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Project Description 
 

Vision  
 
The last half-century of technological acceleration has yielded a massive incursion of digital 
technology into the learning environment, making dramatic differences, and promising even greater 
differences, to the practice of learning. Computers have served as tools to aid in learning at all levels 
from simple classroom activities, to the way theorists think about thinking. The field of artificial 
intelligence, with emphasis on ideas such as knowledge representation, modeling of logical processes, 
and other kinds of important cognitive activities, has prompted thinking about parallel concepts in 
human learning, and facilitated the development of theories where thinking and learning are viewed as 
information processing. Both human and machine learning research have benefited from this exchange 
of ideas surrounding cognition and computation. 
 
In the last decade, a variety of findings in neuroscience, psychology, and cognitive science have 
supported a different view of cognition: one where affect is complexly intertwined with thinking, and 
performs important functions with respect to guiding rational behavior, memory retrieval, decision-
making, creativity, and more. While it has always been understood that too much emotion is bad for 
rational thinking, recent findings suggest that so too is too little emotion: when basic mechanisms of 
emotion are missing in the brain, then intelligent functioning is hindered. These findings point to new 
advances in understanding the human brain not as a purely cognitive information processing system, 
but as a system in which affective functions and cognitive ones are inextricably integrated with one 
another 
 
Most teachers and theorists know that affect plays a crucial role, recognizing it under poorly 
understood headings like motivation, emotion, interest, and attention. However, scientific 
understanding of affect in learning, and tools that transport this into practice, are still in their infancy. 
Our vision is to fundamentally advance the understanding of affect in learning through development 
and use of technology. Our goal is to redress the imbalance between affect and cognition, and between 
theory and practice, to bring balance to the science of learning and to its technologies. 
 
We plan to carry out this vision by (1) building tools and technologies that elicit, sense, communicate, 
measure, and respond appropriately to affective factors; (2) building new models that incorporate 
affect, as a foundation for both new approaches to education and more effective machine learning; and 
(3) building tools and environments that foster new levels of both creative expression and conceptual 
understanding by more effectively engaging people's senses and bodies and leveraging their interests 
and passions. Additionally, and interwoven with these technology construction efforts, we plan to 
develop and refine theories and terminology related to affect in learning. 
 
MIT is ideally situated to host an NSF Science of Learning Center. MIT has a long tradition of 
emphasizing itself not as a research institute or a teaching institute, but as a learning institute, where 
undergraduates, graduates, faculty, and others collaborate in an ongoing process of discovery. MIT 
pioneered an undergraduate research opportunities program, which has been adopted at many other 
institutions. Recently, the MIT faculty announced the publication of all MIT course materials, free and 
open to the world (http://ocw.mit.edu). This OpenCourseWare initiative, which will have the full 
catalog online by 2007, has already had a significant impact internationally and domestically. 
Following in this spirit, we propose to develop an NSF Science of Learning Center at MIT that does 
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not limit partnerships to just a few selected institutions, but rather opens up what we do to the world, 
through a variety of new initiatives.  
 
To some, it might seem unusual for a technology leader like the MIT Media Lab to focus on “affect,” 
since many people associate technology (and, particularly, information technology) with cognitivist 
and rationalist perspectives; nonetheless, the Media Lab, which would form the hub of the proposed 
Center for Affective Learning, has always been in the forefront of taking a fuller approach to 
technology. Since its inception, it has gathered faculty from multiple disciplines such as psychology, 
mathematics, cognitive science, physics, computer science, engineering, and more into an open 
intellectual environment that emphasizes both human and machine, both arts and technology, and both 
theory and practice. The Media Lab currently has a unique combination of researchers leading the 
world in efforts that develop technologies that sense and respond to affect, learning systems and 
theories that involve modeling attention, motivation, and other affective phenomena, and tools and 
environments for facilitating new kinds of learning and expression. Our researchers are united in their 
interest in the roles of emotion, motivation, attention, caring, and other affective phenomena in 
learning, and are eager to collaborate on projects advancing the state of the art in both human and 
machine learning. The development of an NSF Center for Affective Learning would allow these 
efforts to advance in bold new ways, to take significantly greater scope, and to fundamentally impact 
the science of learning. 
 

Challenges in Affective Learning 
 
Scientific findings over the past decade have started to lay the foundation for a better understanding of 
the role of affect in learning. Research has demonstrated, for example, that a slight positive mood 
doesn’t just make you feel a little better but also induces a different kind of thinking, characterized by 
a tendency toward greater creativity and flexibility in problem solving, as well as more efficiency and 
thoroughness in decision making. These effects have been found among many groups of different ages 
and professions (Isen, 2000). Not only positive mood, but also affective states such as fear, anger, 
sadness, and joy show up in the brain as different patterns of blood flow, providing one possible 
explanation for how affect influences brain activity (e.g., Lane et al., 1997; Damasio et al., 2000). In 
the case of positive affect, a theory of two separate but interacting dopamine systems has been 
proposed for mediating some of the effects positive affect has on cognition (Ashby et al., 1999). There 
is also some indication that positive affect increases intrinsic motivation (Estrada et al., 1994). 
Although the work in this area is only beginning to be launched, it already suggests that a positive 
mood is not best for all kinds of thinking, but that certain affective states facilitate some kinds of 
thinking better than others. Learning research has long recognized the importance of facilitating 
different ways of thinking—with beliefs such as “you don’t understand something unless you 
understand it in many ways.” In his forthcoming book, The Emotion Machine, Marvin Minsky argues, 
“…when we change what we call our ‘emotional states,’ we’re switching between different ways to 
think.” (Minsky, 2003). 
 
Among educators and educational researchers, there is a growing recognition that interest and active 
participation are important factors in the learning process (e.g., Bransford et al., 1999). But acceptance 
of these ideas is based largely on intuition and generalized references to constructivist theorists 
(Piaget, 1960; Vygotsky, 1962; Vygotsky, 1978). There is need for new types of studies on the role of 
affect in learning. We believe that new technologies can play a particularly important role in these 
efforts, helping us to measure, model, study, and support the affective dimension of learning in ways 
that were not previously possible.  
 



Page 3 of 30 

Terminology and Theories 
 
One of the problems with studying affect is defining what it is—illuminating a better definition of 
affect and related terms like emotion, motivation, caring, and so forth. Modern research in this area 
began before the turn of the last century, when Charles Darwin (1872) and William James (1890) 
devoted seminal works to describing emotion, anchoring its description in measurable bodily changes 
and expressions. In the last century many cognitive scientists and psychologists have advanced 
theories and definitions of emotion, motivation, and other affective phenomena (e.g., Tomkins, 
1962a,b; Clynes, 1977; Buck, 1984; Kagan, 1984; Collier, 1985; Frijda, 1986; Ortony et al., 1988; 
Plutchik and Kellerman, 1980-90; Lazarus, 1991; Oatley, 1992, and more). Nearly a hundred 
definitions of emotion had been categorized as of 1981 (Kleinginna and Kleinginna, 1981) when Don 
Norman wrote his now classic essay naming emotion as one of the twelve major challenges for 
cognitive science (Norman, 1981). 
 
Today, the burgeoning literature on affect includes diverse communities such as psychology, cognitive 
science, neuroscience, engineering, computer science, philosophy, and medicine, and this has 
contributed to a similarly diverse understanding of numerous basic terms related to affect—such as 
“emotion,” “motivation,” “attention,” “reward,” and more. One of the challenges we will address in 
the Center for Affective Learning is to bring together top theorists and practitioners from different 
fields in order to refine the language used with respect to affect and learning. The emphasis will be on 
combining ideas from people who analyze affective phenomena with ideas from people who try to 
elicit or synthesize them—to try to bring these two ends together, and to insure that the language is 
rooted in conceptual theories, human and animal observation, and in practical understanding of what 
elements “make a learning system work.” These gatherings will also have as an aim, the introducing of 
researchers who approach the same problems from different vantage points, in order to facilitate their 
collaboration and break down some of the disciplinary boundaries that have held back progress. We 
thus see these forums not only as producing a more workable language for researchers, but also as 
contributing to the gargantuan task of beginning to unify different levels of thinking about these 
phenomena—from the high levels of human behavior, to the lower levels of synaptic chemistry. As 
part of the plans for the “hub” nature of the Center, these conversations will be web-cast, archived, and 
made searchable, and in some cases published in additional forums. 
 
Although there are dozens of books on various affective phenomena, there is a lack of theories that 
engage the topic of affect in learning. Some of the classic works on affect emphasize cognitive and 
information processing aspects in a way that can be encoded into machine-based rules, and studied in 
a learning interaction. The most widely adopted of these is the OCC model of emotion (Ortony et al., 
1988); however, this model does not include many of the affective phenomena observed in natural 
learning situations (such as interest, boredom, or surprise). Csikszentmihályi (1991) has emphasized 
the tendency for a pleasurable state of “flow” to accompany problem solving that is neither too easy 
nor too challenging, and there have been other scattered attempts to address emotions involved in 
learning (e.g., Lepper and Chabay, 1988; Mandler, 1984; Kort et al., 2001a,b). However, there is still 
very little understanding as to which emotions are most important in learning, and how they influence 
learning. To date there is no comprehensive, empirically validated, theory of emotion that addresses 
learning. With respect to motivation in learning, there has been much more work and much more 
progress, illuminating the role of intrinsic vs. extrinsic influences, the influence of how pleasurable 
past learning experiences have been, the feeling of contributing to something that matters and the 
importance of having an audience that cares, among other factors (Vroom, 1964; Keller, 1983; Keller, 
1987; Ames, 1992; Vail, 1994). Related concepts such as self-efficacy also play a critical role 
(Bandura, 1977a,b; Pajares 1996; Schunk, 1989; Zimmerman, 2000), and student’s beliefs about their 
efficacy, in turn, influence them emotionally (Bandura, 1997). Several researchers have integrated 
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both affective and cognitive components of goal directed behavior into motivation theories (e.g., 
Maehr, 1984; Dweck, 1986; Ames and Archer, 1988; Dweck and Leggett, 1988; Elliott and Dweck, 
1988). These and many other efforts have provided vast insight into human affect; however, in very 
few cases are the theories at a level suitable for implementation in an interactive machine model. 
 
The need for more precise theory is being driven today by growing efforts to build technologies that 
interact with learners—motivating, engaging, and assisting them in challenging new ways. In many of 
these efforts, the systems need programmed representations and strategies that will perform in real-
time interaction with a human learner. The designers of these systems turn to human-human 
interaction, and its literature, as an example to guide their design. Thus, the intelligent tutoring system 
research community examines successful human tutoring as a source of inspiration for what might be 
implemented in machine tutoring systems, and finds, for example, that “expert human tutors… devote 
at least as much time and attention to the achievement of affective and emotional goals in tutoring, as 
they do to the achievement of the sorts of cognitive and informational goal that dominate and 
characterize traditional computer-based tutors” (Lepper and Chabay, 1988). But what do these expert 
teachers ‘see’ and how do they decide upon a course of action? The theories, where they do exist, tend 
to focus on a high-level set of observations and practice, which does not directly translate into the 
level of detail needed to implement these phenomena into machines.  

