’t tell the same story as the text I am writing, but if I thought
about the images a bit more creatively rather than literally, they were a bit
more helpful. I don’t ever see myself using the overlay version of the images though.
”

We annotated several responses as being overall negative (N = 6). Most of these also
included comments about suggestions being less relevant, but participants did not
indicate that they were necessarily able to integrate them despite this (in contrast to
P15). For example, P16 wrote:

“ good idea but implementation worse than I expected. Images and text suggestions
did not match storyline well, some proposed options were too exotic like "ustropho-
bia", selection tool to find images was highlighting parts of word not whole word,
sounds were not very relevant, ”

P18 also commented on suggestion relevance, but focusing on the writing context
and timing rather than the overall relevance, noting that "I think it’s interesting, but I
don’t see the plot or descriptions as being particularly helpful unless it’s for a writing
prompt. Once you get into the story, the suggestions are not very relevant."

Still other participants seemed neutral about their experience with the interface
(N = 4), either providing little direction in terms of what worked for them and didn’t,
or explicitly accounting for both strengths and weaknesses in a balanced manner.
P14 wrote:

“ It was sometimes helpful when I don’t have any ideas, but not super helpful. . .
Sometimes the text might not make sense. . . The images are usually slightly off topic,
but that could be helpful in giving me new ideas (they are very aesthetic/instagram-
feel). . . I liked the sounds when they existed (it really does bring me to the place) ”

Suggestion Helpfulness

Participants’ overall impressions contained general indications of suggestion help-
fulness, but we were also interested in obtaining fine-grained reflections to better
elucidate the conditions and motivations involved in this. Again, participants di-
verged in what they found helpful and why. Here, we coded responses as indicating
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N Example

Positive 13 "In Editor-Red I felt like I was writing in a time travel machine rather than staring at
a blank page. I think it helped me feel a lot more grounded, present in the moment
and in my body rather than just a disembodied brain trying to force words on a
page."

Negative 6 "I didn’t find it very helpful, but I could see how some features might be useful
if developed further. The suggestions didn’t seem to take into account the total
content of what I had written, and so they seemed irrelevant and even distracting
(for example, a phone scrolling instragram on a beautiful summer day when the
phone in my story was a handset phone in a hotel room)"

Neutral 4 "It seemed fairly easy to use. I primarily was looking at the Plot section, possibly
because it was more relevant to the given prompt while the Description section
seemed to be more like different prompts. "

Table 8.5: Our sentiment labels for overall impressions from participants of
writing with Editor-Red. N indicates number of responses, Example shows a corre-
sponding quote.

suggestions were Definitely helpful (N = 2), Helpful (N = 5), Somewhat helpful
(N = 11), Rarely helpful (N = 1), or Not helpful (N = 4), see Table 8.6 for full
details. In addition to this, we found several different ways that suggestions were or
were not helpful.

New ideas, phrases, words A common indication was that suggestions yielded new
ideas, possibly in phrase form but sometimes even as a word that was contextually
useful. Although the suggestions typically contained full sentences, subsets of these
were more often described by participants as being helpful. The helpfulness of these
ideas also extended to their presentations in other modalities (images and sounds).
P21:

“ The suggestions were helpful. At one point, I felt that there had not yet been
enough action in the story and the Editor suggested an event to happen. Another
time, the sounds that were playing triggered an idea for the next setting of the story.
Other times, even if I didn’t like the suggestion I was given, it would still give me an
idea for how to proceed. ”

Relevance Another reason suggestions were or were not helpful had to do with
how relevant they were regarded as being in the context of writing. Most participants
were mixed on this. For example, P8 wrote that the sounds seemed in-tune with the
tone of the story they were writing, but described challenges to overall relevance of
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suggestions:

“ I was impressed that the sound suggestions seemed to pick up on the creepy, sus-
penseful tone of the story right away, and it could be helpful if the image suggestions
followed the tone more closely. It kept showing me pictures of smart phones, which
was not helpful. It would have been more helpful to see images of places and people
for inspiration about how to describe their features. it would also be more helpful if
the suggested images were more varied rather than all being pretty similar. That way
the writer could choose from potentially useful images (and maybe even indicate
which ones were more useful to see more like that?) ”

P2, by contrast, found the sounds very distracting but the plot-level suggestions
occasionally helpful:

“ the plot suggestions were occasionally helpful, but the descriptions were usually
completely off the mark; the background images were aesthetic but not totally
related, and the sounds were very distracting ”

Mood, continuity, and flow Some participants expressed effects on process rather
than on content, as we also observed in their comments during the interaction. They
suggested benefits beyond the direct application of suggestions, for example P1 noted:

“ For the most part I think that they were helpful. Even if I didn’t use every idea that
was suggested to me, I was inspired by their mood. ”

P11 also pointed to this, writing about flow, mood, and ambience (the latter of which
did seem to depend on relevance to the general topic of their progressing story):

“ Yes! They are definitely helpful! I think it helps to prompt me to think about what
to write next and keep the mood on writing. It helps to keep the ambience according
to the topic Im writing as well. ”

Redundant and repetitive suggestions Several participants noted the presence of
redundant or repetitive suggestions, either repeating the content of the text in some
form, or containing internal repetition. P15 wrote:
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“ The suggestions could definitely be improved. For example, the first suggestion I
had kept repeating the same things in the plot box and the description box was very
plain and essentially what I had already written. However, the second time I used a
suggestion went better and I was able to draw inspiration from the images and plot
box. ”

Additional thoughts Two participants found suggestions not or rarely helpful
during the course of their writing, even when they might identify their potential
value. Table 8.6 contains such an example, as well as a summary of all the other
themes.

Outcome Ownership

Almost all participants (N = 22) indicated that they felt the outcome text was primar-
ily or entirely theirs, citing a few different factors to reason about their ownership. No
participants reported not feeling ownership, while one expressed a little uncertainty.

Only took some phrases/words/ideas Most participants pointed to their cognitive
and creative work in absorbing suggestions in the form of phrases, words, and ideas
into their stories. P5 made a comparison to a collaborative process with another
writer:

“ I would because I didn’t take suggestions word-for-word except for one short phrase.
Otherwise, it was like me bouncing ideas off a friend rather than the friend actually
writing prose for me. ”

Ideas were primarily theirs Other participants made the perhaps related argument
that general, global aspects of the stories were their own. From P13:

“ Yes because while I used the suggestions somewhat, the general storyline was my
own. ”

Autonomy and authorial discretion P22 pointed to authorial discretion, i.e. "final
cut", as the source of their ownership over the outcome: "I think whatever platform
you use to brainstorm, in the end of the day, you are the decision maker to put that
into your writings or not."

P21 referenced their work in not only deciding how a suggestion might be integrated,
which we have discussed earlier, but perhaps whether or not to integrate it altogether:
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N Example D H S R Nt

New ideas/phrases/words 10 "The plot descriptions and text suggestions
were helpful and creative. Some of the im-
ages, however were a bit generic. I mentioned
a phone and the grid overlay just shoved several
iterations of smartphones/, it would be nice if
it could show different types of telephones, and
in that way, allow the writer to have a visual
reference, in case the writer wants to describe
the object in more detail."

1 3 6 0 0

Relevance 6 "They were sometimes helpful and sometimes
not. The suggestions were sometimes incoher-
ent sentences, and they sometimes would not
fit in well with the rest of the story."

0 0 4 0 2

Mood, continuity, and flow 4 "The suggestions were helpful. At one point, I
felt that there had not yet been enough action
in the story and the Editor suggested an event
to happen. Another time, the sounds that were
playing triggered an idea for the next setting
of the story. Other times, even if I didn’t like
the suggestion I was given, it would still give
me an idea for how to proceed."

1 3 0 0 0

Redundant/Repetitive 3 "I took some of the suggestions, but there was a
lot of repetition (it kept wanting me to include
a "hospital" scene, for instance). I mostly used
it before a change in the narrative and it helped
me think about plot development. "

0 0 2 0 1

Other 2 "For the suggestions menu, it didn’t really work
with me, only 1 out of 3 chances did I get to
use it but it’s quite similar with what the in-
troduction video explained and I think they’re
helpful too in times of writer’s block appear. "

0 0 0 1 1

Table 8.6: Codes from whether and how suggestions were helpful. N indicates
number of participants, Example shows a corresponding quote. Here, we coded
responses as indicating suggestions were Definitely helpful (N = 2), Helpful (N = 5),
Somewhat helpful (N = 11), Rarely helpful (N = 1), or Not helpful (N = 4). Some
responses are labeled with more than one.
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“ I would call it my own. While I did receive inspiration from the Editor, there was
nothing that I took verbatim from the Editor. I didn’t include anything without
putting thought into whether or not it would add to the story ”

Similar to real-world encounters Some participants compared the references
obtained through working with Editor-Red to real-world encounters or analogous
explorations of open domains like the internet. P11 wrote:

“ . . . Just like when we try to find ideas through browsing the internet, or just having
a walk outside to create the mood and inspiration to write. But editor Red makes
it more efficient and easier to find idea since it is all in one platform. ”

Suggestions were not helpful Some participants felt ownership due to not in-
corporating any suggestions. P8 very simply stated: "I didn’t really use any of the
suggestions."

Additional thoughts P1 indicated "I would call it my own, but acknowledge the
suggestions that were made to me." They were the only participant that suggested
such an acknowledgement. All these codes are summarized in Table 8.7.

Differences from Initial Expectations

To capture the ways in which writing with our interface qualitatively differed from
their expectations of it, we posed an open-ended question. We coded the responses
both for overall difference (Yes/No/Unsure) and themes that explain how or why, if
so (see Table 8.8). A majority of participants (N = 13) indicated a difference from
their expectations, with many also indicating that it was overall similar (N = 9). We
coded one response as being unsure: P10 wrote "It was a novel experience. I had no
expectations because I wasn’t sure what to expect."

Similar 6 participants noted that the experience was overall similar to their expec-
tations. P14 wrote:
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N Example Yes Unsure

Only took some
phrases/words/ideas

10 "Since some of the suggestions were pretty far
out there, I would say that what I wrote is my
own. However, there were interesting moments
where I did copy a phrase that the system pro-
posed. This felt more like plagiarizing than,
say, picking a different word from a thesaurus.
But I don’t think the system can take too much
credit since it was generating ideas based on
my writing."

10 0

Other 3 "It depends. If I only used it to provide visual
references and sounds for describing a scene,
then would still call it my own, but if i got vital
plot points from the editor suggestions, then I
wouldn’t fully call it my own work."

2 1

Ideas were primarily theirs 3 "It definitely feels very much like my own be-
cause almost all the words were mine, the story
and progression is mine, the tone is very much
mine."

3 0

Autonomy and authorial
discretion

3 "I would call it my own because even though I
did use the features to brainstorm, but I mostly
write it on my own and I think whatever plat-
form you use to brainstorm, in the end of the
day, you are the decision maker to put that into
your writings or not. "

3 0

Similar to real-world en-
counters

2 "Yes. Because it helps me find an idea, but I
was the one who developed the story and make
the story coherent. I think Editor Red is just
a platform that helps a lot in creating ideas
and mood in writing, not to help in writing
the whole story itself. Just like when we try
to find ideas through browsing the internet, or
just haviing a walk outside to create the mood
and inspiration to write. But editor Red makes
it more efficient and easier to find idea since it
is all in one platform."

2 0

Suggestions were not help-
ful

2 "Yes, because it was produced by me entirely " 2 0

Table 8.7: Codes from open responses regarding ownership over outcomes after
writing. N indicates number of participants, Example shows a corresponding quote,
and Yes/Unsure are counts of participants reporting a feeling of ownership or being
unsure (no participants responded no).
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“ I have worked with language models before (I’ve played around with Writing with
Transformer-type websites, using GPT2 for applications, and I’ve actually done an
NLP externship that involved making image recommendations based on text haha
using Unsplash too) so it was similar to what I expected in that it sometimes doesn’t
make sense, says things that are not super related, but could be coherent/interesting
sometimes. ”

Less relevant Participants remarked that suggestions were less relevant than they
imagined initially, if not always then some of the time at least. P4 remarked:

“ Sometimes I had no idea where the pictures in the grid came from, because
sometimes they seemed relevant to what I had written and then sometimes it
seemed like they were completely random. I expected the plot suggestions to be a
little less repetitive. ”

Less out-there P2, among others, noted that suggestions were less big-picture or
less out-there (which we use to imply further from the written narrative) than they
anticipated:

“ fairly differently... I guess I was expecting some bigger-picture feedback, like larger
plot suggestions or thematic images (like outer space for a space-related story ...
though how clear would it be to AI that the story is about space?) ”

More creative/intelligent Two participants noted suggestions being more creative
or intelligent than they expected. P1 wrote:

“ It was surprising to see the intelligence of the AI and the creativeness of the
suggestions, for example "cryogenic sleep" was a very novel idea suggested to me. ”

Less subtlety/control P7 expected and desired differences in what parts of their
writing the system attended to, indicating that they might like to do this through
some control input:

“ I thought it would just look at the last few words that I had written and it would
ideate on those ideas. Sometimes that was the case, particularly for the image
suggestions. However, the text suggestions would sometimes go all the way back to
the beginning of the story. I think that I wanted more control over where the AI was
paying attention, but it otherwise did what I thought it would do. ”

191



Slower P16 remarked that the interface was slower to respond than they expected,
in addition to suggestions being less relevant: "its interface acted as expected but I
expected it to give suggestions faster and those be more relevant"

Not as directly usable/helpful P9 and P3 noted that suggestions were not as
directly usable or helpful as expected. P3 wrote: "I thought it would give me more
suggestions/sentences that I would just copy into my writing directly. It was more of
abridged words/phrases."

Human-AI Differences

We assessed differences in participants’ practical expectations of our system and
human writing partners with a counterfactual item: how did they think writing with
such a partner might be different?

More collaborative/communicative Most commonly, participants expected greater
communication and a more collaborative interaction from a human co-writer. P7
noted this:

“ I think I would want another human to be more coherent. I would expect them to
make more meaningful contributions to the work and I think that would feel more
like a collaboration. This felt like I was immersing myself in a writing environment
where the things were tangentially related to what I was writing, but not exactly
relevant. ”

More understanding/experience Other participants alluded to experience of the
world or understanding about more general aspects of narrative development. P6
wrote that "I could explain to the person the story I am thinking about. I could convey
the tone and the feelings I am trying to infuse in my text"

Speed (slower/faster) or effort Participants either thought writing with a human
would be slower or faster, or require less or more effort in comparison. More commonly,
participants thought it would be slower and require more effort. P22 reasoned: "I
think, it will require more efforts because mutual agreements between the other
humans are needed and the outcome really depends on how you and that person’s
relationship, their background, mutual understanding, etc."
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N Example Yes No Unsure

Similar 6 "Yes, it did. It is similar with the introduction video and I can
use it easily by watching that."

0 6 0

Less rele-
vant

4 "Sometimes I had no idea where the pictures in the grid came
from, because sometimes they seemed relevant to what I
had written and then sometimes it seemed like they were
completely random. I expected the plot suggestions to be a
little less repetitive."

4 0 0

Less out-
there

3 "I expected the sounds to be more ambient sounds that con-
tributed to a certain vibe of the story, but they seemed much
more random and chaotic, which maybe had to do with the
content of my story. I didn’t expect that the editor would be
able to draw upon elements of the story I had already written.
I expected it to imagine new storylines that may have taken
me in a new direction."

2 1 0

Other 2 "It was a novel experience. I had no expectations because I
wasn’t sure what to expect."

1 0 1

More cre-
ative/intelligent

2 "It was surprising to see the intelligence of the AI and the
creativeness of the suggestions, for example "cryogenic sleep"
was a very novel idea suggested to me."

1 1 0

Less sub-
tlety/control

2 "The plot suggestions were not as subtle as I expected, like
I thought it could help lead into plot points but instead the
suggestions were often far off things I’d have to work toward
and might take a bit of time to write to that point to incorpo-
rate the plot suggestions and make it make sense."

2 0 0

Slower 2 "see answer above for details. its interface acted as expected
but I expected it to give suggestions faster and those be more
relevant"

1 1 0

Not as
directly us-
able/helpful

2 "The sounds were not what I was expecting. They sounded
quite eery and scary, and I was trying to write something more
lighthearted. Some of the suggestions were surprisingly good
(like including characters that I’d mentioned and dialogue).
Some of the suggestions also looped around though, and
didn’t really make sense (& I maybe expected them all to be
kind of ok). I liked that the suggestions were slightly longer
than I expected though."

2 0 0

Table 8.8: Codes from how using Editor-Red compared with each participant’s
expectations. N is number of responses, Example contains a quote associated with
the label, and Yes/No/Unsure indicate whether the experience was overall different
than expected.
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P11 similarly expected writing with a human to be slower and/or require more effort,
especially one who isn’t a professional author. They attributed this to time needed
for information processing, searching with other tools, etc.:

“ I think it would take more time if I write with another human since he/she would
have to think for ideas and suggestions as well, or if not, he/she might also use
another artificial intelligence like Google to find more ideas. Unless, the human is a
professional author. If not, I think it will take more time to write as I would have to
discuss as well. In addition, another human would not be able to create the mood/
ambience that I would like to have while writing. ”

More questions P3, among others, expected more questions along the writing
process:

“ I think we probably [would’ve] asked each other questions back and forth like "why
is the character doing this? What does it sound like?" etc. Writing with humans
tends to involve a more "question-based" approach. ”

Less self-driven P14 and P15 expected the process to be less self-driven or self-
owned, P14 wrote: "It might also feel less introspective (I enjoy the space from being
alone)," while P15 alluded to ownership (see Table 8.9.

Additional thoughts P23 expected that another human might face similar chal-
lenges to the writer (see Table 8.9 for quote) and P16 simply indicated a general
difference, without specifying their reasoning about why.

8.5.4 Relating participant expectations, processes, and outcomes
Our three-fold study data collection generated a great deal of information from
relatively few participants, describing each one’s interaction with our system in
substantive detail. Although our study design’s primary goal is for these three types
of data to collectively provide insight, here we review a few examples of instances
where explicitly combining these sources of data at the level of the participant or
sample provides additional information.
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N Example

More collaborative/communicative 10 "I think that another human being would have asked ques-
tions along with suggestions in order to better tailor their
suggestions."

More understanding/experience 8 "Yes. I think the human would be more helpful because they
could suggest if more description should be added to the
setting or if the character needs to be developed more or
suggest a direction for the plot, none of which I felt I got from
the editor-red suggestions."

Speed (Slower/Faster) or Effort 4 "Slower going. Plot suggestions would have made more sense,
but I don’t think description ones would have been much
difference in help. A human might have been more helpful
with naming things in the story."

More questions 3 "I think we probably wouldn’t asked each other questions back
and forth like "why is the character doing this? What does
it sound like?" etc. Writing with humans tends to involve a
more "question-based" approach."

Other 2 "Another human might have challenges coming up with ideas
just like the writer. The suggestions might have been different
which would have geared my story in a different direction
altogether."

Less self-driven 2 "Writing with another human would have definitely changed
the course of the story. It also would have felt less like my
writing because of the other person’s ideas. "

Table 8.9: Codes re: expected differences from writing with a human co-writer,
after writing. N indicates number of participants, Example shows a corresponding
quote. N.B. some responses are labeled with more than one code.
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Anchoring to prior expectations

Regarding the possibility of AI creativity, P6 noted that they thought it "depends on
the amount and type of data that will be available to the AI to create something
new," emphasizing that the "broader and [more] various the set of data the more
creative the AI could be." During the interaction, we observed P6 not engaging with
the suggestions to advance their story, but rather, as discussed earlier, attempting to
improve the system suggestions with their writing instead. In this case, an inaccurate
expectation resulted in the system being unhelpful to them, due to their behavior
anchoring to this expectation rather than adjusting to the system’s behavior during
the process.

By contrast, some participants who were optimistic about the ability for AI to
be creative managed to find utility in suggestions that may even have reflected
poor or less coherent language-modeling behavior. For example, P15 wrote that
". . . information/ideas provided by AI can be completely illogical which is sometimes
the best creativity" and, after writing, indicated their willingness to make sense of
and incorporate possibly irrelevant suggestions: "with some modifications, the ideas
presented were definitely helpful. . . images are a hit or miss because they don’t tell
the same story as the text I am writing, but if I thought about the images a bit more
creatively rather than literally, they were a bit more helpful."

Adjustments to prior expectations

Some participants appeared to adjust their prior expectations after interacting with
the system. A particularly clear case is P1, who initially expressed a belief that "AI
can not be creative," but could be "accurate." During the interaction with the system,
having received a suggestion, P1 was impressed with it and was contemplating
whether to characterize it as “accurate” or "creative," finally coming to the conclusion
that "this is a really good plot and it’s creative enough." After the interaction, they
noted that "It was surprising to see the intelligence of the AI and the creativeness of
the suggestions." This participant initially identified that Value (useful to people) was
the most important aspect of human creativity to them, and described the suggestions
afterwards as "helpful. Even if I didn’t use every idea that was suggested to me, I
was inspired by their mood." The suggestions were useful to them in their process of
writing, perhaps demonstrating the characteristics of Value.
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At a sample level, a majority of participants (N = 14) initially responded that they
would consider the final text to be "co-written by myself and AI," however afterwards,
almost all participants (N = 22) indicated that they would call the written text their
own (with one participant unsure). In addition, all those who responses Unsure or
No to differences between human and AI text production initially (N = 7; P23, P17,
P10, P6, P22, P9, P3) were able to communicate clear expected differences after the
interaction. For example, P6 initially indicated that they were unsure, suggesting that
". . . it depends on the level of development of the AI", but finally wrote that with a
human they "could explain to the person the story I am thinking about. . . convey the
tone and the feelings I am trying to infuse," which is about explicit communication
and intuitive influence rather than modeling performance. Participants had viewed a
video of our system before the initial response, indicating that their perception was
informed by actually interacting with the system rather than its overall design and
method of suggesting.

Do more accurate mental models of AI improve the experience or outcome?

To examine this question, we consider the two opposed categories of mental models of
AI: Sparse-Abstract and Sophisticated-Operational. These groups respectively had the
least and most detailed and accurate expectations of AI. We can examine how their
outcome evaluations varied across the dimensions of overall experience, suggestion
helpfulness, and differences from expectations.

Sparse-Abstract. 8/14 participants reported overall positive experiences, with 2 neutral
and 4 negative. 10/14 total reported suggestions being at least sometimes helpful (1
rarely helpful, 3 not helpful). 9/14 indicated that the experience was different from
their expectations, with 1 unsure and 4 reporting no or not much difference.

Sophisticated-Operational. 3/5 participants reported overall positive experiences, with
1 neutral and 1 negative. All 5 indicated that suggestions were at least sometimes
helpful. 3/5 indicated that the experience was different from their expectations, with
2 reporting no or not much difference.

The data in this case indicate a complex relationship between the depth and accuracy
in explanatory models of AI and experiences with our interface. A simple assumption
might be that having more well-calibrated expectations of AI systems might arise from
technically deeper and more accurate reasoning about how it generally works, which
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may appear to be supported by how helpful participants thought suggestions were.
However, our observations and participants’ comments about suggestion helpfulness
suggest that the differences have more to do with styles of writing and openness
to narrative change than accurate expectations of the system’s behavior. This is
reinforced by the lack of clear difference in whether the system behaved as expected
or not between these two groups.

Even so, we can explore this further by considering whether accurate expectations
themselves were clearly associated with positive impressions or indicated suggestion
helpfulness. 9/13 of those who reported a difference from expectations indicated
an overall positive experience, compared with 4/9 who didn’t. For helpfulness of
suggestions, 9/13 who reported a difference from expectations found suggestions
at least somewhat helpful, as compared with 8/9 who didn’t. Again, there is a
divergence between the two outcome variables, suggesting a complex relationship
between expectations and outcomes.

8.5.5 Usability and overall experience
Usage data

In all, participants requested 165 suggestions and received 162 (3/165 requests were
not resolved, for example due to requesting a subsequent suggestion while one was
already processing). The median number of suggestions requested and received per
participant over the 20-minute session was 7 (min = 2, max = 15). Participants
wrote 229 words on average in Editor-Red compared with 296 in Editor-Green.
With regard to suggestion modalities, on average participants had images toggled
"on" for 99.8% (min 97.5%, max 100%) of the duration of their active engagement
with the system, and sounds for 77.1% (min 25.2%, max 100%), with this duration
measured from either the first suggestion request or alterations to these controls, to
the last. During this period, participants toggled images on and off between 0 and 9
times (median 1) and sounds between 0 and 11 times (median 1.5).

System usability

As part of the post-task survey, we presented the participants with a battery of
questions tailored to understand their experience using our interface, as shown in
Fig. 8-7. The post-task survey contained 42 questions and produced more data than
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B. Suggestions + Agency Evaluation Editor-Red
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Figure 8-7: Post-task questionnaire focusing on user experience and editors
comparison. Full list of questions in Appendix A.5.1.

could be analyzed within the scope of this chapter. We report those questions that
examined the issues that are the focus of this chapter.

Participants responded to Q6.4 where they were asked to score using the likert
scale Strongly Disagree (DDD)=1, Disagree (DD)=2, Somewhat Disagree (D)=3,
Neutral(N)=4, Somewhat Agree (A)=5, Agree (AA)=6, Strongly Agree (AAA)=7
to the statement "The pictures used in Editor-Red were helpful." The responses
were almost evenly distributed with one more participant disagreeing than agreeing
(AAA=3, AA=3, A=3, N=4, D=8, DD=1, DDD=1). However, when asked to rate the
statement Q6.5 "The pictures used in Editor-Red distracted me from my task," the
majority of participants disagreed (AA=3, A=2, N=2, D=3, DD=6, DDD=7).
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We also asked participants to rate "The sounds used in Editor-Red were helpful."
Q6.6 (AAA=4, AA=2, A=5, N=1, D=2, DD=6, DDD=3), as well as "The sounds used
in Editor-Red distracted me from my task," Q6.7 (AAA=2, AA=4, A=3, N=5, D=1,
DD=6, DDD=1) on both of which participants were somewhat evenly distributed
between overall agreement and disagreement, with 5 participants vs. 1 participant
neutral respectively. The distribution to these questions can be found in Fig.8-7A.

Participants responded to Q6.11 "Using Editor-Red was intuitive" and Q6.11 "Using
Editor-Red was easy" we found that Editor-Red was considered intuitive to use
(AAA=4, AA=9, A=6, N=3,DD=1) and easy (AAA=9, AA=10, A=3, N=1).

Finally, We were also curious to know how participants felt towards the different
modalities available to them in the interface shown in Fig. 8-7B. When asked to rate
Q14.5 "I mostly used the textual suggestions and not pictures or sounds" participants
agreed (AAA=8, AA=2, A=4, N=1, D=3, DD=4, DDD=1).

Effort and cognitive load

To understand the cognitive load imposed by writing with our system, we sub-sampled
a group of 4 items from the NASA TLX (removing physical effort and performance,
which are less relevant in our case) and then took the raw TLX score, which is simply
the mean rating across all items per participant. We found that 17/23 participants
rated the cognitive load of Editor-Red (µ = 3.41, σ = 1.15, Mdn. = 3.50, Min =
1.25, Max = 5.75) lower than Editor-Green (µ = 4.13, σ = 1.45, Mdn. = 4.25, Min
= 1.75, Max = 6.50) Fig.8-7D.

Evaluation of outcome creativity

We captured the participants’ perception of the creative output and of Editor-Red’s
creative support by asking them to rate the following statement: Q14.1 "I did most of
the creative writing, using Editor-Red just for suggestions." Almost all the participants
(22/23) agreed with the statement with the exception of one participant (AAA=9,
AA=7, A=6, DD=1) . When asked to rate Q14.8 "The suggestions made by Editor-
Red were creative" we found that 16/23 participants agreed the suggestions were
creative, 2/23 were neutral and 5/23 disagreed (AAA=4, AA=4, A=8, N=2, D=2,
DD=3) Fig.8-7C.

