
 1

A Networked, Media-Rich Programming Environment

to Enhance Technological Fluency at After-School Centers

in Economically-Disadvantaged Communities

Funded by National Science Foundation (Information Technology Research), 2003-2007

1. Introduction

The MIT Media Laboratory and UCLA propose to develop and study a new networked, media-

rich programming environment, designed specifically to enhance the development of

technological fluency at after-school centers in economically-disadvantaged communities.

This project will build on our research team’s previous experience and success in two areas: the

development of innovative programming environments for youth, and development of innovative

informal-learning centers for inner-city youth. Our team’s research on “programmable bricks”

has been commercialized as LEGO MindStorms, used by millions of youth around the world.

Members of our research team co-founded the Computer Clubhouse project, a network of after-

school learning centers for youth from economically-disadvantaged communities. The

Clubhouse network has expanded to 75 sites in 14 countries, with 20,000 youth members, and it

received the prestigious Peter Drucker Award for Nonprofit Innovation.

In our proposed project, we bring together these two themes to develop a new programming

environment (to be called Scratch) that is grounded in the practices and social dynamics of

Computer Clubhouses. Just as LEGO MindStorms added programmability to an activity deeply

rooted in youth culture (building with LEGO bricks), Scratch will add programmability to the

media-rich and network-based activities that are most popular among Clubhouse youth. Taking

advantage of the extraordinary processing power of current computers, Scratch will support new

programming paradigms and activities that were previously infeasible, making it much better

positioned to succeed than previous initiatives to introduce programming to youth.

We expect that the use of Scratch at Computer Clubhouses will serve as a model for other after-

school centers in economically-disadvantaged communities, demonstrating how informal-

learning settings can support the development of technological fluency, enabling young people to

design and program projects that are meaningful to themselves and their communities.

2. Rationale

A flurry of recent policy reports (Being Fluent with Information Technology from National

Research Council, 1999; Standards for Technological Literacy from International Technology

Education Association, 2000; Technically Speaking: Why All Americans Need to Know More

About Technology from National Academy of Engineering, 2002) have drawn attention to a

critical societal problem: Even as new technologies proliferate and play increasingly important

roles in all aspects of society, most people are “poorly equipped to recognize, let alone ponder or

address, the challenges technology poses or the problems it could solve” (NAE, 2002).

 2

To address this problem, the reports call for new initiatives to help people become more fluent

with technologies. The NRC report defines “fluency” with information technologies as “the

ability to reformulate knowledge, to express oneself creatively and appropriately, and to produce

and generate information (rather than simply to comprehend it).” Fluency, according to the

report, “goes beyond traditional notions of computer literacy…[It] requires a deeper, more

essential understanding and mastery of information technology for information processing,

communication, and problem solving than does computer literacy as traditionally defined.”

In the past, most initiatives to improve technological fluency have focused on school classrooms

(often computer-science classes). But there is a growing recognition that after-school centers and

other informal learning settings can play an important role. The NAE report writes: “The

informal education system must become a major focus” for promoting fluency. The NSF

Directorate for Education and Human Resources describes informal learning as “self-directed,

voluntary, and motivated mainly by intrinsic interests, curiosity, exploration, and social

interaction.” Thus, informal-learning settings are well-positioned to leverage young people’s

passions for new technologies as a starting-point for developing technological fluency.

The focus on informal-learning settings is especially important in economically-disadvantaged

communities, where schools typically have few technological resources and many young people

are alienated from the formal education system. After-school centers can serve as an important

“middle ground” between home and school, providing a comfortable, supportive, and safe space

for youth to explore new ideas and develop new skills.

During the past decade, more than 2000 community technology centers (CTCs) opened in the

United States, specifically to provide better access to technology in economically-disadvantaged

communities. But most CTCs support only the most basic computer activities (such as word

processing, email, and Web browsing), so participants do not gain the type of fluency described

in the NRC report. Similarly, many after-school centers (which, unlike CTCs, focus exclusively

on youth) have begun to introduce computers, but they too tend to offer only introductory

computer activities, along with educational games.

A small subset of after-school centers and CTCs, such as those in the Computer Clubhouse

network, explicitly focus on the development of technological fluency, moving beyond basic

computer skills and helping youth learn to design, create, and invent with new technologies

(Resnick, Rusk, & Cooke, 1998). Walk into any Computer Clubhouse and you are likely to see

youth creating and manipulating graphics, animations, videos, and music (and often integrating

multiple media). The professional image-processing tool Photoshop is particularly popular.