 
We propose to test and evolve theories of affect in learning. Our approach will extend classical 
armchair observations and thought experiments with the development and use of new technologies 
that help elicit, sense, measure, communicate, and respond to emotions in learning situations. 
Conducting controlled experiments dealing with affect has always been a challenge, and new 
technologies are needed to make this process easier. The sections below outline several directions we 
propose with respect to creating such technologies. Although we treat the technology descriptions 
separately from the theory in this proposal, we emphasize that the technology development both 
derives from and contributes to that of the theory; indeed, we hope by engaging in both 
simultaneously, that one will strengthen the other, bringing both closer to clarity and unity.  
 

Enabling Technologies that Sense and Respond 
 
One of the reasons understanding about affect has lagged behind that of cognition is that affective state 
information is hard to measure. You can easily measure someone’s ability to recall a list of learned 
items, and with somewhat more difficulty, you can test their ability to generalize and apply some 
learned information. However, it is much harder to measure how they feel while doing these things. 
How can various tools of learning, and future robots and environments, sense if a learner is pleased, 
engaged, disengaged, frustrated or ready to quit? And in what ways can these tools enable reflection 
and discovery about affect? We propose to develop sensors and interfaces, together with new signal 
processing, pattern recognition, and reasoning algorithms for assessing and responding to the affect of 
the learner in real-time.  

CHALLENGE: Sensing without interfering 
Affective experience—such as how much pleasure, frustration, or interest you felt—is typically 
measured by questionnaire (e.g., Matsubara and Nagamashi 1996; de Vincente and Pain, 1998; 
Whitelock and Scanlon, 1996). Special instruments have been developed in many cases, such as for 
evaluating the motivational characteristics of an instructor's classroom delivery (e.g., Keller and 
Keller, 1989). Despite the convenience and widespread acceptance of questionnaires, the use of self-
report information is considered unreliable when it comes to emotion: For adults, self-report is colored 
by awareness of internal state, reflections on how such a report will be perceived, ability to articulate 
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what one feels, and more. For children, emotion self-report “is never highly valid, and any report 
before age 11 is unwise,” (Kagan, 2002). On top of these problems, affective mechanisms also include 
mental functions that people are not typically conscious of, such as intuitions. Finally, the process of 
administering a questionnaire can be intrusive to the learning experience, changing the very affect that 
the experience was designed to engender.  
 
A more arduous method of assessing affect is to use external coders to rate a learner’s state; this 
method adds some rigor and reliability, but coding is extremely tedious and subject to its own set of 
errors. For example, a recent set of experiments that had teachers code three levels of interest plus 
boredom for children interacting with an educational computer game (Mota, 2002), found agreement 
among coders to have Cohen’s Kappa values averaging 0.79, which is considered “excellent” for that 
statistic (Bakeman and Gottman 1986). Working with human coders also helps refine the description 
of observable behaviors associated with each affective state, which is a useful advance as well. 
However, the use of human coders is almost impossible to scale up to long-term continuous 
observation of learners. Automating the process would not only free up human coders for more 
interesting tasks, but would also enable you to assess affect while a learner is learning—which, in turn, 
enables the technology to respond while there’s a chance of affecting the learning outcome. For 
example, a computer that detects the learner making a mistake while appearing curious and engaged 
should probably leave the learner alone since mistakes can be important for facilitating learning and 
exploration; however, if the learner is frowning, fidgeting, and looking around while making the same 
mistake, then the computer might use this affective feedback to encourage a different strategy.  
 
A number of researchers have raised the concern that you can’t begin to measure or respond to affect 
until after you articulate a clear theory of affect. While theory and clearer terminology are important 
goals of this Center, there are examples from natural systems that suggest we can still forge ahead, 
despite the state of the theory. For example, dogs presumably have no theory of what affect is and yet 
they appear to sense and respond to their owner’s moods, responses that in many cases bring about 
beneficial consequences. One can make a related argument for infants, who show an ability to respond 
to how something is said, long before they understand what is said. Thus, we believe that even without 
a full-fledged theory of affect, machines can be given some capabilities to recognize and respond to 
affect. In fact, it is our experience that efforts to build a phenomenon that is poorly understood will aid 
in helping improve the understanding of that very phenomenon, so that engaging simultaneously in 
both the practice and the theory helps both to make progress. 
 
Emotion recognition is a component of emotional intelligence (Salovey and Mayer, 1990; Goleman, 
1995), and skilled humans can assess emotional signals, in themselves and in others, with varying 
degrees of accuracy. Recent developments in Affective Computing aim to also give computers skills 
of emotional intelligence, including the ability to recognize emotion as well as a person might (Picard, 
1997). The basic approach is to observe a person’s patterns of behavior via sensors such as cameras, 
microphones, or pressure sensors applied to objects the learner is in contact with (mouse, chair, 
keyboard, steering wheel, toy), and use computers to associate these patterns with probable affective 
state information. Thus, a camera and computer, equipped with pattern recognition software, might be 
used to recognize facial muscle movements associated with a smile, and the smile-detection might 
then be used to help reason about the probability the person is actually happy. (Expressions do not 
always imply the existence of underlying feelings.) The job of the computer is to assess a constellation 
of such patterns and relate them to the user’s affective state. The latter is what is termed “emotion 
recognition” even though it doesn’t really see what you are feeling, but only a pattern of measurable 
external changes associated with such.  
 
Most prior work on emotion expression recognition from speech, image, and video has focused on 
deliberately expressed emotions, not on those that occur in natural situations such as classroom 
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learning. The results make it hard to predict rates we can expect for recognizing emotions during 
learning. In general, people can recognize one of about six different emotional states from speech with 
about 60% accuracy (Scherer, 1981). Computer algorithms match this accuracy under more restrictive 
assumptions, such as when the sentence content is already known. However, automated speech 
recognition that works at about 90% accuracy on neutrally spoken speech tends to drop to 50–60% 
accuracy on emotional speech (Hansen, 1999). Improved handling of emotion in speech is important 
for improving recognition of what was said, as well as how it was said. Facial expression recognition 
is easier for people, and the rates computers obtain are higher: from 80–98% accuracy when 
recognizing 5–7 classes of emotional expressions on groups of 8–32 people (Yacoob and Davis, 1996; 
Essa, 1997). More recent research has focused not so much on recognizing a few categories of 
“emotional expressions” but on recognizing specific facial actions—the fundamental muscle 
movements that make up Paul Ekman’s Facial Action Coding System, which can be combined to 
describe all facial expressions (Ekman, 1977). Recognizers have already been built for a handful of the 
facial actions (e.g., Cohn et al., 1999; Bartlett et al., 1999; Donato et al., 1999; Tian et al., 2001; 
Kapoor et al., 2003; Bartlett et al., 2003) and the automated recognizers have been shown to perform 
comparably to humans trained in recognizing facial actions (Cohn et al., 1999). These facial actions 
are essentially facial phonemes, which can be assembled to form facial expressions. Combining 
multiple modalities, namely audio and video, for emotion recognition can give improved results 
(DeSilva et al., 1997; Huang et al., 1998; Chen et al., 1998).  
 
Although the progress in facial, vocal, and combined facial/vocal expression recognition is promising, 
the numerical results given above are on pre-segmented data of a small set of sometimes exaggerated 
expressions, or on a small subset of hand-marked singly-occurring facial actions. The state of the art in 
affect recognition is similar to that of speech recognition several decades ago when the computer could 
classify the carefully articulated digits, “0, 1, 2, ..., 9,” spoken with pauses in between, but could not 
accurately detect these digits in the many ways they are spoken in larger continuous conversations. 
Moreover, we are interested in computer recognition of truly experienced emotions in learning 
situations, as opposed to emotions that have been expressed by actors or by subjects posed in front of a 
camera or microphone. Thus we cannot expect the computer to perform perfectly at recognition, and 
our methods will have to take into account uncertainty factors.  
 
Recently, a number of projects have tackled the sensing and modeling of emotion in learning and 
educational gaming environments (e.g., Conati, 2002; Zhou and Conati, 2002; Zhou and Conati, 2003; 
Sheldon-Biddle et al., 2003; also see references in the “Prior NSF Awards” section of this proposal.) 
Recent systems developed in the MIT Media Laboratory include “expression glasses,” which 
discriminate upward facial expressions such as those of interest and openness from downward 
expressions such as those of confusion or dissatisfaction (Scheirer et al., 1999); these are also designed 
to hide the wearer’s expression from view of the teacher, allowing the students to communicate 
expressions of confusion to the teacher in real time without fear of what the teacher might think. 
Additionally, the Media Lab has attained from 89–96% classification accuracy of three levels of 
cognitive-emotional stress (Healey and Picard, 2000), although the latter data were from drivers in 
Boston and not from children in learning situations, where stress would also be interesting to study.  
 
Recently, a system was designed at the Media Lab for automated recognition of a child’s interest level 
in natural learning situations, using a combination of information from chair pressure patterns sensed 
using Tekscan pressure arrays (recording how postures moved during learning) (Tekscan, 1997) and 
from upper facial features sensed using an IBM BlueEyes video camera 
(http://www.almaden.ibm.com/cs/blueeyes) (Kapoor et al., 2001). New algorithms were developed 
with the aim of seeing if the machine could match teacher’s ratings of affective labels. Training and 
testing on separate sequences of data from the learning experiences, we developed algorithms that 
achieve an accuracy of 76% on affect category recognition from chair pressure patterns, and 88% on 
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nine “basic” postures that were identified as making up the affective behaviors. Both sets of results are 
conservative, being trained on a small set of data, and tested on children not seen before. The accuracy 
rates increase to 82% and 98%, respectively, on children who have had portions of their data included 
as part of the training process. All of these results are highly significant, confirming that there is strong 
evidence of affective information in the postural moves of the child. This same data was used to 
develop a facial expression recognition system that could operate without any intervention from the 
experimenter, and without any special calibration steps with the learner. Its performance, training and 
testing on separate parts of the natural data, was 68% at recognizing six upper facial action units (note 
that a person has to score 75% to qualify as a human expert). This latter result is conservative, having 
been attained on children the system hasn't seen before, who were actively fidgeting during the task. 
These results show that elements of affect can be measured with results significantly higher than 
random. We propose to further improve these methods, to extend them to recognize lower facial 
features for smiles and other mouth fidgets, as well as to integrate facial, postural, and other behavioral 
information for jointly analyzing the state of the learner and increasing accuracy of the inference. 
 

 
Figure 1: Various sensors can capture postural, facial, skin-surface, and gestural changes that carry 
affective information. From left to right: Chair with Tekscan pressure sensors, BlueEyes camera, 
Galvactivator skin conductivity sensor, and Pressure Mouse.  