We further asked for them to evaluate whether or not the final text created during the
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task was creative, using Editor-Red: Q17 "Do you consider the text that you wrote in
Editor-Red creative?" Most participants responded "Yes" (N=20), with 3 participants
answering "No." Similarly, we asked them to rate the text they wrote with Editor-
Green: Q19 "Do you consider the text that you wrote in Editor-Green creative?"
14/23 participants responded "Yes" and 9/23 responded "No." We found that 13/23
participants preferred Editor-Red as the text generated during the task was perceived
as more creative, and when asked: Q21 "In which editor was the text that you wrote
more creative?" (from Editor-Red=1 to Editor-Green=7), 2/23 indicated Neither or
Both, with 8/23 participants towards Editor-Green (1: (N=1), 2: (N=4), 3: (N=8),
4: (N=2), 5: (N=5), 6: (N=1), 7: (N=2)). Participants show a preference towards
Editor-Red for using that type of editor for writing creative text. Q25 Which editor
did you prefer for writing a creative text? Editor-Red (17/23) Editor-Green (6/23)
(1: (N=6), 2: (N=7), 3: (N=4), 4: (N=0), 5: (N=2), 6: (N=2), 7: (N=2)) Fig. 8-7C.

8.5.6 Agency and ownership
We found that participants generally enjoyed writing with the help of suggestions from
Editor-Red and were enthusiastic about the concept of writing with a “collaborator,”
especially once natural language generation capabilities improve and the suggestions
are closer to their own writing style. From observing the writing session and post-
survey conversation, it was unclear that the issue of ownership and agency in co-
writing with AI was something that participants were at all concerned with or gave
any thought to.

When prompted to rate the statement Q14.2 "I enjoyed co-writing with Editor-Red "
in our post-task survey, participants responded with 17 participants agreeing, 4
participants neutral, and 2 participants disagree (AAA=6, AA=5, A=6, N=4, DD=2).
A similar response when asked Q14.3 "I enjoyed collaborating with Editor-Red" was
shown with 19/23 participants agree, 2/23 neutral, and 2/23 disagreeing (AAA=8,
AA=4, A=7, N=2, DD=2) and when asked to rate the following statement Q14.6
"The final product of writing is a result of joint efforts of Editor-Red and myself"
participants responded with 10/23 agreeing, 4/23 neutral, and 9/23 disagreeing
(AAA=2, AA=2, A=6, N=4, D=4, DD=3, DDD=2). Almost all the participants
(22/23) responded that they only relied on Editor-Red for suggestions and did most
of the creative writing Q14.1. (AAA=9, AA=7, A=6, DD=1) Fig. 8-7C.

Two participants admitted they were primed by questions in the pre-session survey to
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think about agency and ownership in writing using the suggestions of the system. P3
explained they had thought that “using AI interface would make me feel that I wasn’t
even doing my own writing," but ultimately P3 felt that the system “helped along” but
“didn’t tell me what to write.” P22 (one of the four participants who didn’t visibly use
Editor-Red’s suggestions) explained that even if they had used the suggestions, they
would still call it “using my own creativity” as they believed that “even deciding to
use it or not, is actually really a choice for me” and is seen as a part of “creativeness.”
The participants seem to think that this type of system can improve creative writing
by being supported by the system and less cognitively demanding than the simple
text editor.

8.6 Discussion

8.6.1 Suggestion quality: relevance, coherence, and variety
Several participants rejected suggestions for a perceived lack of coherence or relevance
to their developing texts, which comports with prior work on language model assisted
writing [72, 101]. Building on this, we have also shown that several others in
our study did not see this as an obstacle to working with the system and in some
cases appreciated less immediately semantically relevant suggestions and were able
to incorporate ideas from less linguistically coherent suggested sentences. While
we attempted to trace this difference to expectations, model behaviors, and other
potential predictors, our expectation from observing participants is that this has
primarily to do with a difference in participants’ approach to creative writing. As
such, the relevance of suggestions may not be a simple variable to always aim toward
maximizing; rather, the optimal level of relevance might vary by writer. Sometimes,
it might also vary depending on other circumstances; for example, some participants
noted that less relevant suggestions likely required more time to integrate, and that
they might do so given additional time to write. This may also be reflected in the
fact that on average, participants wrote less text in Editor-Red than in Editor-Green,
though we note this is also related to other aspects of the interaction in our study
(the novelty of the interface, participants talking more while using Editor-Red, etc.).

The ambiguity in assessing relevance extended to the multimodal concept represen-
tations; even when they were not used directly, their contribution to the environment
might vary with their relevance. For example P8, who didn’t visibly incorporate any
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suggestions, noted that they were "impressed that the sound suggestions seemed to
pick up on the creepy, suspenseful tone of the story right away, and it could be helpful
if the image suggestions followed the tone more closely" as compared with P5 who
wrote that the "sound wasn’t directly influencing my ideas but having background
noise was relaxing."

Balancing relevance with variety is likely to be important in making suggestions useful
to participants, in our assessment. Participants especially noted the homogeneity of
images: "I mentioned a phone and the grid overlay just shoved several iterations of
smartphones, it would be nice if it could show different types of telephones" (P20).
This homogeneity also extended demographic factors: “there’s just a bunch of white
guys staring at me and I don’t know why” (P2) and “they are all images of straight
blonde Caucasian women” (P5). We noted that these instances were not directly
related to query material, indicating that these might reflect broad biases in available
images.

Technical approaches to generative modeling and information retrieval to support
creative processes should, in our view, be intentional in handling these parameters
(relevance, variety) and consider individual and situational variation in their optimal-
ity criteria. Modeling this is likely non-trivial and raises questions such as: what is
relevant when and to whom? When are precise, logical suggestions needed, and when
are surprising, unusual suggestions needed? The integrative leaps we have reported
on suggest the practical challenges in automatically inferring this trade-off, or even
reducing it to a simple, one-dimensional control. A helpful source of information in
our case is the writers; they often have strong intuitions about both. Finding channels
for writers to communicate their personal stylistic and contextual narrative needs to
both interfaces and the underlying models, for example in natural language or by
providing examples, may help these systems robustly support creative expression by
both being flexible and allowing users to clearly and naturally communicate their
needs and intentions.

8.6.2 Editor-Red beyond writing suggestions
A supportive writing environment

Though what Editor-Red seems to be doing on the surface is providing words, lines,
and ideas to borrow and rely on, we observed much more than just that in the
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interaction settings we studied. A wide range of participants’ comments highlight
that the system acted as a support tool in diverse ways. Those participants who
actively integrated the system’s suggestions admitted that Editor-Red was structuring
their process of writing. For instance, P1 admitted that they found themselves at a
certain point "writing for the suggestions," seeing Editor-Red as "a form of motivation
to continue writing" in order to get better suggestions. P3 commented that Editor-
Red helped them "keep going" and "continue along" with their writing when they
otherwise would have stopped.

Editor-Red redirected attention from being stuck (P12) and helped feel "less stuck"
even when the participant was not taking the system’s suggestions (P16). Writing as
a process is fraught with self-doubt, anxiety, and feeling overwhelmed, systems like
Editor-Red can mitigate stress by being a comforting distraction like "petting a cat"
(P6).

Some participants used suggestions as just a starting point for the participants’ own
individual creative journey. For example, P23 explained that often Editor-Red sug-
gestions gave them a different idea rather than taking the suggestion right directly.
As P23 further explained, getting inspiration from something can be unrelated to
what that inspiration was. The integrative leaps (see §8.5.2) that participants made
when engaging with Editor-Red illustrates a wide range of examples of what users
are capable of and willing to do when integrating with a writing system.

Personal and cultural references versus AI-generated references

In the "blank page" writing with Editor-Green, 10 participants out of 23 visibly relied
on cultural (books, TV shows, music videos) and personal references (memories,
personal experiences, and immediate surroundings, e.g. describing what one can
see from the window). For example, P8 writing in Editor-Green with the prompt "A
train arrives at the station," explains that they are thinking about "the train station
and Anna Karenina, kind of thing." P9 writing in Editor-Green with the prompt "The
phone began to ring" explains that "the phone" made them think about a landline, a
landline made them think about a hotel, and that, in turn, made them think about the
last trip they had when they were staying in a hotel, which prompted a subsequent
description they made in Editor-Greenwriting (after completing Editor-Redwriting).

When writing in Editor-Red, 5 participants out of these 10 did not visibly use any cul-
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tural or personal references in their writing, but instead relied on the Editor-Red sug-
gestions. Their story development was structured and oriented by the suggestions
they incorporated. This is not that surprising on its own since participants were asked
to use the features in Editor-Red. However, it is possible to imagine that writing with
systems like Editor-Red allows a user to rely less on one’s own cultural and personal
references and one’s "self" (an individual’s interiority, a means and ends of one’s own
actions [261, 262]). Rather, it provides an opportunity for a user to interact with the
"self" of a system, deriving references from its suggestions.

We hypothesize that systems like Editor-Red can be used also when users for situa-
tional or psychological reasons do not want to engage with their own experience and
inner thoughts and can be used for building systems that can provide therapeutic
support for a user. This type of psychological support function has been recently
identified in other human-AI creative interaction domains [491].

8.6.3 Dynamics of suggestion integration
Ideas for writing often came not through directly applying Editor-Red’s suggestions,
but as a result of active engagement with the system from the participant’s side and
their readiness to do cognitive work in extending, adjusting, and altering suggestions
and/or prior text to better suit the combination of text they had written and either
any thoughts in their mind about how to proceed (confirmatory) or ideas about
altering the narrative to lead in a new direction (exploratory).

The comments that participants made explaining these integration examples provide
an insight into the multiplicity and multidimensionality of practices involved in
human interaction with generative language systems, and especially how users create
new meaning through this interaction. We specifically did not aim to do a linguistic
or semiotic analysis of the integrative leaps that we documented, which we argue
would require a great deal more data in order to yield generalizable insights. Instead,
we aimed to document some orientation points that reflect structural differences in
participant behaviors during our study.

Creativity, inefficiency, and synthesis

When interacting with Editor-Red , participants’ concepts of creativity in suggestions
often seem to be constrained by the possibility of an easy transition. The possibility of
an easy transition, in turn, is individually and contextually varying. Those participants
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whom we identified as willing to cooperate with Editor-Red and incorporate its
suggestions, did not seem to mind suggestions being "absurd," "crazy," and "out
there" (we will refer to these as "out of sync"). These suggestions sometimes led
to considerable changes to the subsequent and prior narratives; participants made
decisive creative moves when they were willing to engage in this way.

Monster hunting, cryogenic sleep, a detective in 1890 Austria, and the first human
to die on Mars were just some of the ideas that participants received as suggestions.
Incorporating these suggestions depended on whether participants were mentally
and emotionally ready to make the necessary efforts to synthesize an easy transition
from the prior text and the given suggestion. It was "a much longer route" for monster
hunting (P5), and didn’t come "at a good time for the story" for cryogenic sleep (P1),
and so these suggestions were not integrated. However, "you are a detective in 1890
Austria" made the participant think about the concept of time in their story (P1). P2,
having completed almost the whole story that took place on a London farm, received
a suggestion saying "you are the first human to die on Mars." P2 did comment that
the description "is not very accurate" to their situation but then changed their mind:
"You know, let’s make it about Mars, why not?" and rewrote the story in four places
to fit the premise of taking place on Mars.

We conclude from this assortment of complementary and contradictory behaviors
that the incorporation of a suggestion that is "too creative" does not depend just on
the content of the suggestion, but rather on the possibility of transition which is
influenced by individual and situational factors. The transition towards a suggestion
that is unexpected and unrelated to the input text is dependent on the readiness
and motivation of a user to the requisite cognitive and/or emotional work toward a
meaningful synthesis of elements. These observations align with Freiman’s character-
ization of the writer’s drafting process, involving a "state of unknowing", a "kind of
faith" that something will emerge from the drafting, and ultimately how "something
that perhaps lacked cohesion or structure now becomes more concrete or coherent in
the making of the text" [161]. Freiman suggests this happens by the writer making
cognitive, affective, linguistic, and other creative decisions through a series of drafts
and changes. We also expect that cognitive work done on drafting and revising to
achieve such a synthesis may also become a path to support ownership of the text
and creative endeavor, in our context of AI-generated suggestions.
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Cognitive reorganization and expectations of non-human writing systems

What are the underlying cognitive mechanisms by which distant suggestions are
able to be meaningfully integrated into users’ existing narratives? Participants of
our study were actively aware of the task environment [155]: writing a story using
Editor-Red (non-human, AI system), a rhetorical problem (write a story given a
prompt), integrating Editor-Red suggestions (which they had preconceptions of being
based on human language, rule-based, possibly random, illogical, and creative), and
the text itself that is evolving and changing. Since it was possible to get suggestions
multiple times and the suggestions were different every time (both in content but
also in terms of the level of relevance or detail), every new suggestion created a
micro-moment of interaction and adjustment.

Attending to Editor-Red suggestions, building up all the missing cognitive links
or not immediately visible links so as to update the story sometimes involves a
considerable amount of cognitive reorganization of narrative information, in the
sense of reorganizing what one already knows (e.g. Piaget’s equilibration [388]) or,
in this case, has already written. One possible mechanism for this is self-explanation,
which is an attempt to make sense of new information by explaining it to oneself [92].
Unlike self-explanation in learning, wherein the central inferential process needs to
construct new knowledge at the level of "the world", here self-explanation may provide
an inferential process to reorganize the narrative by finding possible connections
and associations, similarity, extracting abstract properties, or making referential
links (for example, as we described earlier with P4 having the precondition of a
crime, seeing an elephant that seems irrelevant, and explaining the presence of the
elephant by making it the object of the crime involved). Other possible mechanisms
for combining distant concepts have also been described in prior literature, such as
causal reasoning [274], comparison and construction [548], conceptual integration
or "blending" [112, 519], and satisfying constraints like diagnosticity, plausibility,
and informativeness [108].

In the case of writing with our system, the willingness of participants to engage
in this process may come from user expectations, due to the non-human source
of the suggestions. For example, we noted earlier that participants may expect
suggestions to be random, illogical, having connection to the real world yet often
being situationally "out of sync." In that way, any faults of the suggestions and
difficulties that arise from those become not only something that has to be looked
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past but actually act as inherent features of the system and accepted as part and parcel
of this interaction. These suggestions can be seen as not a bug but an inherent feature
and a necessary condition of this interaction, as humans perform integrative leaps,
engaging in cognitive reorganization of narrative because they accept the premise of
interacting and co-writing with a non-human system, and the implications that come
with it.

How can "out of sync" suggestions be helpful for writing?

Earlier work has illustrated how completely unrelated ideas and unusual word com-
binations can be evocative and productive for creative writing [77, 128, 542]. In the
case of causal reasoning, the surprisingness of combinations may provoke additional
and exploratory processes and thereby the production of creative ideas [274]. We
hypothesize that another mechanism by which semantically distant suggestions might
be useful is by explicitly prompting more critical evaluations of written content, i.e.
what Flower and Hayes call "evaluating" and "revising" [155]. By contrast, we might
consider highly probable and user-adapted word predictions, which can be absorbed
into a writing task with minimal effort (e.g. a click) to accomplish well-defined goals
more efficiently (e.g. respond to a work email). We can model distant suggestions
with such semantic difficulties as we observe as being useful inefficiencies which
prompt critical evaluations of drafts and suggestions, metacognitive reflection about
narrative development, and ultimately axes for more substantial narrative reorien-
tation, where otherwise there would be no prompt or incentive to re-engage with
and reconsider prior thoughts and writing. More work is needed to examine this
possibility in detail.

8.6.4 Design recommendations
We observed that participants are capable of making leaps to integrate suggestions
into their writing when presented even when the suggestions were unrelated to their
current writing. However, there seems to be a general need to have these suggestions
build on, refer to, or otherwise be relatable to aspects of their writing/story for
many writers to have a more helpful experience. There is a need for details and
descriptions of objects and important places when developing the story, and for
systems to attend to the right parts of stories, which vary, when making suggestions.
In our study, we observed most users rely on the system to enhance their writing when
adding supporting material. When the system was not helpful in either introducing
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supporting material or helping them think of new directions, frustration and lack of
trust in the tool often began to arise. However, as we have explored, suggestion quality
is a multidimensional property which varies individually and contextually. To make
suggestions useful to participants does not always mean maximizing their immediate
relevance, but rather requires supporting the process of suggestion integration. Here
we consider what that may mean for different technical and design considerations
for creative writing support tools at every level of the process.

Datasets for creative writing

Participants in our study had different experiences with the two suggestion channels
(Plot and Description), despite the commonality in the modeling method. Mirroring
calls from other domains for data-oriented rather than model-oriented progress
in AI [119, 443], we argue that well-curated datasets oriented towards domain
constructs can support diversity and relevance, two factors we identified earlier as
especially salient in machine contributions to creative writing work. Larger and more
diverse pretraining sets can also result in greater coherence, if matched with an
appropriately parameterized model, which we find would be helpful to several users
in a variety of contexts.

Language modeling

What can better models help with? As noted, more modeling power can result
in increased coherence and relevance, especially as processed sequences get longer,
if pretrained on appropriately large and diverse datasets, as well as fine-tuned on
downstream datasets that provide creative value. These properties are desirable
in many cases, as pointed out by our study participants. In parallel, models with
implicitly richer knowledge bases [387] may also extend more diverse suggestions to
users, finding interesting relations with aspects of their writing, and assisting them
in performing contextually appropriate and creatively fulfilling integrations.

What can’t better models help with? Larger models are typically slower, more
difficult to fine-tune and host, and increasingly closed-source, expensive to obtain
access to, and private. Additionally, we noted many instances in which the cognitive
work done by participants was the operative force in making suggestions helpful and
ultimately able to contribute to their writing. For these participants, writing styles,
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and situations, larger language models may not necessarily help much, but would
incur costs in interactivity, which were already pointed out by some participants
in our current prototype. In our case, suggestions typically took 3-5 seconds after
requests (given that we were running two separate fine-tuned models, extracting
keywords, etc.), depending on the length of the input text; larger models may take
significantly longer (one writer estimates GPT-3’s Davinci model’s typical speed at
147 words per minute [60]) and are very challenging to host and serve interactive
requests with due to the resources needed.

Even the best possible language models have an extremely limited capacity to under-
stand our intentions. They cannot reason about human internal cognitive processes,
implicit judgments, and novel forms of creative exploration and expression that inten-
tionally disregard convention. Better language models, better for different purposes,
can support the process, but a great deal of what makes human creativity successful
is outside of their purview.

Semantic influence Some participants indicated a desire to influence or control
this facet of suggestions with prior information, e.g. high-level story goals, moods,
feelings, and ideas. While relevance can already be expressed to language models
at sampling time to some extent, through stochastic decoding methods and controls
like temperature, the ability to semantically "steer" relevance towards more fruitful
integrations, rather than expressing it as a numerical value, might also better support
diverse writers’ diverse needs. Such steering can be explicitly enabled [253, 268, 298],
for example, by conditional modeling, or, in the absence of specialized approaches,
even discovered by so-called "prompt engineering" which has been successfully used7

by many for language-controlled visual art generation [383] with general-purpose
vision+language models [402].

Interface design

Overall goals of interfaces Based on the behaviors observed in our study, we
recommend that creative writing suggestions be designed to prompt and support
cognitive processes that lead to suggestion integration and narrative engagement,
rather than auto-complete style continuation. This seems to additionally support
participant ownership over the outcome, as we observed in our study. There is a great

7https://ml.berkeley.edu/blog/posts/clip-art/
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deal of cognitive effort involved in writing with external stimuli, in order to make
sense of them, recognize the possibilities for their contributions to the work, and
perform effective integrations.

We argue that the focus of designing new creative writing support tools with intelligent
augmentation should be on supporting this cognitive effort while preserving writer
autonomy, authorial discretion, and creative flow. In our interface, we do this by
implicitly discouraging directly absorptive behaviors; suggestions are presented in a
different graphical environment rather than overlaid on the text, and the familiar tab
key invokes new suggestions rather than directly integrating them into the writing.
The corresponding reduction in cognitive load for most participants (17/23) by a
small amount overall may reflect both the helpfulness of external suggestions in
easing the cognitive burden of blank-page style writing, as well as the additional load
introduced by the additional stimuli in context.

Multimodal support for a unimodal task Additionally, visual and auditory sugges-
tions cannot be simply inserted into a textual story, and we expect that the process of
resolving these morphological differences to create meaningful semantic connections
may also contribute to making creative leaps in writing stories. Our results suggest
these features be made easy to turn off: this was a feature our participants used ex-
tensively to account for both individual and situational variation. Future work might
examine the methods for communicating these parallel channels of information.

Evaluation criteria and methodologies

Our Expectation-Process-Outcome model, which guided our study design that com-
bined surveys, behavioral observation, and semi-structured interviews, allowed us to
capture several things: a rich representation of conceptually relevant background
which participants brought into their interaction with a novel system, their interpre-
tive reasoning through the course of the interaction, and their evaluative judgements
and impressions afterwards. Additionally, through capturing prior assumptions and
explanatory models, we were able to begin to obtain a fuller picture of how the
interaction is framed by and adjusts expectations, as well as some effects this may
have on the experience and outcomes.

We recommend that designers of complex, novel tools to support open-ended creative
tasks similarly consider the conceptual priors of their users in conjunction with
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evidence from their experiences, behaviors, and a posteriori thoughts. Through this,
we might begin to better characterize the significant level of individual and situational
variation, and design tools that not only practically accommodate this but actively
benefit from it.

8.7 Conclusion
This research presents an extensive study of machine-in-the-loop creative writing,
centered around a new interface that makes writing suggestions through sight, sound,
and language. Through collecting data on participant expectations, processes, and
outcomes of interacting with this system, we discussed how individual writing ap-
proaches and narrative circumstances influence the interaction. By eliciting user
explanatory models of AI, human and AI creativity, and creative writing, we explored
how expectations might influence and be influenced by the interaction. We addi-
tionally reported on users’ responses to suggestions through the lens of integrative
leaps, by which participants incorporate suggested ideas into their writing process by
performing cognitive work to make transitions possible.

As AI-based systems increasingly engage in traditionally human creative capacities,
building stronger and more adaptive human-centered foundations for human-AI
creative interaction will be increasingly important. Modeling advances in the systems
periphery of everyday life have made it increasingly plausible that AI can be creative,
but the more challenging work is to make it plausible that it might broadly extend our
creative faculties by understanding our needs differently than other human creative
partners. We believe that deep and wide-ranging investigations such as those we
described in this work can inform design methodologies and yield powerful and
useful tools that extend our abilities.
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9
FigurA11y: AI Assistance for Writing
Scientific Alt Text

When we study how humans integrate AI suggestions into their writing processes, we
often focus on open-ended generative tasks like storytelling (as we did in Chapter 8).
We looked at how writers perform cognitive work—“integrative leaps”—to transform
suggestions of varying relevance into fruitful content. What happens when we
constrain this integration process with the need for accuracy and domain expertise?
In many real-world writing tasks, this is precisely the setting where AI assistants must
operate.

In this chapter, we examine the case of scientific alt text authoring. Given the
low prevalence of alt text in the field, AI assistance could help bridge this gap by
enabling authors to efficiently and effectively make their papers more accessible. Like
creative writing, it requires translating ideas into clear and effective prose. Unlike
fiction writing, however, these descriptions must accurately convey specific visual
information to readers who rely on them for access. The “integration” work here is
an important bridge between complex technical content and accessibility for real-
world readers. As such, an AI suggestion must be evaluated against the author’s
deep knowledge of their research and context (e.g. the broader field). Scientific
figures are frequently complex images with multiple parts, requiring relatively precise
inferences for accurate communication. So far, such images have eluded even the
best vision-language models. Full automation remains challenging since authors
uniquely understand the context and interpretation surrounding their figures. As
such, in this work we propose a system that supports authors in drafting and revising
comprehensive alt text descriptions, and study how authors make use of this system
with their own figures.
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Abstract
High-quality alt text is crucial for making scientific figures accessible to blind and
low-vision readers. Crafting complete, accurate alt text is challenging even for domain
experts, as published figures often depict complex visual information and readers have
varied informational needs. These challenges, along with high diversity in figure types
and domain-specific details, also limit the usefulness of fully automated approaches.
Consequently, the prevalence of high-quality alt text is very low in scientific papers
today. We investigate whether and how human-AI collaborative editing systems
can help address the difficulty of writing high-quality alt text for complex scientific
figures. We present FigurA11y, an interactive system that generates draft alt text
and provides suggestions for author revisions using a pipeline driven by extracted
figure and paper metadata. We test two versions, motivated by prior work on visual
accessibility and writing support. The base Draft+Revise version provides authors
with an automatically generated draft description to revise, along with extracted
figure metadata and figure-specific alt text guidelines to support the revision process.
The full Interactive Assistance version further adds contextualized suggestions: text
snippets to iteratively produce descriptions, and hypothetical user questions with
possible answers to reveal potential ambiguities and resolutions. In a study of authors
(N=14), we found the system assisted them in efficiently producing descriptive alt
text. Generated drafts and interface elements enabled authors to quickly initiate and
edit detailed descriptions. Additionally, interactive suggestions from the full system
prompted more iteration and highlighted aspects for authors to consider, resulting in
greater deviation from the drafts without increased average cognitive load or manual
effort.

9.1 Introduction
Digital dissemination has allowed scientific authors to reach broad audiences with
their work. However, one audience that continues to face barriers is blind and
low-vision (BLV) readers. BLV individuals typically rely on alternative text (alt text)
descriptions to access key data and concepts communicated visually in figures. Distinct
from and complementary to captions, which typically provide figure context or
commentary, alt text descriptions convey figure content including that which may be
visually apparent.
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Despite its vital role, alt text is often absent or of inadequate quality in scientific
papers [94, 360]. One key reason for this that has been elucidated in prior work is that
authors face challenges in producing high-quality descriptions [547]. Scientific figures
can depict intricate concepts and relationships through numerous visual encodings,
making translation to textual descriptions cumbersome. Authors must determine
which aspects to describe and how to adequately convey them. Additionally, accurate
and complete alt text requires deep domain knowledge and contextual insight into
the figure’s interpretation. This can make it challenging for non-authors and/or
automated systems lacking such expertise to replace or supplement author effort. As
such, insufficiently detailed or even entirely lacking descriptions remain prevalent.

Guidelines designed to assist authors in writing effective alt text1,2 are often narrow
in scope as they focus on specific figure types like line or bar plots, or tree diagrams.
This makes it difficult for authors to extend their principles more broadly, such as to
compound figures [547]. Similarly, though fully automated approaches are rapidly
improving in quality, they are often also constrained to specific types of figures such
as plots or natural images, limiting applicability to scientific communication more
broadly which often involve complex diagrams and multi-part scientific figures [188,
498, 556]. Model errors also risk creating misinformative alt text if authors or
publishers over-rely on automated methods. Despite advances in computer vision and
natural language processing for processing and describing many types of images [200,
300, 580], scientific figures often contain nuanced details and contextual factors that
might hamper the applicability of these models to producing high-quality accessible
descriptions. As such, it is important to effectively engage authors, equipping them
to critically review and refine auto-generated descriptions.

More specifically, there is a need for methods that generalize across authors’ open-
domain figures while providing tailored guidance within interactive alt text drafting
workflows. To inform the design of such an interactive alt text authoring system, we
first conducted a formative study with authors (N=6). This study used an initial
prototype which provided authors suggestions during drafting, using large language
models conditioned on figure metadata. The study revealed needs for more guidance
during drafting and increased control over text generation.

1http://diagramcenter.org/table-of-contents-2.html
2http://diagramcenter.org/poet.html

215

http://diagramcenter.org/table-of-contents-2.html
http://diagramcenter.org/poet.html


Based on these findings, we developed an interactive system for alt text authoring3 that
combines human and AI capabilities, with specific features detailed below. Authors
upload their paper into the system, which then automatically extracts figures along
with corresponding captions, mentioning paragraphs, figure text, and an estimated
data table (for plots). This establishes a knowledge base to use for AI suggestions.
Subsequently, a suite of drafting and editing features ranging from pre-generated
drafts to iterative description snippet generation and queries to elicit author input
are provided to assist them in efficiently producing detailed alt text. We conducted a
within-subjects user study to evaluate our system (N=14), which, to our knowledge,
is the most realistic and general study of AI-assisted alt text authoring to date, with
authors writing descriptions for their own figures across a diverse set of figures and
fields of study.