Indeed, a “Photoshop culture” has emerged at many Clubhouses, with youth proudly displaying

their Photoshop creations on bulletin boards (both physical and online), sharing Photoshop

techniques and ideas with one another, and helping Clubhouse newcomers get started with the

software.

But there is a further step on the path towards fluency that is rarely seen at after-school centers

and CTCs. Even at those centers focusing on fluency, youth rarely become engaged in computer

programming. There is no “programming culture” analogous to the “Photoshop culture.” That is

unfortunate: according to the NRC report, skills associated with programming play a “central

 3

role” in fluency. The algorithmic thinking inherent in programming, writes the NRC, “is

essential to comprehending how and why information technology systems work as they do.” In

addition, the report argues that “the continual use of abstract thinking in programming can guide

and discipline one’s approach to problems in a way that has value well beyond the information

technology-programming setting. In essence, programming becomes a laboratory for discussing

and developing valuable life skills, as well as one element of the foundation for learning about

other subjects.” Many others (e.g., Papert, 1980; Kay, 1991; diSessa, 2000) have made similar

arguments on the benefits of learning to program.

Many previous initiatives to introduce programming to youth have not lived up to their promise.

Too often, computer programming has been introduced using programming languages that are

difficult to use, with proposed activities that are not connected to young people’s interests, and in

contexts where no one has enough experience or expertise to provide guidance. As a result, many

people now view computer programming as a narrow, technical activity, appropriate only for a

small segment of the population. But that need not be the case. The extraordinary increase in

computational power over the past two decades makes possible a new generation of

programming tools and activities that can help overcome the shortcomings of previous

initiatives, and make computer programming more accessible to everyone.

3. Goals

• Transform the use of technology at after-school centers, moving beyond basic computer

activities to enable young people to achieve deeper fluency with information technologies

• Broaden opportunities for youth from under-represented groups to become designers and

inventors with new technologies

• Advance understanding of the effective and innovative design of new information and

communications technologies for informal math and IT education

• Make research-based educational technologies, and the ideas underlying those technologies,

accessible to larger and more diverse audiences

• Further collaboration of young people across geographic, cultural, and language barriers

4. Research Context: Computer Clubhouses

We choose community technology centers as a research context in an explicit effort to reach

youth from economically-disadvantaged and culturally-diverse communities.

Computer Clubhouses will serve as the primary sites for testing our new technologies and ideas.

The MIT Media Laboratory co-founded the first Computer Clubhouse in 1993, in collaboration

with The Computer Museum (now part of the Boston Museum of Science). Since then, the

Computer Clubhouse Network (with major financial support from Intel) has expanded to more

than 75 sites, with more than 50 Clubhouses in the United States, and international Clubhouses

 4

in India, China, Taiwan, Philippines, Mexico, Costa Rica, Colombia, Brazil, Ireland,

Netherlands, Germany, Israel, and South Africa.

Computer Clubhouses are intended to provide youth (ages 10-18) from underserved communities

with opportunities to design, create, and invent with new technologies, in order to become more

capable, creative, and confident learners. Young people become members of the Clubhouse – at

no cost to them or their families. Youth at Computer Clubhouses work on design projects based

on their own interests and the needs of their communities. Adult staff and volunteer mentors play

a critically important role in providing technical, intellectual, and emotional support for the

youth.

Computer Clubhouse members use leading-edge software to create artwork, animations, and

musical compositions. A visual-design culture has developed and is thriving at Clubhouses

across the Network, with young people creatively expressing themselves with professional

graphic-design and image-processing software. Many Clubhouses have also developed a thriving

music-production culture. But, to date, only a handful of Clubhouse youth have become deeply

engaged in computer-programming activities. Our proposed project aims to change that,

providing the technologies and support that are needed to develop a “programming culture” at

Computer Clubhouses.

5. Technology Development: Scratch

The centerpiece of our technology-development effort is a new programming environment called

Scratch. Our project team will build upon many years of experience developing innovative

programming environments, including Design By Numbers (currently used to introduce visual-

art students to programming at more than 25 higher-education institutions worldwide) and

LogoBlocks (which served as the basis for the programming language used in LEGO

MindStorms).

The design and development of Scratch will be guided, at every step in the process, by the needs

and constraints of Computer Clubhouses. Existing programming tools were not designed with

places like Clubhouses in mind. By creating a new programming environment explicitly for

Clubhouses, we believe that we can provide a better foundation for the development of a

“programming culture” at Clubhouses (and other informal learning settings).