 
Additionally, we propose to continue to evolve new sensors, for new learning environments where the 
learner is not seated in front of a computer (see proposed work below) as well as for the traditional 
keyboard-monitor-mouse environment. The proposed efforts include extending the Galvactivator 
(http://www.media.mit.edu/galvactivator), a skin-conductivity sensing glove, to communicate 
wirelessly with a nearby handheld computer. Skin conductivity gives a measure of psychological 
arousal, which is a strong predictor for both attention and memory (Reeves and Nass, 1996). We have 
found students enjoyed learning about how this signal changed with their level of engagement in 
various learning activities (Picard and Scheirer, 2001), and we believe it will be an enabling tool for 
exploring affect in new learning environments. Additionally, we propose to continue development of a 
new “pressure mouse” device, a mouse augmented with eight pressure pads that indicate “how” the 
mouse is being handled. An increase in physical pressure applied to a pressure-sensitive mouse has 
recently been shown to be associated with frustration caused by poor usability in a computer interface 
(Dennerlein et al., 2003).   We also have additional efforts (via our collaborators at MediaLabEurope) 
developing new comfortable wireless physiological sensors and real-time signal processing 
algorithms, which will be useful for monitoring learner stress. 
 
Finally, in neuroscience itself, there is a pressing need to develop ways to measure the levels of 
interest and motivation of an animal engaged in tasks, and to gauge the levels of stress experienced by 
the animal. We propose to collaborate with the Graybiel laboratory at MIT to develop new affect 
sensing technologies for fundamental research looking at the mechanisms of motivation and attention 
in the animal brain. This research, while very basic, should help inform the understanding of human 
brain disorders related to attention and motivation. 
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CHALLENGE: Reflecting and interpreting 
 
The extent to which emotional upsets can interfere with mental life is no news to teachers. Students 
who are anxious, angry, or depressed don’t learn; people who are caught in these states do not take in 
information efficiently or deal with it well. —Daniel Goleman (1995) 
 
How can systems that measure affective information help people make sense of what has been 
measured, and respond in useful, appropriate, and respectful ways? One important response is to help 
people become more aware of their affect—building a kind of an “affective mirror” in which the 
learner is encouraged to reflect upon how their state is influencing their learning experience. 
Emotional awareness, in oneself and in others, is considered to be a learnable skill of emotional 
intelligence. Being aware of one’s state, such as frustration, can be instrumental in helping better deal 
with that state productively. 
 
The Galvactivator, which converts level of skin conductivity to the brightness of a glowing LED, is 
one device that makes it easy to visualize how your psychological arousal changes as you go about 
activities. We observed classrooms of students wearing these, where the light glowed brightly when 
they were engaged in discussing ideas or writing in their journals, and went dim (for many of them) 
when they were lectured to. Skin conductivity exhibits changes with respect to attention and 
engagement, and reflects interesting patterns when there are disorders of these, such as in autistics and 
in patients with various emotion-related deficits (e.g., Bechara et al., 1997; Hirstine et al., 2001). We 
propose to develop additional means for people to learn about and reflect upon affective signals such 
as this one. 
 

 
Figure 2: Prototype of physically animated computer 

Another project we propose to explore is the use of a physically animated computer for facilitating 
learning. This project equips a desktop monitor with the ability to move in subtly expressive ways in 
response to its user. The physical animation of the machine is inspired by natural human-human 
interaction: when people work together, they move in reciprocal ways, such as shifting posture at 
conversational boundaries and leaning forward when interested. The proposed physically animated 
computer will sense and interpret multi-modal cues from the user via sensors such as those above. It 
will then respond to the user’s cues with carefully crafted subtle mechanical movements and 
occasional auditory feedback, using principles derived from natural human-human interaction. The 
initial version of this device will be designed to mirror affect from the user in a way that is non-
distracting. For example, if the child’s face and posture show signs of intense interest in what is on the 
screen, the computer would hold very still so as to not distract the child. If the child shifts her posture 
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and moves in such a way that suggests she is taking a break, or starting to become bored, the computer 
will do similarly. In doing so, the system not only acknowledges the presence of the child and shows 
respect for her level of attentiveness, but also shows subtle expressions of mirroring that, in human-
human interaction, are believed to help build rapport and liking (LaFrance, 1982). By increasing 
likeability, we hope to facilitate task outcome such as how long the child perseveres with the learning 
task. Of course, the system can also reflect other expressions such as frustration or disappointment 
with subtle movements (Liu and Picard, 2003). We are interested in evaluating the impact of such 
communication on the learner’s reflection of her own state, as well as on other performance 
characteristics of the learning experience. 
 
We are also very interested in integrating new affect sensing, recognition, and reflection technologies 
into efforts to build intelligent tutoring systems and other automated systems where there is potential 
to adapt the learning experience based on signs of interest, frustration, and any other affect-related 
cues. We currently have one such collaboration with the AutoTutor project at Memphis 
(http://www.autotutor.org), and we propose to make available resources to facilitate other researchers’ 
efforts to integrate new affect sensing technologies into such efforts.  

 
By embedding these technologies in learning interactions with automated systems (animated tutors, 
robotic computers, etc) and also integrating them into other learning environments (see below) we 
hope to better answer such questions as: What affective states are most important to learning and how 
do these states change with various kinds of pedagogy? How does knowledge of one’s affective state 
influence outcomes in the learning experience? Additionally, these technologies form the basis for 
building systems that will interact with learners in more natural ways, bootstrapping the machine’s 
own ability to learn, the topic of the next section.  
 

OUTCOMES 
 
Years 1–2: Complete design, test, and debugging of wireless skin conductivity sensor and new mouse 
prototypes. Improve facial expression recognizer to include lower-face action units and features that 
are more invariant to head motion. Integrate pressure-sensitive mice, facial expressions, posture, and 
behaviors of learner into inference algorithms. Improve pattern recognition techniques for integrating 
multi-modal noisy data and for learning how to trade-off features over time. Work with co-learning 
projects (below) and others crafting new learning environments, to help design and develop sensors 
for their needs. Finalize robotic computer platform; refine and user-test its mirroring movements for 
distraction and comprehension.   
 
Years 3–5: Similar to Years 1–2, but sensors, algorithms, and responses will be specialized and 
adapted to support the projects described below. In some cases, sensors will need to be redesigned for 
directly integrating into new haptic tools and learning environments, e.g. instead of a pressure-
sensitive mouse, the haptic input devices can be made pressure sensitive.  For other applications we 
will design analysis tools for EEG and ECG to improve the ability to monitor attention and stress 
under natural learning conditions.   The design of affect-mirroring capabilities will be integrated into 
the learning companion system (described below.) Throughout these efforts, our goal will be to 
construct useful, accurate, re-usable, and robust tools for sensing and responding to affect.  
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Modeling Affect and Cognition in Co-Learning Systems 
 
By modeling affect and cognition in systems that learn with people through natural interaction, we 
hope to realize three equally important goals. First, we wish to advance the state of the art in machine 
learning to develop systems that can learn far more quickly, more broadly, and continuously from 
natural human instruction and interaction than they could alone. Second, we aspire to achieve a deeper 
understanding of human learning and development by creating integrated models that permit an in-
depth investigation into the social, emotional, behavioral, and cognitive factors that play an important 
role in human learning. Third, we shall use these models and insights to create engaging technologies 
that help people learn better. 
 
The history of combining affective mechanisms with cognitive ones for improving machine processing 
goes back at least to the work of Herb Simon (1967), who articulated the construction of motivational 
and emotional controls over cognition, and proposed incorporating these into information processing 
systems. His work was inspired by Neisser (1963), who in a criticism of the dominant information 
processing theories, emphasized these fundamental characteristics of human thought: (1) human 
thinking always takes place in, and contributes to, a cumulative process of growth and development; 
(2) human thinking begins in an intimate association with emotions and feelings which is never 
entirely lost; and (3) almost all human activity, including thinking, serves not one but a multiplicity of 
motives at the same time. Some have claimed that the emotional components may be, in some ways, 
dominant: Don Norman wrote, “There must be a regulatory system that interacts with the cognitive 
component. And it may well be that it is the cognitive component that is subservient, evolved 
primarily for the benefit of the regulatory system, working through the emotions, through affect” 
(Norman, 1981). Thus, these pioneering theorists suggested that cognition, and by extension learning, 
took place within the context of emotional, motivational, perceptual and behavioral structures that 
shaped those very processes.  
 
By contrast, the dominant trend in machine learning has been to eschew built-in structure or a priori 
knowledge of the environment and to discover structure that is in the data or the world through 
exhaustive search and/or sophisticated statistical learning techniques. Pattern recognition and 
reinforcement learning are two problem domains in particular that have attracted attention, and met 
with good success. In pattern recognition, the system’s goal is to learn a mapping from a set of input 
features to an output “label.” The input features might be associated with a gesture, a face, or an 
acoustic pattern, for example, and the label might be a something like “appears to be happy.” The 
system typically learns the mapping through a statistical analysis of hundreds or thousands of training 
examples chosen by a “knowledgeable external supervisor” (Sutton et al., 1998), in which an example 
contains both the input features and the desired output label. Typically, the system has no a priori 
knowledge of the structure of the input space and must discover it based on the examples provided by 
the supervisor. In the domain of reinforcement learning, the goal of the system is to learn an optimal 
sequence of actions that will move the system from an arbitrary state to a goal state. The main 
approach of reinforcement learning is to probabilistically explore states, actions and their outcomes to 
learn how to act in any given situation.  
 
Reinforcement learning is an example of unsupervised learning in that the only supervisory signal is 
the reward received when it achieves the desired goal. However, as with supervised learning 
techniques, the actual learning algorithm has no a priori knowledge about the structure of the state and 
action spaces and must discover any structure that exists on its own through its exhaustive exploration 
of these spaces. As a result, reinforcement learning typically requires hundreds or thousands of 
examples, in order to learn successfully. 
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Thus, the progress to date in machine learning has come with some caveats. First, the most powerful 
techniques rely on the availability of a great deal of data. Thus, they are often not appropriate in 
domains in which the number of examples is very small. Second, they tend not to be appropriate when 
the environment is changing so quickly that earlier examples are no longer relevant. Third, the 
underlying representations used in machine learning typically make it difficult for the systems to 
generalize from learning one particular thing or strategy to another type of thing. Fourth, little 
attention has been paid to the question of how a human can guide the learning process. Fifth, and not 
insignificantly, few would argue that current approaches to machine learning, however successful, 
have much to tell us about how learning occurs in animals and humans, 
 
By contrast, any survey of animal learning will quickly convince one that learning in nature is 
characterized by fast and robust, albeit, constrained learning (Shuttleworth, 1998; Gould and Gould, 
1999). For example, a dog can be trained to roll over in response to an arbitrary verbal or gestural cue 
in as little as 20 to 50 repetitions (Wilkes, 1995). A Nightingale can learn to imitate the song of 
another bird after as few as five presentations (Marler, 1990). A typical child learns an average of 8–
10 words a day over their first five years (Markham, 1990). How is it that animals and children can 
solve these learning problems so effortlessly?  
 
Our hypothesis is that the answer lies not in finding the “magic bullet” of a unitary learning algorithm 
or module, but rather in discovering the combination of underlying structures and processes that 
radically simplify what would otherwise be a complex learning problem. In nature, these internal 
structures are cognitive, behavioral, social, emotional, motivational, shallow and deep, innate and 
learned, purposed and repurposed. Indeed, an important way that internal structures simplify the 
learning task is by acting so as to bias the learner to take maximal advantage of external environmental 
and social-emotional interactions that serve to structure and constrain the learning task. Hence, 
learning is the result of a complex interplay of structures and processes, both internal and external to 
the learner, and having both cognitive and affective aspects.  
 