Overall, our work contributes:

1. A formative study (N=6) with authors, using a technology probe which offered
alt text writing suggestions. This revealed needs for guidance, control, and
varied suggestions.

2. An automated pipeline to generate descriptive draft alt text for open-domain
figures without requiring ground truth data. It uses an ensemble of methods to
extract metadata, assembles knowledge-based prompts, and uses large language
models for generation. In contrast to prior work, this is training- and data-free,
fast, generalizes to arbitrary figure types, doesn’t require ground truth data or
scene graphs, and allows us to incorporate existing accessibility guidelines, all
necessary features for real-world alt text applicability.

3. An interactive alt text authoring system which (A) scaffolds alt text produc-
tion by providing extracted paper and figure context with figure type-specific
accessibility guidelines to support reviewing and revising generated drafts,
and (B) two additional features: Generate at Cursor, which interactively ex-
pands descriptions at user-directed points based on writing support approaches,
and Potential User Questions (and suggested answers), which prompt authors
to address ambiguous elements following from prior work using queries and
templates.

3Code available at https://github.com/allenai/figura11y
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4. A within-subjects user study (N=14) where authors described their own figures,
mimicking real-world use. Findings show the system assisted rapid drafting
and editing of descriptive alt text through different strategies based on author
needs. Interactive features enhanced experience without increased cognitive
load or effort on average, and enabled greater deviation from generated drafts
by supporting iterative refinement.

9.2 Related Work

9.2.1 Figure Accessibility in Scientific Publishing
A systematic analysis of alt text practices across scientific disciplines has yet to be
conducted. However, smaller-scale studies highlight significant issues with low alt
text prevalence. For example, only 4.6% of figures had valid alt text in a sample of
Accessibility and HCI papers [94], despite explicit author guidelines from venues in
these fields. Even lower prevalence has been observed in other fields like biomedicine:
an examination of recent papers from 16 leading biomedical and ophthalmology
journals found no meaningful alt text beyond basic information [360]. While these
results highlight the need for improvements, more work is required to characterize
issues in figure accessibility across domains. Still, in response to the lack of quality
alt text, we aim to address a broad set of scientific figures without an explicit domain
or type constraint.

Beyond prevalence, the quality of alt text is also important to consider. Web accessi-
bility guidelines suggest that alt text should convey the same information or function
as visual content4. Scientific figures are information-dense, making full coverage of
relevant information difficult to judge. Rubrics have been proposed to assess the
descriptiveness and structure of alt text content. Williams et al. [547] developed
a rubric to assess the overall descriptiveness of figures in HCI papers, building on
prior work for other types of images [187]. Lundgard and Satyaranayanan proposed
an influential four-level semantic model of descriptions for data-driven figures like
plots [317]. This model decomposes the descriptions of such figures into elemental
and encoded, statistical and relational, perceptual and cognitive, and contextual and
domain-specific content. We factor this semantic model into our system, in order to
steer language models towards generating structured, meaningful descriptions and

4https://www.w3.org/WAI/tutorials/images/
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suggestions.

9.2.2 Author Challenges in Alt Text Writing
One well-documented reason for inadequate alt text is that authors face challenges
in effectively describing figures. Interviews by Williams et al. [547] reveal that their
author participants were confused about what information to include in the alt text
(or, as one participant put it, "what’s missing" beyond the figure caption). Their results
point out that interviewed authors wanted advice on the structure and content of
their descriptions, given the density of visual elements and relationships depicted in
their figures.

Guidelines are a traditional mechanism by which authors have previously been sup-
ported in writing alt text. For example, SIGACCESS provides guidelines for computing
publications5, the American Chemical Society (ACS) provides guidelines for ACS au-
thors6, and the multidisciplinary publisher Taylor & Francis provides guidelines for
authors submitting to their journals7, among others. However, guidelines are often
based on example figures. Authors must interpret such guidelines and adapt them
to their own figures and even figure types. Additionally, the content of guidelines
can be difficult to interpret. For instance, such guidelines often emphasize brevity,
but this can come at the expense of accessibility, especially for complex figures as
Williams et al. also note. In our system for supporting authors, we leverage guidelines
to generate figure-specific drafts and suggestions.

9.2.3 Automated Image Description Generation
Early work in automated image description, often associated with computer vision,
typically relied on detecting objects and relations or constructing patterned tem-
plates [148, 272]. While these initial approaches produced reasonable descriptions
for constrained domains of images, they were limited in flexibility and language
quality. Additionally, figures frequently exhibit higher complexity than natural images.
Recent work has explored automated figure captioning [21, 218], including doing
so with knowledge-augmentation in the form of mentioning paragraphs and OCR
text [568]. We use a similar knowledge-augmented approach in conjunction with
alt text guidelines and zero-shot large language model inference to achieve broad

5https://www.sigaccess.org/welcome-to-sigaccess/resources/describing-figures/
6https://pubs.acs.org/doi/full/10.1021/acsguide.60108
7https://www.tandfonline.com/pb-assets/tandf/authors/tf-alt-text-guide-1636994956097.pdf
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applicability for figures without training, especially since datasets of high-quality alt
text for diverse scientific figures are not readily available.

More recently, large language and multimodal models have been used to generate
improved image descriptions [537, 580]. Language models can produce varied, high-
quality text conditioned on input information, making them useful for this task. In
multimodal models, this input can also often be visual [5, 295, 302, 458], allowing
direct input of figure information. However, scaling and providing interactive access to
cutting-edge multimodal models remains challenging due to computational demands
and rapid changes in their capabilities. Additionally, these models’ visual capabilities
are still error-prone and often not evaluated on tasks as complex as describing figures
in scientific research.

An emerging solution for improving vision-language reasoning is to decompose the
task into vision and reasoning components through a number of different strate-
gies [199, 493, 552, 567, 570, 580]. This can allow using separate specialized
models for each part. For example, dedicated vision models can efficiently handle
image information extraction as a frontend, while language models can focus on
reasoning over these visual features. This has been done for general images, but also
leveraged for tasks like question-answering based on plots and charts [300]. Prior
work has also shown promise in generating descriptions for data visualizations from
metadata alone. VisText [498] produces descriptions for plots based on data tables
and scene graphs available during visualization design. Interestingly, this work’s
experiments found visual inputs did not improve over metadata-only methods. For
open-domain figures, visual information could still be advantageous. However, these
results demonstrate language models can perform well (in the plot domains covered
by their models) given sufficient contextual information.

Our methods stem from a similar motivation, but we tailor them to open-domain
scientific figures without original data or metadata available. Since describing figures
is knowledge-intensive, we look beyond just visual features to extract contextual
information from paper text and writing guidelines. Integrating this knowledge aims
to assist language models in producing high-quality, tailored alt text suggestions by
providing critical context beyond what is visually evident. Overall, our approach
selectively combines strengths of language models, computer vision models, knowl-
edge extraction methods, and human input to provide robust assistance for authoring
accessible figure descriptions.
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It is important to note, however, the rapid advances occurring in multimodal models.
Future vision-language models might well provide strong automated generation capa-
bilities. However, we believe supplementary information and human interaction will
remain valuable. Extracted paper content can provide essential contextual knowledge
beyond visual inputs, both for generation and revision. Human workflows also enable
assessing accuracy, eliciting additional details, evaluating coverage sufficiency, and
customization.

9.2.4 Alt Text Writing Support
Crowdsourcing has been identified as one viable avenue for communicating visual
information to blind and low vision (BLV) users. VizWiz is an influential platform
that leverages crowdsourcing to describe visual content in real-time [48]. However,
extending this paradigm to scientific figures poses challenges: describing figures often
requires additional domain knowledge, as well as added effort to ensure accuracy and
detail. Other recent work has explored how crowdsourcing can be combined with
other strategies, including automation and retrieval, to generate alt text for images
on Twitter [188]. Like this work, we rely on a human-in-the-loop, specifically an
author, and propose a suite of features to allow figure-specific description workflows.
We introduce a collaborative AI-based system in order to distribute the workload of
producing detailed alt text for complex figures. Rather than asking crowd-workers
to acquire sufficient knowledge of the figure, we represent extracted knowledge as
a structured prompt for a language model which can rapidly create content for the
author to evaluate and incorporate.

Work targeted to author support has explored templates and queries. Morash et
al. [350] explored the use of templates to elicit information from non-specialists in
order to produce effective alt text. They found that this queried image description
(QID) approach resulted in improved results compared to free response image de-
scription. Mack et al. [323] observed that templates helped authors write better alt
text compared with automatically generated options, which were brief and regarded
by authors as a gold standard, leading to reduced final quality. Text generation
has made significant strides in recent years, however, which result in generated
descriptions no longer being limited to brief and general content. Further, templates
require per-image crafting. We generalize queries into our Potential User Questions
feature which leverages text generation to elicit author input on possible ambiguities.
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These questions are also motivated by VizWiz’s approach, which treats questions and
answers as a mechanism for making images non-visually accessible.

9.2.5 Language Models for Writing and Editing Support
Large language models (LLMs) have recently shown promise in providing contextual
suggestions for diverse writing and revision tasks [113, 183, 289]. A common appli-
cation is to open-ended tasks such as creative writing, which allow for wide-ranging
suggestions useful for inspiration [345, 471, 572]. In contrast, alt text requires faith-
fulness to the source visual information. It has aspects in common with expository
writing tasks [459], requiring steps such as reasoning over and synthesizing informa-
tion, and facilitating composition. Our approach aims at these components in the
specific case of alt text writing. Extracted information provides a knowledge base for
faithful generation. Refinement interactions support accuracy verification and content
enhancement. Together, these aim to leverage the capabilities of advanced LLMs to
assist authors in efficiently producing high-quality, accessible figure descriptions.

9.3 Formative Study and Tool Design

9.3.1 Initial Prototype
We created a high-fidelity interactive prototype, serving as a technology probe, con-
taining early versions of two key features designed based on reviewing prior work
and proposing methods to generalize across open-domain figures: text continuations
and question-answer pairs. The continuations appended generated text conditioned
on figure metadata, a common strategy in writing support which allows suggestions
that build on user-authored text [361, 471, 572]. The question-answer pairs were
motivated by queried image description [350] wherein authors were provided a pre-
determined series of guideline-derived questions depending on figure type. With this
feature, we aimed to highlight elements the author might consider describing for the
figure.

9.3.2 Formative Study
We conducted a formative study using this initial prototype with paper authors (N=6)
to inform the design of our main system. Participants had varying levels of experience
with authoring alt text, ranging from none to over 5 years of experience. We used
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a think-aloud protocol and semi-structured interviews during 45-minute remote
sessions conducted via video-conferencing. Participants were provided with access to
our prototype. We asked participating authors to verbalize their thought processes
while trying out these features on their own figures. Session audio and screencast were
recorded and transcribed. One member of the research team performed inductive
thematic analysis on the data via open coding, guided by discussion with the full
research team.

9.3.3 Feedback and System Redesign
Through analyzing and interpreting participant feedback, we identified key design
goals for improvement:

DG1 More guidance during the drafting process, such as feedback to ensure authors
provide sufficient coverage of key information in their descriptions. For example,
one participant (P4) suggested the system could provide a hypothetical question
like “you didn’t actually mention anything about the axes, do you want to do
that?” to prompt the author to describe missing elements.

DG2 Increased control over where and how much automatic text generation occurs
within the description, e.g. targeted expansions of specific parts based on author
needs. For instance, P6 suggested “what I would really like is something. . . where
I can put my cursor somewhere and say get continuation from here.” P3 proposed a
similar interaction: “Something that could be cool is if I could highlight something
and then say generate more about this.”

Some participants also noted that the two suggestion types (continuations and Q&A
pairs) could emphasize similar information, though in other cases participants found
both independently useful. This highlighted an opportunity for differentiating the
two to provide complementary guidance. For example, P5 noted: “a continuation I
could see including some information that I might not have thought would be relevant. . .
the [Q&A pairs], I could also see that working in a similar way,” while P1 noted
that “They felt useful for different things” like the continuation helping to create an
“outline or skeleton.” Based on this feedback, we concluded that differentiating these
suggestions would help offer both benefits, i.e., interactively creating outlines and
highlighting missed or ambiguous content.

In response, we implemented modified versions of the original features to provide
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potential user questions and on-demand text generation at user-selected points which
we call Potential User Questions and Generate at Cursor respectively, described in
detail in the following section. To compare with, we also implemented a simpli-
fied interface without these two suggestion features. In summary, author feedback
highlighted needs for improved guidance and disambiguating suggestion types. Our
redesign addressed these by providing targeted author feedback and control over
text generation.

Additionally, our pilot interface positioned metadata in a menu, and used this infor-
mation to prompt for suggestions. However, we observed participants referencing
this metadata to get context for beginning, editing, and evaluating their descriptions
and the system’s suggestions. To account for this usage, we moved the metadata into
the main interface so the user can easily cross-reference as needed.

9.3.4 Improving the AI Assistance
In addition to improving the features, we also sought to improve the quality of the AI
assistance provided. We iterated on model choice and prompts by optimizing on a
development set of scientific figures and captions.

Figure Sampling for Development Set We constructed a development set of figures
and metadata to iterate on the AI assistance. We started with the SciCap [218]
challenge8 validation set, which contains figures, captions, and paragraphs for a
large number of figures. Initially, we observed imbalance in figure types and research
fields. We quantified this using pretrained classifiers for figure type (DocFigure [236])
and field of study from the mention paragraphs (S2-FOS9), finding highly skewed
distributions. Figures from Physics were highly overrepresented, as well as line plots.
We resampled with replacement to the third most populous categories for type and
field, then dropped duplicates to obtain a broadly representative set without overly
distorting the original distribution. To create a modest-sized development set, we
embedded and vectorized the figures using CLIP [402], caption and mentions using
SPECTER [103], and figure type as one-hot encodings. We used a facility location
submodular optimization algorithm from the apricot [451] package to efficiently
select a diverse subset of 30 figures. We confirmed through manual review that the
figures had low content overlap, visual distinctiveness, and representation across

8http://scicap.ai/
9https://github.com/allenai/s2_fos
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scientific fields. We used this set to iterate on prompts by generating descriptions for
these figures and spot-checking the results.

Guidelines for Suggestion Generation In feedback from the formative study, au-
thors noted that there were errors in some of the AI suggestions. In response, we
updated the OCR model used for figure text extraction from Tesseract10 to Easy-
OCR,11 which produced more accurate textual figure representations. We also greatly
expanded the set of guidelines used; initially we only implemented two sets of
guidelines for plots and non-plot figures respectively. In the re-designed system,
we collected an extensive set of guidelines from sources including the DIAGRAM
Center12 and SIGACCESS13 guidelines. We adapted these guidelines to (1) remove
references to specific example figures, (2) remove presentational guidelines, such
as conciseness, and focus on those relating to content, and (3) organize them as a
nested list indexed by figure type. From the previous version, we maintained general
guidelines applicable to all figures, and additional guidelines for all plots including
the first three levels of Lundgard and Satyanarayan’s four-level model [317]. We
included the fourth in the formative system, but removed it based on the observation
that the first three levels are more often found useful by end-users, and that the
fourth typically requires significantly more exogenous context to integrate, which
may not be available from the extracted metadata.

Base Model Selection We compared baseline generations from GPT-4 [373] and
LLaVA [302] for 5 figures sampled randomly from our development set of 30. Among
the outputs, GPT-4 tended to produce more descriptive alt text with fewer hallucina-
tions. This, coupled with the higher likelihood of LLaVA failing to generate any alt
text at all, led us to choose GPT-4 as our base model. This choice can be reconsidered
in the future with the emergence of more powerful language and vision-language
models. Note that GPT-4 with Vision was not available for comparison at the time
that this work was conducted.

Prompt Engineering We identified unhelpful patterns in model-generated sugges-
tions through testing and observations during the formative study. To address these,
10https://github.com/tesseract-ocr/tesseract
11https://github.com/JaidedAI/EasyOCR
12http://diagramcenter.org/table-of-contents-2.html
13https://www.sigaccess.org/welcome-to-sigaccess/resources/describing-figures/
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we made several prompt adjustments:

1. Added instructions like “Respond with only x” to avoid chat-like responses and
keep suggestions focused on the requested task (e.g. text continuation).

2. Added an instruction and logit biases to avoid explicit references to metadata.
Metadata should inform responses without being directly referenced (e.g. "the
OCR-extracted text contains..."). We experimented with reiterating the in-
struction at the end of the instruction set, finding this further reduced such
occurrences.

3. Motivated by prior work [580], we added an “uncertainty prompt” to mitigate
sensitivity to metadata extraction errors. In our version, we acknowledge
they may exist and encourage inferring details despite this to provide helpful
suggestions.

4. Added instruction to focus on the figure visual metadata and key information,
reducing suggestions derived from the text that do not describe visual aspects
of the figure.

Although it is difficult to systematically evaluate the effect of such changes or their
reproducibility, we include them here to describe our design process for improving
AI assistance and mitigating observed issues.

We also created prompt variants for different contexts like generating initial sum-
maries versus later continuations, adding placeholder text and instructions to improve
infilling around user text. The appropriate context is inferred from the system’s state:

1. Initial High-Level Summary Prompt: Generates a high-level summary when no
description exists yet.

2. Continuation + Infilling Prompt: Extends existing text by referencing the
description context. For infilling, we tested multiple strategies:

• Naive infilling (without providing post-cursor context): often resulted in
duplicate content

• In-prompt context (adding post-cursor text as a prompt metadata element):
still resulted in duplicate generations
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• Placeholder text at the cursor position: reduced duplication, so we selected
this approach

3. Draft Prompt: Variation on the initial high-level summary prompt to generate a
full description, used for pre-generating drafts.

4. A separate prompt for generating Potential User Questions and corresponding
suggested answers.

9.4 System Design
FigurA11y consists of a backend architecture for processing and extracting figures
from scientific PDFs (Section 9.4.1), figure metadata extraction (Section 9.4.2),
and figure description prompting (Section 9.4.3), as well as a user interface for
AI-supported figure alt text writing (Section 9.4.4).

9.4.1 Overall Pipeline Architecture

Figure 9-1: Pipeline for extracting information from figures, and using this information
in a prompt to generate draft alt text and suggestions for enhancement. The author
first (A) uploads a paper, from which (B) figures and their captions, and (C)mentions
of each figure in the paper are extracted. Then, (D) the figure is classified, a data
table is extracted if it is a plot, and the figure text is recognized. Finally, (E) based
on the figure type, a set of guidelines are selected. (F) all of this information is put
together with instructions into a prompt for the LLM to use in generating drafts and
suggestions.

The overall system architecture consists of several steps, as depicted in Fig. 9-1. The
first stage involves uploading an academic paper in PDF format. The system then
extracts figures, captions, and paragraphs mentioning each figure. The figures and
captions are extracted using PDFFigures2 [100], and the mentioning paragraphs
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are extracted from the paper using GROBID [312] to extract the text and a regu-
lar expression to match mentions with the figure number in each caption. These
methods are similar to those used in recent work on knowledge-augmented figure
captioning [568], but we incorporate the caption as well since our goal is to generate
alt text, in addition to information extracted from figures and hierarchical guidelines
(reviewed next).

9.4.2 Metadata Extraction
Metadata is then extracted from each figure, including classifying the figure type
using the pre-trained DocFigure [236] classifier (e.g. bar plot, tree diagram, etc.).
We focus our methods on plots and diagrams, and so we construct an “Other” figure
category to account for figure types outside of plot and diagram sub-types. For
plots, the plot data table is extracted using the pre-trained UniChart [333] model
by default, or the DePlot [300] model if desired. The latter is slower, but we find
that it sometimes yields better results, depending on the figure. Text in the figure
is extracted using EasyOCR,14 with the layout preserved; UniChart’s results [333]
suggest that this can help with LLM reasoning over charts, and we adapt this to our
context of open-domain scientific figures.

Finally, this extracted information is assembled into a prompt for the LLM to use
in generating text, along with tailored guidelines based on figure type. The full
pipeline synthesizes disparate recommendations from prior work, as discussed above,
to construct a prompt with tailored instructions and hierarchically-selected guidelines
depending on figure type. We next discuss the structure of this prompt.

9.4.3 Prompt Structure
We use structured prompts to effectively harness large language models (LLMs),
specifically GPT-4 in our current system, for generating useful alt text suggestions.
Prompts contain two main elements, described in more detail below.

Instructions

We designed several prompts with detailed instructions supporting the core interac-
tions: content generation and potential user questions, as briefly described in the
previous section.
14https://github.com/JaidedAI/EasyOCR
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• Initial Summary: instruct the LLM to introduce the figure in 1-2 sentences
focusing only on the most important elements and relationships shown, without
additional commentary.

• Continuation: prompt the LLM to expand on the existing description by adding
1-4 sentences conveying missing details and relationships relevant to under-
standing the figure, avoiding repeating content already provided.

• Infilling: use the Continuation prompt but with added context. Includes place-
holder text at the cursor location and instructs the LLM to provide distinct
suggestions that fill in gaps within the existing description section.

• Drafts: adapt the Initial Summary instructions to generate a full figure descrip-
tion.

• Potential User Questions: instruct the LLM to generate pointed questions
querying unclear visual elements that need explanation in the description.
These come with 1-4 suggested answers each, also generated by the LLM based
on figure metadata. To maintain this structured format in the generations,
we use OpenAI’s function calling API15. We define a function which accepts
a question, along with 1 required answer argument and 3 optional answer
arguments, to construct the question-answer sets.

• Summarization: provide a brief summary (∼1 paragraph) of longer alt texts, to
align with guidelines around conciseness and short/long alt text versions16,17.

The complete prompts are provided in Appendix A.6.2.

Metadata

As noted in Section 9.4.2, prompts incorporate metadata extracted from the figure
and paper to ground the LLM’s generations. These act as visual information for the
LLM to reason over, allowing us to leverage its advanced information processing
capabilities without relying on newer, less robust multimodal approaches that result
in less descriptive and sometimes empty outputs as we found in our prototyping
(Section 9.3.4). Additionally, VisText [498] found that metadata-driven description
15https://openai.com/blog/function-calling-and-other-api-updates
16https://www.w3.org/WAI/tutorials/images/complex/,
17https://authors.acm.org/proceedings/production-information/describing-figures
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outperformed visually-improved description in their case, for plots. Though our
circumstance differs (our two model options are not directly comparable), we also
find that the combination of metadata we use can produce detailed and grounded
descriptions.

• Figure type provides high-level context.

• The caption often summarizes main ideas depicted and can contain useful
details about visual elements.

• Mentioning paragraphs give further context from the paper, e.g., describing
key concepts or results shown.

• Extracted text conveys lower-level visual details like axis labels and diagram
text.

• For plots, the extracted data table approximates the values depicted.

9.4.4 Interface Design and Implementation
The FigurA11y interface was designed to provide authors with AI-assisted support
throughout the alt text drafting process, while scaffolding the review and revision
process by concisely presenting figure metadata. The left side of the interface displays
the figure along with extracted metadata like the figure type, caption, paragraphs
which mention the figure, and extracted data values for plots (see Fig. 9-2 for the
Interactive Assistance version, for instance). These metadata components serve as
prompts to inform the initial AI-generated draft and subsequent suggestions.

The right side contains the main alt text authoring field where authors can write
and iteratively refine descriptions. The Interactive Assistance’s two augmentative
features are engaged by clicking buttons in the authoring field’s toolbar, or using
the corresponding key commands: TAB for Generate at Cursor and (CMD|CTRL)+/ for
Potential User Questions. The results of the former are shown in the description field;
the generated text is highlighted in red and with a differently tagged underlying
HTML element. Then, the user can click on a generated snippet, and decide whether
to accept or reject it. If accepted, it becomes part of the description and the special
formatting is removed. If rejected, it is discarded.

In Draft+Revise (shown in full in Fig. 9-3), the interactive features are replaced with
a simple text box with which to prompt GPT-4 as the user desires, to simulate access
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Figure 9-2: Screenshot of our Interactive Assistance alt text authoring assistant
interface. On the left, it shows (A) the figure and (B) extracted metadata. On the
right, it shows (C) the description authoring field, (D) the Generate at Cursor feature
with generated initial text below, (E) the Potential User Questions request button
and results, and (F) a pre-generated draft description. Example figure is taken from
[240].

to an LLM as authors may have in their normal writing workflows. After drafting in
either of the system versions, authors can run the summarization workflow. Additional
interface features are described in Appendix A.6.4.

The full system was implemented in around 6100 lines of TypeScript and 2000 lines
of Python using ReactJS, Next.js, Zustand, and Mantine for the frontend interactions,
Tiptap and Prosemirror for the interactive editor specifically, Flask for the backend
server, and PostgreSQL for the database.
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Figure 9-3: Screenshot of our Draft+Revise alt text authoring assistant interface,
showing some of the same features as the Interactive Assistance version: figure and
metadata on the left side; and the description authoring field and a pre-generated
draft description on the right side. However, there are two differences: (A) the
description authoring field does not contain the Generate at Cursor and Potential User
Questions features, and (B) we provide a box to freely prompt the LLM to generate
text that the author can integrate into their description. Example figure is taken from
[240].

9.5 Study Design
We designed a study to evaluate the usefulness of our system for assisting authors in
producing alt text. In particular, we sought to examine (1) whether authors perceive
benefit from our pipeline’s scaffolding and pre-generated drafts, (2) if the added
interactive features in Interactive Assistance support authors in further enhancing
descriptions beyond editing pre-generated drafts, (3) whether added features incur
additional cognitive load, and (4) what strategies participants used when integrating
our tool’s features into their alt text authoring workflows.
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Rather than using a standardized task with predetermined figures, we chose to
conduct the study with authors describing figures from their own recent papers.
Since our prototype aims to support alt text writing across diverse open-domain
figures, it was essential that our lab study be grounded in a realistic context using
authors’ knowledge of their own content. Our formative results and prior work have
also emphasized authors’ contextual knowledge as essential for informing alt text
drafting.

Beyond assessing overall usefulness, our goal was to understand how different features
supported the process of creating complete and accessible descriptions. To compare
feature sets, we used a within-subjects design with the two system versions discussed
earlier: Draft+Revise and Interactive Assistance. The Draft+Revise condition
allowed us to evaluate the draft-generation pipeline and overall revision-support
interface. The Interactive Assistance condition focused on specific writing assistance
interactions. Using both versions allowed us to gather comparative insights. We did
not include a baseline without access to any generated text because we do not believe
it is realistic to restrict author access to LLMs, given their wide use; however, we note
that Draft+Revise is a strong baseline not previously available to alt text writers, as
it uses our refined alt text draft generation pipeline.

9.5.1 Materials: Figure Selection
We invited authors recruited for the study to share two to three recent papers con-
taining figures for which they had not yet written alt text. We extracted figures from
these papers, and then selected two figures per participant (one for each system
version condition).

One challenge with this design is that participants could apply the guidelines and
suggestions from the first condition to the subsequent condition, if the figures are
sufficiently similar. To avoid this, we aimed to select different figure types within
participants when possible, typically one chart and one diagram. In cases where
participants did not have both types available (e.g., results presented in tables instead
of charts, as is common in some domains), we aimed to select substantially different
instances (e.g., different plot types, or diagrams that were visually very distinct and
did not represent overlapping information).

A second concern was figure complexity. Since figures have a different prior com-
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plexity for description tasks (e.g., by being compound, or having many variables or
components), varied complexity could produce biased results. Since there is no vali-
dated metric for the complexity of scientific figures, we aimed to minimize the impact
of this in two ways. First, we randomized the assignment of figures to conditions
within participants. This ensured that figure complexity does not systematically factor
into the difference between conditions. Second, given our small participant pool, we
sought to further reduce this bias. We heuristically selected figures with comparable
numbers of visual elements (prior to random assignment) and, if this was difficult to
determine, overall subjective complexity. This was to minimize large mismatches in
complexity between a participant’s two figures, subject to the availability of figures
from participants’ submitted papers.

