
Extending Scratch: New Pathways into Programming

Sayamindu Dasgupta, Shane M. Clements, Abdulrahman Y. idlbi, Chris Willis-Ford, and Mitchel Resnick
Media Lab, Massachusetts Institute of Technology

Cambridge, MA. USA
Email: {sayamindu,shanemc,adlogi,cwillisf,mres}@media.mit.edu

Abstract—We present the Scratch extension system, a toolkit
that enables anyone to extend the vocabulary of the visual
Scratch programming language through custom programming
blocks written in JavaScript. The extension system is designed
to (i) enable innovating on the Scratch programming language
itself, in addition to innovating with it through projects, and (ii)
enable the creation of new interest-driven pathways into Scratch
programming. In this paper, we describe some of the prior work
done in this space, our design and implementation, open questions
and challenges, and some preliminary results.

keywords: Scratch, extensions, block languages

I. INTRODUCTION

Scratch [1], [2] is a visual, block based programming
language for children. In Scratch, visual blocks are snapped
together to program “sprites”, which are graphical objects
on a Scratch stage (Figure 1). With Scratch, millions of
children all over the world have created a wide range of
projects, from games to interactive stories, from computational
art to science simulations. Scratch has an associated online
community where Scratch can users share and remix projects.

Fig. 1. Scratch code to move a sprite back and forth

Since the launch of the Scratch programming environment
and online community in 2007, the core language has remained
largely unchanged in terms of grammar, as well as vocabulary.
However, as the official Scratch language remained unchanged,
enthusiasts and users from all around the world have created
unofficial modifications (“mods”) of Scratch, using the freely
available source code and other means. These mods extend
the grammar of the language, often adding more advanced
computational concepts (e.g. advanced data structures) but
more frequently, they added new capabilities to the language
through the addition of new blocks (blocks in Scratch are the
visual equivalent of language primitives). The functionality
offered by these blocks range from the ability to communicate
with hardware devices (e.g. Microsoft Kinect), to the ability
to fetch and parse web pages.

While a lot of focus has been on how young people build a
diverse range of projects with Scratch [3]–[6], the phenomenon
of modding clearly shows another level of creativity and

innovation within the Scratch ecosystem. In this paper, we
present the Scratch extension system, which we have designed
and implemented to fulfill the two closely related goals of:

• enabling young Scratch programmers (and others) to
innovate on the language itself, by extending it.

• enabling learners with a diverse set of interests to
engage in programming with Scratch by opening up a
number of previously unavailable pathways, through
new domain-specific programming primitives.

We start by describing related work in this space and then
discuss the design of the Scratch extension system. By an
explicit design choice, on one hand, Scratch extensions allow
for a subset of the functionality possible with Scratch mods; on
the other hand, this constraint makes extensions more coherent
with the rest of the Scratch language, making it easier to
incorporate them into the official version of Scratch. In the
design & implementation section, we discuss this trade-off,
along with some challenges and open questions that emerge
around it. We conclude by sharing some preliminary results
from a limited (invite-only) developer program for Scratch
extensions and charting our future directions.

II. PRIOR AND RELATED WORK

The source code of the first generation of Scratch (1.x) has
been freely available, and this has allowed advanced Scratch
users and enthusiasts to modify and extend the programming
language in different ways. These modification and extensions
to Scratch would typically introduce new functionality to the
language, and in some cases, extend its grammar.

The team behind Scratch would also create mods to ex-
periment with new ideas without affecting normal users. For
instance, NetScratch [7] was an early modification that had
new blocks to receive data from the Internet. In another mod,
Scratch was extended to support image-processing primitives,
so that children programming with Scratch could create their
own image filters [8]. Some of these experiments were incor-
porated into the official version of Scratch – one such example
being the mod that made it possible to use the LEGO WeDo
kit with Scratch.

Outside of efforts by the Scratch development team, Chirp
was a Scratch mod that focused on adding new features
like exporting and importing code as XML, and compiling
projects into executable files (to make standalone applications).
Another notable mod, Build Your Own Blocks (later called
Snap!) [9] extended the language by allowing users to define
new blocks (procedures and functions). Additionally, multiple
BYOB projects could interact by sharing variables and broad-
casts.