We propose to develop computational models and learning systems that capture these key 
characteristics. We believe that such models can provide new insights into numerous cognitive-
affective mechanisms, and shape the design of learning tools and environments, even if they do not 
compare to the marvelous nature of those that make children tick. The three co-learning scenarios 
presented below illustrate the kinds of systems we propose to build: Each one learns in partnership 
with people, but with different emphases. Following these, we present core challenges in cognitive-
affective co-learning.  

A Curious Robot 
Imagine a robot that exhibits curiosity (Figure 3). Curiosity is a trait of natural learning systems (i.e., 
people and animals) that exhibit inquisitiveness and a drive to learn, which tends to be followed by 
quickly learning what they ought to learn, when they ought to learn it, in an ongoing way. Inspired by 
nature, we envision a Curious Robot to be a pro-active learner that seeks out experiences and people 
from which to learn new things.  
 
Humans are natural and motivated teachers for entities that are rewarding to work with. A Curious 
Robot will be able to leverage the rich social nature that is uniquely characteristic of human learning 
and instruction to constrain and bias its own exploration and discovery of new skills and knowledge—
thereby allowing itself to learn more quickly, broadly, and continuously than it could alone. To do so, 
a Curious Robot will need a deeper understanding of the learning process, beyond turning the 
statistical crank of a learning algorithm, to actually reflect upon the learning process: when to learn (or 
when to get help to learn), what to learn, from whom, how (e.g., recognize success, correct errors, 
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judge progress), and why? In humans and animals, both cognitive and affective factors play an 
important role in this process. By building this robot, we would further illuminate these factors.  
 
We will consider such a robot to be successful if it can learn a variety of new skills, tasks, and 
knowledge from natural human instruction, without requiring any adjustment of the internal learning 
mechanisms. We believe this will go a long way to enabling a new class of technological artifacts that 
readily adapt and learn within the human environment.  

A Teachable Interactive Character  
Next, imagine a scenario in which a child teaches a 3-D computer-animated puppy new tricks. 
Teachable agents are a new area of research (Biswas et al., 2001a,b) and show promise not only in 
motivating learners, but also in engaging them in opportunities to reflect on attitudes about learning 
and other meta-learning concerns. Animal training can be viewed as a coupled system in which the 
trainer and the animal cooperate so as to guide the animal’s exploration to discover how to perform 
new skills. Animal trainers have developed techniques such as “luring,” “shaping” and “clicker 
training” that allow the person to guide the animal’s learning from its observed behavior alone (Pryor, 
1999; Lindsay, 2000). Because the trainer cannot see inside the animal, it is very important that the 
virtual puppy’s behavior be an immediate and accurate reflection of what it has learned so far. 
Moreover, to the extent it can infer, even minimally, the trainer’s intent, and use that knowledge to 
guide what it learns from the trainer, it will be markedly easier to train, and learn in far fewer 
examples. This will provide the child with immediate and compelling feedback as to the success or 
failure of his or her teaching efforts. 
 
This engaging experience will give the child an opportunity to learn about the importance of 
exploration, motivation, context, timing, and built-in biases for efficient learning. By putting the child 
in the position of helping to guide the puppy’s learning, we hope to encourage the child to ask 
questions about his or her own learning and consider how human learning and teaching may be similar 
but also different from animal training in interesting ways. Such a system will have succeeded if the 
child gains a deeper understanding of the teaching-learning process and uses it to adapt his or her 
behavior and hypotheses about learning and teaching.  

A Learning Companion 
Finally imagine a scenario in which a machine serves as a computerized Learning Companion to 
facilitate a child's own efforts at learning. A Learning Companion will not be an intelligent tutoring 
system that already knows the answers about the subject being learned, but rather it is a player on the 
side of the student—a collaborator of sorts—there to help the child learn, and in so doing, learn how to 
learn better. To do so, the companion will help to keep the child’s exploration going, by occasionally 
prompting with questions or feedback, and by watching and responding to aspects of the affective state 
of the child—watching especially for signs of frustration and boredom that may precede quitting, for 
signs of curiosity or interest that tend to indicate active exploration, and for signs of enjoyment and 
mastery, which might indicate a successful learning experience. It will have succeeded if students, 
especially those who encounter frustration and routinely handle it by quitting, learn instead how to 
persevere, increasing their ability and desire to engage in self-propelled learning. 
 
Building the kinds of co-learning systems envisioned above presents a number of interesting and 
challenging problems. Below, we outline our approach for how to address several of the challenges 
involved in building co-learning systems that can learn quickly, broadly, and continuously in 
partnership with a person. This work will not only contribute to building more effective co-learning 
systems, but also allow us to thoroughly explore the role of cognitive, affective, social, and behavioral 
factors in the co-learning process. 
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Figure 3: A co-learning system involving cognitive-affective mechanisms that regulate both internal and 
external processes 

CHALLENGE: Learning quickly from few examples 
We propose to model internal cognitive-affective structures that work in concert with perceptual and 
affective information gained from real world interaction, to dramatically accelerate a system’s ability 
to learn the right thing from a limited number of examples. We have demonstrated this approach in 
domains as diverse as learning word boundaries from fluent speech (Roy, 2000; Roy and Pentland, 
2002), teaching animated characters new tricks (Blumberg and Downie, 2002; Blumberg 2002), and 
learning how to imitate facial expressions (Breazeal et al., 2003). 
 
For instance, inspired by a close study of the practice of animal training (Pryor, 1999; Wilkes 1995), 
we use behavioral context and internal biases to dramatically speed up learning from few examples. 
Consider the problem of associating a verbal cue with a behavior. This requires the learner to build a 
perceptual model of the cue based on examples provided by the trainer in the course of training. How 
does the system know when an example has been given and whether it is a good example of the cue or 
not? Our animated dog, Dobie, uses rewarded actions as the context for identifying important sensory 
cues and for guiding the construction of a perceptual model of the cue. For instance, a good example 
of the acoustic pattern “sit” is one that occurs just before or during a sit action that results in reward. 
By using natural feedback signals to guide the construction of perceptual models, and by only 
attending to stimuli that occur within a narrow temporal window, fewer models are built, and those 
that are built tend to be more reliable and robust. These, and other biasing mechanisms, enable 
learning to happen with one to two orders of magnitude fewer training examples (Blumberg and 
Downie, 2002; Blumberg 2002.) 
 
We provide trainers with a “clicker” that allows them to precisely mark the behavior they wish to 
encourage or discourage. In addition, Dobie’s learning mechanism incorporates heuristics that attempt 
to match the trainer’s expectation as to what Dobie “should be” learning from the trainer’s actions. For 
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example, if the trainer manipulates Dobie into a “down” posture and then rewards him, the down 
action gets the credit for the reward, rather than the action that was active while the trainer was luring 
him into the posture, e.g., the “follow-food-in-hand” action. Similarly, Dobie always assigns reward 
that he receives to the behavior that is currently observable to the trainer.  Finally, Dobie assigns credit 
to the most novel and relevant combination of perceptual cue and action. For example, suppose Dobie 
decides to sit, and as he begins to do so, the trainer says “sit” and subsequently rewards him. Even 
though Dobie chose to sit spontaneously, he will assign the reward to sitting in response to being told 
to do so because that is a more novel combination. These are just a few examples of structures that 
dramatically speed up learning. 
 
We propose to develop these ideas further in our Curious Robot project and apply them to social 
interaction cues that people use to teach each other. For instance, the “click” in clicker training is used 
to signify both salience as well as to signal positive affective value. Extending this work, we shall 
model cognitive-affective mechanisms of attention (Breazeal et al., 2001) and saliency measures to 
allow the robot to determine the significance of stimuli or events, either on its own or when guided by 
a person (via gesture or directed gaze). When learning something new, it is also important for the 
robot to assign affective value to incoming stimuli to help bias what it learns, e.g., Was the outcome 
good or bad? Am I making progress toward a desired outcome? Does my co-learner appear pleased? 
etc. We shall model internal cognitive-affective mechanisms to assess the affective value of both 
internal and external states. For instance, social referencing (where an infant looks to the expressive 
reaction of his or her caregiver) plays an important role in helping an infant (as it could for a robot) to 
affectively evaluate novel situations and to guide his/her subsequent exploration (Feinman et al., 
1992). This will allow our system to learn quickly from natural social interaction, and allow us to 
explore cognitive/affective models of saliency and affective value with respect to learning in people 
and animals.   
 

CHALLENGE: Learning broadly with human guidance 
We propose to give a robot the skills necessary to take advantage of natural human instruction to guide 
its own exploration and discovery (Breazeal, 2002). Humans are often natural and gifted teachers, 
capable of providing the appropriate amount of guidance to help foster learning the right thing at the 
right time. Much of human instruction and teaching consists of subtle and not-so-subtle 
communication and cues that help to constrain and facilitate the learning task. For instance, 
scaffolding as traditionally viewed by the field of developmental psychology, is conceptualized as 
supportive structures provided by an adult whereby the adult manipulates the child’s interactions with 
the environment to foster novel abilities (Wood et al., 1976). Parts of scaffolding, such as reducing the 
number of degrees of freedom in the target task, and either demonstrating or guiding the learner to 
perform particular action, may be considered cognitive structuring, while other parts such as reducing 
distractions, drawing attention to the task’s critical attributes, and giving the child positive/negative 
forms of feedback and encouragement, involve affective structuring.  
 
In previous work, we have explored this process through modeling the development of facial imitation 
with an expressive robot, Leonardo (Breazeal et al., 2003). An increasing amount of evidence suggests 
that the ability of humans to learn by watching others, and in particular, the ability to imitate, is not 
only important for learning new manipulation and problem solving skills (Byrne and Russon, 1998), 
but it could also be a crucial precursor to the development of appropriate social behavior, and 
ultimately the ability to reason about the thoughts, intents, beliefs, and desires of others (Meltzoff and 
Gopnik, 1993, Meltzoff and Moore, 1997). Bi-directional imitative games allow the infant to share in 
the anticipation of some simple and predictive sequences of events that are under the infant’s own 
voluntary control given a cooperative adult. This in turn gives the child even finer control over adults’ 
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behavior, so that the infant can explore and gain further information and learn more models of motor 
and communication skills. Inspired by this process, Leonardo learns how to imitate the facial 
expressions of people during playful imitative exchanges that capture the bi-directional nature of early 
infant-caregiver imitative games. We propose to extend this work to scaffold the robot’s ability to 
learn both social and object-manipulation skills, and to apply these skills to learn multiple tasks from 
natural interaction with a person. 
 
As discussed earlier, affect plays an important role in influencing how “broadly” or “narrowly” people 
learn, and we propose to explore this dynamic through computational modeling. In addition, the robot 
will need the ability to learn in the context of servicing multiple goals—trying to imitate you, trying to 
apply what it has learned to a new situation, trying to get you to play with it, etc. It is argued that 
affective and cognitive mechanisms play an important role on regulating and prioritizing goals in 
animals and people (Norman, 1981), as they will for our robot. From this body of work, we will not 
only advance the state of building machines that can learn from people, but also investigate 
relationship that social, cognitive, and affective factors play in this broad style of learning.  
 