We pre-loaded figures into our system to save participants time and effort during
the study compared with the full workflow of paper upload and figure selection. We
wanted to focus the tasks on writing the alt text itself. Participants were given URLs
with figure IDs, which pre-populated the interface with the figure information.

9.5.2 Study Procedure
We conducted this study remotely via video-conferencing. Participants were assigned
to one of two counterbalanced groups determining the order of writing with the
two system versions. Group 1 used the Draft+Revise version first, followed by
Interactive Assistance. Group 2 used the reverse order. For all tasks, participants
were instructed to write descriptions that were as descriptive as possible, rather than
aim for conciseness. This allowed for participants to take a more consistent approach
towards maximizing information content to make accessible, rather than employing
intuitive strategies for conciseness, and also to avoid challenges authors face deciding
whether to include a piece of information [547]; we believe that given diverse alt text
reader preferences [317] that reader customization should happen at a later stage.
At the end of the workflow we provided a semi-automated step to allow authors to
create a more concise version.

The study procedure consisted of four main components. First, participants were
given a brief 5 minute introduction to alt text and shown examples of effective alt
text for a tree diagram and scatter plot from the DIAGRAM Center guidelines. They
also received an overview of the study tasks and timeline. Second, there were two
10 minute alt text writing sessions, one for each system version. We determined
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this time through piloting and observation during our formative study. Participants
were allowed to conclude each writing session early, if desired (e.g., if they felt their
description had saturated available information to describe). Prior to each one, the
experimenter provided a brief, structured walk-through of the features available in
the interface. Each session was followed by a 5 minute survey gathering feedback.
After the second survey, participants completed an additional 5-10 minute comparison
survey. For the first few sessions and those ending with sufficient time remaining, we
also conducted a semi-structured follow up interview probing participants’ overall
impressions, the usefulness of different features, and the strategies they employed
beyond what we observed. In these interviews, we asked participants to walk us
through their process writing alt text with each system, to offer feedback, and
additional questions based on their interactions and comments. This multi-stage
procedure allowed us to observe system use, gather both immediate and retrospective
feedback, and have an open-ended discussion.

9.5.3 Recruitment and Participants
We recruited participants using the authors’ academic social networks, snowball
sampling, and institutional mailing lists. Our study included a total of 14 participants:
9 women, 4 men, and 1 non-binary participant. Their ages ranged from 18 to 44 years
old, with most (10 participants) aged 25–34. In terms of roles, there were 7 graduate
students/research assistants, 3 postdoctoral researchers, 2 assistant professors, 1
lawyer and researcher, and 1 scientific assistant. The participants’ fields of study
were diverse, including 5 in formal sciences like computer science and math, 3 in
applied sciences like engineering and medicine, 3 in human-computer interaction
or design, 2 in social sciences, and 1 in information sciences. The participants also
varied in their amount of prior research experience, with 4 having published 1-5
works, 4 having published 5-10 works, 2 having published 10-20 works, and 4 having
published over 20 works. Most participants indicated that the majority or all of their
prior published works contained figures. However, many had limited experience
writing alt text for these figures, with 5 having written no alt text previously and 7
having written alt text for 50% or less of figures. In terms of familiarity with alt text
guidelines, 6 were somewhat familiar and 2 were very familiar, while 6 were not
very or not at all familiar. When asked about AI writing assistants, 8 had tried them
before, 4 used them regularly, and 2 were aware of them but had not used them.
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9.5.4 Data Collection, Evaluation Methodology, and Measures
Questionnaires

Participants completed the following:

1. Cognitive Load and Usability (completed after each system variant):

• NASA TLX dimensions: mental demand, temporal demand, effort, frustra-
tion. We also included own performance, but factor it out in our analysis to
differentiate self-assessed performance from experienced cognitive load.

• A usability or system acceptance scale based on recent work on AI assis-
tance [260].

2. Comparative Preference: A single preference rating on a divergent scale ranging
from 1 (Draft+Revise, referred to as Without Suggestions) to 7 (Interactive
Assistance, referred to as With Suggestions).

3. Open-Ended Questions: A set of questions covering topics such as in which
situations the system variants were helpful or unhelpful, and suggestions for
improvement.

Description Measures

We computed metrics to compare the final descriptions against the generated draft.
In particular, we sought to capture the degree to which participants’ descriptions di-
verged from these drafts. We assessed this using a range of metrics like the Levenshtein
edit distance [291] and Zlib-based normalized compression distance (NCD) [99],
using implementations from the textdistance package18. We also used cosine simi-
larity of embeddings produced by the all-distilroberta-v1 [414] pretrained lan-
guage model from the sentence-transformers package19 for a less length-sensitive
and more semantic view.

Logs

In addition to logging participants’ descriptions, we logged key presses (split into
"Input" (additions) and “Backspace or Delete” (deletions), as well as whenever text
18https://github.com/life4/textdistance
19https://www.sbert.net/
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was pasted from the clipboard (e.g. copied from the draft or suggested answer for
a Potential User Question). Examining keylogs allows us to assess task effort and
compare against reported cognitive load, to assess whether the added features in
the full Interactive Assistance system induced or saved additional effort. We also
examine traces of the interaction through these logs over time, to illustrate different
strategies used by participants to produce alt text descriptions with the features
available in both systems.

Screen Recordings and Transcripts

The study sessions were screen-recorded to capture participants’ on-screen interac-
tions. We also recorded audio and transcripts of the participants during interviews.
These were later examined to compare against usage logs, and to keep track of
observations made during the sessions.

Challenges for Evaluating Quality

We considered using a descriptiveness metric from prior work [547] to evaluate the
level of detail of alt text descriptions. However, the descriptiveness measure was
defined based on the range of human-written figure descriptions, with a substantial
part of the scale dedicated to low descriptiveness or not descriptive alt texts. The
pre-generated alt text drafted by large language models used to seed our system
variants introduced a distributional shift from human-written alt text. These generated
descriptions tend to be sufficiently long and detailed, such that the descriptiveness
metric is no longer effective for distinguishing between pre-generated and human-
edited versions of these alt texts.

During our system redesign, we piloted an annotation task with two base models gen-
erating draft descriptions: GPT-4 [373] and LLaVA [302]. We asked three individuals
with undergraduate training in physical and life sciences to annotate descriptions
generated for 5 figures from our development set: 2 each with GPT-4 and LLaVA, and
one for each model with and without description guidelines. We adapted annotation
guidelines based on the previously defined levels for descriptiveness [547], while
introducing half-step levels (9 total levels) to capture finer-grained differences. We
found that there was low correlation between pairs of annotators (Spearman’s rho
0.246-0.462), challenging the use of this metric in our high-descriptiveness regime.
Instead, we evaluate description detail through metrics like divergence from drafts
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Figure 9-4: Overall participant preference between the system versions. Results favor
the Interactive Assistance version.

and length, and leave establishing robust descriptiveness metrics to future work.

9.6 Results
Overall, the results indicate that participating authors preferred the Interactive
Assistance system version over the Draft+Revise version. The Interactive Assis-
tance version helped users produce longer, more detailed alt text that diverged more
from the initial AI-generated drafts on average. Participants appreciated the pre-
generated drafts in both systems, but found features like Potential User Questions
and Generate at Cursor useful for highlighting additional details and supporting
incremental drafting in Interactive Assistance.

9.6.1 User Preferences and Responses
Participants generally preferred the Interactive Assistance interface as shown in
Fig. 9-4, with 13 participants indicating preference for the Interactive Assistance tool
to varying degrees. The one participant who preferred Draft+Revise noted that
they found the workflow of editing the pre-generated description to be less effortful.
We tested that these ratings deviated from the neutral level (4) with a one sample
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Figure 9-5: Partial raw NASA TLX results, summing the demand scores (left; with
the Physical Demand item removed), and factoring out the Performance item (right).
The score distributions are comparable between the two system versions, overall.

t-test, which showed a statistically significant result with a large effect (t(13) = 4.16,
p < 0.01, Cohen’s d = 1.1).

Participants who preferred the Interactive Assistance offered a number of reasons
for this, including:

• Potential User Questions highlighting elements that might have been missed.

• Generate at Cursor allowing incremental drafting.

• Generate at Cursor anticipating user needs or replacing user effort in context.

Several participants found the initial pre-generated draft (available in both conditions)
useful, with some even indicating that the usefulness of this option diminished the
value of the Generate at Cursor feature.

Finally, participants identified some usability issues and potential changes to improve
experience when working with their own figures. These ranged from behaviors in
edge cases (e.g., rapidly double triggering suggestions produced unexpected behavior)
to interface features that would assist in smoother review (e.g., visibility of multiple
types of metadata at the same time).
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Figure 9-6: Usability and utility ratings of both versions of the system.

9.6.2 Workload, Usability, and Utility
Both system versions show comparable cognitive load (Fig. 9-5), despite the added
interactive features in Interactive Assistance. We report the four-item raw NASA
TLX score representing cognitive load without the own performance and physical effort
items, and the factored-out item representing participants’ assessment of their own
task performance.

Usability and utility questions indicated an overall preference for the Interactive
Assistance version, but generally favorable results for the base Draft+Revise version
as well (shown in Fig. 9-6). The first four items relating to general tool usability and
acceptance showed comparable results for both system versions. However, more par-
ticipants strongly agreed that Interactive Assistance improved efficiency compared
to Draft+Revise. This was also true for quality (“better alt text”); however, one fewer
participant agreed overall for Interactive Assistance despite 11 strongly agreeing.
Interactive Assistance was also reported to more effectively prompt participants to
describe elements they may have otherwise missed, a core goal of the added Potential
User Questions feature. The Potential User Questions in Interactive Assistance re-
ceived positive feedback, and the Generate at Cursor feedback was mixed but biased
positive as well.

While the pre-generated draft feature was identical in both systems, it was rated
as slightly more helpful in Interactive Assistance. This could suggest it was used
differently in conjunction with the interactive features. Overall, the user feedback
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Figure 9-7: Measures of divergence between the pre-generated alt text drafts and
authors’ final alt text. Overall, descriptions in the Interactive Assistance condition
deviated substantially more from pre-generated drafts across methods (note that the
Embeddings scores are cosine similarity, and as such are inverted compared with the
other metrics; higher similarity indicates lower divergence).

indicates broad acceptance for the core draft generation, with added value from the
interactive assistance features in Interactive Assistance.

9.6.3 Change in Final Descriptions
One of our core design goals was to encourage greater detail and reflection from
authors when writing alt text. We compute several metrics to quantify the textual
divergence between the pre-generated draft alt text and authors’ final alt text (i.e.,
how much authors edited the generated alt text) across conditions as a proxy for
detail and reflection (Fig. 9-7).

Between the draft and final alt texts, we computed the absolute percentage length
difference, the Levenshtein edit distance [291], the normalized compression distance
(NCD) [99], and the cosine similarity of language model embeddings as computed
by Sentence-BERT, all-distilroberta-v1 [414]. Across all metrics on average,
authors deviated more from the initial AI-generated draft when provided interactive
assistance. This suggests that the added interactive features (Generate at Cursor
and Potential User Questions) provided more opportunity for authors to revise and
customize the alt text.

First, we observed descriptions in the Interactive Assistance condition to be longer
on average than those in Draft+Revise (1348 vs. 1075 characters on average).
On average, the Interactive Assistance condition saw significantly greater changes
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in length (mean of ∼52% change) compared to Draft+Revise (mean of ∼23%
change). Individual differences from generated descriptions ranged up to 150%
in the Interactive Assistance condition. Though informative, length alone does
not fully capture textual changes. The Levenshtein edit distance [291] count how
many insertions, deletions, and substitutions are needed to transform one string into
another. Edit distance also revealed significantly more alterations in the Interactive
Assistance condition. However, as Levenshtein distance can be influenced by the
previously reported length differences, we report two additional metrics. Normalized
compression distance (NCD) [99] measures how much compressing two strings
together differs from compressing them separately. Unlike Levenshtein distance, NCD
is less sensitive to length differences. Additionally, cosine similarity of language model
embeddings captures semantic similarity beyond length. With both these metrics,
we again see greater divergence from the pre-generated drafts in the Interactive
Assistance condition (higher on average for the former, and lower on average for
cosine similarity in the latter).

9.6.4 Semi-Structured Interviews
We interviewed 7 participants (half of the total 14), selecting the first 7 whose
sessions left sufficient time remaining (typically 5-10 minutes) after the interactions
and surveys within the total 1-hour time slots. The variation in time available mainly
had to do with time spent on surveys’ free-response items, if participants arrived
late to the session start, and any connectivity issues, rather than time spent drafting
(though some participants did finish particular descriptions before 10 minutes).
Specifically, this included P1, P2, P3, P4, P5, P10, and P12. One researcher reviewed
these transcripts using a hybrid approach: deductively, to add nuance to the primary
findings in the surveys and observed behaviors, and also inductively, to discover
factors not covered by other feedback.

The interviews highlighted the value of different system features for prompting
potentially missed details and incremental drafting. Participants appreciated the
pre-generated drafts, and most also found the Potential User Questions and Generate
at Cursor features useful.
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Potential User Questions helped authors reflect on missing elements

Authors reported ways in which the Potential User Questions highlighted elements
they might have missed otherwise. P1 noted “they were asking questions of images I
wouldn’t necessarily think of because I’ve seen most of those images hundreds of times,”
and similarly P5 commented: “The potential user question function was super helpful
because it was asking some questions that I never thought of and pointing out certain
points that I might miss.” P12 more broadly noted that “it made the captions so much
richer and so much fuller and better.”

Generate at Cursor encouraged thinking and supported iteration

P4, who made use of the Generate at Cursor suggestions to produce a very long
and detailed description of a complex figure, highlighted how they found these
suggestions useful: “it could be a bit overwhelming when you’re looking at the full
generated text and then figure out how you’re gonna tweak this. . . You could generate
more chunks based on what you’re writing as well. So it’s very collaborative,” and
specifically pointed out “the chunks are nice in the sense that they encourage you to use
your own brain as you’re writing, and then use that as an aid.” P2 expressed a similar
idea, that “the cursor feature. . .makes you think more,” however disliked this aspect
and preferred the Draft+Revise workflow. P3 similarly commented that “it takes a
little more time but it gives you much deeper breadth to the text.” P5 highlighted the
value for rewriting: “it’s helpful for especially just editing a certain portion of the text
rather than rewriting the whole entire text.”

Pre-generated drafts were a useful starting point

P1 noted how the generated drafts brought their attention to the difference between
captions and alt text: “I think comparing [the generated description] to [those] that
were already written in my papers is adjusting to what alt text would look like versus
just a regular image caption.” P10 remarked that the generated draft was sufficiently
helpful that the Generate at Cursor didn’t add much beyond it, “I tried a little bit the
add text at cursor. . . I just felt like for mine, at least, I either liked parts of the generated
text better or it just wasn’t really adding anything more to what I already had there.”
They also commented more specifically that “it pulled in pieces of data that I just
wouldn’t have.” P12 noted “I like being able to copy the whole paragraph and edit as I
needed,” and that “it was pretty great and then it didn’t really need that much editing.”
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P2 reported, when asked to compare this process to their prior experience writing
alt text: “To be honest, the alt text descriptions generated. . . are much more exhaustive
and it’s covering all the major parts.” P2 also noted having to correct an error in the
generated description, but explained that this was easy to do: “it generated text for
bar chart. . . it somehow detected the other category which was not there, but it was very
easy to do it.”

Interface features helped authors review descriptions

P10 commented that they “hadn’t looked before [for] guidelines for alt text, but it was
nice to have that as a reference.” P2 noted that though they did not directly use the
guidelines in their interaction with the specific figures, they “usually have a lot of
different types of graphs and I used to struggle with finding the guidelines and then again
I had to open the tab and Google and search about it,” and so could see the automatic
guideline selection and presentation being useful. P2 also noted that “the mentions
were good”, but that they did not find value from reviewing the OCR-extracted figure
text and extracted data table. We also observed from participants’ screens that several
participants referred to the caption, mentions, and guidelines to check against their
alt text draft.

Authors perceived value for authoring tasks beyond alt text

Some participants identified how the tool might be useful for broader contexts in
their academic writing. P12 remarked that “[potential user questions] made me think
more about the paper, and things that I might want to include in the discussion section
or limitations.” P1 commented on the Generate at Cursor feature’s initial high-level
summary that “I think those short summaries could be really helpful in writing my
presentation script, to have something to describe the images on the screen especially
[during an] oral presentation. I don’t want to go into too much detail or depth.” P10
noted “I also may use it [for] generating my captions as well, because I noticed my
captions are really lackluster.”

9.6.5 Participant-identified limitations
Participants flagged instances of incorrect generations, including figure classification
errors, mis-recognized characters in the OCR and these leaking into the description
(e.g. “1” for “I”), or mistaking values or value ranges. Though some errors were
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identified as “nothing I couldn’t easily correct,” “very minor,” “not a big issue,” or
needing “very little effort,” P1 noted that “It might be unhelpful if the tool generates
false captions for something that isn’t in the image and the author doesn’t read it over,”
emphasizing the importance of author revision. For example, P8 noted that “the
tool had missed the most important category [in the figure] (in my opinion, since that
category was central to the paper’s argument).” Additionally, participants made several
usability recommendations that we plan to adopt, such as supporting parallel review
of multiple figure metadata attributes to compare to the description.

9.6.6 Log Analysis
We also investigated event traces for insights into how participants engaged with
our features. We found that authors expended comparable manual effort between
conditions, measured in additions and deletions. Examining individual interaction
traces showed how participants employed different strategies in using the features;
ranging from reviewing and submitting a pre-generated draft to incrementally build-
ing a draft using snippets interleaved with manual writing. This demonstrates that
participants who found the tool’s features useful may have used them in diverse ways,
adapted to their needs and figure context.

Logs Sample Analyzed

Due to database sync issues, event logs from the first five participants were incomplete
(specifically, from the base Draft+Revise system). As such, results in this section
proceed with the remaining 9 participants. Since participants were scheduled by
availability, and the group order was alternated between subsequently scheduled
participants, we do not expect this to systematically bias our results in any way. As a
robustness check, we alternately dropped the first and last participants in this list
to create balanced sets of 8 (4 in each group) and the subsequent results did not
substantially change.

Aggregate Counts of Events

As a first analysis of participants’ logged interactions, we examine aggregates by
type (deletions, additions, and text-pasting). Median counts of deletions ("Backspace
or Delete"; 60 vs. 56) and additions ("Input"; 450 vs. 399) are comparable across
the two system variants (we observe very slightly higher medians and moderately
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Figure 9-8: Traces of three participants’ interaction by event type, highlighting how
participants used different strategies to produce final descriptions.

higher dispersion for Draft+Revise). The narrower range of key-presses in the
Interactive Assistance version could indicate that the added features allow a more
efficient writing process in some cases. However, the lowest addition and deletion
count for Draft+Revise is 0, lower than for Interactive Assistance, as P12 did not
make any edits in this condition, but was satisfied with the pre-generated draft after
reviewing for some time. The median count of paste events is higher in Interactive
Assistance (5 vs. 2); this might account for the added pasting from suggested answers
to Potential User Questions, in addition to pasting from the pre-generated draft and
from elsewhere within the figure metadata or participants’ working descriptions.

Event Traces

To obtain a more fine-grained view into participants’ interaction and writing strategies,
we examined event logs by participant as histograms over time (starting from the
first in-session event). Three examples of this are shown in Fig. 9-8, to highlight the
differences in how the tools’ affordances supported the participants’ alt text authoring.

P10, shown in the first row, incrementally built up their description by pasting text
from the draft at various points, interleaving this with their own writing. They used
the Potential User Questions to test “how it was coming across,” and found this useful
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despite not directly pasting in suggested answers.

P12 only performed one action directly towards producing the description in the
Draft+Revise condition; they pasted in the pre-generated description, and then
reviewed and accepted it. This is apparent in the second row, where the Interactive
Assistance condition shows substantial presence of deletions, additions, and paste
events over the session, but the Draft+Revise condition shows only one paste event
at the beginning and no other events logged. The screencast recording of P12 shows
that they used the open-prompt box, and even tried to obtain a similar effect to the
Potential User Questions by asking which aspects were unclear from the description
(this participant was in group 2 and had already interacted with Interactive Assis-
tance). They ultimately decided that, from the resulting questions, “none of this is
helpful.” This process took almost 5 minutes, including time spent reviewing figure
metadata.

P14, on the other hand, pasted parts of the generated draft at the beginning in
both conditions, but then in Interactive Assistance proceeds to paste additional
text. Some of this came from the draft (particularly before 300 seconds), and then
subsequently from suggested answers to the Potential User Questions. Towards the
end of this description, P14 pasted two separate answers to the same question into
their description in sequence, as they contained complementary details relating to
the function of the same visual cues shown in the figure.

In summary, participants used the available features in individual ways reflecting their
needs and preferences to craft detailed figure descriptions. Strategies we observed
varied even more widely, including patterns like pasting generated drafts and then
extensively editing them. The examples illustrate the diversity of strategies employed
to balance writing, integrating suggestions, and revising, with support from the
system. We include all participants’ individual event traces in Appendix A.6.3.

9.7 Discussion
The present work demonstrates how a human-AI collaborative workflow can support
authors in making their figures accessible through producing descriptive alt text. Our
results show that automatically generated drafts and an interface supporting revision
accelerated the authoring process. Additional interactive writing support features,
including on-demand text generation (Generate at Cursor) and information-seeking
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queries (Potential User Questions), further helped most authors by progressively build-
ing comprehensive descriptions and highlighting points they may have otherwise
missed. An analysis of system usage shows authors leveraged these features ex-
tensively and in diverse ways depending on their figures and preferences. In the
interactive condition, authors produced longer alt text diverging more from the initial
drafts, despite similar cognitive load and key-press counts on average. Overall, the
system mitigated key challenges authors face in crafting complete figure descriptions.
This human-AI collaborative approach highlights the opportunities for combining
human contextual knowledge and AI capabilities in making scientific communication
more inclusive. However, realizing the full potential of such collaborative authoring
systems for accessibility requires addressing issues like generalization and robustness
across real-world figures and alt text authoring contexts, integration into diverse
author workflows, and responsible deployment, which we explore in this section.

9.7.1 Rise of Multimodal Models
Advances in multimodal language models, which incorporate vision and language,
point toward expansive future capabilities for automated alt text generation. Our
approach relied on metadata extracted from figures and papers to provide contextual
grounding for language models, since today’s large language models substantially
outpace widely available multimodal models in terms of their generation capabilities
and can better incorporate large amounts of metadata representing knowledge about
figures. However, the ability to process complex figures directly could reduce depen-
dence on potentially error-prone metadata extraction pipelines while incorporating
the right kinds of contextual knowledge for support.

While this could enable purely automated description systems, risks accompany such
approaches. Recent work has shown how current state-of-the-art multimodal models
can make errors when processing complex figures such as scientific figures [223, 228].
Without human validation, model errors or biases could more easily propagate. Main-
taining author discretion may prove wise, even as automated methods become more
capable. Furthermore, descriptive tasks require not just visual recognition, but reason-
ing, inference, and judgment. The wisdom accumulated in authors and fields, who
can respond to changing contexts, might allow tailoring descriptions for clarity and
relevance. Thus, while future multimodal models may better parse figures, the role
of human guidance and customization is unlikely to dissolve. Specialized metadata
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extraction models could also enhance such models’ zero-shot capabilities. Visual
control could, however, be useful; automatically decomposing complex compound
figures into components for iterative description is a promising approach we did not
explore.

9.7.2 Realizing Gains for Alt Text Consumers
A critical question for future work is whether the increased alt text length and
apparent descriptiveness from the system translates to improved comprehension for
blind and low vision readers. Evaluating alt text quality remains an open challenge,
as illustrated by prior work showing divergent reader preferences. Even assessing
descriptiveness in the presence of generated drafts may prove difficult, evidenced
by low agreement in our annotation pilot. While we aimed to make it easier and
faster for authors to produce detailed alt text, realizing accessibility gains requires
considering the perspectives of and impact on readers. Follow-up work on evaluation
methodology and studies which evaluate the impact of human-AI collaboratively
written descriptions on figure comprehension could help to quantify this impact.

Future work should investigate how to incentivize adoption. Though our study aimed
to mimic natural workflows, factors like time constraints, competing demands, and
incentive structures also inevitably shape real-world use. Even if the system can help
improve alt text completeness, lagging integration risks limiting its impact. Overall,
while initial evidence is promising, confirming and extending the benefits requires
both rigorous accessibility-focused evaluation and understanding practical barriers
to mainstream integration.

9.7.3 Transforming Descriptions to Match Individual Needs
While comprehensive alt text can benefit accessibility, readers have diverse pref-
erences [317] and may desire descriptions of varied lengths tailored to individual
needs. Our approach focused on highly descriptive alt texts by design, so that this
text can serve as a base to produce personalized derivative texts. As abstractive sum-
marization techniques continue advancing [194, 566, 574], in addition to dialog and
other interactive language processing approaches, future systems could apply these
methods to accommodate diverse preferences and needs. For example, a concise 1–2
sentence overview could assist quickly grasping key ideas, while retaining the option
to query for more information, or expand to more detailed versions for nuanced
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understanding. Appropriately customizing alt text poses challenges beyond generic
document summarization, requiring preservation of visually salient information such
as trends in depicted data. However, customization also holds promise to reconcile
the objectives of maximizing completeness for authors while matching diversity in
user preferences.

9.7.4 Ethical Considerations
A key ethical consideration is the risk of imposing additional burdens on marginalized
communities. Blind and low vision readers already often face exclusion from scientific
communication due to the low prevalence of alt text, in addition to other challenges.
Providing them erroneous and verbose descriptions without thoughtful human in-
volvement could create further challenges. Though relying on language models is
core to the approach in this work, it also risks introducing hallucinations, errors, and
biases. Our approach emphasizes author involvement to mitigate these issues, but
incentives and workflows must ensure careful review if deployed at scale. The goal
should be lightening authors’ workload without absolving responsibility. Overall, we
must weigh accessibility gains against potential harm, and ensure technical progress
on aiding authors in describing figures aligns with the goals of assistive technology.

9.8 Limitations
While we evaluated our system on a diverse and realistic set of figures, the study still
involved a limited number of author participants (N=14) describing a small set of
their own figures (2 per participant). Evaluating the approach on a larger scale with
more figures per author would provide stronger evidence. Relatedly, our participants
covered a range of fields, but some areas like life sciences were still underrepresented
despite our best recruitment efforts. Testing robustness across even more diverse
figures and author backgrounds is an important next step towards deployment.

Additionally, our study instructions asked authors to maximize descriptiveness. A
different motivation such as information density (maximizing amount of information
conveyed in the shortest amount of text) could change how the system is used and
the resulting alt texts. The interface features we designed for the initial goal may not
generalize to other aspects of alt text that authors or readers may prefer to optimize
for in certain settings.
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The automated pipeline also occasionally produced errors (like incorrect figure
classification or OCR errors) which propagated to the alt text drafts. Though authors
could correct these errors (and pointed out such instances), robustness is critical
for real-world utility. We did not systematically characterize authors’ ability to
resolve errors in final versions of their descriptions, but such an evaluation could also
help gauge real-world effects of errors in drafts. Enhancing these components, or
integrating uncertainty estimates to guide authors, could improve draft quality and
adoption.

Finally, though we demonstrate that our system has the potential to improve alt text
writing for scientific figures, the disconnect between assistive writing interfaces such
as ours and the scientific publication process limits the true utility of our tool. While
authors may be able to produce better alt text using FigurA11y, the processes around
integrating this alt text into their publications and making the alt text easily accessible
to those who need it are still cumbersome. We acknowledge this limitation and push
for better and more intuitive processes around scientific paper accessibility that will
make it easier and motivate more authors to include alt text in their publications.