5.1 Design criteria. From our years of experience in Clubhouses, we have found that new tools

(and associated activities) are used successfully and productively at Clubhouses over extended

periods of time only if:

• youth see the tool/activities as “cool,” resonating with their interests and passions

• youth see the value and potential of the tool right away

• youth can create a first project with the tool quickly and easily

• youth can create “products” that they can show off to others (pride of authorship)

• the tool supports a wide range of different types of activities

• the tool/activities appeal to youth of different backgrounds and cultures

• the activities fit into the social dynamic of the Clubhouse

 5

• youth can learn features of the tool gradually and incrementally

• youth can continue to use the tool in ever more complex ways over time

5.2 Core features. With these design criteria in mind, we plan to design Scratch with the

following set of core features. These features are designed specifically to address the problems

that derailed many earlier efforts to introduce programming to youth.

• Building-block programming. Scratch programming will be based on a building-block

metaphor, in which learners build procedures by snapping together graphical blocks much like

LEGO bricks or pieces in a jigsaw puzzle. Different data types will be represented by blocks

of different shapes, with pieces fitting together in only syntactically-correct ways. This

approach eliminates the possibility of syntax errors (which have proven to be a major obstacle

for learning text-based languages), allowing youth to focus on the problems they want to

solve, not the mechanics of programming. Each object in Scratch will have a library of

primitive building blocks (based on the class of the object). Learners will drag-and-drop

blocks from the library to create “stacks” (procedures) that govern behaviors of the object.

Multiprocessing will be smoothly integrated into Scratch: different stacks of blocks will

automatically execute in parallel. To allow a smooth progression to more complex programs,

Scratch will include an underlying text-based programming language.

• Programmable manipulation of rich media. The most popular projects at Computer

Clubhouses involve manipulation of images, video, and music, using programs such as

PhotoShop, Premiere, and Acid Pro. By contrast, initial activities in traditional programming

environments typically involve manipulation of numbers and simple graphics. By providing

Clubhouse youth with programmable control over rich media, Scratch opens up new

programming activities that resonate more strongly with youth interests. For example, Scratch

will include image filters similar to the ones in PhotoShop, but will provide programmable

control over these filters, so that youth could create videos in which the parameters of these

filters vary over time – and, in the process, get a deeper understanding of the concept of

filtering and mathematical functions.

• Deep shareability. Work at Clubhouses has an important social component: youth are

constantly looking at one another’s projects, trading ideas, sharing techniques. To fit into this

context, we will design the object architecture of Scratch to support what we call “deep

shareability” – meaning that youth will be able to share objects at all levels (from procedure

blocks to animated characters to full projects) and to exchange them between all types of

devices (desktops, laptops, tablets, handhelds, mobile phones, embedded devices). For

example, a Clubhouse member designing a video game in Scratch could import (via the

Internet) a character developed by a Clubhouse member in another country, integrate the

character into her own game, download the game to play on a handheld device, control a

LEGO construction (via RF) as part of the game, and then trade the game (via IR) with

another local Clubhouse member. Through these activities, we expect that an ecosystem of

Scratch creations will develop, with Clubhouse youth constantly trading and modifying one

another’s creations. In our proposed research, we will use commercial handheld devices for

some activities, but we will also develop new custom handheld devices (such as handheld

displays for low-resolution videos, based on Maeda’s LittleVision project).

 6

• Seamless integration with the physical world. Building on our previous research on

LEGO/Logo and programmable bricks (e.g., Resnick, 1994; Resnick, Berg, Eisenberg, 2000),

we will design Scratch so that youth can program physical objects (such as motors, lights,

MIDI synthesizers) in the same way they program virtual objects on the screen – and use

input from physical sensors (distance sensors, motion detectors, sound sensors) to control the

behaviors of both physical and virtual creations. For example, a Clubhouse member could

connect an accelerometer (with RF communicator) to her arm and program an animated

graphic to change its behavior based on how she moves her arm (and, in the process, gain new

insights into the concepts of acceleration, sensing, and feedback). As part of our research, we

will develop new types of sensors and input devices, drawing on advanced sensor research at

the MIT Media Lab and ITR-funded Center for Bits and Atoms (and adapting those research

prototypes to make them appropriate for use in after-school settings).

