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1. Introduction: The Era of Decentralization 

It seems fair to say that we live in an Era of Decentralization. Almost every time you 
pick up a newspaper, you can see evidence of the growing interest in decentralized 
systems. On the front page, you might read an article about the transition of the former 
Communist states from centrally-planned economies to market-based economies. Turn to 
the business page, and you might find an article about the shift in corporate organizations 
away from top-down hierarchies toward decentralized management structures. The 
science section might carry an article about new distributed models of the mind, and it 
might include a technology column about the role of the Internet in promoting distributed 
approaches to computing. And in the book review, you might discover how the latest 
literary theories are based on the idea that literary meaning itself is decentralized, always 
constructed by individual readers, not imposed by a centralized author. 

But even as the influence of decentralized ideas grows within our culture, there is a 
deep-seated resistance to such ideas. At some deep level, people seem to have strong 
attachments to centralized ways of thinking. When people see patterns in the world, they 
often assume that there is some type of centralized control, even when it doesn’t exist. 
For example, most people assume that birds in a flock play a game of follow-the-leader: 
the bird at the front of the flock leads, and the others follow. But that’s not so. In fact, 
most bird flocks don’t have leaders at all. Rather, each bird follows a set of simple rules, 
reacting to the movements of the birds nearby it. Orderly flock patterns arise from these 
simple, local interactions. The bird in front is not a “leader” in any meaningful sense—it 
just happens to end up there. The flock is organized without an organizer, coordinated 
without a coordinator. Yet most people continue to assume the existence of a “leader 
bird.” 

This assumption of centralized control, a phenomenon I call the centralized mindset, is 
not just a misconception of the scientifically naive. It seems to affect the thinking of 
nearly everyone. Until recently, even scientists assumed that bird flocks must have 
leaders. It is only in recent years that scientists have revised their theories, asserting that 
bird flocks are leader-less and self-organized (Heppner and Grenander, 1990; Reynolds, 
1987). A similar bias toward centralized theories can be seen throughout the history of 
science. 

In this chapter, I discuss how computer-modeling activities can help people move 
beyond the centralized mindset, helping them gain new insights into (and appreciation 



2 

for) the workings of decentralized systems. In particular, I will discuss a programmable 
modeling environment, called StarLogo, that I developed to help pre-college students 
model and explore decentralized systems. By presenting “stories” of students’ activities 
with StarLogo, I hope to shed light on the nature of the centralized mindset and on ways 
of moving beyond it. At the same time, I have a more general goal: to present (and 
defend) a set of principles to guide the uses of computer modeling in science education. 

2. Learning Through Modeling 

My “decentralized modeling” research project has been guided by five core principles. 
In my view, these principles apply not only to my own research project, but to all 
applications of computer modeling in science education.  

• Principle 1: Encourage construction of models (not just manipulation of pre-existing 
models). In many educational applications of computer modeling, students do little more 
than twiddle parameters on pre-constructed models. For example, they are given a model 
of a spring with a mass on the end, along with sliders for controlling the spring constant 
and mass. That type of activity can have some value. But students are likely to make 
much deeper connections with the concepts underlying the model if they are given the 
opportunity to construct models on their own (Papert, 1991). Accordingly, I designed 
StarLogo as a programmable modeling environment, with which students can construct 
their own models. 

• Principle 2: Rethink what is learned (not just how it is learned). The activity of 
computer modeling provides a new opportunity for students to learn through exploration 
and experimentation. But often overlooked is the potential to use modeling to rethink not 
just the process but the content of science education. Too often, educators use computer 
modeling as a new way to teach the same old things (e.g., the motion of springs). In my 
work, the emphasis has been on using modeling to help students explore ideas and 
concepts that were previously inaccessible. For example, ideas about decentralized 
systems and self-organizing systems have traditionally been taught at the graduate level, 
using advanced mathematics. StarLogo was designed to make these ideas accessible to 
pre-college students, without any advanced mathematics. 