CHALLENGE: Diverse learning over the long term 
We propose to develop a computational model, inspired by behavioral development in animals, that 
seeks to manage, perform and integrate diverse “learning” strategies within a long-term behavioral 
context.  
 
Animal learning throughout development is a highly discrete process, consisting of overlapping 
episodes of highly specialized learning (Coppinger et al., 1990; Lorenz et al., 1973; Gottlieb, 1991; 
Hogan, 1999). Indeed, animals are adept at learning when the environment is ready to teach, as if they 
were “looking for” the requisite information when it is most likely to be available and easiest to 
acquire. In addition, important behaviors are often self-motivating, and are later repurposed for their 
ultimate use. Thus, a kitten perfects its pounce, not on prey, but on its littermates, apparently because 
they are enjoyable to pounce on. Later, the motivational context dictates the object and form of the 
pounce: for pleasure, the pounce may aim for an object that is particularly “satisfying” on which to 
pounce (and perhaps repeatedly so); when hungry, the cat chooses the object and form of pounce that 
maximizes the likelihood of satisfying hunger (Lorenz et al., 1973). 
 
This work will focus on the concept of “specialized learning structures.” These structures will include 
mechanisms that identify when to begin learning, the learning strategies to be employed, components 
of motivation so as to engage in the behavior required to facilitate the learning, fail-safe mechanisms 
in case the appropriate learning conditions don’t arise, and ultimately a mechanism that identifies 
when to stop learning. These structures will be embedded in an overall behavioral context that 
undergoes re-organization as a result of the new skills being integrated in, or being repurposed for 
different motivational goals.  
 
Another aspect of continuous learning focuses on sustaining the long-term and reoccurring interaction 
of the learning system with other co-learners. Much of human instruction and scaffolding is not only 
helpful in simplifying the learning problem, but is an enjoyable experience for both the human teacher 
and learner. In our experience, however, most computational agents in existence are at best charming 
for a short interaction, but rapidly grow tiring or annoying with longer-term use. In order to build an 
agent that people will enjoy over time, it must be able to both accumulate memory of ongoing 
interactions with the user, and also exhibit basic social-emotional skills. We propose to address these 
issues in all three of our proposed projects. 
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Going a bit further, it is known that the presence of someone who cares, or at least appears to care, can 
be motivating (Wentzel, 1997). Various studies have linked interpersonal relationships between 
teachers and students to motivational outcomes over the long term (Pianta, 1992, Wentzel and Asher, 
1995, Birch and Ladd 1996). What is it that students think teachers do to give the impression of 
caring? One suggestion is that the teachers (1) model caring behavior; (2) expect as well as encourage 
students to do the best they can given their abilities; and (3) engage students in dialogues that lead to 
mutual understanding and perspective taking (Noddings, 1992). Although computers don’t “care” in 
the sense of having feelings like people have, it is nonetheless possible for them to model certain 
behaviors and give some of the other impressions that contribute to a perception of caring. For 
example, Bickmore designed, built, and tested a “relational” agent that had certain social-emotional 
skills for crafting long-term relationships with people, and found that this relational agent (compared 
to an identical agent without relational skills) led to statistically significant effects where people 
reported that the relational agent cared more about them, was more likeable, showed more respect, and 
earned more of their trust than the non-relational agent. People interacting with the relational agent 
were also significantly more likely to want to continue interacting with that agent (Bickmore, 2003; 
Bickmore and Picard, 2003, also described in the “Prior NSF Awards” section below.)   
 
Our relational agent experiment was not explicitly about caring; nonetheless, it demonstrated that it is 
now possible to begin to functionally tease apart behavioral elements of notions such as caring, and to 
build interactions where these elements are systematically included or excluded. Such interactions 
would be of interest in examining the effects of various kinds of caring presences on learning—and do 
so in a controlled way that is virtually impossible to do with a real person. Although we do not expect 
that machine “caring” could provide any kind of real substitute for genuine human caring, we do 
hypothesize that certain aspects of it could be given to learning tools and technologies in ways that 
positively impact learners. We propose to investigate this issue as part of the evaluation of our 
Learning Companion project. 

OUTCOMES 
 
Our primary deliverable will be a cognitive-affective architecture with the capabilities described 
above, and a number of instantiated systems that showcase the architecture’s capabilities (e.g., a 
Curious Robot, a Teachable Interactive Character, a Learning Companion). The impact of these 
systems will be evaluated through carefully designed user studies and findings will be submitted for 
peer-reviewed publications. 
 
Year 1: (1) Design the specifications for the cognitive-affective architecture including learning models 
that incorporate cognitive, affective and social factors. (2) Integrate existing technologies for real-time 
perception of human social cues, speech and gesture, and motor control and computer animation into 
the overall architecture. (3) Fabricate necessary hardware systems and start development of new 
perceptual abilities needed for the Curious Robot, Learning Companion, and Teachable Interactive 
Character projects. (Portions of this latter goal will collaborate with the sensing projects above.) 
 
Year 2: (1) Refine sensing and perceptual systems for the three proposed projects, demonstrate their 
performance, and integrate them into the cognitive-affective architecture. (2) Integrate models of 
emotion, motivation, and other affective and cognitive abilities into the cognitive-affective 
architecture. (3) Implement and demonstrate initial learning and teaching test scenarios for each of the 
three proposed systems. (4) Design an experiment to evaluate the performance of the Teachable 
Interactive Character. 
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Year 3: (1) Refine the design of the cognitive-affective architecture and its mechanisms. (2) 
Demonstrate the ability of a Curious Robot to learn a single task faster from natural human instruction 
than it could alone. (3) Conduct an experiment to evaluate the impact of the Teachable Interactive 
Character on what children learn about learning. (4) Design an experiment to evaluate the 
effectiveness of the Learning Companion on emotion reflection and attitudes. 
 
Year 4: (1) Continue to elaborate on the design of the cognitive-affective architecture and its 
mechanisms. (2) Demonstrate the ability of a Curious Robot to learn multiple tasks from natural 
human instruction from one continuous interaction. (3) Conduct an experiment to evaluate the impact 
of the Learning Companion on traditional learning outcome measures. 
 
Year 5: Conduct and experiment to evaluate the learning performance of the Curious Robot (quicker, 
broader, more continuously) with subjects who are simply asked to teach the robot how to perform 2 
to 3 sufficiently different tasks with no prior coaching of the subject by the experimenter. Examine the 
effects of various components of “caring behaviors” on long-term learning interactions.    
 

Fostering Deep Engagement  
 
An interest is a terrible thing to waste. —Roger Schank (1994) 
 
Interests are a great untapped resource. In schools of education, many courses emphasize how and 
what teachers should teach, but rarely examine why their students might want to learn. When the issue 
of motivation is addressed, the emphasis is often on extrinsic motivators and incentives, such as grades 
and prizes based on performance. Yet if you look outside of school, you can find many examples of 
people learning—in fact, learning exceptionally well—without explicit “rewards.” Youth who seem to 
have short attention spans in school often display great concentration on projects that they are truly 
interested in. Research has found that “self-motivation, rather than external motivation, is at the heart 
of creativity, responsibility, healthy behavior, and lasting change…The proper question is not ‘how 
can people motivate others?’ but rather ‘how can people create the conditions within which others will 
motivate themselves?’” (Deci, 1995). 
 
Researchers have begun to map out the conditions under which people become most deeply motivated 
and engaged. Csikszentmihályi has highlighted the dynamic between “challenge” and “mastery” in the 
learning process (e.g., Csikszentmihályi, 1991, 1997). Too often, designers and educators try to make 
things “easy” or “entertaining” for learners. But Csikszentmihályi has found that people become most 
deeply engaged in activities that are challenging, but not overwhelming. Similarly, Papert has found 
that learners become deeply engaged by “hard fun”—that is, learners don’t mind activities that are 
“hard” as long as the activities connect deeply with their interests and passions (Papert, 1993). 
 
Researchers have found that new media technologies have great potential for fostering deep 
engagement. The issue here goes beyond the obvious appeal of interactivity and rich visual effects. 
New media technologies make possible new representations—which, if properly designed, can 
connect more closely and deeply with learners’ interests, intuitions, and experiences. The Logo turtle 
is a classic example. The turtle offers a new framework for learning geometry (based on ideas from 
differential geometry), in sharp contrast to the traditional Euclidean formulation. With this new 
representation, children can learn important geometric ideas in a more “body-syntonic” way, 
imagining themselves as the turtle as it draws out geometric shapes and patterns, and thus leveraging 
their intuitions and experiences their own bodies (Papert, 1980). This example highlights an important 
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design strategy: to re-purpose the “deep structures” of the mind (in this case, structures based on 
experience with one’s own body) to support the learning of new things. 
 
Through these types of activities, new media technologies have the potential to “make the abstract 
concrete” (Turkle and Papert, 1990). A growing number of researchers (e.g., Lave and Wenger, 1991) 
have argued that people form their strongest relationships with knowledge through “concrete” 
representations and activities—very different from the formal, abstract representations and approaches 
favored in traditional school curricula (particularly in the domains of math and science). At a 
minimum, new media technologies open opportunities for multiple representations of knowledge. This 
diversification of representations is critical to engaging more students in productive math and science 
learning: students who have styles of thinking and learning that are not well matched to traditional 
representations often find alternative representations more accessible, engaging, and empowering. 
 
Over the past decade, researchers and educators interested in fostering deep engagement in the 
learning process have focused increasingly on design-based activities, in which students create 
external artifacts that they can share and discuss with others  (e.g., Lehrer, 1993;  Soloway et al., 1994; 
Kolodner et al., 1998). In particular, Papert (1993) has laid the foundations for a “constructionist” 
theory of learning and education, extending constructivist theories of Piaget and others by arguing that 
learners “construct” new knowledge most effectively when they are in the process of “constructing” 
meaningful artifacts in the world. Constructionist activities engage people as active participants, 
giving them a greater sense of control over (and personal involvement in) the learning process. 
Moreover, the artifacts that people design serve as external shadows of the designer’s internal mental 
models. These external creations thus provide an opportunity for people to reflect upon—and then 
revise and extend—their internal models of the world.  
 
The Center for Affective Learning will build on these ideas, both by (1) developing new theoretical 
frameworks for understanding the nature of “deep engagement,” and (2) developing and studying a 
new generation of technologies, activities, and environments that are designed explicitly to foster deep 
engagement with important domains of knowledge and with the learning process itself. 
 

CHALLENGE:  Bringing together the physical and the digital 
People grow up in a physical world. They develop sophisticated skills and intuitions for sensing and 
manipulating their physical environments. Early-childhood educators, following the tradition of 
Froebel and Montessori, have recognized the importance of this physical-world knowledge and body 
knowledge, using manipulative materials as a means for children to explore and learn important 
concepts. Some historians argue that Froebel’s “gifts” (the manipulative materials developed for the 
first kindergarten in early 19th century) deeply influenced the course of 20th century art; indeed, Frank 
Lloyd Wright credited his boyhood experiences with Froebel’s gifts as the foundation of his 
architecture (Brosterman, 1997). But most efforts to use digital technologies in education have ignored 
the physical world, and thus missed important opportunities to leverage learners’ existing knowledge. 
 