• Support for multiple languages. The Computer Clubhouse is a global community, with sites

in more than a dozen countries, with young people speaking many different languages. Even

in a single Clubhouse in the US, it is not unusual to hear three or four different languages in

the course of an afternoon. To support collaboration and sharing in this context, it is essential

for Scratch to be a multi-language, multi-cultural environment. In developing EToys and

LogoBlocks, we found that the building-block programming approach makes it easy to handle

multiple languages and character sets. EToys allows the language to be changed dynamically,

even while scripts are running. The ability to effortlessly switch between languages will allow

Clubhouse youth and mentors to work and think in the language most comfortable to them,

while also allowing kids to read and change Scratch programs written by Clubhouse youth in

countries halfway around the globe.

5.3 Implementation. Scratch will be written in Squeak, an open-source implementation of the

Smalltalk-80 language. Squeak is extremely portable, with existing implementations for desktop

platforms (Windows, Macintosh, Linux/Unix, Acorn, BeOS), handhelds (Windows CE, Zaurus

OS, Compaq “Itsy”), and game consoles (Sony Playstation). Squeak has even been ported to

hardware without any underlying operating system at all, including an experimental Mitsubishi

processor (M32R/D) and a StrongARM hardware developer board. This extreme portability will

allow Scratch applications to be deployed on devices with a wide range of form factors, from

desktops to pen-based tablet computers to handhelds. We plan to port a subset of the Scratch

runtime system to Java J2ME to allow deployment of selected Scratch applications on Java-

enabled cell phones. Our group’s experience with embedded processors (as part of our LEGO

programmable-brick research), along with the increasing computational power available in low-

cost, low-power packages, will also allow us to deploy Scratch content on pocket-sized and

wearable devices, or on low-cost toys such as the Nintendo GameBoy Advance.

Sharing and exchanging of Scratch projects and their components will be supported through a

combination of standard web servers (with content viewed using a browser) and a custom

“Scratch Object Library” server which we will build. The latter will allow Scratch components at

the personal, Clubhouse, and Clubhouse network levels to be explored and downloaded

seamlessly without leaving the Scratch environment. We will also develop ways to exchange

Scratch components among handheld and embedded processors using IR and RF technologies,

 7

extending our earlier work on the memetag and i-ball projects (Borovoy et al., 2001). We also

plan to develop new sensor technologies, leveraging research elsewhere in the Media Lab – for

example, Joe Paradiso’s work on sensor-equipped shoes that communicate via RF.

Scratch source code will be made freely available via periodic code releases to allow

collaborators to augment the core system with their own custom features and extensions.

5.4 Related Programming Environments

Scratch draws ideas and inspiration from a number of other programming environments designed

for young people or novice programmers. The building-block approach draws on previous

research on LogoBlocks (Begel, 1996) and Etoys (Steinmetz, 2001), which have proven to be

very intuitive for beginning programmers. Its user interface and page-navigation system are

inspired by Logo Microworlds. Like AgentSheets (Repenning & Ambach, 1996), Scratch will

encourage sharing of projects and components on the web, and like Boxer (diSessa, 2000), it will

make program elements (such as variables) into visible, manipulable objects on the screen.

Alice2 (Pausch, 1995) also uses drag-and-drop program construction to make programming

easier for novices, but its domain is exclusively 3D. Scratch complements commercial animation

and video production tools such as Macromedia Flash and Adobe Premier, providing youth with

greater programmable control, and a framework designed to support the learning of important

computational ideas.

6. Sample Scenarios

We will study how and what Clubhouse youth learn as they use Scratch to design and program

digital arts projects – that is, projects that integrate art and technology for new forms of personal

expression. In our previous research, we have found that digital-arts projects can serve as a

particularly effective and engaging introduction to the activity and ideas of programming,

especially in informal learning settings. In this section, we present three short scenarios of how

we expect youth will use Scratch at Computer Clubhouses.

Programmable image processing. In Clubhouses today, youth often use Photoshop filters (e.g.,

blur, distort, pixelate, sharpen) to manipulate and transform photographs and scanned images.

Scratch will provide youth with much greater control over the image-filtering process, expanding

the expressive possibilities. In particular, Scratch will enable youth to program how a filter

should be applied over time (writing mathematical functions to control how the parameters of the

filter should vary over time). A Clubhouse member might start by programming the brightness

parameter to control how quickly an image fades to black. Then, she might create a program to

control the RGB values in the image (or the HSV values) to create videos with color-to-

monochrome effects, or strange hue-shifting effects. Or she might program a filter that controls

alpha values to create blue-screening effects. Later, she might place a fish-eye lens at the edge of

an image, and program the movement of the lens so that it gradually spirals in, at an ever-

quickening pace. By putting all of these programs together, she could create an entire video of

special effects (with effects that would be impossible to create with standard software packages).