9.9 Conclusion and Future Work
We present FigurA11y, a human-AI collaborative approach to improve the accessi-
bility of scientific figures through descriptive alt text. By combining a pipeline for
automatically generated drafts with an interactive authoring interface that makes
contextualized suggestions, our system helped authors efficiently craft detailed de-
scriptions of their own figures. Interactive suggestions further assisted authors by
highlighting aspects they may have missed describing, enabling iterative refinement
of descriptions, and supporting longer descriptions which diverged more from pre-
generated drafts without increasing cognitive load or taking more effort on average.
Future work can extend this approach by pursuing strategies like incorporating visual
information directly, improving robustness of parts of the pipeline, and integrating
with real-world author workflows and incentives, to maximize the positive impact on
the accessibility of scholarly communication.
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10
AI for Musical Discovery

What follows is a position piece on desiderata for future Generative AI-based musical
systems, co-authored with Manaswi Mishra and Tod Machover. In it, we draw on
literature frommusic, AI, and several adjacent fields to shape an optimistic perspective
on what generative AI could contribute to human creativity, learning, and community
in music. Working backwards from this, we consider the kinds of capabilities necessary
to achieve the goals we outline, and how these capabilities align with and extend those
currently under active development and deployment. Different from all preceding
chapters, this one reports no empirical results, but outlines a perspective (enriched by
much of the work described beforehand) to inform future contributions in this area.

10.1 Abstract
What role should Generative AI play in music? Long before recent advances, sim-
ilar questions have been pondered without definitive answers. We argue that the
true potential of Generative AI lies in cultivating musical discovery, expanding our
individual and collective musical horizons. We outline a vision for systems which
nurture human creativity, learning, and community. To contend with the richness
of music in such contexts, we believe machines will need a kind of musical common
sense comprising structural, emotional, and sociocultural factors. Such capabilities
characterize human intuitive musicality, but go beyond what current techniques
or datasets address. We discuss possible models and strategies for developing new
discovery-focused musical tools, drawing on past and ongoing work in our research
group ranging from the individual to the community scale. We present this chapter
as an invitation to collectively explore the exciting frontier of AI for musical discovery.
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10.2 Introduction
Music has been a wondrous laboratory for creativity, learning, and community
throughout human history. Despite this enduring influence, music’s form is any-
thing but static: each era and culture develops distinct musical forms shaped by their
values, socio-political contexts, intricate structural logics, and personal narratives.
When technology is thoughtfully leveraged, it can profoundly magnify music’s reach
and widen creative participation. Advances in recording, computing, and networking
over the last century have underscored this potential.

More recently, Generative AI has made strides across various sectors, including in
music generation. Yet, as these systems advance, we must deliberate on the objectives
behind their musical applications. Rather than merely imitating past conventions,
how might AI push boundaries and reveal new insights? What novel interfaces could
enable more people to develop musical abilities? Broadly, how can we apply these
technologies to enrich human music-making? With care, we believe AI can inspire
and amplify creativity rather than constrain it.

This chapter argues that the primary aim for Generative AI in music should be to
nurture human creativity, learning, and community across all skill levels. We propose
musical discovery as a guiding concept—encompassing not just novel artifacts, but
fresh perspectives that deepen understanding and broaden participation. Advancing
this vision requires interdisciplinary efforts, from technical innovations to nuanced
applications. If developed collaboratively under this humanistic lens, Generative
AI has immense potential to inspire new musical ideas that profoundly expand the
universal human pursuit of discovery.

10.3 On Human Musical Discovery
A number of psychological theories account for musicians’ personal motivation to
discover new ideas, beyond those which one assimilates early in musical develop-
ment. For example, Csikszentmihalyi’s concept of flow [110, 111] emphasizes the
importance of a challenge, which novelty can introduce. Even more diverse are the
strategies used to find and pursue novel ideas. Beyond external influences, musi-
cians routinely engage in solo exploration by improvisation, studio craft involving
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technological tools, and experimentation in composition1. Collaborations between
musicians stimulate new ideas by encouraging them to integrate contrasting back-
grounds and concepts, leading to surprising combinations and translating existing
ideas into new musical domains. Presentational aspects of music, like performing to a
crowd, encourage feedback and social dialogue involving a broader array of commu-
nity members, prompting iteration and integration of new perspectives. Educators
also introduce new ideas to musicians, scaffolding their discovery. Ultimately, each
discovery, however small, can unlock new expressive modes, enhance technical skills,
deepen understanding of musical traditions, and simply invite delight at expanded
possibilities.

At an historical level, musicians experiment with fundamental musical elements and
concepts. In the Western world, for instance, this can include aspects like form,
harmony, rhythm, and instrumentation [76, 450]. Music has also been theorized to
evolve alongside broader sociocultural forces [20, 447] and empirically shown to
transform through social transmission [12]. The impact of historical-scale musical
discovery is multifaceted. It can lead to the creation of entirely new musical styles,
enriching the tapestry of human expression. Ultimately, musical discovery expands
our understanding of the art form and its potential, while using music as a test-bed
for exploring ideas and moving to action [276].

10.4 The State of AI in Music
Early generative approaches focussed on modeling music as a sequence of discrete
symbols of musical events, represented as notes or MIDI [106, 212, 379], an approach
that has carried into contemporary research [221]. The last decade of advancements
in modeling long sequences has enabled us to model music as a sequence of raw
audio samples [371]—capturing the detailed nuances of music like timbre, human
performance, production, and recording artifacts. Further advancements in higher
audio quality, long term structure, and consistency have led to commercial generative
AI music services2 gaining traction. Despite this, a major limitation continues to be
the missing agency and control over generated musical outputs.

1Jones [238] discusses solo exploration and development through various means. For example,
“Avoid Paralysis From Analysis” details how Jones overcomes inertia, such as by engaging in musical
practice with abandon.

2Examples include AIVA, Infinite Album, Endel, and Boomy.
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Fueled by an aggregation of large-scale datasets for music [1, 43, 156, 179, 559],
we are now faced with a myriad of foundation models [57] for music [3, 107]. Such
models show an impressive ability for pastiche but are highly restrictive in their limited
musical diversity, textual conditioning, poor extrapolations, and missing provenance.
The desire for interpretable and controllable models can be supported by a number
of research developments [71, 137, 557], and bespoke generative AI experiments
by musicians [117, 546]. In summary, AI music generation is both historically rich
and rapidly evolving, with impressive progress in symbolic and raw audio generation,
foundation models, and interpretable approaches. However, limitations remain in
agency, control, diversity, and provenance. Addressing these limitations will be crucial
for unlocking the full potential of AI in music.

10.5 Developing Musical “Common Sense” and Long-
Term AI Progress

Despite impressive pattern recognition and generation, modern AI systems still lack
the “common sense” understanding of the world that comes naturally to humans. This
is evident across domains like language, vision, robotics, and music. In AI research,
“common sense” refers to the ability to reason intuitively about everyday situations
depending upon implicit knowledge about how the world works [97, 115], including
aspects like intuitive physics and psychology [277].

In music, we argue this involves recognizing and manipulating the intricate structures,
semantics, and aesthetics that form the fabric of musical expression. Such musical
intuition is difficult to capture through explicit datasets or training objectives. Rather,
many aspects of music emerge through implicit learning processes [433]. We call
it “common sense” because it reflects shared assumptions and sensibilities within
real-world musical expression, acquired through a complex interplay of biological,
psychological, and cultural processes. Developing this level of comprehension remains
a grand challenge for AI in music, and indeed music has been argued to provide deep
challenges for AI development more broadly [432].

Much has been written about human musicality [216, 512], a complex and even
contested [65] notion that can be seen as addressing implicit musical abilities, similar
to what we call musical common sense. In humans, the notion of musicality is
entangled with questions of talent vs. skill, ability and aptitude, cultural universality,
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and species-specificity. We aim to distinguish our notion of musical common sense
from musicality. One reason for this is that in order to encourage technical progress
in research, we must align sufficiently on the capabilities we hope to develop. The
other is that we do not aim to replicate all facets of human musical intelligence in
AI systems. Rather, we hope to cultivate the aspects of musical comprehension that
allow AI to most effectively enhance human creativity, through musical discovery.

We propose the following categories of capabilities as layers of musical common sense;
parts that, though inevitably incomplete in capturing all of human musical behavior,
enable developing clearer goalposts for future progress.

Structural Attributes This involves recognizing and manipulating the fundamental
patterns, idioms, and theoretical constructs that form the building blocks of music in
different stylistic, cultural, and social contexts. Expert musicians fluently apply such
conceptual understanding when communicating ideas and intentions. Structural
knowledge also aids music educators in conveying concepts to students, both to
transmit knowledge of the past and to offer building blocks that students can use to
generalize and extend past ideas.

For example, in the context of Jazz, this could include chords and extensions, harmonic
substitutions, canonical rhythms, higher-level notions like progressions (e.g. “Rhythm
Changes”), sections, and standards. This conceptual understanding could allow an
AI system to support a jazz musician in various ways. During practice, the system
could generate variations and reharmonizations on chord changes to standard tunes
to help expand the musician’s harmonic vocabulary. In live performance, it could
listen and respond with expected or challenging accompaniment. For analysis, the
system could identify key patterns and structures in improvised solos to elucidate
techniques. For Jazz composers, common forms often rely on knowledge of both
repertoire and harmonic concepts, such as contrafacts and reharmonizations.

Imagine, for instance, a musically knowledgeable multimodal foundation model. A
novice might query such a model with a vague but intuitive textual description or
auditory example of a musical idea, and the model would respond by identifying
relevant theoretical constructs, retrieving examples from the literature and synthe-
sizing new ones, and offering application ideas in order to help the learner build a
meaningful mental model of the underlying concept. For an intermediate student,
the system could generate reharmonizations and stylistic variations on a standard.
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This provides material to practice improvisation in novel and diverse contexts. For
an expert performer, the system allows specifying ideas in precise musical language
and iterating to rapidly explore new ideas. For example, a saxophonist could explore
reharmonization concepts for a standard under different ensemble configurations by
generating examples building on their intuition. A meaningful exchange in such a
scenario is predicated on shared structural comprehension; the model must be able
to represent and manipulate the expert’s ideas accurately and fluidly. In each case,
this layer of musical common sense allows the model to build on what the musician
knows and can convey to eventually reach new territory for educational or creative
goals. As musicologist Paul Berliner writes, “There is. . . a lifetime of preparation and
knowledge behind every idea that an improviser performs.” [42]

It is essential, however, to maintain humility about the fluidity and subjectivity of
such notions. Musical knowledge resists over-codification, as conventions evolve
dynamically across cultures and eras based on myriad factors, and are personalized
based on individual experience, references, and context. What is considered standard
in one generation may be cast aside in the next, and structural models of musical
information often only crystallize in retrospect (e.g. through significant musicological
efforts). For instance, the well-known sonata form exhibits considerable heterogene-
ity [436]. We must also acknowledge the inherent limitations in formally encoding
creative human practices like music.

As such, we should be wary of over-reliance on explicit idioms in building and
evaluating generative AI for musical discovery, and instead seek to perceive and
participate in music’s ever-changing landscape with openness and nuance. The
priority should be conveying possibilities in the musician’s own terms, not imposing
assumptions. Consider the “Beginner’s Mind” or shoshin, an idea with its roots in Zen
Buddhism. Suzuki writes “In the beginner’s mind there are many possibilities; in the
expert’s mind there are few.” [494]

Emotional Context Disparate theories account for how emotion is expressed through,
perceived in, and induced by music [241]. While academic discourse on the topic
continues, musicians effortlessly intuit music-emotion relations. Composers and
songwriters learn associations between musical devices and emotional states within
their style and culture, often without explicitly reasoning about these associations.
Performers even make subtle adjustments to phrasing, articulation, and expression
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to evoke varied affective responses.

Machines are usually taught to connect music and emotion through explicit tasks like
music emotion recognition (MER) [227], or implicitly through aligning music with
affectively valent textual [133] or visual [492] correlates. However, these methods
are unlikely to fully capture the nuance involved in musical emotion. MER often
depends on datasets and prediction targets derived from simplistic taxonomies [201].
Implicit learning from textual associations may instill biases from datasets, due to
limitations in how emotion is often discussed and the need for more information
than language alone for representing rich emotional concepts [390]. Such techniques
lack grounding in the human experiences, embodiment, and enculturation that gives
rise to musical emotional fluency, and may implicitly encode biases in music-emotion
connections.

Progress could require models that learn holistic musical emotion understanding
through real-world immersion, or simulations and other experiential strategies. As
one application example, imagine a system assisting a film composer in exploring
ideas for a score. Generating plausible and compelling ideas requires an implicit
understanding of the precise emotional arcs, aligned to scenes. A system could suggest
musical ideas with knowledge of this context, and even ideas that thoughtfully deviate
from it (for instance, to foreshadow future events in earlier scenes [55, 497, 531]),
supported by a rich model of emotional context. This capacity for emotional insight
is key to AI that can meaningfully collaborate in human musical communication, and
stretch creators in new affective directions.

Interaction Dynamics Human musicians communicate through an unspoken lan-
guage of musical cues [249, 250]. In classical ensembles, quiet signaling enables
almost inhuman feats of coordination and results in the synergistic performances we
are accustomed to as audiences, from ad-hoc duos to conducted orchestras. In jazz,
players cue solos, accompaniment, and transitions seamlessly, displaying complex
decision-making in real-time. Sensitivity to such social signals facilitates participation
in music.

However, current AI systems lack awareness of such nuanced musical interaction. As
Browning and LeCun note, “social customs and rituals can convey all kinds of skills
to the next generation through imitation.” [62] To collaborate meaningfully with
creators, AI must appreciate the social dynamics of music.

257



Progress in this area may require interactive environments where systems learn
subtleties experientially. Evaluation metrics should assess musical-social intelligence
beyond technical ability. Musical collaboration relies on tacit knowledge, and so such
social competence is critical for AI that aims to enhance creativity through interaction
on human terms, rather than replace it through automation.

Adaptivity and Personalized Behavior In prolonged musical interactions, AI as-
sistants must learn to adapt contributions to complement individual creators. User-
adaptivity is a classic goal in computing systems [67]. In language modeling, this
goal has been bridged with modern foundation models by leveraging techniques
like in-context learning and prompt engineering. For instance, OpenAI’s ChatGPT
interface allows setting “Custom Instructions”3 that allow long-term consistency, and
users may prompt within sessions to bias behavior towards personal desires as they
change over time or respond to exogenous factors.

However, as Glassman recently described, human-AI interaction involves complex
loops of intent formation, expression, inference, action, verification, and updat-
ing [186]; in light of this, adaptation to users and goals from simple strategies like
prompts may not be straightforward. Additionally, Picard proposed years ago that
learning user subjectivity requires establishing shared “common sense” specific to
the user, and then observation and learning over time [389].

For music, we propose that personalization involves technical capabilities like recog-
nizing preferred rhythms, motifs, emotional tones, and other artistic factors, but also
entails detecting strengths, weaknesses, tendencies, and gaps. The goal over time
is creative growth through personalized scaffolding; whether expanding the user’s
skillset, their output, or simply keeping track of their musicianship as it changes.

This requires architectures that accumulate rich user models, responsive to both
immediate and longitudinal patterns in individual creative expression; akin to what
Bickmore and Picard [46] once described as relational agents in a more general
setting. In this way, AI systems can complement, challenge, and empower human
creators while retaining their unique voices.

Cultural Sensitivity Music poses a profound challenge for cultural understanding
in AI. Musical conventions and aesthetics vary dramatically across the world’s cultures,

3openai.com/index/custom-instructions-for-chatgpt
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which each carry unique symbolic meaning and social significance. Riedl discusses the
goal of machine enculturation [421], describing this as “the teaching of sociocultural
values to machines,” and proposes a way to accomplish this: through stories, which
often implicitly encode values and tacit sociocultural knowledge. Finding strategies
that similarly implicitly convey such values in the context of music, and supplement
narratives like stories, could be helpful towards this goal.

Another important aspect is training data. Training data often encodes implicit
biases [56, 66], so achieving culturally sensitive AI requires intentional efforts to
improve representation; for instance, implementing ethical data sourcing and sam-
pling strategies, involving community members for evaluation and feedback, and
using technical measures to reduce imbalances where possible. Ultimately, datasets
are insufficient without participation from people to instill nuanced comprehension.
We expect progress to come through partnerships with cultural communities, where
human guidance and validation steers systems away from bias and towards genuine
sensitivity.

Moreover, granting cultural communities authority over their musical representa-
tion is imperative to avoid misinterpretation and appropriation by AI systems. By
incorporating these strategies, AI can progress towards genuine cultural sensitivity,
understanding cultures as complex, evolving entities rather than static sets of traits.

10.6 Extrapolating Beyond Today’s Sounds
While generative models have achieved impressive results emulating existing styles,
moving beyond today’s musical horizons presents acute challenges. Definitionally,
today’s models are trained on yesterday’s data; this is what makes them so fluent at
recreating the past. Yet relying on imitation alone risks stagnation. How then can we
grow new sounds?

10.6.1 Embracing Uncertainty
Modern generative AI models have extraordinary imitative abilities, yet often err in
intriguing ways. This unpredictability has parallels to the long tradition of artists find-
ing inspiration in chance processes, such as in the aleatoric music of John Cage [52].
However, the uncertainty of large language models is not arbitrary randomness,
but rather can be seen as unexpected interpolations and combinations within their
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domain of imitation: explorations of the latent space learned from their training data.
Recent work has shown how diffusion models can encode aspects of human musical
expectation and surprisal [332]. This suggests that model errors and uncertainties
have aesthetic potential if creators can scaffold and direct them in a meaningful way.
However, they are currently serendipitous side effects of imitative processes, rather
than being scaffolded with meaningful interactions. One possible path forward is
to leverage abstract reasoning processes, such as those at play in large language
models, to systematically recognize and leverage model errors and scaffold how
human creators tap into them as resources for discovery and creativity. In doing so,
we propose that Generative AI provides an opportunity to advance the artistic legacy
of revealing creativity hidden within unpredictability.

10.6.2 Transformational Creativity
Boden famously proposed three forms of creativity: combinatorial (or combinational),
exploratory, and transformational [50]. Combinatorial creativity involves novel
syntheses of familiar ideas. Exploratory refers to generating novel ideas within an
established conceptual space. Transformational creativity, however, fundamentally
reshapes a domain’s possibilities. Though this is an ambiguous notion, Boden cites
Schoenberg’s ideas about atonality as a musical example.

Transformational creativity is rare and revolutionary—it is the long tail of creative
acts. Even so, it is vital for the future of music; this is how we catalyze periodic
upheavals of musical thinking and yield influential new movements, while in turn
using music as a catalyst to inspire hope and optimism that positive pathways and
solutions to any situation—no matter how intractable—can always be found. With
generative systems becoming increasingly capable at combinatorial and exploratory
tasks, there are opportunities to also support this most ambitious form of human
creativity4.

Presently, it is hard to see a path to models independently achieving this transforma-
tional type of creativity. However, a promising way forward is human-AI collaboration.
In this context, our machines need not recast music independently but instead amplify
human creativity into unfamiliar and radical new domains. We hope for systems
that can scale up cycles of co-creation and feedback to accelerate refinement of

4Amabile [8] presents social and motivational factors which influence creativity, which provides
one possible basis for Generative AI-based interventions that do the same.
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transformational ideas, as well as aggregate cross-disciplinary knowledge to make
unconventional connections across domains. Evaluations of this should prioritize
long-term contribution, wherein AI tools enhance imagination to help sustain music’s
endless evolution.

Thoughtfully integrating AI has potential to accelerate human musical discovery in
multiple ways. At times, embracing uncertainty can spark novel ideas within estab-
lished conceptual spaces, and help us rapidly explore them. Unexpected permutations
can reveal overlooked possibilities, encouraging us to take a closer look. Periodically,
transformational leaps enable us to explore uncharted territory. All of these forms of
discovery are vital for music: the former two nourish thriving ecosystems, while the
latter propels enduring reinvention and growth. With human creativity amplified but
not displaced by machine collaboration, music can evolve without losing touch with
human experience. AI can assist discovery, but music’s capacity to speak across eras
originates in our shared experiences.

10.7 Developing New Tools for Human Creativity and
Discovery

While past creative tools provide useful starting points and evocative models for pro-
moting musical discovery, fully realizing Generative AI’s transformative potential also
requires new perspectives. Rather than simply replicating long-standing assumptions
and interfaces, we must rethink human-machine interaction to prevent established
biases from implicitly constraining the potential of future systems. Here, grounded
in past and present research in our group, we outline our vision for future generative
tools that encourage musical discovery across a set of exciting applications.

10.7.1 Augmented Ideation
Musical ideation is profoundly shaped by context, from lone composition to ensemble
improvisation. These environments present distinct opportunities for AI augmenta-
tion while posing challenges requiring thoughtful sensitivity. For example, composers
ideate through cycles of exploration and refinement, necessitating adaptive systems
that toggle between divergent idea generation and focused iteration. Meanwhile, im-
provisers often ideate fluidly from real-time stimuli, implying tools for rapid variation
and response.
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Our group has long cultivated systems to enhance musical ideation, for instance
using computational methods to interface with large audio datasets [468]. However,
modern Generative AI offers a fundamentally distinct design material for fueling
creativity through its capacity to synthesize novel outputs that derive from existing
musical datasets, for instance with text-based semantic guidance. Recently, we
developed a sound generation method that introduces semantic guidance to the
modular synthesizer paradigm, a historic set of tools that has fueled musical ideation
for decades. This method allows users to generate sounds from prompts, but then
adjust these sounds and freely explore using a small set of interpretable knobs [89, 91],
in contrast to black-box sound generation methods.

Designing interactive systems also allows nuanced and reciprocal influence. Our group
has built an AI ideation system that taps into individual users’ voices to brainstorm
and create compositional material [347]. For a recent concert, we developed and
deployed a real-time Generative AI system based on a set of RAVE [71] models.
This system translated and varied performer gestures into provocative new timbres,
provoking them to form a dialogue with altered versions of their own ideas. This
real-time call-and-response resulted in stimulating duets that neither party could
have produced alone.

10.7.2 Augmented Presentation
Historically, music has been commodified and marketed as static, definitive prod-
ucts—fixed recordings and compositions intended for passive consumption. However,
our group has previously proposed a more flexible paradigm for musical experiences
centered around fluid musical “sound worlds” that users can manipulate and extend
indefinitely [214, 322]. Artificial.fm is another proof-of-concept system which demon-
strates an “AI Radio”, allowing collaborative steering of AI-generated music outputs
using participatory curation [193].

Generative AI could prove integral to realizing this vision of mutable musical ecosys-
tems that break from traditional attachments to predefined songs and recordings.
However, this is a non-trivial extension of current paradigms for music generation:
composers must retain the ability to endow generative models of their music with
certain invariant qualities that establish their aesthetic values. Even so, generative
techniques offer promising means to manifest adaptable, personalized sonic experi-
ences that transcend static compositions. Beyond encouraging re-discovery of existing
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music, we have also held an interest in how adaptive music can be used for affect
improvement [286, 487]. Broadly, we are interested in harnessing these methods
to give people agency in the music that they share and experience, as well as to
introduce surprise and delight in hearing well-liked music that reveals new secrets at
each listening.

10.7.3 Creative and Adaptive Learning
Influential pedagogical theories like constructionism highlight learning through cre-
ating meaningful artifacts, often facilitated by technology [381]. Vygotsky’s zone of
proximal development model [532] describes a scaffolded learning process, where
guidance nudges students just beyond current competencies. These frameworks
underscore the potential of Generative AI to contribute to transforming learning
beyond passive transmission and towards creative invention. Learners can translate
conceptual ideas into personally relevant works to internalize new knowledge.

Prior systems like Hyperscore [147], developed in our lab, exemplify this creative
learning by enabling students to draft motifs and develop compositions with coarse-
grained sketching behavior and intelligent harmonic controls. It is essential that
future tools—such as the extended Hyperscore environment that our group is cur-
rently designing for the new Johnson Education Center at the Dallas Symphony
Orchestra—similarly maintain learner agency and engagement to maximize their
learning and growth. When preserving this, the immense power of generative tech-
niques to actualize ideas can profoundly enrich learning across skill levels. Students
stand to gain deep understanding and identity-forming creative skills as they steer
personalized journeys and shape multifarious variations grown from their own seed
ideas.

10.7.4 Scaling Participation and Collaboration
Beyond empowering individuals, generative AI could also transform music’s social
fabric by facilitating creativity within and amongst communities. Recent endeavors
like our group’s City Symphonies invite residents to contribute to musical portraits of
urban areas through diverse submissions aggregated into grand-scale experiences. We
have developed a range of technologies to support community input into collaborative
works [321, 526, 527], but generative techniques present new opportunities for
such designs; they could enable community members to contribute and combine a
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wide variety of expressive ideas, with even greater facility and power than previous
tools provided. To nurture communal creativity, systems must maintain individual
voices, and enable both personal exploration and constructive dialogue between
different contributions. We seek thoughtfully designed technologies that help foster
deep belonging and equitable exchange between community members in creative
collaboration, and are currently developing such tools for the Wellbeing of the World:
A Global Symphony project, scheduled to premiere in 2025.

10.7.5 Identifying Limits
While Generative AI promises rich possibilities for musical discovery, we must also
identify boundaries: certain profoundly human qualities and lived experiences of
music may remain beyond capture. This is, of course, true even more broadly than
music: we must probe the conceptual limits of new technologies, meaningfully
speculate on their potential consequences, and consider what we need to preserve
when bringing automation into human endeavors. Our group explores these tensions
through the rich medium of Opera, which brings together artistic and technological
means to imagine and interrogate such issues [2, 235]. Opera can help us tell
important, humanistic stories that provoke and ground conversations about future
technologies. We explore AI’s cultural tensions through operas integrating stories and
real systems. These operas enact both dreams and limitations in order to crystallize
priorities at the heart of our research—catalyzing creative discovery through machines
built first and foremost for expanding human potential rather than simply accelerating
industrial progress.

10.8 Conclusion
The discovery of new musical ideas, for individuals and across communities, has
long progressed through an intricate exchange between human creativity and tech-
nological innovation. Generative AI now stands to carry this legacy forward—but
truly nurturing musical creativity relies on developing transformative new systems
guided by this synergistic interaction. Our goal in this chapter has been to propose
musical discovery as an orienting principle, outline key musical common sense capabili-
ties—structural, affective, and sociocultural—that are vital to meaningfully enable
this, and showcase possible models for the design of new tools for musical discovery.
Despite the impressive accomplishments of present-day musical generative models,
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we believe the path ahead is rich with challenges that will necessitate insightful solu-
tions both technical and artistic, broad collaboration, and lively community dialogue.
Our task is now to formalize these challenges, propose and manifest solutions, and
collectively progress systems while ensuring that they expand, rather than constrain,
the horizons of human musical endeavor.
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Part IV
Putting it All Together
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11
Discussion
The work in this thesis has explored how intelligent systems can meaningfully extend
human capabilities, particularly in or motivated by creative work, through the lens of
several application domains and methodological approaches. Through engaging in
this series of investigations spanning computational modeling, system building, and
empirical studies of human-AI interaction, I have found myself reflecting on themes
that seem to recur and resonate across it. I have endeavored to describe some of
these themes below.

Working with Imperfect but Useful Approximations
One recurring finding across multiple projects is that imperfect or approximate
intermediate representations can serve as powerful bridges between human and
machine capabilities. Chapter 2 works with images and estimated depth maps. While
these are clearly crude approximations of true scene geometry, they provide sufficient
structure to enable meaningful acoustic simulation at the level needed for many
creative tasks. Chapter 5 dealt with a fairly specific synthesizer architecture, certainly
not suited to the diversity of sounds one might think to generate. Even so, this limited
representational capacity lends itself to abstraction: a property that might often be
desired in sound design contexts. In Chapter 8, suggestions that were technically
“incorrect” or “irrelevant” still proved valuable to many writers by sparking new ideas
by prompting reinterpretation and integrative leaps.