The Media Laboratory has been a leader in integrating the physical and the digital, pioneering the field 
of “tangible interfaces” (Ishii, 1997) and introducing the idea of “digital manipulatives” (Resnick, 
1998). Our “programmable bricks” (commercialized as LEGO MindStorms) have been used by 
millions of students around the world. Even a superficial eye can see that learners are more engaged 
when they learn principles of physics and engineering by building functioning machines. Our research 
has shown that this engagement comes, in part, from learners’ personal “identification” with the robots 
and machines that they build (analogous to their identification with the Logo turtle). In our NSF-
funded Beyond Black Boxes project, we found that students, by building their own robotic 
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constructions, not only became more motivated in science activities, but also developed critical 
capacities in evaluating scientific measurements and knowledge, made stronger connections to the 
scientific concepts underlying their investigations, and developed deeper understandings of the 
relationship between science and technology (Resnick et al., 2000). 
 
Building on this foundational work, we propose to develop a new generation of technologies that make 
abstract concepts more manipulable and thus more learnable—not just in early-childhood education 
(as with traditional manipulatives) but for learners of all ages (including university students, designers, 
and business professionals). Our goal is to develop new technologies that support representations that 
are better matched to learners’ intuitions, interests, and ways of thinking—enabling learners to explore 
complex concepts (such as system dynamics) that were previously viewed as too advanced or difficult. 
We will also facilitate collaborative learning with technologies that support simultaneous access and 
manipulation of “tangible representations” by groups of learners. At a more fundamental level, we aim 
to develop a better theoretical framework for “tangible thinking,” analogous to previous research on 
“visual thinking.” 
 

CHALLENGE:  Bodies of knowledge 
With traditional computer interfaces, many users end up sitting hour-after-hour in front of screen and 
keyboard. Even most mobile technologies are not designed for use on the go: they call for quiet use of 
fine motor skills while looking at a small display. We propose to counter with new technologies and 
activities that support and encourage more active use of the body in the learning process. We will 
explore how expressive use of one’s own body, and attention to the nature of one’s own movements, 
can serve as bases for new types of learning experiences. 
 
We will work toward understanding the richness of human movement so it can be incorporated into 
the design of interactive tools and environments. We will address movement in different contexts and 
at different spatial and temporal scales—from fine-motor to gross-motor, from involving fingers and 
hands to whole-body movements, and from simpler to more complex, requiring shorter or longer 
periods of time to both learn and perform the actions (Gawande, 2002; Turvey, 1989). The movements 
may themselves support development of particular learning strategies. Knot-tying, piano playing, 
juggling, skiing, and dance are example domains in which the body in motion can support intuitive 
learning about apparently unrelated but potentially deeply interconnected conceptual realms (Austin, 
1974; Burton et al., 1984; O’Modhrain, 2000; Strohecker 1991, 1999).  
 
We are particularly interested in exploring how dance can serve as a basis for developing 
mathematical and scientific intuitions. In summer 2003, we organized a RoBallet workshop in which a 
group of children (ages 9–12) choreographed and performed dances in an interactive space of their 
own design. The children decided where to place sensors, both on the stage and on their bodies, and 
then used their movements to control and alter music that they had composed, robotic devices they had 
built, animations they had created, and lights that they had programmed. We expect there to be many 
fruitful extensions of this research project. We will explore whether planning and thinking about one’s 
own movements through 3-dimensional space can provide a foundation for thinking like a geometer or 
topologist, and whether choreographing and coordinating sequences of movements can provide a 
foundation for understanding formal systems and thinking like a computer programmer.  

CHALLENGE:  New spaces for creative expression and collaboration  
We propose to study how new computing and communications technologies create opportunities for 
new types of “design spaces” and “learning spaces”—and, in the process, transform people’s 
relationship to (and attitudes about) the learning process. Our goal is to develop a new category of 
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spaces and places that combine activities and attitudes traditionally segmented between schools, 
museums, videogame arcades, theme parks, performing arts complexes, and community centers.  
 
In this effort, we are inspired by the innovative design of the pre-schools in Reggio Emilia, Italy 
(Malaguzzi and Ceppi, 1998). We hope to extend these ideas to new audiences and new materials; in 
particular, we hope to create spaces where new digital materials have the same status as the 
manipulative and craft materials at the heart of the Reggio classrooms. In developing and studying 
these new spaces, we will draw on Media Lab expertise and experience in responsive environments, 
collaborative design, and tools for expression and invention. In particular, we will build on the lessons 
we have learned from successful projects such as Toy Symphony, the Computer Clubhouse network of 
after-school learning centers, and the NSF-funded Playful Invention and Exploration (PIE) network of 
museums.  
 
New technologies provide opportunities to rethink the ways we organize spaces. When we created the 
first Computer Clubhouse a decade ago, there were no wireless or mobile technologies, so space was 
organized around desktop computers. Today, very different configurations are possible. This fall, in 
collaboration with the Aga Khan Foundation, we are organizing a month-long charrette in which 
graduate students at six leading schools of architecture will develop designs for a “next generation 
Computer Clubhouse.” A new Computer Clubhouse will be built in Kenya based on the winning 
submission.  
 
To continue to test and refine our ideas about the design and use of space in technology-rich 
environments, we will develop an experimental “Garden for Creativity and Collaboration” (GCC) 
within the new Media Lab building (being constructed adjacent to the current Media Lab facility, 
scheduled to open in 2006). We will use the GCC for workshops and other public programs, providing 
opportunities for young people from surrounding communities to play, experiment, and create with 
new Media Lab technologies—and opportunities for Media Lab researchers to rethink and iteratively 
redesign our spaces, technologies, and activities. 
 

CHALLENGE:  Motivational music 
 
“Music affects the emotions by presenting us with emotions; and it is not surprising that the effect of 
music on us is often not dissimilar to situations in which we observe strong emotion in other humans. 
Of course, language can present the emotions too, sometimes with powerful effect. But music does it 
ever so much more easily, just because…first, it can present ranges and subtleties of feeling that 
conventional language cannot, and, second, that it is a quasi-natural and not just a conventional 
representation of feelings.” —Laird Addis (1999) 
 
We propose to study how music affects human behavior, and how active involvement in music-
making—facilitated by new interface and interaction technologies—can exert a powerful influence on 
motivation and learning. A variety of recent studies have shown that students who learn an instrument 
perform better in math. It is also known from clinical case studies that music can affect—in very 
specific ways—human neurological, psychological, and physical functioning in areas such as 
processing language, expressing emotion, memory, and physiological and motor responses (Tomaino, 
2002). However, music still tends to be used in primarily recreational ways, with little understanding 
as to how it contributes to learning. 
 
Our goal is to develop a comprehensive set of musical tools and techniques to investigate whether 
(and, if so, under what conditions) musical activities are associated with enhancements in memory, 
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concentration, and imagination. We will focus especially on technologies that enable novices to 
express themselves musically (in the tradition of our HyperScore software), studying how new 
expressive abilities are associated with improvements in motivation and learning. In this effort, we 
will bring together Media Lab expertise in music cognition and perception, music composition and 
design, hyperinstruments for novices and experts, synthetic performers and listeners, expressive 
performance sensing, and affective interfaces. In addition, we will launch new initiatives in haptic 
playback and enhancement, musical neurology, and intelligent audio analysis and reconstruction (with 
an emphasis on augmented vocalization and the incorporation of everyday sounds into musical 
contexts). For example, in our haptic playback research, we will record the sophisticated gestures used 
by expert musicians (in bowing a violin, for instance), then use that information to physically guide a 
novice musician’s body through the same gesture, with special algorithms to intelligently emphasize 
salient points (providing the learner with an exaggerated, dramatized feel of particular aspects of the 
gesture). We expect that this system will lead to discoveries, techniques, and theories that can be 
applied in many other situations, including communications, sports, and focusing exercises. 
 
Building on successful Media Lab projects such as the Brain Opera and Toy Symphony, and our 
ongoing relationships with arts and educational institutions (including the Boston Symphony 
Orchestra, Carnegie Hall, the Los Angeles Music Center, Seattle’s Experience Music Project, the 
Institute for Music and Neurology at Beth Abraham, and the New York City Public Schools), we will 
test our new musical activities in a wide variety of artistic, educational, and community environments. 
And although we will primarily concentrate on the uses of music in enhancing learning for young 
people (ages 2–18), we will also explore music’s potential for augmenting learning at any age, as well 
as for contributing to the success of learners with intellectual, emotional, or physical limitations.  
 

CHALLENGE:  Roots, fruits and shoots 
Learning is rooted in the person and the culture; it bears fruit through the construction process; and it 
has shoots that branch into new areas. These principles of learning are experientially based, differing 
markedly from the concept that requires a disconnected accumulation of chunks of knowledge. In 
order for the learning to become truly rooted, a person has to have a deep emotional attachment to the 
subject area. Rooting and the possibilities for branching flow from a better understanding of affect, 
comfort, culture and motivation. 
 
We have found that when individuals participate in shared activity, they not only develop new ideas 
for themselves (fruits), but the collaborative process transforms and shapes the organization of the 
community as a whole (shoots). So rather than thinking of learning and expertise as a body of acquired 
skills and knowledge unique to an individual, we adopt a more “situated learning” perspective, where 
the unit of analysis for expertise is the community itself. 
 
Researchers (e.g., Wentzel, 1997) argue that the pursuit of prosocial and socially responsible goals 
have a positive impact on student perception of caring in a classroom setting. The efficacy of a virtual 
expert within the classroom has also been demonstrated (Evard, 1996): students and community 
members share information more readily and take more risks. But do these results transfer outside of 
the classroom? Chesnais (1999) argues that skills, support, and effort are necessary for successful 
community expression and construction. In the absence of human mentoring and an explicit 
mechanism for external support, can affective-learning technology help people find the latent expertise 
and share support within and across the communities? 
 
Digital technologies offer new opportunities for discovering roots, adapting to preferences, and 
enabling creative and idiosyncratic connections to learning and knowing. We are developing a new 
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range of expressive technologies and a more integrated methodology to facilitate rooted knowledge 
construction and support development of shoots to new areas through electronic collaboration and 
support (Cavallo, 2003).  
 
An example is found in our work discovering engine culture in Thailand (Cavallo, 2000). Numerous 
local innovations and widespread knowledge made it clear there was a deeply rooted culture of 
learning and practice building upon knowledge from the internal combustion engine. This became 
evident in our Project Lighthouse when rural adolescents, all of whom had left school after only a few 
years, used a variety of computational technologies to design a new dam and address critical water 
problems in the region. Not only was it remarkable that they learned enough to design an irrigation 
system without the usual years of formal preparation, but also through their local knowledge and 
“engine culture” spirit they succeeded where the government had repeatedly failed.  
 