 8

Sensor-controlled music. Many current Clubhouse members enjoy the arcade game “Dance

Dance Revolution” (DDR), in which players dance on a floor pad with embedded sensors,

aiming to synchronize their movements with music and images on the screen. With Scratch,

Clubhouse youth could create their own version of DDR. A Clubhouse member could download

MIDI files of songs from the Web (or compose and mix new songs in the Clubhouse music

studio), design a floor pad with four touch sensors, connect the sensors to the computer, then

create programs that check how well the dance steps synchronize to the music. Once the floor

pad is in place, it could be used in different types of projects. Another Clubhouse member might

decide to use the floor pad to create music (rather than follow it). She could write programs that

map sensor inputs to different music outputs (using sound clips and music samples from the

Scratch library). Later, she might add other sensors, to create new types of musical instruments.

Networked animations. Making animated characters (with tools such as Flash) is an increasingly

popular activity at Clubhouses. With Scratch, Clubhouse members will be able to trade their

animations with one another – and then track where their animations go, and how they are

modified by others. Youth can trade their animations with members of other Clubhouses (via the

Internet), or download the animations to handheld devices and trade them locally (via IR

communication). Youth can modify the animations that they receive (since all Scratch “program

blocks” are accessible), and they can even program their animations to behave in different ways

depending on age or gender or location of the person receiving the animation. The Scratch

server will automatically keep track of all transactions, so youth can view tree-like graphs

representing the spread of their animations, with indicators of how and where the animations

have been modified.

7. Results from Prior NSF Research

The proposed collaborative research project builds on the results of several successful NSF-

funded projects conducted by Mitchel Resnick (PI) and Yasmin Kafai (co-PI) over the past

decade. Previous and current NSF funding has allowed our project team to develop a strong

foundation in four prime areas of the proposed research: educational technology development,

design of new programming environments, informal learning environments, and diversity.

The technology development for Scratch will build on results from Resnick’s three-year project

entitled Beyond Black Boxes: Bringing Transparency and Aesthetics Back to Scientific

Instruments (NSF grant CDA-9616444). That project focused on the development of new

technologies (including “programmable bricks” and new programming environments) to enable

youth to build their own scientific instruments, enabling them to become engaged in scientific

inquiry not only through observing and measuring but also through designing and building

(Resnick, Berg, Eisenberg, 2000).

Resnick has also received NSF funding for research involving informal learning. He is currently

Principal Investigator for “PIE Network: Promoting Science Inquiry and Engineering through

Playful Invention and Exploration with New Digital Technologies” (ESI-0087813). He is

working with a network of museums to develop a new generation of public programs integrating

art and technology, in the same spirit as the digital-arts projects described in this proposal.

Resnick was also Co-PI of another informal-learning project (ESI-9627672), focused on the

 9

development of a major museum exhibit (the Virtual Fishtank) to help the general public learn

important ideas from the sciences of complexity.

Resnick is also co-PI for the Center for Bits and Atoms (CBA), a large-scale NSF/ITR center

(CCR-0122419) that develops and explores new technologies at the interface of the digital and

physical worlds. Resnick leads the educational outreach initiatives for the center. Our proposed

project will make use of some of the advanced sensor technology developed at CBA.

While Resnick’s projects have focused on the design of new educational technologies, especially

for use in informal-learning settings, the co-PI Yasmin Kafai has investigated the growth of a

programming culture in elementary schools. Funded by a NSF Early Career award on “Learning

Science by Design: Creating Information-Rich Learning Environments for Young Software

Designers” (REC 9632695), Kafai followed a class of elementary students over the course of

four years as they programmed instructional science simulations. This study pioneered a

successful peer apprenticeship model in which “oldtimer” fifth-grade students worked together

in teams with newcomer fourth-grade students on the multiple aspects of their software designs

(e.g., Kafai & Ching, 2001; Ching, Kafai & Marshall, 2000; Kafai, Ching, & Marshall, 1998;

Kafai, 1998; Ching & Kafai, under review). This grant influenced several national public policy

studies, including the National Research Council’s “Being Fluent in Information Technology”

(1999) and the American Association of University Women’s “Tech-Savvy: Educating Girls in

the Computer Age” (2000).

The issue of diversity in the information technology workforce will be addressed in Kafai’s

current grant “Bridging the Gap” (PGE 0220556) which will synthesize findings from over 400

studies sponsored in the last ten years by the National Science Foundation and the American

Association of University Women (AAUW). The goal is to summarize research and

practitioners’ efforts to address gender equity and diversity issues in technology, mathematics,

science and engineering. The final goal is a report of best practices that will be published in late

2003 by the AAUW.