TABLE I. CATEGORIES OF SCRATCH MODS [10]

Hardware Support: Enchanting
(LEGO Mindstorms), S4A (Arduino)
and Kinect2Scratch (Microsoft
Kinect)

Web Data: NetScratch, Snap! and In-
sanity.

Grammar extensions: Snap! Operators: Insanity and Snap!

BYOB also extended the grammar of Scratch by adding
new computational concepts like programmatic cloning to let
sprites duplicate themselves at program runtime, and new data
structures like first-class lists. The design team behind Scratch
considered adding some of these features to Scratch but they
were always cautious in establishing a balance between making
Scratch more powerful by adding new functionality and still
having a language that is easy to get started with1.

Mods not only extended Scratch within the realm of the
virtual world, but also they enabled Scratch to connect to
hardware devices. S4A is a mod that provides new blocks to
handle sensors and actuators connected to an Arduino board.
Enchanting is another mod that is used to program LEGO
Mindstorms NXT robots. In contrast to most other mods,
Enchanting removed some of the Scratch blocks, thereby
making itself more specialized, and incompatible with projects
created with the official version of Scratch. Table I shows the
different categories of Scratch mods.

Apart from direct source code modification, another
method to extend Scratch was introduced with version 1.3.1
through what was called the remote sensors protocol. When the
remote sensor connection feature is enabled, custom Scratch
blocks can be created with programs that talk to Scratch
through a network protocol. Two notable examples of Scratch
extensions made using this protocol are JoyTail, which adds
joystick support to Scratch, and Kinect2Scratch, which allows
creating Scratch programs that communicate with Microsoft
Kinect.

It should be noted here that regardless of the method that
was used to extend Scratch, projects created with a mod could
not be shared on Scratch online community website. Links to
get new mods could only be shared on the forums or Scratch
Wiki, but they were not endorsed or curated by the Scratch
team.

Outside of Scratch, the equivalent of extensions is com-
mon in programming languages. Notable examples include
Perl (through CPAN [11]), R (through CRAN [12]), NodeJS
(through NPM [13]), etc. Additionally, end-user tools, such as
the Atom text editor [14] or web-browsers such as Chrome and

1Some of these features (cloning, procedures) were added to Scratch 2.0 in
a modified form.

Firefox have often relied on extensions [15], [16] to provide
additional functionality.

III. DESIGN & IMPLEMENTATION

Based on observations from modding practices in the
wider Scratch community, along with results from experiments
within the Scratch team (e.g. workshops with the remote
sensor protocol), the Scratch extension system was developed
in order to allow easier additions to the functionality of the core
programming language. Also, the emergence of Open Data and
web-APIs served as an additional motivating factor behind the
design and implementation of the extension system [17]. The
affordances of the extension system allow for the augmentation
of the vocabulary rather than the grammar, and hence, certain
features that have been seen in mods (e.g. new control struc-
tures) are not implementable through the extensions system.
This section covers the design and the trade-offs made, along
with brief references to the implementation.

The Scratch extension system is designed to allow experi-
enced Scratch users (as well as external developers) to expand
the Scratch language into new domains, e.g. interaction with
hardware devices such as the Arduino (Figure 2) or the Kinect,
or access to online web-services, such as Google spreadsheets,
or the US National Oceanic and Atmospheric Administration
(NOAA) weather service.

ext.speak = function(text) {
msg = new SpeechSynthesisUtterance(text);
window.speechSynthesis.speak(msg);

};

// Block definition
var descriptor = {
blocks: [

[’’, ’speak %s’, ’speak’, "Hello!"],
]

};

Fig. 3. Simplified text-to-speech extension implementing a “speak” block.
Each extension block is defined in JavaScript as a list with the block-type, a
specification, associated method-name, and default parameter (if any).