A second example is found in our long-standing efforts to immerse adults and children in the hard, but 
fruitful, work of inquiry and storytelling (Smith et al., 2000), where we have seen communities forge 
around journalism, creating stories of interest and concern for themselves and their Internet readers.  
This act of expression, facilitated by easy-to-use tools, led to an active debate over the content of their 
stories and, more importantly, the processes that they engage in as media producers. A collaborative 
editing process seems to help them develop a critical stance toward traditional media.  As community 
participants challenge each other, they begin to understand the biases and critical thought processes 
that are the norm for professional journalists. 
 
Rogoff (1995) describes the progression of community learning through the planes of apprenticeship, 
guided participation, and participatory appropriation. We propose to build technological affordances 
that serve in the role of emotional and inspirational mentor and that foster the creative and 
idiosyncratic connections to learning that help community members to progress through these planes. 

CHALLENGE:  Wear learning 
 
“We need to brand math, and all learning, so that each morning, when youth stand in front of the 
mirror deciding who they will be that day, they always decide to wear learning.” —Christine Ortiz, 
youth leader of Florida’s “Truth” campaign 
 
In 1998, a group of Florida teens was given authority and resources to launch a comprehensive 
campaign to change teen smoking behavior. The teens established a network of grassroots, youth-led 
community organizations, and organized a mass-media outreach which included television 
commercials (both professional and, more effective, ‘unpolished’ or homemade commercials), 
magazines advertisements, billboards, and flyers. After the first year of what was branded the “Truth” 
campaign, the program had a 92% recognition rate, equal to mega-brands like Nike. In the first three 
years of the program, smoking declined 47% among middle-school students, and 30% among high-
school students. The proportion of students who had ever smoked also declined, from 44% to 32% in 
middle schools, and from 68% to 54% in high schools. A decline in smoking rates this large or even a 
decline at all, was unprecedented in Florida, and went against the upward trend in the rest of the 
nation. 
 
Working with one of the youth leaders of the Truth campaign (now a student at MIT), we are 
exploring how the strategies underlying the successful campaign to influence youth attitudes about 
smoking could be adapted for a youth-led campaign to influence youth attitudes about learning. 
Studies have shown that youth attitudes about education (and about math in particular), and their 
perception of their own learning abilities (and, again, in math in particular), decline as students 
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progress through K–12 schooling (see Figure 4, from US Department of Education, 2000). Could a 
youth-led campaign help transform these attitudes and perceptions? 
 
The inherent differences between learning and smoking suggest that very different strategies might be 
needed. It is likely that long-lasting change in youth attitudes about learning will come only as a result 
of positive learning experiences, not simply positive messages about learning. But we believe that 
youth, particularly through the use of new media technologies, can play an important role in the effort 
to transform youth attitudes about learning. The Media Lab has already established a Young Activists 
Network (with chapters in a dozen communities) to support youth who are working to bring about 
change in their local communities. We plan to build on these experiences to engage youth in the effort 
to transform attitudes about learning. 
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Figure 4: Student attitudes about mathematics decline from Grade 8 to Grade 12 (1996).   Graph is from 
US Department of Education (2000). 

OUTCOMES 
 
Year 1: Design of prototype technologies and activities for all projects listed above, with participatory 
design input from appropriate user communities. For example, we will develop three new digital 
manipulatives for three different user communities; new sensor technologies, control electronics, and 
software for RoBallet activities; new designs for a next-generation community technology center; and 
prototypes of Music Games (each with explicit activity to achieve increased attention, memory, 
interior imagination, or collaboration). We will also organize a group of teens to work on the Wear 
Learning project. 
 
Years 2–4: We will test all of the above prototypes in real-world testbeds, studying if and how 
prototypes support deep engagement and new conceptual understandings, and continually iterating our 
technologies and activities based on feedback from user communities. We will design and implement 
the first Garden for Creativity and Collaboration in the newly-constructed Media Lab building. Within 
Motivating Music project, we will develop a Haptic Playback system to provide guided, pedagogical 
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experience of performing subtle gestural tasks. We will provide support and guidance for a selected 
group of youth in their efforts to transform youth attitudes about learning, which may include 
additional fund-raising from other sources. Based on all the above projects, we will continue our 
research on developing new theoretical frameworks for understanding deep engagement. 
 
Years 5: We will work with Media Lab partners to broadly disseminate technologies and activities 
developed in Years 2–4 in some cases through commercialization in collaboration with corporate 
partners, in other cases through free distribution on the Internet. We will focus our research efforts on 
publication and dissemination of new frameworks for understanding deep engagement. 
 
 

Partnerships, Outreach, and Dissemination 

 
The Media Laboratory has an exceptional track record for getting its learning-related ideas and 
technologies out to the world in large numbers. The LEGO Mindstorms robotic construction kit, based 
on Media Lab research, has been used by millions of youth around the world. Software developed at 
the Media Lab (including StarLogo modeling software, Design-by-Numbers interactive-graphics 
software, and Pluto/HDL publishing software) is available for free online, and currently used in 
thousands of schools, community centers, and even senior centers. Fisher Price has announced plans to 
introduce, in the next year, a set of music-learning toys inspired by the Media Lab’s Toy Symphony 
project, and the LEGO Company has recently announced a new product line, “Record & Play,” which 
draws on its collaboration with the Media Lab’s Tangible Media group. 
 
The Media Lab has put its learning theories into practice by creating new educational contexts and 
settings—with particular focus on reaching youth from underserved populations. For example, the 
Media Lab co-founded the Computer Clubhouse project, a network of after-school learning centers for 
youth from low-income communities, with more than 80 sites in 15 countries, reaching more than 
20,000 youth. With support from NSF, the Media Lab co-founded the Playful Invention and 
Exploration (PIE) Network, a network of museums that uses Media Lab technologies to create new 
types of public programs for children and families, integrating art, science, and engineering. Through 
its Digital Nations initiative, the Media Lab collaborates in a wide variety of international 
learning/education projects, with special focus on the developing world.  
 
The Media Lab has also been very successful in sharing its ideas with the academic community 
through collaborations with other universities, publications in leading journals, and presentations at 
major conferences around the world. The senior personnel on this proposal have active collaborations 
with dozens of external institutions.  
 
Recently, MIT announced its OpenCourseWare initiative, http://ocw.mit.edu, making MIT course 
materials freely available to the world. Although the full catalog of courses isn’t expected to be 
available until 2007, the impact has already been significant both internationally and domestically. 
Following in this spirit, we propose not to limit the partnerships of the Center for Affective Learning 
to just a few selected institutions, but rather to open up what we do to the world, through a variety of 
new initiatives, detailed below. We aim to construct both online and face-to-face mechanisms ensuring 
significant exchange of people, ideas, and data, so that the Center functions as an international “hub” 
for research related to affect in learning. 
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 Figure 5: The Center for Affective Learning extends far beyond MIT. 

 

 
• Online dissemination. The Center will distribute a variety of materials and resources free of 
charge via the Internet. The Center’s colloquia and symposia will be Webcast and archived online, 
with indexing to make them more searchable. The Center will produce a special series of online 
discussions/debates among the world’s leading learning and education researchers, together with 
experts from other fields who bring knowledge about affect (e.g., neuroscience researchers and others 
who study and build models of these phenomena). Efforts will be made to enable prototypes of 
hardware and software tools, such as new affect-sensing technologies, to be made available to 
researchers elsewhere. The Center will also make all of its courses available online through 
OpenCourseWare.  
 
• Fellowships. One form of “reaching out” is “inviting in.” The Center for Affective Learning will 
create a “Learning Fellows” program, analogous to Nieman Journalism Fellowship at Harvard, but 
designed for leading researchers and practitioners from the fields of learning and education. This 
program serves two purposes: (1) bringing new perspectives and competencies to the Center each year, 
to enrich and diversify the Center’s ideas about learning and education; and (2) providing an organic 
way for ideas from the Center to get out into the world, since Fellows could naturally integrate ideas 
from the Center into their own local projects after returning home from the fellowship year. The 
Center will select four Learning Fellows each year, with priority given to candidates from under-
represented groups. One of the priorities will be to use this as a vehicle for bringing in faculty experts 
on motivation, interest, and other affective aspects of cognition and learning. In addition to the 
Learning Fellows, the Center will also host visiting graduate students for periods of up to a year. 
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• Informal learning. The Center will work closely with the Media Lab’s existing networks of 
Computer Clubhouses, community centers, museums, senior centers, and other informal-learning 
organizations. These collaborations provide not only a valuable public service, but also an authentic 
context for testing and evaluating new learning theories, strategies, and technologies developed at the 
Center. For projects aiming to engage the interests and passions of learners, informal-learning settings 
(where learners come by their own choice) offer a particularly important testbed. 
 
• K–12 education. The Center will work closely with MIT’s Teacher Education Program (TEP), 
which offers courses and student-teaching internships to MIT undergraduates who want to become K–
12 teachers (particularly in math and science). Through this collaboration, the Center will create 
teacher-education materials based on ideas and technologies developed at the Center, test new ideas 
and technologies at Boston-area schools (leveraging TEP’s strong relationships with local schools), 
and run summer workshops where K–12 educators can immerse themselves in the ideas and 
technologies developed at the Center.  
 
• Corporate partners. The Media Lab has collaborative programs with many of the world’s leading 
technology companies, such as Intel, Motorola, IBM, Microsoft, BT, Nokia, Sony, and Samsung, and 
it has established a strong infrastructure for technology transfer. Many Media Lab projects have been 
commercialized by sponsoring companies or by startup companies created by Media Lab alumni. We 
expect a similar pattern of technology transfer for projects developed at the Center.  
 
• International partners. The Center will collaborate with international partners to explore learning 
issues in other cultural contexts.  These partnerships will enable us to study which ideas transcend 
cultural specifics (and which do not). The Center will leverage the strong connections established by 
the Media Lab’s Digital Nations consortium, which has collaborators in Mexico, Costa Rica, Panama, 
Colombia, and Brazil, including the Bradesco foundation, the Inttelmex foundation, INCAE, and 
SENACYT, as well as the international members of the Computer Clubhouse and PIE networks. The 
Media Lab additionally has a close partnership with MediaLabEurope, which brings expertise in the 
design of affective games, physical interfaces, analogical reasoning, and learning environments.   
 

Evaluation and Assessment  
 
Evaluation and assessment will be an ongoing process. We will continually adapt and revise our 
research plans and projects based on critiques and feedback from both internal and external sources. 
We will foster an environment of informal open critique, to ensure continual feedback from peers and 
colleagues. The routine operation of the Center will include weekly working lunches of the Center 
community, along with a weekly research seminar series to encourage and highlight progress and 
interdisciplinary exchange, as well as a variety of weekly project meetings. Additionally, we will 
subject our work to academic peer review. 
 