8. Research Plan

8.1 Research Questions. Our research will investigate how Scratch can support the development

of technological fluency in informal-learning settings. Our research will focus on the following

three areas:

Engagement. We will study how young people become engaged in programming activities and

what keeps them interested in pursuing more complex projects.

• Entry points: How do young people become interested in using Scratch? What aspects of

Scratch do they find most engaging?

• Activities: What types of projects do they choose to develop?

• Persistence: How does youth interest in Scratch evolve over time? What supports are needed

to keep them involved in projects?

Learning: We will study what programming concepts and abilities youth learn as they work with

Scratch, and what factors support and impede their learning.

 10

• Concepts: What computational and related concepts do youth learn through use of Scratch?

• Capabilities: How does work with Scratch further young people’s abilities to engage in

sustained reasoning, debug problems as they arise, break complex problems into simpler

parts, express their ideas in new media (developing ideas from initial conception to

completed project)?

• Reflection: In what ways do young people talk about their programming projects, both online

and in person?

Community: We will study how programming knowledge is built and shared within and across

after-school centers.

• Sharing projects: What types of Scratch objects and artifacts do youth share with one

another? What do they share with friends and family outside the center? How does the

availability of handheld devices influence patterns of sharing?

• Sharing ideas: How does use of Scratch spread over time within and across sites? What types

of programming techniques and strategies do youth share with one another?

• Support: What are the supports and barriers to the sharing of knowledge within and across

sites? What role do staff and mentors play? How do youth support one another?

8.2 Research Approaches. To address these research questions, we will use several approaches

for collecting and analyzing data. We have chosen methods that are most appropriate for

informal learning settings, where participation is self-directed and voluntary (Falk, Brooks, &

Amin, 2001).

Participatory Design: We will use a participatory design approach (Schuler & Mamoika, 1993)

to inform the design of the Scratch programming environment. This process will guide the

iterative development of interfaces, features, and activities that are accessible to youth and

resonate with their interests.

• Cooperative Prototyping Sessions: We will engage in rapid prototyping of Scratch

programming environment based on bi-weekly interactions with youth at each Boston and

Los Angeles Clubhouse research site. Researchers and youth will cooperatively explore each

prototype and discuss possible changes to help facilitate use of the tool (Druin, Bederson,

Boltman, Miura, Knotts-Callahan, & Platt, 1998).

• Project Storyboarding: We will discuss project ideas with Clubhouse members using a low-

tech prototyping approach (Scaiffe & Rogers, 1998). We will use our scenarios as

conversation starters to explore possible digital-arts project activities.

Case Studies: We will use case studies, conducted in the ethnographic tradition, for two

purposes: to study engagement and learning by individual Clubhouse youth, and to study

community knowledge-building within and across Clubhouse sites. Our study of how individual

youth develop fluency with Scratch will be based on a framework and interview protocol

developed by the Center for Children and Technology (CCT, 2002). The Clubhouse-wide studies

will construct portraits of the use of Scratch and related technologies over time, based on the

work of Oakes & Margolis (2000). The portraits will allow us to compare and contrast the use of

Scratch at different Clubhouse research sites.

 11

• Baseline data. At the beginning of the study, we gather baseline data (through field

observations and interviews) on youth interests, relationship and experience with technology,

patterns of technology use, and level of technological fluency prior to introduction of Scratch.

• Field observations: Researchers from the project team will visit each Clubhouse research site

in Boston and Los Angeles on a weekly basis, using observation forms to record what

activities and tools are in use, types of Scratch activities, and differences in girls and boys’

choice of activities.

• Participant observations will include interactions with members and report more closely on

the kind of activities and on-going conversations at the clubhouse. We will pay particular

attention to ways in which Clubhouse members deal with learning new Scratch features,

debugging situations, and providing explanations and help to others. These observations will

be documented in field notes.

• Participant interviews: We will talk with Clubhouse youth about their Scratch projects to

better understand what aspects of Scratch activities they find most engaging, and to assess

their evolving understanding of computational concepts and development of technological

fluency, based on the CCT protocol. We will also interview Clubhouse coordinators to gain a

fuller picture of youth engagement and learning, and how Scratch fits into other events and

activities in the Clubhouse.

Analysis of Network Activity and Digital Artifacts. We will study the artifacts created by

Clubhouse youth, sharing of artifacts among youth, and online discussion about Scratch projects.