• Principle 3: Support true computational models (not just computerization of 
traditional mathematical models). For several hundred years, mathematicians and 
scientists have used differential equations to model dynamical systems. Many computer-
modeling tools re-implement this approach on the computer, using the computer to 
numerically solve differential equations. These tools are certainly very useful, and some 
of them do a very good job of hiding the formal mathematics under graphical 
descriptions of the differential equations. But the most fundamental contributions of 
computer modeling are likely to come from tools that are based on totally new 
representations, tailored explicitly for the computer. That is the case with StarLogo, 
which is based on hundreds of individual objects acting in parallel. This type of 
representation was not possible in the paper-and-pencil era, and it makes possible new 
ways for even young students to explore the workings of dynamical systems. 
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• Principle 4: Facilitate personal connections (not just mathematical abstractions). In 
designing new types of learning tools, it is important to consider two types of 
connections (Resnick, Bruckman, and Martin, 1996). First, there are epistemological 
connections: how will the tool connect to important domains of knowledge and 
encourage new ways of thinking? But equally important are personal connections: how 
will the tool connect to users’ interests, passions, and experiences? Many computer-
modeling tools are “impersonal”: students must manipulate either mathematical 
abstractions or aggregate quantities. StarLogo aims to be more “personal,” encouraging 
students to think about the actions and interactions of individual (and familiar) objects. 

• Principle 5: Focus on stimulation (not just simulation). Many computer models try to 
imitate some real-word system or process as accurately as possible. Computer 
simulations of nuclear reactors are used to predict when the reactors might fail; computer 
simulations of meteorological patterns are used to predict tomorrow’s weather. In these 
cases, the more accurate the simulation, the better. But, for educational applications of 
computer modeling, real-world fidelity should not be the top goal. Instead, the real world 
should serve only as an inspiration, a departure point for thinking about some set of ideas 
or concepts. The goal is not to simulate particular systems and processes in the world; it 
is to probe, challenge, and disrupt the way people think about systems and processes in 
general. That is the goal of StarLogo: to stimulate people to develop new ways of 
thinking about decentralized systems. 

3. The Centralized Mindset 

Before exploring how computer modeling can help people move beyond the 
centralized mindset, it is worth examining the nature of the centralized mindset. In some 
ways, the pervasiveness of the centralized mindset might seem surprising. After all, 
aren’t we living in an Era of Decentralization? Actually, it isn’t so surprising if we look 
at the growing interest in decentralization from a different perspective: Why are people 
becoming more interested in decentralized ideas now? Why didn’t it happen before? Why 
have people resisted decentralized approaches in the past? What underlies this 
persistence of resistance? What made people cling onto centralized approaches so tightly, 
for so long? 

The centralized mindset can be seen throughout the history of science. Until the mid-
19th century, almost everyone embraced the idea that living systems were designed by 
some God-like entity. Even scientists were convinced by the so-called “watchmaker 
argument” (or the “argument from design”), proposed by theologian William Paley in his 
book Natural Theology (Paley, 1802). Paley noted that watches are very complex and 
precise objects. If you found a watch on the ground, you could not possibly believe that 
such a complex object had been created by random chance. Instead, you would naturally 
conclude that the watch must have ad a maker. For Paley, the same logic applies to living 
systems: they, too, must have a maker.  

It is not surprising that scientists accepted Paley’s argument in the early 19th century, 
since there were no viable alternative explanations for the complexity of living systems. 
What is surprising is how strongly scientists held onto centralized beliefs even after 
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Darwin provided a viable (and more decentralized) alternative. Science historian Ernst 
Mayr (1982) notes that biologists put up “enormous resistance” to Darwin’s theories for a 
full 80 years after publication of Origin of Species, generally preferring more centralized 
alternatives. 