One possible interpretation of this is that the primary goal of human-AI systems can
extend beyond perfect fidelity or accuracy, and embrace representations that are
“usefully imperfect”. These maintain enough structured information (e.g. visual or
textual coherence) to enable meaningful augmentation, while expanding the room
for human interpretation and agency.
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Indirection of User Intent as a Design Strategy
Some approaches used in this thesis involve introducing indirection between user
input and system output, i.e. they output a different representation than what the
user might intuitively expect, but in doing so create additional opportunities for
creative follow-ups from users. The synthesizer-based approach to text-to-audio
generation in Chapter 5 achieves creative sound design through producing results
in an interpretable parameter space rather than direct waveform generation, which
would be perhaps the most direct way to get auditory results. Without this indirection,
however, the possibility space for what the user can do with the output is significantly
more limited. The multimodal writing system in Chapter 8 provides suggestions
through parallel channels of text, image, and sound rather than just direct text
completion, and provides multiple suggestions. If it functioned as an auto-complete,
it may not have been able to support (or uncover, to begin with) the diversity of needs
and strategies arising in the user writing tasks.

Such indirection can be useful at a design level: it creates spaces for human interpre-
tation and creativity while working within current technical limitations. It suggests
that rather than always pursuing end-to-end pipelines, thoughtfully designed detours
may often better serve human-AI collaboration.

Value of Training with “Unrealistic” Distributions
A more speculative pattern we observe across multiple technical contributions in
this thesis that training on data distributions with carefully controlled divergence
from target (downstream task) distributions can yield benefits. The audio doppel-
gänger work in Chapter 6 demonstrated that training on synthetic sounds—which
systematically differed from real audio distributions—could still produce robust and
useful representations. Similarly, the dubbed movie approach in Chapter 3 showed
benefits from controlled variation in the audiovisual relationship; the visuals re-
mained constant while the audio diverged in predictable ways that are nonetheless
not observed in downstream datasets. Both works also deal with a counterfactual-like
augmentation strategy: in the former, we produce random sound pairs that vary in
terms of their underlying parameters. In the latter, we consume dubbed videos, which
encode a “what if” scenario in terms of speech differences. Both try to approximate
phenomena that we often don’t directly observe in the world, but conceptually occur
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in the form of counterfactuals, and were studied through controlled variation. When
constructing training data and procedures, this work suggests it may be prudent
to consider exploiting strategies that don’t directly resemble existing datasets, but
reflect assumptions that meaningfully structure learning.

Cognitive Integration Work as a Feature
The empirical study in Chapter 8 reveals that users might perform substantial cognitive
work to bridge between system capabilities and their goals. This integration work may
be useful for maintaining agency and ensuring high-quality outputs that align with the
user and contextual needs, rather than being a limitation to be circumvented by better
automation. In particular, the writing study showed how this cognitive effort appeared
to facilitate novel story directions and greater perceived ownership. Similarly, in
Chapter 9, authors’ revision work was important for accuracy and completeness,
informed by their contextual awareness of their own research (from which the figures
were taken), and the field in which they operate. In a way, Chapter 5 hints at this
notion as well: the abstraction inherent in the synthetic results may require a little
cognitive work to map to desired sounds (consider listeners’ greater uncertainty,
despite their reasonable accuracy in recognizing the categories). However, this
effort appears valuable for sound design outcomes (users also perceived the sounds
as being more artistically interpretive of the concepts). This suggests that system
designs should actively support and scaffold this integration work, in conjunction
with developing better capabilities.

The Art and Science of Parameter Space Design
One central challenge in building effective human-AI systems, highlighted by the work
presented thus far in this thesis, lies in the design of parameter spaces. These param-
eter spaces often constitute both controls for model behavior, and specifications for
human input. This thesis demonstrates this across multiple contexts: sound synthesis
parameters enabling creative audio generation or perceptual sound understanding,
visual features guiding acoustic modeling, and design space parameters structuring
experimental exploration (to come in the chapter to follow).

A careful look at these cases reveals several principles that appear important for
effective parameter space design:
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1. Parameter spaces must serve dual objectives. First, they must support efficient
computational manipulation and learning. Second, they should enable mean-
ingful human interpretation and control. Without the former, machines may
struggle to operate them sufficiently for machine intervention to be useful.
Without the latter, the parameter spaces become more useful for automation
than augmentation Chapter 5 shows this explicitly: synthesis parameters simul-
taneously support optimization for matching text descriptions while providing
interpretable controls that sound designers can manipulate. Chapter 6 goes
beyond this, showing how the same parameter space can be used to support
efficient and effective audio representation learning. The success of this ap-
proach suggests that finding such dual-purpose parameters may be tractable,
and a useful alternative to building separate human/machine representations.

2. Parameter design can follow multiple paths. In particular:

(a) Mining historical domain knowledge: The synthesizer work leverages
decades of sound design expertise encoded in synthesis parameters. This
is useful because: (1) these parameters are already validated through
extensive human use, (2) they capture meaningful dimensions of variation,
and (3) they have clear relationships to perceptible outcomes.

(b) Theoretical derivation: Another strategy is to construct parameters through
systematic analysis of design spaces. This requires explicitly enumerating
design dimensions, grounded in a cogent theoretical framework. In the
following chapter (Chapter 12), we will present an example of this.

(c) Empirical derivation: Here, traditional designer strategies such as need
finding may come into play. Grounding a parameter space in an empirical
investigation (e.g. a need-finding study with a target population) could
be a useful way to discover meaningful factors of variation, and thus
meaningful parameters for this population to use.

(d) Data-driven discovery: Future work might also consider discovering pos-
sible parameters from data or from models trained on data, for example
using techniques from interpretability wherein we probe abstract compu-
tational representations to make meaning of them. This direction has not
yet been explored in this thesis, but model steering has already proven
useful in the language modeling context, as a precedent.
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3. Effectively evaluating parameter spaces may require applying multiple, comple-
mentary criteria:

(a) The technical utility of the parameters, i.e. how they support effective
learning and/or optimization.

(b) Their human interpretability, i.e. how well they facilitate conceptual
understanding and purposeful manipulation by users.

(c) The creative affordances revealed by them. Effective manipulation is a
necessary, but not sufficient, condition; manipulating these parameters
must also yield some reward for humans.

(d) Their contextual robustness; the degree to which they maintain their utility
across different contexts of use.

In a way, the synthesizer parameters in Chapters 5 and 6, backed by the
efficient implementation in Chapter 4, shows technical utility for optimization
and learning, human interpretability and creative affordances by virtue of our
results and their historical roots, and contextual robustness by being useful
for both human-centered sound generation and audio representation learning.
Still, developing strong evaluative frameworks for parameter spaces may be
the best way to ensure that we continue to develop better configurations.

Of course, parameter spaces may never be complete. As Jaron Lanier notes in You
Are Not a Gadget [283], “[the] definition of a digital object is based on assumptions
of what aspects of it will turn out to be important.” When we deal with essentially
truncated representations of complex real-world phenomena, we may have to, as
Lanier notes, treat them with “special caution.” Still, even simplified representations
can grow into more wholistic conceptual models. Lanier gives the example of MIDI
as a highly simplified representation of music. Though this is true, MIDI has recently
evolved to accommodate many more nuances through MIDI Polyphonic Expression
(MPE) and MIDI 2.0, getting past the conceptual “lock-in” of earlier versions.

The Knowledge Integration Problem
Consider a designer tasked with building an AI system, capitalizing on a recent
technical advance, to support architects in exploring new building designs. They
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might look to prior work, finding papers about systems that help writers craft stories,
musicians compose pieces, or visual artists generate concepts. Each describes valuable
lessons about how users responded to different forms of algorithmic intervention.
Still, how should they translate these insights to architecture? Which aspects of the
writing assistant’s suggestion timing would carry over? Would the strategies that
helped musicians maintain creative agency work similarly for architects? Further,
what should they do when suggestions conflict between the different domains? Since
these works may not have been done with explicit knowledge of each other, the
designer’s attempts to reconcile their findings may be the first.

In this discussion so far, we have engaged in intuitive and analogical reasoning to build
bridges across this line of work. To me, this has required years of immersion in these
research areas, and the broader domain they are sampled from. In the field more
broadly, such integration may occur through dialog between researchers working on
different subproblems. Yet, the question of how the subproblem-level insights should
be systematically integrated to form cogent theories with high predictive utility is
not clear.

Indeed, the challenge runs a little deeper than just difficulty translating findings,
especially when we consider the effort involved in the design and implementation of
an AI-based interactive system. Without systematic ways to vary and study design and
interaction strategies across contexts, we risk rebuilding similar systems repeatedly
while missing opportunities to understand what about them truly generalizes. Each
new project starts, in part, from scratch, implicitly rediscovering principles that might
have been more efficiently established through careful experimental design.

This ad-hoc approach to knowledge building becomes increasingly untenable as the
underlying technical capabilities advance rapidly. The design space grows ever larger,
and making progress one prototype at a time leaves too much territory unexplored.
Arguably, it leads to knowledge that is even more “provisional, contingent, and aspi-
rational” [174] when working with generative models than with the less expressive
computational substrates engaged in traditional research-through-design [582]. Mo-
tivated by this observation, I introduce a new conceptual framework for studying
human-generative AI interaction in the next chapter. Though this discussion has
sought to hypothesize about some common principles, I argue realizing their value
requires new tools for studying them rigorously.
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12
Meta-Prototypes: Towards Integrating
Design and Experimentation in
Human-Generative AI Interaction

Abstract
Traditional machine learning models such as classifiers lend themselves to systematic
study through simulation, enabling precise manipulation of model behavior and
integration with controlled experimental designs. Simulation is, however, infeasible
for high-dimensional, interactive generative models, which demand in-situ analysis
due to their dynamic and context-dependent behavior. As a result, design knowledge
for generative AI-powered systems advances through ad hoc, prototype-by-prototype
iterations, sampled implicitly from a broader, often unstructured, design space. Then,
to aggregate design knowledge, we rely on scientific publication and dialog. This
chapter proposes the concept of meta-prototypes: parametrically defined families of
interactive systems that enable systematic exploration of design spaces. Extending
from the paradigm of integrative experiments, we propose methods for parameteriz-
ing, instantiating, and experimentally testing such meta-prototypes. We discuss how
this approach can shift us from fragmented design knowledge to more robust and
predictive theories of human-generative AI interaction.

12.1 Introduction
Consider two scenarios. First, a materials scientist is trying to develop a new polymer
with high tensile strength and biodegradability. They have a large database of existing
polymers and their properties, but struggle to identify promising combinations for
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experimentation. Second, a UX designer is redesigning a complex dashboard for a
financial application. They need to balance information density with ease of use, while
adhering to accessibility and usability guidelines and a company’s design system.

Despite their differences, both scenarios share some common structure. They include
a large search space of possibilities (polymer combinations, design layouts), multiple—
possibly competing—constraints (material properties, usability factors), the need to
generate and evaluate numerous candidate solutions quickly, and the potential for
unexpected connections or solutions to arise. Both could benefit from algorithmic
assistance, for example by summarizing key data points, suggesting novel connections,
or generating alternative solutions; things modern Generative AI tools are used for.

Currently, we approach these as separate problems. We might prototype and develop
a system for one or the other task, and learn something useful about how best to
support it in the process. However, this ignores their shared structure, resulting in
design knowledge with limited generalizability and perhaps even a limited shelf life;
what happens when the technical substrate, e.g. the generative model in use, changes
dramatically? Some circumstances are even more similar: imagine designing visual
content vs. text for an ad campaign. They differ in modality, which suggests the
use of different computational tools and thus different interactive systems. This is
akin to studying caffeine’s effects on writers and strategists in isolation, missing the
underlying cognitive mechanisms that span domains and allow us to build stronger,
more predictive theories. Consider questions like: When should algorithms intervene in
human creative processes? How will algorithmic interventions influence outcomes? Will
such systems expand a creator’s conceptual space, or narrow it towards more predictable
outcomes? What are the long-term impacts on users? What differences are there between
well-defined vs. open-ended tasks?

12.2 The Knowledge Integration Problem
The core issue here is our inability to systematically vary and study algorithmic
intervention strategies across different creative contexts. This limitation propagates
through the entire field of human-generative AI interaction, and can result in re-
dundant efforts across prototypes and missed opportunities for cross-pollination of
ideas. Indeed, designing AI systems for creative work has historically been an ad-hoc
endeavor, leading to fragmented insights and a lack of integrative theories. Human-AI
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interaction in creative contexts often proceeds one prototype at a time, similar to how
social sciences have been observed to progress “one experiment at a time” [6, 359].

The task of designing and building AI systems for creative work, a common use
case for interactive generative models, is particularly under-specified due to the
absence of robust consensus in its scientific study, which is marked by a diversity of
definitions and theories [37, 130, 331, 397, 399]. This theoretical fragmentation
complicates the design of AI systems for creative work, since there is not a common
and canonical foundation for it and human-AI co-creativity introduces additional
considerations. Recent advances in AI, particularly in generative models, have created
new possibilities for human-AI creative partnerships, but our understanding of how
to effectively integrate these technologies into human creative processes remains
limited [404]. The field of Creativity Support Tools (CSTs) has made progress in
understanding how technology can augment human creativity [464]. However, the
unique challenges posed by modern generative AI tools require a new investigative
framework, due to the systems’ ability to generate and modify creative artifacts
directly.

To address this limitation, we introduce the notion of meta-prototypes: flexible, mod-
ular human-AI interactive systems designed to systematically explore a broad design
space. These meta-prototypes will enable rigorous investigation of the cognitive and
computational factors that facilitate productive human-AI creative partnerships. By
systematically varying intervention strategies and contexts, we can study factors like
when and how AI should intervene to expand a creator’s conceptual horizons versus
consolidate their ideas, producing design knowledge for next-generation creativity
support tools.

12.3 Meta-Prototypes

12.3.1 Some Definitions
First, it’s worth formalizing what we mean by prototype in this context. Houde and
Hill [217] regard prototypes as “any representation of a design idea.” Here, we
define a more restrictive form of prototype. As noted earlier, interactive systems
based on high-dimensional interactive generative models, such as language models
and text-to-image generators, are difficult to simulate in lower-fidelity settings. Even
simple designs may need to actually use such technologies, if the interaction is of
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interest beyond outputs alone. We consider the case of such prototypes, which have
a few key features we formalize below.

Definition 1 (Prototype): A prototype is a tuple P = (I, A, C,Λ) where:

• I ∈ I represents the interaction model, i.e. the features of the interactive system
such as modalities, mixed-initiative components, etc. which are relevant to
the task. These are sampled from a broader space of all possible interaction
features, i.e. I.

• A ∈ A represents the algorithmic model, including which generative AI model(s)
and weights are used, what their inference parameters are (e.g. decoder tem-
perature), and other computational aspects. Likewise, A denotes a broader
space of possible algorithmic aspects.

• C ∈ C represents the context, which includes task-specific or environmental
assumptions relevant to the system’s operation, such as the type of artifact a
user is authoring, the social or institutional context the artifact is embedded in,
or the duration of the interaction. C here is the set of all possible contexts, not
just those relevant in this one prototype’s case.

• Λ ∈ L represents nuisance parameters, including extraneous design features
or confounders (e.g., banner color, and other non-essential interface features)
drawn from the broader possible space of such features L.

The set, or “universe” [6], of all possible prototypes is denoted by P = I ×A×C×L.

Definition 2 (Meta-Prototype): Then, a meta-prototype is a parametric family of
prototypes, defined as a tupleM = (IΘI

, AΘA
, CΘC

,Λ) where:

• IΘI
⊆ I is a parametric family of interaction models, parameterized by θI ∈ ΘI .

• AΘA
⊆ A is a parametric family of algorithmic models, parameterized by

θA ∈ ΘA.

• CΘC
⊆ C is a parametric family of contexts, parameterized by θC ∈ ΘC .

• Λ ⊆ L are nuisance parameters held constant across all variations of I, A, C.
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Each instantiation of a meta-prototype corresponds to a specific prototype: Pθ =

(IθI , AθA , CθC ,Λ) for some θ = (θI , θA, θC , θΛ) ∈ ΘI × ΘA × ΘC × Λ. The set of all
possible prototypes generated by a meta-prototype is therefore given by PM = {Pθ |
θ ∈ ΘI ×ΘA×ΘC ×Λ}. This allows for systematic exploration of a wide design space
through parametric variations.

Proposition 1 (Equivalence of Prototypes and Meta-Prototypes): Let M =

(IΘI
, AΘA

, CΘC
,Λ) be a meta-prototype, where:

• IΘI
denotes a family of instances parameterized over the space ΘI ,

• AΘA
denotes a family of actions parameterized over the space ΘA,

• CΘC
denotes a family of constraints parameterized over the space ΘC ,

• Λ is a fixed set of nuisance components, common to all prototypes derived from
M .

Then, for any prototype P = (I, A, C,Λ) with the same Λ as M , there exists a
parameter tuple θ = (θI , θA, θC), where θI ∈ ΘI , θA ∈ ΘA, θC ∈ ΘC such that
P = (IθI , AθA , CθC , Λ). In other words, every such prototype P can be obtained
by instantiating the meta-prototypeM with specific parameters from its parameter
spaces. We also define the mapping s : ΘI×ΘA×ΘC → PΛ, where PΛ is the set of all
prototypes sharing the fixed Λ, by s(θ) = (IθI , AθA , CθC , Λ). Then, s is a surjective
function, i.e. ∀P ∈ PΛ,∃ θ ∈ ΘI ×ΘA ×ΘC such that s(θ) = P .

This establishes that any prototype P ∈ PΛ can be viewed as an instantiation of a
meta-prototypeM (under the appropriate parameterization). The meta-prototype
M acts as a template, and the prototypes P are specific instances derived fromM

through the sampling of these parameters.

12.3.2 Design Spaces
Lim et al. conceive of prototypes as filters, explaining how they help designers “tra-
verse design spaces” [297], arguing that they structure design decisions by isolating
certain design dimensions. This view holds for traditional prototypes, since in select-
ing what to design with or control for, the designer necessarily leaves much else out.
However, traditional prototyping processes necessitate iterative, low-dimensional
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exploration of this design space, because the attention of the designer is on translating
the design space dimensions into the final prototype artifact.

Here, we extend this notion and formalize it using the meta-prototypes definitions.
In particular, designing a meta-prototype involves constructing an explicit design
space by selecting the meta-prototype parameters (θI , θA, θC). The source of these
parameters typically encodes some combination of prior work in the target domain,
the designer’s intuition, and potential empirical sources such as need-finding studies.
However, design spaces are routinely extracted from such sources explicitly in prior
work.

As a case study, let us consider the specific instance of writing assistants, a ubiquitous
technology increasingly dependent on large, generative language models. Recent
work by Lee et al. [290] constructs a design space in this domain through a system-
atic literature review. In their taxonomy, the Technology considers parameters we
could conceptualize under the ΘA parameter, i.e. those pertaining to algorithmic
components of prototypes for writing assistants. These include features like data
source (e.g. experts, crowdworkers), model type (rule-based, deep neural network,
foundation model), and model access to external resources like tool use and data
stores. If we consider these three parameters, they become dimensions of ΘA, and
the values they take on form the hypothetical parameter vectors to be searched over.

Another aspect they consider is Interaction. Here, they consider features relevant
to ΘI , the interaction model, for example how the model output is differentiated
from the user output (such as through formatting or location), how system output
is triggered (user- or system-initiated), the layout of the writing UI, and other such
factors. Analogously, implementing a set of parameters and possible values here
would construct a meta-prototype design space ΘI from which specific versions can
be instantiated. Finally, ΘC parameters, referring to contextual factors, relate to what
Lee et al. term Task and User dimensions. These include elements like the purpose
of a writing task (e.g. expository vs. descriptive), and user capabilities (e.g. writing
expertise).

12.3.3 Prototype Instantiation
The process of instantiating concrete prototypes from a meta-prototype is impor-
tant, but complex. This step bridges the gap between abstract design concepts and

278



testable systems. We need a mechanism that can consistently and reliably trans-
form our parameter selections into usable prototypes. To instantiate a prototype
from a selection of parameter values, we define a rendering function f that takes
in parameters and outputs a prototype: f : ΘI × ΘA × ΘC × ΘΛ → P where
f(θI , θA, θC , θΛ) = Pθ = (IθI , AθA , CθC ,Λ).

For this framework to be effective, we need to ensure that all possible combinations
of parameter values can be automatically rendered, so we might uncover potentially
unexpected interactions between different design choices. For this, the design of the
rendering function f must meet several necessary conditions:

1. Completeness. For each parameter Θi, there must exist a complete set of
rendering instructions that cover all possible values. This guarantees that,
for any combination of valid parameter values, the state of the system is not
undefined.

2. Independence. The specification of each parameter must be independent of
the others. This independence ensures that changing one parameter doesn’t
unexpectedly alter the effects of others, preserving the integrity of our design
space exploration.

3. Composability. The rendering function must be able to compose the individual
parameter renderings into a coherent prototype. This implies the existence
of a composition function g such that: f(θI , θA, θC) = g(hI(θI), hA(θA), hC(θC))

where hi are the individual rendering procedures for each parameter.

4. Finiteness. Each parameter Θi must be finite, or sampled in a finite way for
practical implementation. Note this does not necessitate discreteness; bounded
but continuous parameters can be sampled from.

To illustrate these concepts, let’s continue our discussion of the writing assistant
meta-prototype. This example demonstrates how the abstract concepts of rendering
functions and parameter spaces translate into practical design choices:

• ΘI = {suggestion layout}

• ΘA = {model, decoding temperature}

• ΘC = {expertise level}
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The rendering function f could be implemented as follows:

• hI(θI): Renders the interactive components:

– “suggestion layout” (∈ {side-by-side, inline}): Creates a split-screen inter-
face or embeds assistance within the main text area. Implemented as a
conditionally rendered UI component.

• hA(θA): Initializes the algorithmic components:

– “model” (∈ {GPT-3.5-Turbo, Claude 3.5 Sonnet}): Calls a different lan-
guage model, as options specified.

– “decoding temperature” (∈ [0, 2]): Adjusts the language model’s decoding
temperature, for the selected model.

• hC(θC): Adjusts factors relevant to the interaction context:

– “expertise level” (∈ {novice, expert}): Changes a line in the language
model prompt to adapt to level of expertise in the writing task.

The composition function g would then combine these rendered components as
needed. In its simplest form, it simply maps the parameters to their target imple-
mentations. In a more complex instance, it can impose some post-hoc dependence
between the parameters to align their combinations in the system. For example, it
may be that decoding temperatures behave differently per model, and the designer
has a prior notion of how these should be modified on a per-model basis. The compo-
sition function g allows such conditions to be imposed, without changing the design
specification and sampling approach for the original parameters

This setup allows for automatic rendering of all possible combinations of the variable
parameters, each resulting in a unique prototype. Without the decoding temperature,
there are 23 = 8 possible prototypes. However, the decoding temperature is a bounded
continuous variable. Therefore, to construct a prototype, the temperature must be
sampled from some distribution. A simple strategy would be to sample temperature
∼ U(0, 1). However, this may not be the most efficient way to proceed, since it assumes
all temperatures are and will remain equally valuable to explore. A more purposeful
sampling strategy might adapt instead, depending on accumulated evidence.
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12.3.4 Sampling Strategy
As Almaatouq et al. note [6], uniform and random sampling from design spaces
are both desirable because they are unbiased. However, they are also inefficient. In
the above meta-prototype example, we considered only a small number of variables
taking on a small number of values. Sampling uniformly or randomly would corre-
spond to 8 discrete experimental conditions, with a covariate for the temperature. In
more complex designs, for example even 10 binary parameters, the set of possible
combinations is 210 = 1024. Uniformly sampling from this space is intractable, as it
would necessitate a large sample of users to yield generalizable results. Randomly
sampling could also be wasteful. Instead, adaptive sampling methods allow us to focus
our exploration on the most promising or informative regions of the parameter space,
based on the results of previous experiments. One powerful approach for adaptive
sampling is Bayesian optimization. This method treats the problem of finding opti-
mal parameter configurations as a sequential decision-making process, where each
decision is informed by all previous observations. Another class of adaptive sampling
strategies comes from the multi-armed bandit (MAB) literature. These methods
balance exploration (trying new parameter configurations) with exploitation (focus-
ing on known high-performing regions). For example, Thompson sampling [503]
maintains a probability distribution over the optimal parameter configuration, and
samples from this distribution to decide which prototype parameters to test next.

An important factor to consider here is that adaptive sampling strategies require well-
defined evaluation criteria to guide the sampling process effectively. These criteria
are essential for determining which prototypes to explore next and for assessing the
overall performance of different configurations. A few potential options for this could
be:

1. Time on task: one goal could be facilitating efficient completion of a task, as
judged by the user themselves. As such, adaptive sampling strategies could
enable sampling from the region of the parameter space that minimizes this
quantity.

2. Engagement: By contrast, user engagement time or repeated use can indicate
valuable regions of the design space too.

3. Quality: if a quality metric can be defined, then this can be used to guide the
sampling process. Note that this does not necessarily need to be automated.
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Crowd-sourced ratings of outputs can be a scalable and asynchronous evaluation
signal that enables sampling decisions to be driven by a notion of quality.

4. Usability: participants can be asked to complete a System Usability Scale [239]
or other such instrument, through which usability-maximizing prototype ver-
sions become feasible to explore.

5. Cognitive load: similarly, using a simple instrument like the NASA TLX [206], or
proxies for task effort taken from user interaction logs, can be useful in finding
regions of the parameter space that allow cognitively easier performance.

6. Combinations: (possibly weighted) combinations of these factors can be used
together, to satisfy multiple design criteria.

Such criteria can then be used as an objective or reward function for the sampling
strategy.

12.3.5 Implementation Approach
So far, we have kept our formulation of meta-prototypes abstract to provide a foun-
dation for a potential implementation. Implementations of this basic specification
can take many forms, to suit the needs of researchers working with different tools,
domains, and populations. Here, we provide an example implementation of the
writing assistant meta-prototype we discussed previously, to anchor our discussion in
a realistic path to implementation.

IΘ. Since our simple interaction model variable only considers the suggestion layout,
this can be implemented using a conditional rendering1 approach. This effectively
implements a branching structure, dependent upon some UI property. Here, the
property only takes two possible values, so deriving the UI from it is straightforward
(just an if statement). For more complex UIs, other such principles of declarative
UI programming, wherein θI is treated as the state, are possible to implement. For
example, rendering lists2 can be used to operationalize an “option count” variable
(e.g. showing a different number of generated options to a user for them to consider
integrating).

1https://react.dev/learn/conditional-rendering
2https://react.dev/learn/rendering-lists
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AΘ. The algorithmic model variable in our meta-prototype encompasses two key
aspects: the choice of language model and the decoding temperature. Implementation
of this variable involves setting up an abstraction layer that can interact with different
language model APIs uniformly. This can be achieved using a factory pattern [165],
where a single interface is used to create objects (in this case, API clients) for different
language models. Such a pattern would also be applicable if the API were user-
implemented with a non-API-hosted model. The decoding temperature can then
be directly passed as a parameter to the chosen model’s API call. These are simple
examples, but abstractions of the kind needed here are often well-supported by
existing software design patterns. The exercise of the prototyper becomes one of
choosing the appropriate abstraction, and implementing accordingly.

CΘ. The context variable in our example considers the user’s expertise level, which
affects how the system interacts with the user. This can be implemented using a strat-
egy pattern [165], where different strategies (e.g., NoviceStrategy, ExpertStrategy)
encapsulate the logic for adapting the system’s behavior based on the user’s expertise.
These strategies could textually prescribe various aspects of the system’s intended
behavior, such as the complexity of language used in suggestions, the level of detail
in explanations, or the frequency of interventions. The chosen strategy could then be
used to modify the prompts sent to the language model. This approach allows for a
clear separation of concerns and makes it straightforward to add new expertise levels
or other contextual factors in the future. Note that adaptation strategies may vary;
here, they are cleanly separable from the other variables. In other cases, they may
need to be entangled in aspects of IΘ or AΘ. An important decision must be made
here about whether to conceptually model them as part of these aspects, or of user
context, with the difference potentially affecting the process by which inferences are
drawn from the results and how these inferences are interpreted.