In order to evaluate progress toward scientific outcomes, educational, outreach, and management 
goals, there will be regular meetings of the leadership team (PIs, Co-PIs, Deputy Director, and various 
advisors and project leaders) where goals are monitored and discussed. Additionally, there will be 
semi-annual program planning meetings with both internal and external partner organizations, where 
topic selection, project termination, and other decisions regarding resource allocation will be made. 
There will also be an annual research review by the Advisory Board coinciding with a briefing and 
written annual report to the NSF, providing oversight, guidance, and help with prioritization. 
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Advisory board. The following individuals have agreed to be a part of the Advisory Board for the 
Center for Affective Learning: Michael Arbib, Fletcher Jones Professor and Chairman of Computer 
Science, and also Professor of Neuroscience, Biomedical Engineering, Electrical Engineering, and 
Psychology at the University of Southern California USC; John Seely Brown, Director Emeritus of 
Xerox PARC, and Visiting Scholar at the Annenberg Center at University of Southern California; Red 
Burns, Founder and Chair of the Interactive Telecommunications Program at New York University; 
Howard Gardner, John H. and Elisabeth A. Hobbs Professor in Cognition and Education at the 
Harvard Graduate School of Education and Adjunct Professor of Psychology at Harvard University, as 
well as Adjunct Professor of Neurology at the Boston University School of Medicine; Alan Kay, 
Senior Fellow at Hewlett Packard Labs, and President of Viewpoints Research Institute; Walter 
Massey, President of Morehouse College and former Director of the National Science Foundation, 
Bill Wulf, President of the National Academy of Engineering. 
 
 

Management Plan 
 
The Center for Affective Learning will be directed by Professor Picard, who will be responsible for 
the overall supervision and coordination of activities at MIT. Picard will also represent the Center as a 
member of the SLC National Network. Both MIT and the Media Lab will provide a supporting 
institutional context for the Center, providing services such as financial oversight and controls, 
facilities, network services, management of intellectual property, and publications. The co-PI’s and 
other senior personnel will have responsibility for supervising MIT and visiting graduate- and 
undergraduate-student researchers in all aspects of the research, from software development to data 
collection, analysis, and documentation. 
 
• Coordination of data collection and analyses. The co-PIs, together with graduate student 

researchers, will be responsible for designing and implementing research activities. Each co-PI will 
develop appropriate research procedures and will obtain prior approval from the MIT Committee 
on the Use of Humans as Experimental Subjects for research involving human subjects. Walter 
Bender will oversee this process. Henry Holtzman will oversee the creation of a central repository 
for indexed field notes, video logs, log files and other artifacts so that the proposed analyses of data 
can be coordinated and shared beyond MIT (as appropriate).  

• Reporting mechanisms. Picard will be responsible for filing annual progress reports to the NSF. 
She will be assisted by the co-PIs in collecting information about ongoing project activities. 
Research meetings with co-PIs will be scheduled on a quarterly basis with conference calls and 
face-to-face meetings occurring often more frequently as collaborations dictate. To facilitate 
sharing of information among project members on an ongoing basis, we will make use of various 
online collaboration technologies (including mailing lists and “wikis”).  

• Education. The Media Lab has been a leading innovator in curriculum development and in 
advancing an “atelier” model for learning, emphasizing studio-style workshops in which students 
work on a series of design projects with rapid design-critique-redesign cycles. In our experiences at 
the Media Lab over the past 18 years, we have found that atelier-style courses are a particularly 
effective way for undergraduate and graduate students to explore new ideas and technologies, 
integrate skills from different technical disciplines, and develop as creative designers and inventive 
thinkers. The Media Lab has also been a leader in introducing this style of learning and education 
to broader audiences and contexts, from kindergarten students to senior citizens, from school 
classrooms to community centers, from inner-city US neighborhoods to rural communities in the 
developing world. The Center for Affective Learning will continue and extend this tradition, 
integrating its research findings into new learning/education initiatives inside MIT and beyond. 
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• Technology transfer. Industrial technology transfer will be based around the various Media Lab 
sponsor programs, which engage approximately 100 companies. These companies, which range 
from a variety of industry sectors (from electronics to telecommunication to manufacturing to 
service industries), participate through regular visits and semi-annual review meetings. They 
provide complementary funding, a vehicle for potential commercialization of results, and also 
insight into the practical development of fundamental research. In addition, the Center will engage 
with a number of educational institutions and foundations worldwide through its collaboration with 
the Media Lab’s Digital Nations program.  

• Management of hardware/software development. The co-PIs and senior personnel will oversee 
and coordinate hardware and software development. A version of “Source Forge,” which has been 
modified to meet the internal requirements of the Media Lab, will be used to coordinate research 
activities. It utilizes a shared-file server at MIT to publish and archive system releases during 
testing phases of a project, and as a bug-reporting system to keep track of problems and feature 
requests. The Media Lab has an excellent information technology infrastructure, including state-of-
the-art network security and a nightly server backup system.  

• Intellectual property. The Media Lab has a liberal intellectual property policy that is unique for 
university research laboratories: In order to foster open discourse among researchers and sponsors 
from industry and governments, sponsors have the right to royalty-free license to any technologies 
developed at the Lab. In addition, Media Lab faculty, students, and alumni have been pioneers in 
the Open Source movement, and the vast majority of the intellectual property created at the Lab is 
put directly into the public domain. 

• Center administration. The MIT Grants & Contracts Office has procedures in place to administer 
subcontracts and handle the invoicing procedures. The Media Lab’s chief finance officer will 
provide direct fiduciary oversight. The Media Lab director’s office will provide oversight of the 
contract and any intellectual property issues associated with the Center. These efforts will be 
coordinated with MIT’s Office of Sponsored Research and Technology Licensing Office. Lab 
space, office space, and furniture will be provided by university administration and be managed by 
the Media Lab’s facilities manager. The Media Lab’s Network and Computing Systems will 
provide support for the Center. A program manager will be in charge of all administrative issues 
and logistics for project-wide meetings and events at MIT. The administrator for the MIT Program 
in Media Arts and Science will provide support for the proposed Fellows program.  

• Diversity. MIT is committed to the principle of equal opportunity in education and employment. 
The Institute does not discriminate against individuals on the basis of race, color, sex, sexual 
orientation, religion, disability, age, veteran status, ancestry, or national or ethnic origin in the 
administration of its educational policies, admissions policies, employment policies, scholarship 
and loan programs, and other Institute-administered programs and activities. Additionally, many of 
our outreach initiatives (especially the Computer Clubhouses and the Teacher Education Program) 
target under-represented minorities. 

• Sustainability. The plan for long-term sustainability of the Center is based upon the Media Lab’s 
nearly 20 years of success in combining industry, government, and foundation funding. We 
anticipate that over the lifetime of the Center, we will have “hardened” the faculty positions with 
chairs, migrated a majority of student fellowships to industry support, and obtained out-reach 
operating costs from international, national, and local foundations. 
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Prior NSF Support received by PIs and Co-PIs 
 
Rosalind W. Picard 
NSF ROLE award number REC-0087768 
Amount & Period of Support: $947,008 for 36 months, 11/15/2000 through 10/31/2003 
PI: Rosalind W. Picard, co-PIs: Justine Cassell, Rob Reilly, Barry Kort.  
Title: The Role of Emotion in Propelling the Science, Math, Engineering, and Technology Process 
 
Summary of Results: This research has advanced a new theory and developed new algorithms and 
tools for non-invasively sensing, recognizing, and responding to a child's emotional state in a 
computer learning situation. Results include: (1) developing a system to gather and synchronize data 
from multiple sensors, including two custom sensors (BlueEyes Camera and TekScan Chair pressure 
sensor); (2) crafting a computer learning interaction that reliably elicited both boredom and different 
levels of interest, and collecting five channels of synchronized data from twenty children engaging in 
this interaction; (3) developing, through iterative work with teachers, a set of emotion labels that could 
be reliably and meaningfully attached to this data, and having the data coded with these labels: “high 
interest,” “medium interest,” “low interest,” “taking a break,” and “bored;” and (4) developing and 
testing automated pattern recognition/machine learning algorithms for enabling the computer to infer 
these labels, and achieving highly significant recognition rates on upper facial expressions and on 
shifts in posture related to affective state; thus, showing that machines can recognize, with 
significantly higher than chance probabilities, indications of the learner’s affective state related to 
interest and boredom.  
 
In parallel with this effort, we developed tools for building agents that would respond to the learner's 
affective state. We defined, designed, and tested new “relational agents,” agents capable of building 
long-term social-emotional relationships with people. We conducted a 99-person one-month test of the 
first relational agent, where subjects were split into three groups, all doing the same task (1/3 with no 
agent, 1/3 with the relational agent, 1/3 with the same agent but without its relational skills) and found 
the task outcome improved in all cases, while a “bond” rating toward the agent was significantly 
higher in the relational case. Thus, this work showed that certain relational skills could be automated, 
resulting in people reporting that the agent cared more about them, was more likeable, showed more 
respect, and earned more of their trust than the non-relational agent. People interacting with the 
relational agent were also significantly more likely to want to continue interacting with that agent. The 
significant difference in people's reports held at both times of evaluation: day 7 and day 27, showing 
that the improvement was sustained.  
 
Publications: Aist et al., 2002a,b; Bickmore, 2001; Bickmore, 2002; Bickmore and Cassell, 2002; 

Bickmore and Picard, 2002; Bickmore, 2003; Bickmore and Cassell, 2003; Bickmore and Picard 
2003; Cassell, et al., 2001; Kapoor and Picard, 2001; Kapoor et al., 2001; Kapoor 2002; Kapoor 
and Picard, 2002; Kapoor et al., 2003; Kort et al., 2001a,b; Kort and Reilly, 2001; Kort and Reilly, 
2002a–e; Kort et al., 2002; Kort and Reilly, 2003a-c; Kort and Reilly, 2004a,b.; Liu and Picard, 
2003; Mota, 2002; Mota and Picard, 2003; Picard, 2003. 

 
Available databases and other products: The sensors and algorithms developed in this research are 
available, and have already been adopted by University of Memphis, NASA, and BBN for use in 
intelligent tutoring systems projects. 
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Summary of Results: The Playful Invention and Exploration (PIE) Network, a collaboration of the MIT 
Media Laboratory and six museums, has developed a new generation of events and public programs 
integrating art, science, and technology, linking the use of physical materials with digital technology 
in creative inquiry and inventive exploration. 
 
PIE museums have integrated new MIT educational research and technologies (such as 
“programmable bricks”) into their ongoing public programs. Museums have organized MindFest 
events, at which young people, educators, artists, engineers, hobbyists, and researchers come together 
to collaborate on invention projects and share ideas with one another. Museums have also organized a 
series of Make-Your-Own Workshops for families (with a focus on those with children ages 8–14). 
Workshop themes include: Make-Your-Own Kinetic Sculptures, Make-Your-Own Mood Meter, and 
Make-Your-Own Programmable Jewelry.  
 
The PIE Network also contributed to the development of the Lemelson Center’s Invention at Play 
exhibition, which opened in 2002 at the National Museum of American History and is now traveling 
to nine science centers and museums nationally, expecting to reach one million visitors. The exhibition 
includes a 10-minute video highlighting Media Lab learning research. 
 
Publications include: Borovoy et al., 2001; Resnick, 2001; Resnick, 2002; Resnick, 2003; Zuckerman 
and Resnick, 2003a; Zuckerman and Resnick, 2003b. 
 