The history of research on slime-mold cells, as told by Evelyn Fox Keller (1985), 
provides another example of centralized thinking. During their life cycle, slime-mold 
cells sometimes gather together into clusters. For many years, scientists believed that the 
aggregation process was coordinated by specialized slime-mold cells, known as 
“founder” or “pacemaker” cells. According to this theory, each pacemaker cell sends out 
a chemical signal, telling other slime-mold cells to gather around it, resulting in a cluster. 
In 1970, Keller and Segel (1970) proposed an alternative model, showing how slime-
mold cells can aggregate without any specialized cells. Nevertheless, for the following 
decade, other researchers continued to assume that special pacemaker cells were required 
to initiate the aggregation process. As Keller (1985) writes, with an air of disbelief: “The 
pacemaker view was embraced with a degree of enthusiasm that suggests that this 
question was in some sense foreclosed.” By the early 1980’s, researchers began to accept 
the idea of aggregation among homogeneous cells, without any pacemaker. But the 
decade-long resistance serves as some indication of the strength of the centralized 
mindset. 

People also view the workings of the economy in centralized ways, assuming singular 
causes for complex phenomena. Children, in particular, seem to assume strong 
governmental control over the economy. Of course, governments do play a large role in 
most economies, but children assume that governments play an even larger role than they 
actually do. In interviews with Israeli children between 8 and 15 years old, psychologist 
David Leiser (1983) found that nearly half of the children assumed that the government 
sets all prices and pays all salaries. Even children who said that employers pay salaries 
often believed that the government provides the money for the salaries. A significant 
majority of the students assumed that the government pays the increased salaries after a 
strike. And many younger children had the seemingly contradictory belief that the 
government is also responsible for organizing strikes. As Leiser writes: “The child finds 
it easier to refer unexplained phenomena to the deliberate actions of a clearly defined 
entity, such as the government, than to impersonal ‘market forces.’” 

In some ways, it is not surprising that people have such strong commitments to 
centralized approaches. Many phenomena in the world are, in fact, organized by a central 
designer. These phenomena act to reinforce the centralized mindset. When people see 
neat rows of corn in a field, they assume (correctly) that the corn was planted by a 
farmer. When people watch a ballet, they assume (correctly) that the movements of the 
dancers were planned by a choreographer. When people see a watch, they assume 
(correctly) that it was designed by a watchmaker. 

Moreover, most people participate in social systems (such as families and school 
classrooms) where power and authority are very centralized. These hierarchical systems 
serve as strong models. Many people are probably unaware that other types of 
organization are even possible. In an earlier research project, I developed a programming 
language (called MultiLogo) based on “agents” that communicated with one another. In 
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using the language, children invariably put one of the agents “in charge” of the others. 
One student explicitly referred to the agent in charge as “the teacher.” Another referred to 
it as “the mother” (Resnick, 1990). 

Perhaps most important, our intuitions about systems in the world are deeply 
influenced by our conceptions of ourselves. The human mind is composed of thousands 
of interacting entities (e.g., Minsky, 1987), but each of us experiences our own self as a 
singular entity. This is a very convenient, perhaps necessary, illusion for surviving in the 
world. When I do something, whether I’m painting a picture or organizing a party, I feel 
as if “I” am playing the role of the “central actor.” It feels like there is one entity in 
charge: me. So it is quite natural that I should expect most systems to involve a central 
actor, or some entity that is in charge. The centralized mindset might be viewed as one 
aspect (and a lasting remnant) of the egocentrism that Piaget identified in early 
childhood. 

4. Tools for Decentralized Thinking 

In some ways, people already have a great deal of experience with decentralized 
systems: they observe decentralized systems in the natural world, and they participate in 
decentralized social systems in their lives. But, of course, observation and participation 
do not necessarily lead to strong intuitions or deep understanding. People observed bird 
flocks for thousands of years before anyone suggested that flocks are leader-less. 
Observation and participation are not enough. People need a richer sense of engagement 
with decentralized systems. One way to do that is to give people opportunities to design 
decentralized systems.  

At first glance, this approach to the study of decentralized systems might seem like a 
contradiction. After all, how can you design decentralized phenomena? By definition, 
decentralized patterns are created without a centralized designer. But there are ways to 
use design in the study of decentralized systems. Imagine that you could design the 
behaviors of lots of individual components—then observe the patterns that result from all 
of the interactions. This is a different sort of design: You control the actions of the parts, 
not of the whole. You are acting as a designer, but the resulting patterns are not designed. 