At the core of this system are individual Scratch extensions
– small sets of blocks that enable new functionality in Scratch.
An extension adds a set of new blocks and expands the
Scratch vocabulary, while adhering to the language grammar.
These extensions themselves are implemented in JavaScript;
effectively, each extension block is mapped to a JavaScript
method that gets invoked through a “bridge” layer imple-
mented within Scratch. A simplified example of a “text-to-
speech” extension that uses the HTML5 Speech API [18] is
shown in Figure 3. In this example, there is a single block
called speak _ which is mapped to the JavaScript method
called ext.speak that calls the HTML5 API to convert text
into speech. We chose JavaScript as the programming language
for implementing extensions not only because Scratch runs
on the browser (and thus has easy access to Javascript), but
also due to JavaScript’s increasingly widespread use, and wide
range of powerful features2. Based on observations from the
modding community, we expected extensions to be developed
by some of the more advanced users using Scratch, as well

2Access to hardware devices from JavaScript was made possible by a
custom browser plugin



Fig. 2. A Scratch project using the blocks from the Arduino extension, reading values from a pressure sensor

as developers of hardware kits who want to see their devices
supported in the Scratch language.

It is worth re-iterating here that extensions are limited
in scope by what they are allowed to do. They are not
allowed to make alterations or additions to the grammar of the
Scratch language, neither are they allowed to affect the look
or behavior of sprites, or the stage (background). This was by
design, as we felt that any other choice would give extension
authors too much control over the Scratch user-experience.
However, even with this somewhat limited extension system,
we see a few challenges in ensuring that the extensions are
coherent with the rest of the language. Some questions around
ensuring coherence include:

• Maintaining the right level of abstraction: In their
2005 paper, Resnick and Silverman [19] highlight the
importance of choosing “block boxes” carefully. They
give an example where a block to control the color of
a LED turned out to be too complicated when it had
three parameters (one for the red-color component,
one for green, and another for blue). They ended up
using a single, numerical value to represent color,
as their goal in that specific context was to enable
children to express themselves with color, and not to
impart an understanding of the red-green-blue com-
position of light. We expect that this type of design
question will arise for most extensions, and it will be
important to help extension developers understand and
apply the “choose black boxes carefully” principle for
their specific design goals appropriately.

• Maintaining consistency with conventions used in
other blocks: Scratch has some carefully chosen con-
ventions. For example, for blocks that control motor
movement, Scratch uses the direction indicators ‘this
way’ and ‘that way’, instead of clockwise and counter-
clockwise. Another commonly used convention is that
numerical properties and variables are changeable in
two different ways, through a direct “set” block, as
well as by an incremental “change by” block. A
specific use of this convention can be seen in how
the coordinates of a sprite on the Scratch stage can be
set – there is a set x to _ block, and a change
x by _ block. Maintaining a list of commonly used

conventions in Scratch can help extension developers
be consistent with the rest of the Scratch environment,
as well as with other extensions.

• Maintaining a preference for low floor: The Scratch
design team has preferred to keep a low barrier to
entry (low floor) [1], especially when given a choice
between a low floor and sophisticated possibilities
(high ceiling). There has been also a preference
towards minimalism in Scratch – e.g. blocks are
designed carefully to not to have a large number
of parameters. Ideally extensions should also follow
these preferences.

To address these challenges, we have included some guide-
lines and best practices in the technical documentation for the
extension authors. As the number of extensions increase, we
continue to iterate on these guidelines – our general goal is to
enumerate a small set of rules to follow in order to avoid “rais-
ing the floor”. Things to avoid in this category would include
overly complex blocks with multiple inputs, highly specific or
specialized blocks, blocks that have hard-to-understand labels,
blocks that can disrupt or interrupt the Scratch application, etc.
Additionally, we are working towards guidelines that would
include a list of commonly used conventions in Scratch, in
order to ensure consistency in the overall Scratch ecosystem.

IV. PRELIMINARY RESULTS

In August 2014, we started an invite-only Scratch extension
developers program, where we invited Scratch users and devel-
opers who had already shown an interest in this space through
various means (e.g. by creating Scratch mods previously,
participating in extension workshops that we conducted, etc.).
Additionally, as the news spread by word-of-mouth, a few
Scratch users and external developers applied to the program
as well, and were accepted. Once a member of the extension
developer program, a user on the Scratch website got access
to the ability to load experimental extensions into the Scratch
programming environment (editor) and create projects with
extension blocks. Projects containing extension blocks were
barred from being publicly shared on the website, as we
wanted to avoid confusing other users with blocks that are
not a part of the standard Scratch vocabulary, or worked
under special circumstances (e.g. the text-to-speech extension,



TABLE II. SOME OF THE EXTENSIONS DEVELOPED BY PARTICIPANTS IN THE DEVELOPER PROGRAM

Leap Motion extension Gamepad extension Soccer World Cup extension

described earlier, works only in certain browsers). We have
future plans for a curation mechanism where we would be
able to approve and accept certain extensions and make them
a part of the “official” Scratch extension library.