• Individual Development: We will study individual member’s portfolios, from initial starter

projects to more complex digital-arts projects, to analyze the evolution in the complexity and

expressiveness of their projects, and the development of their programming and design skills.

• Collective Knowledge Building. We will study the evolving database of projects across the

Clubhouse Network, to analyze how new techniques and project ideas spread within

individual Clubhouses and throughout the extended Clubhouse community. We will also

study how the introduction of new devices (including handhelds and mobile phones)

influences the spread of projects and ideas.

• Evaluation by Peers: In addition to “expert” analysis by project researchers, the team will also

seek young people’s evaluation of programs created within the community. We will study

which kind of digital-arts projects are held in high esteem within the Clubhouse community

and ask members for their rationales.

8.3 Timeline

Initially, we will test our new technologies primarily at Clubhouses in low-income

neighborhoods in Boston and Los Angeles, so that our research teams at MIT and UCLA can

iteratively redesign our technologies and activities in collaboration with Clubhouse staff,

mentors, and members. In Year 3, we will expand to Clubhouses throughout the network, and in

Year 4 to other after-school centers, to examine if and how programming cultures form with less

direct support from university researchers. We have selected sites with varied characteristics (age

of Clubhouse, level of technology fluency, type of community organization) to gain an

understanding of how Scratch might work in a variety of settings.

 12

Year One: Initial Scratch Development and Participatory Design Studies

- Collect baseline data of activities at Clubhouse research sites

- Initial development of Scratch for desktops and laptops

- Development of hardware to connect sensors and output devices

- Participatory design studies at Clubhouse research sites (2 Boston, 1 L.A.)

- Iterative development of Scratch based on participatory design studies

- Initial testing of Scratch network and database infrastructure

Year Two: Field Studies, Iterative Development, and Handheld Implementation

- Field observations (weekly) at 4 Clubhouse sites (2 Boston, 2 L.A.)

- Participant observations and interviews (weekly) at 4 Clubhouse research sites

- Iterative refinement of Scratch based on observations and interviews

- Implementation of Scratch on handheld devices and tablets

Year Three: Initial Dissemination and Digital Artifact Evaluation

- Ongoing field observations at Clubhouse research sites

- Implementation of selected Scratch applications on cell phones

- Ongoing participant observations and interviews at Clubhouse research sites

- Translation of Scratch into multiple languages, with support for world character sets

- Initial workshops at Computer Clubhouse Network annual and regional meetings

- Analysis of online projects and discussions from additional Clubhouse sites

Year Four: Final Research Studies and Broader Dissemination

- Final field observations at Clubhouse research sites

- Make Scratch publicly available for download via the Web

- Workshops at national conferences for Boys & Girls Clubs, CTCNet, ASTC

- Workshops at Clubhouse Network regional meetings and international Teen Summit

- Analysis of online projects and discussions from additional sites

- Research publication and presentations at national conferences

9. Dissemination and Broader Impact

Dissemination of Technology. Our project team has an exceptional track record for getting our

research-based technologies out to the world in large numbers. The LEGO Mindstorms robotic

construction kit, based on Media Lab research, has been used by millions of youth around the

world. Design By Numbers is available free of charge on the Web and is currently in use at more

than 25 higher education institutions worldwide as a core curriculum component in the digital

arts. StarLogo is also available free of charge and is in use in both high-school and university

courses. Similarly, we will make Scratch available free of charge on the Web, and will promote

it to maximize public distribution.

Dissemination of Results of the Research. We plan to share and discuss our research findings

with other researchers in the fields of educational technology, informal science and technology

education, IT and computer science education, and human-computer interface research.

Members of the project team regularly make presentations at leading academic conferences and

 13

industry symposia, including CHI (Computer-Human Interaction), SIGCSE (Technical

Symposium on Computer Science Education), OOPSLA (Object-Oriented Programming

Languages, Systems, and Applications), CSCL (Computer-Supported Collaborative Learning),

ASTC (Association of Science Technology-Centers), ICLS (International Conference of the

Learning Sciences), and AERA (American Educational Research Association). Members of the

project team have a strong record of publishing in leading academic journals, as well as policy

and broader-circulation publications.

Dissemination through Informal Education Networks. We will broaden the impact of the

project by offering workshops through after-school and other informal-education organizations

and networks, focusing specifically on organizations serving economically-disadvantaged

communities. These workshops will focus on modeling engaging and effective approaches to

support the use of Scratch. In Years 3-4 of the project, we will offer hands-on workshops at the

annual conference of the Computer Clubhouse Network, and we will also collaborate with

Clubhouses to offer in-depth workshops directly for young people through regional and Teen

Summit gatherings. In Year 4, we also plan to offer workshops at national conferences for

CTCNet (a national network of more than 1,000 community technology centers), the Boys &

Girls Clubs of America (which serves more than 3.3 million young people, primarily from

disadvantaged circumstances), and the Association of Science-Technology Centers.