12.4 TowardsMore Predictive Theories of Human-Generative
AI Interaction

Human-generative AI interaction involves complex, rapidly changing socio-technical
systems. We believe that the meta-prototypes approach, applied thoughtfully, can
help to build more stable and generalizable design knowledge by making prototypes
commensurable.
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12.4.1 Quantifying Interaction Dynamics
One of the most promising aspects of the meta-prototype framework is its potential
to quantify the dynamics of human-AI interaction in unprecedented detail. By
systematically varying parameters across the interaction model, algorithmic model,
and context, we can begin to build quantitative models of how these factors influence
user behavior and outcomes. For instance, consider a meta-prototype study of a
writing assistant that varies the frequency and randomness of the language model’s
suggestions. By collecting fine-grained data on user actions, writing outcomes, and
subjective experiences across these conditions, we could develop predictive models of
how suggestion frequency interacts with user expertise to influence writing speed and
quality. We could also characterize the relationship between AI randomness and user
creativity, potentially revealing synergistic or inhibitory effects. These quantitative
models, while inevitably simplified, could provide a foundation for more precise and
testable theories of human-AI co-creativity.

12.4.2 Identifying Generalizable Patterns
As we accumulate data from meta-prototype studies across different domains of
human-AI interaction, we may begin to identify generalizable patterns that hold
across various contexts. These patterns could form the basis of more general theories
of human-AI interaction. For example, we might discover:

1. Threshold or scaling effects: There may be critical thresholds in AI capability or
interface design beyond which user behavior changes dramatically. Identifying
these thresholds could lead to theories about phase transitions or scaling laws
in human-AI partnerships.

2. Interaction archetypes: Certain combinations of user characteristics, task types,
and AI capabilities might consistently lead to specific interaction patterns. These
archetypes could inform a taxonomy of human-AI interaction styles.

3. Learning trajectories: By studying how users adapt to a family of different AI
systems over time, we might uncover common trajectories of skill development
and AI reliance. This could lead to predictive models of long-term human-AI
collaboration dynamics.

Developing generalizable notions about these factors would allow designers to make
principled choices for future systems.
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12.4.3 Bridging Levels of Analysis
Rogers [431] considers ambitious those theories in HCI research which bridge dif-
ferent levels of analysis. For example, theories might bridge low-level cognitive
processes with high-level social dynamics. The meta-prototype framework, with its
ability to systematically vary factors at multiple levels, offers a unique opportunity to
develop integrative theories that span these levels in the context of human-generative
AI interaction problems. For instance, a meta-prototype study could simultaneously
manipulate low-level interface features (e.g., suggestion highlighting), mid-level
interaction strategies (e.g., proactive vs. reactive AI assistance), and high-level con-
textual factors (e.g., collaborative vs. competitive task framing). By analyzing how
these factors interact, we might seek to develop multi-level theories that explain how
cognitive, interpersonal, and social factors combine to shape human-AI interaction.

12.4.4 Studying Counterfactuals
Perhaps most directly, the systematic nature of meta-prototype exploration enables
a form of counterfactual reasoning that is often difficult in traditional HCI research
beyond (potentially contrived [15]) control interface variants. By mapping out a
broad design space, we can start to answer “what if” questions about alternative
design choices or technological capabilities. For example, what if language models
could provide perfect writing improvement suggestions but no creative suggestions?
Does an observed human-AI interaction limit hold in the presence of a sufficiently
more capable model? This counterfactual reasoning capacity might allow us to more
systematically answer questions and test hypotheses of this nature.

12.5 Potential Limitations
The meta-prototype framework introduced in this chapter aims to propose a more
systematic approach to exploring the design space of human-AI interaction systems.
In this discussion, we critically examine the implications and potential pitfalls of this
approach.
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12.5.1 The Illusion of Completeness: Navigating Infinite Design
Spaces

One of the primary motivations for the meta-prototype framework is the desire to
more comprehensively explore the vast design space of human-AI interaction systems.
However, we must be cautious about claiming any level of “completeness” in this
exploration. As Gero and Kumar [180] note in their work on design spaces:

Creative design may occur when new design variables are introduced in
the process of designing. Thus, in creative design, the designer operates
within a changing state space of possible designs; a state space which
increased in size with the introduction of each new variable. [180]

Consider our example of a writing assistant meta-prototype. While we’ve parame-
terized aspects like suggestion layout, model choice, and user expertise, countless
other variables remain unaccounted for, such as the specific wording and tone of
AI suggestions, their timing and frequency, and other task-relevant aspects of the
visual interface design such as whether suggestions are revealed at once or streamed
character-by-character simulating typing, akin to current era chatbots. Each of these
factors could potentially influence the effectiveness of the system; it quickly becomes
clear that capturing all possible variables in a meta-prototype framework is likely
impossible. This raises a crucial question: How do we decide which parameters to
include in our meta-prototype, and which to leave out?

The challenge here is that by formalizing certain parameters, we may inadvertently
neglect others that could be important. We risk heuristically substituting the complex,
multifaceted problem of designing effective human-AI interactions with a more
tractable problem of optimizing over a limited set of parameters. As such, it is
important to revisit the design spaces we assume.

12.5.2 Exploration vs. Exploitation in Adaptive Sampling
On one hand, adaptive sampling allows us to focus our resources on promising areas
of the design space. On the other hand, it may lead us to prematurely converge
on local optima, missing potentially superior designs that lie in unexplored regions.
This tension is particularly acute in the context of human-AI interaction, where
the “reward landscape” of designs may be highly non-linear and context-dependent.
Another challenge is optimizing for longer-term outcomes. Consider the case where
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we optimize for task completion time, but potentially sacrifice long-term learning
and skill development.

Each of these choices embeds value judgments about what constitutes a “good”
human-AI interaction, judgments that may vary across users, tasks, and cultural
contexts. The meta-prototype framework, in its current form, does not provide
guidance on how to navigate these value-laden decisions when making assumptions
that shape the sampling decisions. As such, one important step could be maintaining
uncertainty rather than only seeking optimal designs. Methods discussed in this
chapter, such as Bayesian optimization, do just this; allowing us to probabilistically
sample prototypes from promising regions, rather than converging to a locally optimal
prototype. Importantly, the implicit sampling already underway in prototype-by-
prototype interactions has no guarantee of searching underexplored regions either,
and this problem is a more general one.

12.5.3 Integrating with Other Methods
Designers use a diversity of methods. So far, we have assumed that quantitative
methods are appropriate to the context at hand, and shown how such methods can
be augmented through the use of meta-prototypes. However, future work might
consider how to extend this framework to other prominent design methods, like:

1. Qualitative methods: Incorporating qualitative approaches can provide deeper
insight into the “how” and “why” behind user behaviors observed in meta-
prototype studies. As King et al. suggest [258], qualitative and quantitative
methods share an underlying logic and can be complementary. As a starting
point, pre-study interviews could inform parameter space definition, while
active learning techniques might help surface instances, users, or phenomena
that would benefit from a deeper post-study qualitative analysis.

2. Participatory design: Extending the meta-prototype approach to allow partici-
pants to actively explore and shape the design space could uncover overlooked
design dimensions. This aligns, in principle, with the notion of participatory
design [482]. User-defined parameters and interactive exploration sessions
could allow participatory design patterns. Methods like Markov Chain Monte
Carlo with people [445] or Gibbs Sampling with people [205] could be helpful
to make inferences in such contexts.
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3. Complexity science and systems theory: Human-AI interactions are complex
adaptive systems, characterized by emergent behaviors and non-linear relation-
ships. Integrating with methods from complexity science could help identify
emergent patterns of interaction [39] in these systems.

12.6 Conclusion
Themeta-prototype framework introduced in this chapter represents a novel approach
to systematically exploring the design space of human-AI interaction systems. By
formalizing the concept of meta-prototypes and their associated design spaces, we
offer researchers a tool for navigating the vast space of possible AI-assisted systems
in a more principled manner. As a design proposal, much work is needed to actualize
its potential, such as developing standardized tools and libraries for implementing
meta-prototypes across different domains. We present this initial proposal as an
invitation to the HCI community, to critically and collectively explore ways to build
more systematic, theoretically grounded approaches to human-AI interaction design.
While the meta-prototype framework does not solve all the problems this goal faces,
we believe it offers a valuable step towards a more predictive science of human-AI
interaction.

288



A
Supplementary Material

A.1 Supplement for Chapter 2
As supplementary material, we present and review a number of input/output exam-
ples across several categories with distinct properties1. A summary of these results is
shown in Table A.1.

Finally, to gain a qualitative view of intra-scene and adjacent-scene consistency,
we plot our test set input images according to the corresponding output audio
characteristics by a visualization shown in Figure A-11. We produce multiband
T60 estimations from all output IRs, and then used t-SNE [319] to reduce the data
dimensionality to two dimensions. We then solve a linear assignment problem to
transform this into a grid representation. Several instances of within-scene clusters
are visible, as well as closeness of related scenes. This suggests that while our method
does make errors (outliers are also visible), it learns to treat similar scenes similarly
while capturing variation.

1Link to audiovisual examples page: https://web.media.mit.edu/ nsingh1/image2reverb/
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Topic Figure # Images
Famous and iconic places A-1 6
Musical environments A-2 6
Artistic renderings A-3 6
DALL•E-generated spaces A-4 6
Limitations (i.e. challenging examples) A-5 4
Animated scenes A-6 6
Virtual backgrounds A-7 6
Historical places A-8 5
Video games A-9 4
Common and identifiable scenes A-10 6
Total 55

Table A.1: Additional Results.
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Figure A-1: Famous and iconic spaces. Columns show input images, depth maps,
generated IRs, and a dry anechoic speech signal before and after the generated IR
was applied to the signal via convolution. The input images come from spaces that
may be impractical or impossible to record in. The indoor spaces here show longer
impulse responses compared to the outdoor scenes which is typically observed and
expected in real-world settings. Larger indoor spaces also tend to exhibit greater T60

times with longer impulse responses which we see here, though the ISS image has a
longer impulse response than we expect.
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Figure A-2: Music. Columns show input images, depth maps, generated IRs, and
an anechoic vocal singing signal before and after the generated IR was applied to
the signal via convolution. The input images come from spaces relevant to music
including a typical small room, an acoustically treated rehearsal space, an auditorium,
a church, and 2 large concert halls. Generally, larger spaces tend to exhibit longer
decay times in the output, however some examples such as the concert halls with
visible acoustic treatment appear to have a shorter decay than more reverberant
spaces like the church or auditorium with more reflective surfaces. The final concert
hall shows an atypical impulse response with a visible discontinuity in the IR tail.
This is not commonly observed among our model outputs, but illustrates the nature
of artifacts which can occasionally occur.
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Figure A-3: Art. Columns show input images, depth maps, generated IRs, and an
anechoic operatic singing signal before and after the generated IR was applied to
the signal via convolution. Images here are drawings, paintings and a vintage art
photograph ca. 1850. Artistic depictions of spaces were not included in our training
dataset. In many cases, plausible impulse responses are generated from such input
images. In general, larger depicted spaces, like the church in the bottom row, exhibit
longer decay times as is observed with standard 2D photographs.
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Figure A-4: DALL·E. Images generated from text by DALL·E [406] used here as input
images. The same corresponding input text was synthesized via text-to-speech as our
signal of interest and convolved with the generated IR. This reflects synthetic speech
in a synthetic environment, indicating a path for synthesizing realistic IRs from text.
It also shows how our model might work with other state-of-the-art generative media
models to produce more consistent and realistic results in different domains.
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Figure A-5: Challenging images. Input images containing street murals, reflections,
and shadows demonstrating cases where depth is inaccurately estimated. (A) A
painted doorway giving the illusion of depth. (B) A wall with a mural of a street and
tree where the depth of the wall is inaccurately estimated. (C) A low-angle photo of
a reflective puddle. (D) An outdoor street image with strong shadows which results
in a depth map and generated IR more similar to a room than an outdoor space.
These more extreme scenarios are chosen to clearly illustrate the limitations of our
approach.
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Figure A-6: Animated films. Scenes from Blender open animation films used as
input images (speech convolved with generated IRs). Columns show input image,
calculated depth map, spectrogram of generated IR, an anechoic passage reading
sample, and the same passage with the generated IR applied via convolution. In
general, we find that our model plausibly estimates the reverberant characteristics
of these spaces. For example, the wooden small space is very brief. The barbershop
appears longer due to some artefacts, but the broadband decay is relatively quick as
can be heard in the audio. Seemingly larger spaces again correspond to longer IRs.
This is a case of Real2Sim transfer, where we can approximate IRs directly that sound
as measured IRs, but in virtual environments where this measurement is not possible.
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Figure A-7: Virtual backgrounds. Images which may serve as virtual backgrounds
used as input images to our model. These reflect spaces that may be used for
videoconferencing or other online meetings. Realistic IRs may be generated and used
in these contexts to increase the sense of being in a shared space with others.
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Figure A-8: Historical and notable places. Additional examples of unusual and
historical spaces which may be difficult or impossible to obtain IRs from.
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Figure A-9: Video games. Impulse responses generated and applied via convolution
from screenshots of four 3D video games. Video games are one example of a virtual
space that might benefit from easily generated impulse responses. While the medium
sized room from Counter-Strike and the large hallway from Halo 2 may be plausible
IRs, the large hall shown in the Skyrim screenshot and the cavern in the Minecraft
example do not have correspondingly long reverberant tails as would be expected
showing possible examples of where the scale of the space was not accurately esti-
mated. 3D rendered images were not included in our dataset but are a ripe area of
future work which might greatly increase the performance of our model on both real
scenes and virtual scenes such as these video game examples.
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Figure A-10: Common and identifiable scenes. Input images and the resulting IRs are
shown and convolved with an anechoic speech signal. Input images here reflect spaces
that are regularly encountered in everyday life yet may not often be recorded in.
These types of scenes are useful for audio post-production as they may be commonly
found in movies and television shows. Small and outdoor scenes are observed to have
very brief IRs while in comparison, the larger building interior has a much longer
output IR as expected.
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Figure A-11: Manifold-based visualization of our test set. We compute multi-band
T60 estimates for output audio IRs for each image, and then perform nonlinear
dimensionality reduction with t-SNE to obtain two-dimensional feature vectors for
each example. We produce a grid by solving a linear assignment problem, as is
commonly done to visualize large image datasets. Our visualization shows local
clusters of same and similar scenes in many cases, but also some variation within
scenes. In some outdoor settings, this variation grows considerably large, resulting
in increased scattering. In other cases, we observe closeness between different views
of the same scene and similar scenes.
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A.2 Supplement for Chapter 3

A.2.1 Pretraining Details

Figure A-12: Distribution of shot lengths observed in our dataset.

Data Preprocessing We temporally segment long-form content into shots (camera
changes). Fig. A-12 shows the distribution of shot lengths. We ignore shots that are
shorter than 3 and longer than 12 seconds. The former constraint is to make sure
the snippet is long enough for our models, while the latter is to improve training
throughput. The total number of shots in each pretraining setting is shown in
Table 3.1 under the column #data. When creating a minibatch during pretraining,
we ensure that 1

8
of each batch comes from the same long-form content source (e.g.

the same movie) to create hard negatives. The process of generating quadruple
training instances (vp, ap, vs, as) is as follows:

1. Given a title, randomly pick a shot.

2. Temporal jitter: randomly select two 3-second temporal windows. These two
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snippets, derived from the same shot, are our primary and secondary instances.
For the secondary instance, the language of the audio is different from the one
in the primary instance, if an alternate audio track (i.e. dub) is available.

3. For each pair of audio and video:
Video: Resample to 25 fps, uniformly sample 16 frames, randomly scale the
shorter side of video within the range of 256-320, then perform a random crop
of 224x224.
Audio: Resample to 48kHz, convert audio to mel-spectrogram (n_fft=1024,
hop_length=501, num_mels=96), convert to the decibel scale, and apply time
and frequency masking with maximum value of 50 percent of the corresponding
axis.

Model and Pretraining Hyperparameters. The MLP projection heads have an output
dimensionality of 512. The latent embeddings (z) are L2 normalized prior to comput-
ing the loss. The temperature factor τ in the objective function is set to 0.07. We use
the AdamW optimizer [313] with a learning rate of 3e-4, and weigh decay of 5e-2.
We train for 12 epochs on 32 NVIDIA A100 GPUs, with a batch size of 64 per GPU,
using a half-cosine learning rate annealing which kicks off after 2 warm-up epochs.

A.2.2 Additional Experiments
Results on Action Recognition

We report results on UCF101 [479] and HMDB51 [271], well-known benchmarks,
to assess the video-only performance of our models, shown in Table A.2. Performance
between our model variants is comparable, showing that the dub-augmented training
does not necessarily decrease video-only performance. Additionally, we compare
to recent state-of-the-art results which, like us, do not use fine-tuning. Note that
these results use linear probes, vs. our MLP probes which were derived from a grid
search over probing strategies. Nevertheless, the fact that we significantly beat these
results without fine-tuning (>12% absolute) demonstrates the value of our learned
representations.

VGGSound Results

We report results on VGGSound [82], an audiovisual benchmark on which we focus
on audio results, shown in Table A.3. Once again, performance between our model
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Model UCF101 [479] HMDB51 [271]

B.3 88.90 69.35
B.4 88.20 68.91
B.5 87.99 69.43

FIMA [581] 76.40 47.30
FAME [125] 72.20 42.20

Table A.2: Performance of video models on UCF101 [479] and HMDB51 [271]
datasets, comparing with recent results that do not involve fine-tuning.

Model VGGSound

B.3 43.49
B.4 41.95
B.5 42.96

LAION-CLAP [559] 46.20
BLAT [562] 42.90

Table A.3: Performance of audio models on the VGGSound [82] dataset, comparing
with recent results that do not involve fine-tuning on the downstream dataset. The
LAION-CLAP result reported uses keyword-to-caption augmentation.

variants is comparable, and our results are competitive with recent state-of-the-art
results which don’t use fine-tuning.

Controlled Dataset and Models

In this section, we discuss the methods and results from a smaller-scale, more con-
trolled set of experiments. The pretraining dataset consists of 748 movies, about
1300 video-hours of content. Each movie contains a video track, as well as four audio
tracks: English (EN) as the primary language, and three dubbed versions, Spanish
(ES), French (FR), and Japanese (JA), all languages for which we find dubs are
relatively commonly available. Having multiple dub options allows us to investigate
trade-offs between secondary languages, and whether “multilingual” models might
further strengthen performance.

The video model is a medium X3D [152], which is an efficient ResNet-based model.
Our audio model is an Acoustic ResNet50 [560], which takes audio spectrograms
as input. Both models output 1024-dimensional representations per clip. We share
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backbone weights (i.e. Acoustic ResNet50) across audio variants with primary and sec-
ondary (dubbed) languages. We do not share MLP weights for primary vs. secondary
audio, to allow for more flexibility. As in our primary experiments, we mainly train
these models cross-modally, i.e. we compute the contrastive cost between modalities.

We train these models on 4 A100 GPUs for 10 epochs with a batch size of 26 per GPU.
We use a negative sampling parameter k (samples drawn from the same movie as the
positive clip), which we set to 12 per GPU. We use the AdamW optimizer [313] with
β=(0.9, 0.999), a learning rate of 0.001, weight decay of 0.05, and a cosine learning
rate schedule with a half-epoch warmup.

In all, we compare the followingmodel variants in these smaller-scale, more controlled,
experiments:

1. Monolingual (EN): In this baseline, we consider models trained with two
differently-augmented primary (English) audio treated as “primary” and “sec-
ondary” (ap=EN; as=EN) audio respectively. This is to account for any possible
effect of two augmentations per seen sample, as occurs for the dub-augmented
cases, although it does not modify the data distribution. This is a SimCLR-based
setup, with two audio paths each contrasted with video.

2. Bilingual (ES, FR, JA): We introduce one secondary audio at a time to explore
the dub-augmented training hypothesis (ap=EN; as= ES or FR or JA).

3. Multilingual (+EFJ): Here, we effectively randomly select a secondary audio
from the given list (Spanish, French, and Japanese) per batch (ap=EN; as ∈R
{ES, FR, JA}). The order of samples is randomized, so in practice we simply
circle through the list round-robin. We aim to explore whether there are
additional benefits or drawbacks to having more than one secondary audio.

4. No-Speech (SEP): We establish another baseline where the speech is separated
and we only train on video + non-speech audio. This allows us to examine
whether simply removing the speech is enough for a performance gain on non-
speech-focused tasks. We use the pretrained Hybrid Demucs v3 model [120] to
separate the vocal from the rest, mixing the other stems back together. There
is no secondary audio here (ap=EN SEP). Note that this variant is trained with
44.1kHz audio, as this is the input and output sample rate for the Demucs
models. Although Demucs is trained for music separation, we find that it works
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well on speech in practice on our dataset. We use the default (mdx_extra_q)
pretrained model.

5. Audio-Only (Monolingual: AUD, and Multilingual: AUD+EFJ): Finally, we ex-
amine two audio-only models. The data is similar to the monolingual and
multilingual setups, except without video. The objective function is now
within-modal, between the two audio clips. The monolingual version represents
standard audio contrastive training with two augmented copies. These mod-
els cannot work on visual or audiovisual tasks, but here we seek to evaluate
whether and how much dub-augmented training contributes improvements in
the absence of video.

Evaluation Evaluation Tasks. Beyond the HEAR [517] tasks used in our main
experiments, we include results from additional audio tasks to this controlled setup
to gain a more complete picture in the controlled setup. First, we add audio tasks
from HARES [536]; specifically, TUT18 [344] for acoustic scene recognition, Fluent
Speech Commands [316] for speech command recognition, and VoxForge [324] for
language identification, complementing existing HEAR tasks. As in the appendix for
our main results, we include the video-only action recognition tasks HMDB51 [271]
and UCF101 [479]. Finally, we add an audiovisual task (VGGSound [82]) to facilitate
a better comparison with SEP, since this baseline sees no speech altogether. We hy-
pothesize that SEP will be a strong performer in some cases, but that dub-augmented
models will be stronger in general as they preserve the audiovisual relationship
between speech actions visually occurring and sounding.

For the visual and audiovisual tasks, we train the linear probes for 200 epochs using
Stochastic Gradient Descent and a learning rate of 0.2 following a cosine schedule.
We train on 2 A10 GPUs with a total batch size of 1024. For HEAR tasks, we use
the provided API’s strategy and the 48kHz data. For HARES tasks, we follow the
authors’ specifications [536]: in general, with 400K training steps and a learning
rate schedule consisting of 5K linear warmup steps and a cosine decay for the rest
(max. learning rate of 0.0002, with the Adam [259] optimizer). We train on 2 GPUs
with a total batch size of 64. In all relevant cases, we duplicate mono audio to the
second channel to form a pseudo-stereo input to match our model’s architecture.
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Baselines (SimCLR) Dub-Augmented

Task M AV SEP A ES FR JA EFJ A+EFJ
Sn

d/
Sc

n

ESC-50 [393] A .527 .570 .220 .580 .575 .590 .587 .550
FSD50K [157] A .296 .307 .109 .317 .313 .311 .313 .277
TUT18 [344] A .853 .857 .682 .884 .881 .849 .867 .801
VocalImitation [255] A .042 .051 .022 .045 .047 .045 .050 .055
VGGSound [82] AV .303 .287 — .323 .314 .314 .311 —

N
on

Se
m CREMA-D [75] A .514 .489 .354 .528 .540 .520 .548 .530

GTZAN Mus/Sp [520] A .954 .931 .866 .946 .891 .931 .969 .954
LibriCount [486] A .654 .608 .505 .671 .706 .681 .676 .678

Table A.4: Controlled experiments evaluation results. All metrics are top-1 accuracy,
except FSD50K [157] and VocalImitation [255] (Mean Average Precision). Results
in bold indicate the highest score, and in gray indicate the lowest. The task types are
Snd/Scn = Sound/Scene Classification and NonSem = Non-Semantic Speech.
Results In total, we trained 8 different model variants and evaluated them on 15 dif-
ferent tasks. Table A.4 shows our main tasks on which we hypothesized improvement
(N=8), grouped by modality and task type.

Does dub-augmented pretraining help? For all tasks in Table A.4, one or more dub-
augmented models outperform the monolingual EN model. In 6/8 tasks, all dub-
augmented variants outperform EN, except for the two easiest tasks (TUT18 and
GTZAN). We hypothesized this outcome for the sound and scene classification tasks,
where we consistently observe substantial gains, as well as the non-semantic speech
tasks.

Is the improvement due only to de-emphasizing speech? We examine the source-
separated version to address this question, since it offers the extreme case where the
speech is removed altogether (as much as possible). The source-separated variant
presents a strong baseline on the sound/scene classification tasks, despite mostly
being outperformed by one or more dub-augmented models. We expect this is due to
re-focusing on non-speech elements. However, despite strong performance in these
cases, this variant has drawbacks. First, it results in lower performance than all other
models on VGGSound (audiovisual classification) and both visual tasks (shown in the
trade-off results in Table A.5). We suspect this is because there is a clear discrepancy
between the auditory and visual channels in the source-separated version, i.e. speech.
When a person is speaking, and there is little or no speech content in the auditory
stream accompanying the visual, this may act as a confounder for coordinating the
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two representations. Note that People is a large category in VGGSound2.

Second, SEP significantly underperforms on non-semantic speech tasks and (in
Table A.5) language identification, with the exception of GTZAN which we find is an
easier task in general. This intuitively makes sense: this variant does not see speech,
effectively, and performs lower than the monolingual variant as well. These results
illustrate a trade-off: source-separation as a preprocessing method, in addition to
being very computationally expensive and weakening the self-supervision assumption
(by dependence on a third-party supervised model), results in poor performance on
paralinguistic tasks, which require attention to aspects of speech beyond language.

Are more languages better? Given the strength of dub-augmented training, we ask
whether introducing more languages into the mix improves performance further. Our
results don’t indicate this to be the case, but note that in Table A.4, the EFJ model is
least commonly the lowest-performing dub-augmented variant (1/8 tasks). Addition-
ally, the multilingual variant performs well on 2/3 non-semantic speech tasks. Even
though paralinguistic features can vary by language, commonalities exist that may
be useful and many practical scenarios could benefit from diverse examples. The
robustness of the multilingual model suggests that it could be a reasonable default
choice assuming little knowledge about the downstream tasks, and we use a similar
multilingual approach in our larger scale experiments in the chapter.

Is dub-augmentation beneficial even without video? The A+EFJ variant always outper-
forms the AUD model (including on all audio tasks we examine later for trade-offs,
shown in Table A.5). AUD is the weakest performer on all relevant tasks, indicating
the benefits of cross-modal training. Additionally, on some tasks, the multilingual
variant comes close to or even outperforms (as in on VocalImitation) the cross-modal
variants. Of course, this variant cannot work on visual or multimodal tasks, and still
largely underperforms the multimodal dub-augmented models, but it demonstrates
the significant value of even unimodal dub-augmented training.

Exploring Trade-Offs Results on the 7 tasks in Table A.5 help us evaluate possible
trade-offs in the smaller-scale and controlled setup, to complement the previous
results.

Can dub-augmented models still recognize language? The dub-augmented variants
2www.robots.ox.ac.uk/ vgg/data/vggsound
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generally perform similarly or slightly worse on VoxLingua [524] but appear to
do better on VoxForge [324], both language identification tasks. The latter is a
large-scale user-submitted dataset, which may have different auditory characteristics
from the former as a result. Taking these results together, we expect that the dub-
augmented models are able to retain information useful for language identification
in their pre-MLP features. It is possible that more general auditory features, which
do not encode speech semantics, are still discriminative in these tasks.