Over the course of 2014 and early 2015, the developer
program had 70 members, 28 of whom created at least
one extension. The total number of extensions created and
used within the system was slightly more than 100 (this is
approximate, as at least some of these are different versions
of a single extension). Among these 28 members, only 6 self-
report their age as being between 5 and 18, so in this sample,
the majority of extension developers were adults. However, it
would be premature to read much from this data as the program
was restricted, and also not advertised widely. The extensions
that emerged from this developer program fall into three broad
categories:

• Hardware extensions: These support connecting
Scratch with a wide range of hardware devices, such as
the Arduino, LeapMotion, littleBits, etc. This category
form the majority of the extensions created within the
developer program.

• Web-API extensions: These extensions utilize different
types of web-APIs – e.g. an extension provides a block
to translate a string in a given language to another
using an online translation API; another extension
provides blocks to return the results of matches in the
2014 Soccer World Cup.

• Pure JavaScript/HTML5 extensions: These extensions
take advantage of functionality built into JavaScript
and HTML5 APIs, in a way similar to the text-
to-speech one described earlier (which was created
by us). Examples include extensions that add to the
existing list of math blocks in Scratch (e.g. a block to
calculate factorials); another extension in this category
adds blocks to process strings (e.g. turn a string into
uppercase, reverse a string, etc.).

Table II show some of the extension blocks that were
created by users and developers outside of the Scratch team.

V. CONCLUSIONS & FUTURE WORK

We presented the design of the Scratch extension sys-
tem, along with a brief overview of its implementation. We
described some of the questions that emerged out of the
design process – especially questions around maintaining the
coherence, ease-of-use, and understandability of Scratch when

a large number of extensions become accessible to all. These
questions are important to consider in the context of any lan-
guage that is specifically designed for first-time programmers.

Gauging from the wide variety of extensions that has been
created within the limited developer program, the Scratch
extension system seems to be on a path to meet the two design
goals of (i) enabling members of the Scratch community to
extend the language itself, and (ii) introducing new pathways
into programming with Scratch. Hardware extensions seem to
be more popular than other types of extensions, and a majority
of extension-developers seem to be adult Scratch enthusiasts,
but as we open up the extension system to more users and
developers, this imbalance may become less pronounced.

In terms of future work, we are moving away from the
invite-only developer program model to a system where anyone
can develop and try out extensions. We hope that this new
system (separate from the Scratch community website) will
encourage more people to develop, as well as use extensions.
Another next step for us is to come up with a curation criteria
and process to start including extensions within the “official”
Scratch extension library. The curation criteria will be driven
by the questions raised in the design section of this paper,
and our hope is to achieve the best possible balance between
a diverse-range of possible activities powered by extensions,
and the low barrier to entry that has always been at the core
of Scratch.

ACKNOWLEDGMENT

We would like to thank members of the Lifelong Kinder-
garten group at the MIT Media Lab, especially John Maloney,
Natalie Rusk, Ray Schamp, Kasia Chmielinski, and Amos
Blanton for their support, guidance and suggestions. Addi-
tionally, we would like to thank Brian Silverman and Paula
Bonta of the Playful Invention Company for their feedback
and thoughtful suggestions. This work stands on, and depends
on efforts of the community of Scratch modders, extension
developers (especially Kreg Hanning and Connor Hudson), as
well as the Scratch community itself, and we would like to
express our sincere gratitude towards them as well. Part of this
paper (especially sections on hardware extensions) draws from
co-author Abdulrahman Y. idlbi’s masters thesis [10]. Financial
support for this project has come from National Science
Foundation (grant numbers 1002713, 1027848, and 1417952).
Any opinions, findings, and conclusions, or recommendations
expressed in this document are those of the authors and
do not necessarily reflect the views of the National Science
Foundation.