10. Key Personnel

The multidisciplinary team for this project includes leaders in the fields of educational-software

design, digital media design, human-computer interaction, and informal learning.

Mitchel Resnick, director of the Lifelong Kindergarten group at the MIT Media Laboratory,

specializes in the development and study of computational tools to help people (particularly

children) learn new things in new ways. Resnick’s research group led the development of the

ideas and technologies underlying the LEGO MindStorms robotics construction kit (and the

associated graphical-programming language). He is co-founder of the Computer Clubhouse

network of after-school learning centers and the NSF-funded PIE museum network. He led the

development StarLogo (the first massively-parallel programming language for nonexperts) and

the NSF-funded Virtual Fishtank museum exhibit, both designed to help people learn about

complex systems. Resnick was awarded an NSF Young Investigator Award in 1993.

Yasmin Kafai, associate professor at the UCLA Graduate School of Education & Information

Studies, has led NSF-funded research projects that studied children as software designers of

interactive games, simulations and archives for learning science and mathematics. She has been

influential in several national policy efforts from briefing the National Research Council for

“Being Fluent with Information Technology” (1999) to serving on the national commission of

the American Association for University Women for “Tech-Savvy: Educating Girls in the

Computer Age” (2000). Kafai received an Early Career Award from the National Science

Foundation in 1996 and a fellowship from the National Academy of Education in 1997.

John Maeda is director of the Aesthetics & Computation research group at the MIT Media

Laboratory. Maeda is the recipient of the highest design career honor in the United States, the

 14

2001 National Design Award, and Japan’s equivalent honor, the 2001 Mainichi Design Prize.

Maeda’s work has focused on ways to combine his MIT background in computer science with

his later training in Japan in the arts. His award-winning Design By Numbers (DBN) project

leads “mathematically challenged” visual-art students through a series of exercises as a means to

teach the spirit of computer programming. Maeda’s research group is currently developing a

graphics programming system called “Proce55ing.”

John Maloney, a visiting researcher at the MIT Media Lab, was a member of the original

Squeak development team at Apple Computer and Disney Imagineering, and made major

contributions to Squeak’s virtual machine, user interface, and sound, music, and networking

facilities. At Disney, John headed the software team for a prototype handheld device for Disney

theme parks combining a digital camera, map, guidebook, location sensing, and games.

Natalie Rusk co-founded the Computer Clubhouse project and PIE Museum Network. She has

guided the application of new technologies to support informal science learning at The Computer

Museum, Science Museum of Minnesota, and the Exploratorium.

Brian Silverman has led the development of the leading commercial versions of the Logo

programming language. As a consultant to MIT, he has guided the technology development of

Programmable Bricks, StarLogo, and LogoBlocks.

Graduate students: Yvonne de La Pena Ay worked as a software engineer before joining the

UCLA Graduate School of Education & Information Studies as a graduate student. Leo Burd,

before coming to MIT as a graduate student, worked as a software engineer and helped organize

a network of community technology centers in his native Brazil. Nina Weber, now a graduate

student at UCLA, brings to the project her masters degree in design, technology and learning

from Stanford University and an extensive career as a teacher working in bi-lingual inner-city

classrooms.

11. Advisory Board

Our advisory board brings together a multidisciplinary and multicultural group of innovators,

with expertise in the fields of computer science, informal learning, design, and community

development. The board includes:

Amy Bruckman, Associate Professor in the College of Computing at Georgia Tech

Stina Cooke, Project Developer for the Intel Computer Clubhouse Network

Mark Guzdial, Associate Professor in the College of Computing at Georgia Tech

Alan Kay, Senior Fellow at HP Labs and creator of Smalltalk and Squeak

Geetha Narayanan, Director of Srishti School of Art, Design and Technology, Bangalore, India

Elliot Soloway, Professor, Dept. of Electrical Engineering & Computer Science, Univ. Michigan

John Henry Thompson, inventor of MacroMedia Director Lingo scripting language

Shira Womack, Strategic Initiatives and Pipeline Programs, Global Diversity, Intel Corp.

	8.2 Research Approaches. To address these research questions, we will use several approaches for collecting and analyzing data. We have chosen methods that are most appropriate for informal learning settings, where participation is self-directed and v...