Are they discriminative between spoken words? As in our results from the chapter,
we do not observe major degradations on linguistic tasks. This suggests that the
features learned by our dub-augmented models preserve speech-related information
that can be used to, for instance, recognize words or commands. However, the
source-separated models’ features appear useful for these tasks, which suggests that
non-speech features and more general representations of the sound signals may be
helpful. We further investigate this below, where our results show that the background
noise in one of these datasets (Fluent Speech Commands [316]) may provide useful
signal for performance.

Is performance on video-only tasks impacted? On the visual action recognition tasks,
the results from the dub-augmented variants appear similar to the baseline. The
baseline performs slightly better on HMDB51 and slightly worse on UCF101. This
suggests that the overall video-only performance of the model may not be significantly
affected by dub-augmented pretraining, similar to what is shown in Table A.2 for our
main model variants.

A.2.3 Examples of Synthetic Counterfactual Pairs
Fig. A-13 highlights clips from a synthetically generated version of the LVU dataset [551],
which we refer to as LVU-M, as noted in the chapter. Similar to Fig. 3-4, the spec-
trograms show variation and commonalities between alternate audio tracks of the
same clip. The examples, arbitrarily selected, show both consistency with the visual
(e.g. voices, general timing, etc.) and divergence from it due to artifacts, lack of full
acoustic context (e.g. reverberation), and other current limitations of the proposed
pipeline. We only show the middle 10 seconds of these clips, to allow easy inspection.
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Baselines (SimCLR) Dub-Augmented

Task M AV SEP A ES FR JA EFJ A+EFJ

Se
m
Sp FlSpComm [316] A .379 .400 .263 .391 .410 .402 .373 .368

SpComm5h [544] A .298 .372 .144 .362 .344 .325 .300 .231
SpCommFull [544] A .471 .489 .162 .477 .537 .530 .491 .298

La
ng VoxForge [324] A .546 .516 .504 .580 .584 .592 .571 .543

VoxLingua10 [524] A .251 .226 .111 .229 .237 .246 .227 .201

Ac
t HMDB51 [271] V .341 .319 – .330 .324 .322 .333 –

UCF101 [479] V .531 .496 – .540 .523 .538 .542 –

Table A.5: Controlled experiments potential trade-offs: Does dub-augmentation
negatively impact performance on linguistic or vision-only tasks? The tasks
in this table include Semantic Speech (FlSpComm [316], SpComm5h [544], and
SpCommFull [544]) and Language ID (VoxForge [324] and VoxLingua10 [524]),
and 2 Action Recognition video-only tasks (HMDB51 [271] and UCF101 [479]).
The results vary and often reflect relatively small differences in either direction,
suggesting overall that performance is not majorly affected on language-focused and
vision-only tasks.

Figure A-13: Examples of clips from LVU-M.
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A.3 Supplement for Chapter 5

A.3.1 Supplementary Analyses
Generation Time

Iter/Popsize 25 50 100

50 5.49 ± 0.154 9.62 ± 0.452 18.43 ± 0.752
100 10.01 ± 0.194 18.05 ± 0.605 33.40 ± 0.331
300 27.61 ± 0.703 49.94 ± 0.424 97.23 ± 0.469

Table A.6: Time (in seconds) for different population sizes (columns) and iteration
counts (rows).

In Table A.6 we illustrate the optimization times, in seconds, for different numbers of
iterations (rows) and optimizer population sizes (columns) below, on a modest GPU,
i.e. single V100. Note that the necessary number of iterations varies for different
prompts, from 50 to 300+ to get optimal results.

CLAP Scores

Model AudioSet-50 ESC-50

AudioGen 0.249 ± 0.160 0.277 ± 0.180
AudioLDM 0.166 ± 0.128 0.173 ± 0.142
CTAG 0.573 ± 0.126 0.585 ± 0.130
Real – 0.416 ± 0.139

Table A.7: Comparison of CLAP scores between CTAG and other generative models
on AudioSet-50 and ESC-50 datasets

Table A.7 shows the CLAP [559] evaluations for each model with AudioSet-50 and
ESC-50 prompts, as well as for the actual ESC-50 dataset of real sounds. CLAP is
the objective that we optimize in our synthesis-by-optimization approach, and these
results show how CTAG trivially achieves a higher score compared to all other models
and even the real data. This highlights the ability of our optimization strategy to
effectively maximize the CLAP score, and also the importance of finding alternative
and distinct evaluation metrics as we showed in Section 5.3.4.
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Dataset Metric Model Sounds Template Caption

AudioSet-50

Top-1
AudioGen 51.6 57.0 48.8
AudioLDM 17.4 21.0 16.6
CTAG 26.2 25.2 23.6

Top-5
AudioGen 77.4 84.8 80.8
AudioLDM 44.2 49.8 48.0
CTAG 45.2 52.2 51.6

ESC-50

Top-1
AudioGen 54.0 69.0 62.0
AudioLDM 23.0 20.2 29.4
CTAG 16.4 11.4 13.8

Top-5
AudioGen 71.8 85.2 81.8
AudioLDM 49.4 47.0 58.4
CTAG 30.4 26.4 31.0

Table A.8: Performance comparison, with different prompting strategies, of models
on AudioSet-50 and ESC-50 datasets

Prompting Strategies for All Tested Models

For completeness, Table A.8 provides all the results for all different models with
templates and captions as we showed for CTAG in Section 5.4.3. The performance of
AudioGen shows a notable boost when using the +T (Template) strategy. However,
the impact of these strategies on the other models and datasets is less consistent,
with some cases showing modest improvements and others exhibiting a decrease
in performance (e.g., AudioLDM ESC-50 +T, AudioLDM AudioSet-50 +C). Given
the variability in results, it is difficult to make a definitive statement about the
effectiveness of these strategies across all baselines. While they may prove beneficial
in certain scenarios, their impact appears to be context-dependent.

User Study Statistical Models

We report post-hoc contrasts for the user study results in Tables A.9 to A.11.

User Study Per-Prompt Accuracy

Figure A-14 shows the accuracy of our user study participants at classifying sounds
generated with CTAG, AudioGen, and AudioLDM. Reviewing these differences shows
that some sounds are overall more difficult to identify, for instance; “Truck air brake”.
This may be due to the ambiguity in what this can sound like, as it is not as common
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contrast odds.ratio SE asymp.LCL asymp.UCL z.ratio p.value

AudioLDM / AudioGen 0.31 0.07 0.19 0.53 -5.28 <1e-04
CTAG / AudioGen 0.85 0.18 0.51 1.42 -0.75 1
CTAG / AudioLDM 2.72 0.59 1.61 4.58 4.59 <1e-04

Table A.9: Post-hoc contrasts from a mixed-effects logistic regression for accuracy.

contrast estimate SE df lower.CL upper.CL t.ratio p.value

AudioLDM - AudioGen -0.53 0.12 579 -0.82 -0.24 -4.34 <1e-04
CTAG - AudioGen -0.48 0.12 579 -0.78 -0.19 -3.97 0.00024
CTAG - AudioLDM 0.04 0.12 579 -0.25 0.34 0.37 1

Table A.10: Post-hoc contrasts from a mixed-effects linear regression for confidence
ratings.

contrast estimate SE df lower.CL upper.CL t.ratio p.value

AudioLDM - AudioGen 0.57 0.12 579 0.29 0.86 4.81 <1e-04
CTAG - AudioGen 1.22 0.12 579 0.93 1.51 10.20 <1e-04
CTAG - AudioLDM 0.65 0.12 579 0.36 0.93 5.39 <1e-04

Table A.11: Post-hoc contrasts from a mixed-effects linear regression for artistic
interpretativeness.

a sound as “Bicycle bell”.

Figure A-14: User study classification accuracy per prompt, for CTAG, AudioGen, and
AudioLDM.
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Dimensionality Reduction

Having access to the parameters of the synthesizer also allows us to project them into
a two-dimensional space to explore the relationship between sounds. Leveraging
the Uniform Manifold Approximation and Projection (UMAP) [338] algorithm for
dimensionality reduction of the synthesizer parameters, Figure A-15 shows how
the representation delineates clusters for each distinct sound class while retaining
semantic meaning—sounds with similar acoustic properties cluster together.

Train Horn

Liquid Slosh

Motorcycle

Microwave Oven

Airplane

Bicycle Bell

Water Tap

Truck Air Brake

Chainsaw

Machine Gun

Figure A-15: Dimensionality reduction of the Voice synthesizer parameters using
UMAP applied to 10 sounds from each of the 10 classes from the user study. It
distinctly reveals clusters corresponding to individual sounds, and it shows how
conceptually similar sounds such as “water tap” and “liquid slosh” are closer in space.

A.3.2 Caption Prompt
We used the following instructions to generate caption-like prompts from class labels:

“Write a simple one-sentence audio caption that describes objectively each
sound itself in a real scenario without making up any extra details about
other possible sounds or places. You should define the most common action
for such an entity when multiple options are available. Avoid using templates
such as ‘A sound of’ or ‘The sound of’. Sounds: [List]”

A.3.3 Listener Survey
In this section, we provide information about the survey design we used to collect
human ratings.
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Survey Flow

• Standard: Introduction (3 Questions)

• Block: Audio (4 Questions)

• Standard: Additional (2 Questions)

Start of Block: Introduction

Q1: We are conducting a survey to assess the quality of a novel method for text-to-
audio generation. You will be presented with a series of short sounds, and asked to
select the closest category from a given list, the confidence in your prediction, and
how artistically designed the sound is compared to a more realistic interpretation.

Q2: I consent to participate. I understand that my participation is voluntary and I
may withdraw my consent at any time.

• Yes (1)

• No (2)

Q3: I am at least 18 years old.

• Yes (1)

• No (2)

Q4: Do you have any hearing loss or hearing difficulties?

• Yes (1)

• No (2)

Q5: Are you fluent in English?

• Yes (1)

• No (2)

Q5: What is your Prolific ID? Please note that this response should auto-fill with the
correct ID
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Start of Block: Audio

We use Qualtrics’ Loop & Merge functionality to loop through the sounds.

A: Select the closest category for the following sound: [Audio Clip]

• Truck air brake (1)

• Water tap (2)

• Train horn (3)

• Motorcycle (4)

• Microwave oven (5)

• Liquid slosh (6)

• Chainsaw (7)

• Airplane (8)

• Bicycle bell (9)

• Machine gun (10)

B: How confident are you in your selected answer?

• Completely confident (1)

• Fairly confident (2)

• Somewhat confident (3)

• Slightly confident (4)

• Not confident at all (5)

C: Would you associate this sound more with a realistic portrayal or an artistic
interpretation of the category that you selected?

• 1 (1) Realistic Portrayal

• 2 (2) •
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• 3 (3) •

• 4 (4) •

• 5 (5) Artistic Interpretation

Start of Block: Additional

We have two questions to check that participants were paying attention.

A1 Please select "Chainsaw" from the options below:

• Truck air brake (1)

• Water tap (2)

• Train horn (3)

• Motorcycle (4)

• Microwave oven (5)

• Liquid slosh (6)

• Chainsaw (7)

• Airplane (8)

• Bicycle bell (9)

• Machine gun (10)

A2: All of the sounds you heard during this survey were the same.

• Yes (1)

• No (2)

Completion Message: Thank you for taking part in this study. Please click the button
below to be redirected back to Prolific and register your submission.
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A.4 Supplement for Chapter 6

A.4.1 Additional Results
Comparison of Different Architectures Across Tasks

In Figure A-16 we show the relative performance of models trained with data from
different synthesizer architectures with δ = 0.25. These results illustrate that, though
Voice-generated sounds appear strongest overall, there is some task specialization of
these different synthesis approaches. For example, on LibriCount and NSynth, Voice
is the lowest performer here.

Figure A-16: Scores with a fixed δ = 0.25 and different synthesizer architectures for a
suite of tasks including (from left to right) UrbanSound8k [441], ESC-50 [393], Lib-
riCount [486], CREMA-D [75], VIVAE [215], NSynth Pitch 5h [134], FSD50k [157],
and Vocal Imitation [255]

Effects of Increasing Perturbation Factor δ on Training

We seek to understand how increasing δ impacts the training dynamics. In particular,
the alignment and uniformity objectives are in tension [538]. A small δ leads to easy
positive pairs (high similarity), resulting in low alignment cost but potentially poor
generalization. Conversely, too large δ produces hard positive pairs (low similarity),
increasing the alignment cost but potentially hindering optimization. The optimal
δ should balance this trade-off, however the complexity of the synthesizer function
and the embedding function make deriving a closed-form solution for this infeasible.
As such, we must explore the effect empirically.

Figure A-17 shows the impact of different δ on the final validation value of the
alignment and uniformity costs respectively. Alignment cost increases monotonically
with δ, which shows the increased difficulty of aligning increasingly distant pairs.
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Figure A-17: Final validation scores showing the effect of δ on Lalign and Lunif . Lalign

increases monotonically with δ, since the difficulty of aligning more distinct samples
goes up. Lunif , on the other hand, shows an inverse-U-shaped relationship with δ.

Uniformity has an inverted-U-shaped relationship with δ, suggesting that as the model
struggles to align positives with moderate noise driven variation, it incurs a cost in
uniformity in order to do so (e.g. creating clusters). With large δ, the amount of
noise present is significant, alignment is difficult, and the representations can be
more spread out. The theoretically optimal value of Lunif is −2t = 4, which all values
of δ remain close to. In Figure 8 of [538], the best performance with a more complex
task and encoder (review classification) is observed when alignment is on the higher
side (but not the maximum), and uniform is low (close to the optimal value). In our
experiments, δ = 0.25 gets closest to this, and we observe it to be the strongest as
well.

Results for all Variants

We give results for all synthetic model variants below, in Table A.12.

A.4.2 Additional Details on Training
Augmentation Batching

Due to practical considerations in batching and memory management, augmentations
are applied differently for real and synthetic data. In real data, augmentations are
applied per-example within distributed data-loading workers. Synthetic data is
batch-generated within the main process to avoid concurrency issues between JAX’s
multithreading and PyTorch’s data loading. Individually augmenting examples in
this synthetic data environment is prohibitively slow. As a solution, we mini-batched
augmentations with a default size ≤ 100. This allows us to memory-efficiently
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Data/Model ESC US8K VIV NSyn C-D FSD VI LCount

External Baselines

HEAR/ARCH Top 96.65 79.09 44.28 87.80 75.21 65.48 22.69 78.53
HEAR/ARCH SSL 80.50 79.09 44.28 52.40 75.21 50.88 18.48 78.53
MS-CLAP Linear 89.95 82.29 – – 23.15 50.24 – 54.51
GURA (HEAR) 74.35 – – 38.20 75.21 41.32 18.48 68.34
VGGSound Sup. 87.45 77.57 39.38 43.80 54.36 43.76 14.06 56.10

Internal Baselines

Random Init. 22.45 55.03 33.81 36.20 38.91 9.03 2.43 44.91
Voice (Ours, No-δ, Aug.) 48.65 59.46 36.31 32.80 46.32 16.88 7.12 47.64
VGGSound SSL (Aug.) 48.85 61.91 32.67 39.60 47.86 19.63 6.03 53.46
VGGSound SSL (Jitter) 52.95 63.82 38.12 14.20 50.03 24.02 3.43 69.77

VGGSound-Mix 5s 43.95 59.69 33.31 40.80 46.10 14.71 5.95 52.57
VGGSound-Mix 10s 42.95 57.40 32.03 40.20 46.57 15.77 6.43 51.07

Audio Doppelgängers (Ours)

Best Synthetic 58.90 66.71 39.45 44.40 48.43 24.12 9.15 58.60
Voice (δ = 0.01) 47.55 59.56 38.62 11.40 47.53 17.15 6.67 55.56
Voice (δ = 0.05) 47.90 64.02 37.93 13.80 46.45 17.77 7.72 51.52
Voice (δ = 0.10) 48.40 63.92 38.74 11.40 45.13 18.40 7.67 49.32
Voice (δ = 0.25) 58.90 66.71 39.45 32.20 48.24 24.12 9.15 52.95
Voice (δ = 0.50) 41.85 54.03 28.54 40.60 45.78 17.14 4.69 43.85

VoiceFM (δ = 0.01) 42.40 59.89 36.58 9.20 44.31 15.34 5.15 57.13
VoiceFM (δ = 0.05) 42.90 62.96 36.54 14.20 44.93 15.64 5.79 50.61
VoiceFM (δ = 0.10) 44.80 62.03 35.73 14.80 43.99 15.67 5.60 50.56
VoiceFM (δ = 0.25) 57.20 65.11 38.48 35.20 48.43 22.15 6.96 54.00
VoiceFM (δ = 0.50) 43.50 60.98 39.04 12.20 44.17 15.25 6.06 51.07

Parametric (δ = 0.01) 39.50 58.95 36.87 12.20 42.16 13.92 4.53 58.60
Parametric (δ = 0.05) 40.15 57.22 35.11 14.60 42.65 12.87 4.78 55.37
Parametric (δ = 0.10) 42.50 59.65 34.12 14.20 43.01 13.41 4.97 53.43
Parametric (δ = 0.25) 50.55 62.83 37.91 37.60 46.77 18.68 5.70 54.72
Parametric (δ = 0.50) 41.15 56.86 35.41 10.40 41.73 12.76 4.48 54.27
Voice (δ = 0.01, Aug.) 52.55 62.92 34.82 23.60 46.96 18.18 8.17 51.01
Voice (δ = 0.05, Aug.) 53.00 65.17 34.49 19.40 45.39 19.79 8.32 49.84
Voice (δ = 0.10, Aug.) 54.20 65.89 33.78 23.40 45.71 20.38 8.50 50.42
Voice (δ = 0.25, Aug.) 58.75 65.01 34.81 44.40 46.17 21.76 8.54 50.70
Voice (δ = 0.50, Aug.) 32.25 48.40 25.41 36.20 41.38 11.82 3.26 44.74

Table A.12: Complete results for all model variants.

leverage GPU processing and introduces variation within each training batch. While
per-example augmentations might further enhance performance of synthetic data
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with augmentations, we believe our current approach is a conservative yet effective
option and expect minimal impact.

A.5 Supplement for Chapter 8

A.5.1 Questions
ID QUESTIONS

6.1 I quickly figured out how to use Editor-Red
6.2 It was easy to come up with ideas while writing
6.3 It was easy to decide how I will continue this story
6.4 The more time I spend writing with Editor-Red, the better it gets.
6.5 The pictures used in Editor-Red distracted me from my task
6.6 The pictures used in Editor-red were helpful
6.7 The sounds used in Editor-Red distracted me from my task
6.8 The sounds used in Editor-Red were helpful
6.9 The story that I wrote in Editor-Red is coherent
6.10 The story that I wrote in Editor-Red is creative
6.11 Using Editor-Red felt intuitive
6.12 Using Editor-Red was easy
14.1 I did most of the creative writing, using Editor-Red just for suggestions.
14.2 I enjoyed co-writing with Editor-Red
14.3 I enjoyed collaborating with Editor-Red
14.4 I equally used textual suggestions and pictures and sounds
14.5 I mostly used the textual suggestions and not pictures or sounds
14.6 The final product of writing is a result of joint efforts of Editor-Red and myself
14.7 The suggestions made by Editor-Red were coherent
14.8 The suggestions made by Editor-Red were creative
14.9 The suggestions made by Editor-Red were grammatically correct
14.10 The suggestions made by Editor-Red were relevant
14.11 The suggestions made by Editor-Red were surprising
16.1 It was easy to come up with ideas while writing
16.2 It was easy to decide how I will continue this story
16.3 The story that I wrote in Editor-Green is coherent
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16.4 The story that I wrote in Editor-Green is creative
16.5 Using Editor-Green felt intuitive
16.6 Using Editor-Green was easy
21 In which editor was the text that you wrote more creative?
22 In which editor was the text that you wrote more coherent?
23 Where did you feel more relaxed when writing a story?
24 Where was it easier to write a text?
25 Which editor did you prefer for writing a creative text?
26 Where did you feel more focused when writing a text?
27 Where did it feel more demanding when writing a text?
28 Where did it feel more rushed when writing a text?
29 Where did you feel you had to work harder when writing a text?
30 Which editor made you feel more discouraged or annoyed when writing a text?

A.6 Supplement for Chapter 9

A.6.1 Surveys
Draft+Revise Survey

Please rate the following factors (Very Low to Very High) based on your experience
with the Figure Description Writing Assistant.

• Mental Demand: How much mental and perceptual activity was required? Was
the task easy or demanding, simple or complex?

• Temporal Demand: How much time pressure did you feel due to the pace at
which the tasks or task elements occurred? Was the pace slow or rapid?

• Own Performance: How successful were you in performing the task? How
satisfied were you with your performance?

• Effort: How hard did you have to work (mentally and physically) to accomplish
your level of performance?

• Frustration Level: How irritated, stressed, and annoyed versus content, relaxed,
and complacent did you feel during the task?
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Please indicate your level of agreement with the following statements based on your
experience with the Figure Description Writing Assistant.

• The tool helped me produce alt text more efficiently.

• The tool helped me think to describe figure elements I would not have thought
to describe otherwise.

• The tool helped me produce better alt text.

Please indicate your level of agreement with the following statements based on your
experience with the Figure Description Writing Assistant.

• The draft alt texts were helpful

• The generated draft for the summarized figure description was helpful

Please explain your ratings for each of the above statements.

Please indicate your level of agreement with the following statements based on your
experience with the Figure Description Writing Assistant.

• I would use the tool if it were available.

• I would recommend the tool to my friends and colleagues.

• I found the tool to be helpful.

• I found the tool to be able to improve my productivity.

• I found the tool to be annoying or distracting.

Interactive Assistance Survey

Please rate the following factors (Very Low to Very High) based on your experience
with the Figure Description Writing Assistant.

• Mental Demand: How much mental and perceptual activity was required? Was
the task easy or demanding, simple or complex?

• Temporal Demand: How much time pressure did you feel due to the pace at
which the tasks or task elements occurred? Was the pace slow or rapid?
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• Own Performance: How successful were you in performing the task? How
satisfied were you with your performance?

• Effort: How hard did you have to work (mentally and physically) to accomplish
your level of performance?

• Frustration Level: How irritated, stressed, and annoyed versus content, relaxed,
and complacent did you feel during the task?

Please indicate your level of agreement with the following statements based on your
experience with the Figure Description Writing Assistant.

• The tool helped me produce alt text more efficiently.

• The tool helped me think to describe figure elements I would not have thought
to describe otherwise.

• The tool helped me produce better alt text.

Please indicate your level of agreement with the following statements based on your
experience with the Figure Description Writing Assistant.

• The draft alt texts were helpful

• The Potential User Question type suggestions were helpful

• The Generate at Cursor type suggestions were helpful

• The generated draft for the summarized figure description was helpful

Please explain your ratings for each of the above statements.

Please indicate your level of agreement with the following statements based on your
experience with the Figure Description Writing Assistant.

• I would use the tool if it were available.

• I would recommend the tool to my friends and colleagues.

• I found the tool to be helpful.

• I found the tool to be able to improve my productivity.

• I found the tool to be annoying or distracting.
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Comparison Survey

Please reflect back on both interfaces.

What aspects of each interface did you like, and why?

Please explain any situations where the tool was especially helpful:
For example, if suggestions drew your attention to specific visual elements of the figure
or ways to describe them, or provided text that did so which you were able to incorporate
directly.

Do you have any other feedback about problems, bugs, or areas for improvement
with regard to the interfaces?

Please explain any situations where the tool was unhelpful or detrimental:
Can you provide an example where a suggestion was unhelpful or misleading? If so,
why?
Did any suggestions make your alt text worse in a significant way? Please explain.

What changes to each tool would make it more helpful?

Anything else that you would like to share with us?

Which version of the system did you prefer? (Without vs. With Suggestions)

A.6.2 Prompt Design
The overall prompt structure is given as follows:

• Instruction Prompt

• Metadata Prompt

• Description Content

Instruction Prompt

We defined several different versions of the instruction prompt, toward different goals.
The first two below form part of the Generate at Cursor feature, while the third is
used for pre-generating drafts.
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Initial High-Level Summary Your goal is to assist in writing an alt text description

of a figure that is as informative and accessible as possible, based on metadata provided

to you.

Some of this data is automatically extracted from the figure, and may contain errors.

Infer as much detail as possible from the information given.

Respond with only a brief and high-level overview (1-2 sentences), with no additional

content. In your response, do not explicitly refer to the metadata (such as "caption"

or "OCR text"). These are provided to help you write descriptive responses only.

Text Continuation and Infilling Your goal is to assist in writing an alt text description

of a figure that is as informative and accessible as possible, based on metadata provided

to you.

Some of this data is automatically extracted from the figure, and may contain errors.

Infer as much detail as possible from the information given. Only include clear and

helpful statements for understanding the figure. Do not make explicit reference to

the metadata (such as "caption" or "OCR text"). These are provided to help you write

descriptive responses only.

Respond with only a continuation of the given description itself (1-4 sentences), with

no additional content. Add as much detail as possible. You may also be given a DESCRIPTION

CONTEXT, which contains text after your response. In this case, provide text that bridges

the gap between the description, and additional text the user has already written.

In your response, do not explicitly refer to the metadata (such as "caption" or "OCR

text"). These are provided to help you write descriptive responses only.

Full Draft Your goal is to assist in writing an alt text description of a figure that

is as informative and accessible as possible, based on metadata provided to you.

Some of this data is automatically extracted from the figure, and may contain errors.

Infer as much detail as possible from the information given.

Respond with a full description of the figure, with no additional content. In your

response, do not explicitly refer to the metadata (such as "caption" or "OCR text").

These are provided to help you write descriptive responses only.

Potential User Questions Your goal is to assist in writing an alt text description

of a figure that is as informative and accessible as possible. Infer as much detail

as possible from the information given.
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What visual aspects of the figure are unclear from the given alt text description? Ask

a series of questions to elicit all the necessary information about the figure to describe

these elements. Based on the type of figure, focus on essential visual aspects that

someone who cannot see the figure would need to know. Based on the guidelines and metadata

you have access to, suggest an answer for each question. In your response, do not explicitly

refer to the metadata (such as "caption" or "OCR text"). These are provided to help

you write descriptive responses only. Do not repeat any existing questions.

Metadata Prompt

We define the Metadata Prompt as:

---CAPTION
<Caption Text>

---FIGURE MENTIONS FROM PAPER
<Mentioning Paragraphs>

---OCR TEXT RECOGNIZED FROM FIGURE (MAY CONTAIN ERRORS)
<Layout Preserving OCR Text>

---DATA TABLE EXTRACTED FROM FIGURE (MAY CONTAIN ERRORS)
<Automatically Extracted Data Table>

---Please refer to the following guidelines when writing
your description:

<Selected Guidelines>
---

A.6.3 Event Traces
Fig. A-18 shows event traces for all logged participants in our study (i.e. P6 through
P14). We provide them here to give a broader sense of the diversity of strategies we
observed.

A.6.4 Additional Interface Features
Authors can selectively ablate certain metadata they deem irrelevant or erroneous via
interface settings (Fig. A-19A). Also present in this menu is a set of guidelines which
our pipeline selects based on the figure type (expanded in Fig. A-19B), incorporating
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Figure A-18: Event traces for all logged participants (N=9) in our study. Different
patterns show a wide range of strategies for using our systems’ features to produce
detailed alt text.

general figure description guidelines along with domain-specific items (e.g. for
general plots), and figure type-specific ones as well (e.g. describing the change of
concentration of datapoints for a scatter plot). The summarization workflow is shown
in Fig. A-19C).
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Figure A-19: Additional features that our system versions implement. (A) Prompt
ablation settings (in Interactive Assistance), wherein the user can de-select metadata
components for use in suggestion and question generation, to account for highly
erroneous extractions or irrelevant information. (B) Figure description guidelines
(both versions). These begin with general guidelines for descriptions, then plot-
specific guidelines, then the semantic level framework introduced by Lundgard and
Satyanarayanan [317] for data visualizations, then scatterplot-specific items, to
construct a full set of guidelines for both prompting and user review. A link to
the DIAGRAM Center’s original guidelines is also provided. (C) After writing the
full description, we implement a summarization workflow to produce more concise
descriptions (both versions; one paragraph long by default). This also serves as a
description review stage.
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