REFERENCES

[1] M. Resnick, B. Silverman, Y. Kafai, J. Maloney, A. Monroy-
Hernández, N. Rusk, E. Eastmond, K. Brennan, A. Millner,
E. Rosenbaum, and J. Silver, “Scratch: Programming for All,”
Communications of the ACM, vol. 52, p. 60, Nov. 2009. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1592761.1592779

[2] A. Monroy-Hernández, “ScratchR: sharing user-generated pro-
grammable media,” in Proceedings of the 6th international
conference on Interaction design and children, ser. IDC ’07.
New York, NY, USA: ACM, 2007, pp. 167–168. [Online]. Available:
http://doi.acm.org/10.1145/1297277.1297315

[3] K. Brennan, A. Valverde, J. Prempeh, R. Roque, M. Chung,
K. Brennan, A. Valverde, J. Prempeh, R. Roque, and M. Chung, “More
than code: The significance of social interactions in young people’s
development as interactive media creators,” vol. 2011, Jun. 2011, pp.
2147–2156. [Online]. Available: http://www.editlib.org/p/38158/

[4] K. Brennan and M. Resnick, “Imagining, Creating, Playing, Sharing,
Reflecting: How Online Community Supports Young People as Design-
ers of Interactive Media,” in Emerging Technologies for the Classroom,
ser. Explorations in the Learning Sciences, Instructional Systems and
Performance Technologies, C. Mouza and N. Lavigne, Eds. Springer
New York, Jan. 2013, pp. 253–268.

[5] J. V. Nickerson and A. Monroy-Hernández, “Appropriation and Cre-
ativity: User-Initiated Contests in Scratch,” in 2011 44th Hawaii Inter-
national Conference on System Sciences (HICSS). IEEE, Jan. 2011,
pp. 1–10.

[6] B. M. Hill and A. Monroy-Hernández, “The Remixing Dilemma The
Trade-Off Between Generativity and Originality,” American Behavioral
Scientist, vol. 57, no. 5, pp. 643–663, May 2013. [Online]. Available:
http://abs.sagepub.com/content/57/5/643

[7] T. Stern, “NetScratch: a networked programming environment for
children,” Master’s thesis, Massachusetts Institute of Technology, 2007.

[8] E. Eastmond, “New tools to enable children to manipulate images

through computer programming,” Master’s thesis, Massachusetts Insti-
tute of Technology, 2006.

[9] B. Harvey and J. Mönig, “Bringing “No ceiling” to Scratch: can
one language serve kids and computer scientists,” Proceedings of
Constructionism 2010, 2010.

[10] A. Y. Idlbi, “Personalized extensions : democratizing the
programming of virtual-physical interactions,” Master’s thesis,
Massachusetts Institute of Technology, 2014. [Online]. Available:
http://dspace.mit.edu/handle/1721.1/95605

[11] “The Comprehensive Perl Archive Network.” [Online]. Available:
http://www.cpan.org/

[12] “The Comprehensive R Archive Network.” [Online]. Available:
http://cran.r-project.org/

[13] “NPM.” [Online]. Available: https://www.npmjs.com/
[14] “Atom Text Editor.” [Online]. Available: https://atom.io/
[15] “Chrome Web Store.” [Online]. Available:

https://chrome.google.com/webstore/category/extensions
[16] “Add-ons for Firefox.” [Online]. Available:

https://addons.mozilla.org/en-US/firefox/
[17] S. Dasgupta and M. Resnick, “Engaging Novices in Programming,

Experimenting, and Learning with Data,” ACM Inroads,
vol. 5, no. 4, pp. 72–75, Dec. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2684721.2684737

[18] Glen Shires and Hans Wennborg, “Web Speech API Specification,”
Oct. 2012. [Online]. Available: https://dvcs.w3.org/hg/speech-api/raw-
file/tip/speechapi.html

[19] M. Resnick and B. Silverman, “Some reflections on designing
construction kits for kids,” in Proceedings of the 2005 conference
on Interaction design and children, ser. IDC ’05. New York,
NY, USA: ACM, 2005, pp. 117–122. [Online]. Available:
http://doi.acm.org/10.1145/1109540.1109556