Over the years, computer scientists have developed a variety of computational tools 
that can be used for this type of “decentralized design.” Cellular automata represent one 
example (Toffoli & Margolus, 1987). In cellular automata, a virtual world is divided into 
a grid of “cells.” Each cell holds a certain amount of “state.” (On the computer screen, 
different states are usually represented by different colors.) In the simplest cases, each 
cell might hold just a single piece of state, indicating whether the cell is “alive” or 
“dead.” There is a transition rule that determines how each cell changes from one 
generation to the next. Transition rules are typically based on the states of a cell’s 
“neighbors.” For example, a cell might become “alive” if the majority of its neighboring 
cells are alive. Each cell executes the same rule, over and over. Cellular automata have 
proved to be an extraordinarily rich framework for exploring self-organizing phenomena. 
Simple rules for each cell sometimes lead to complex and unexpected large-scale 
structures.  
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To engage students in thinking about decentralized systems, I wanted to provide an 
environment similar to cellular automata, but more connected to students’ interests and 
experiences. While cellular automata are well-suited for computer hackers and 
mathematicians, they seem ill-suited for people who have less experience (or less interest 
in) manipulating abstract systems. The objects and operations in cellular automata are not 
familiar to most people. The idea of writing “transition rules” for “cells” is not an idea 
that most people can relate to.  

Instead, I decided to create an environment based on the familiar ideas of “creatures” 
and “colonies.” The goal was to enable students to investigate the ways that colony-level 
behaviors (such as bird flocks or ant foraging trails) can arise from interactions among 
individual creatures.1 Logo seemed like a good starting point for my computational 
system (Papert, 1980; Harvey, 1985). The traditional Logo “turtle” can be used to 
represent almost any type of object in the world: an ant in a colony, a car in a traffic jam, 
an antibody in the immune system, or a molecule in a gas. But traditional versions of the 
Logo language are missing several key features that are needed for explorations of 
colony-type behaviors. So I developed a new version of Logo, called StarLogo, that 
extends Logo in three major ways (Resnick, 1991, 1994). 

First, StarLogo has many more turtles. While commercial versions of Logo typically 
have only a few turtles, StarLogo has thousands of turtles, and all of the turtles can 
perform their actions at the same time, in parallel.2 For many colony-type explorations, 
having a large number of turtles is not just a nicety, it is a necessity. In many cases, the 
behavior of a colony changes qualitatively when the number of creatures is increased. An 
ant colony with 10 ants might not be able to make a stable pheromone trail to a food 
source, whereas a colony with 100 ants (following the exact same rules) might.  

Second, StarLogo turtles have better “senses.” The traditional Logo turtle was 
designed primarily as a “drawing turtle,” for creating geometric shapes and exploring 
geometric ideas. But the StarLogo turtle is more of a “behavioral turtle.” StarLogo turtles 
come equipped with “senses.” They can detect (and distinguish) other turtles nearby, and 
they can “sniff” scents in the world. Such turtle-turtle and turtle-world interactions are 
essential for creating and experimenting with decentralized and self-organizing 
phenomena. Parallelism alone is not enough. If each turtle just acts on its own, without 
any interactions, interesting colony-level behaviors will generally not arise.  

Third, StarLogo reifies the turtles’ world. In traditional versions of Logo, the turtles’ 
world does not have many distinguishing features. The world is simply a place where the 
turtles draw with their “pens.” Each pixel of the world has a single piece of state 
information—its color. StarLogo attaches a much higher status to the turtles’ world. The 

                                                 

1 I am using the terms “creature” and “colony” rather broadly. On a highway, each car can be 
considered a “creature,” and a traffic jam can be considered the “colony.” 

2 The initial version of StarLogo was implemented on a massively-parallel computer, the Connection 
Machine. We have since implemented StarLogo on traditional sequential computers by simulating 
parallelism. To download a copy of StarLogo, see http://www.media.mit.edu/~starlogo/ 
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world is divided into small square sections called patches. The patches have many of the 
same capabilities as turtles, except that they can not move. Each patch can hold an 
arbitrary variety of information. For example, if the turtles are programmed to release a 
“chemical” as they move, each patch can keep track of the amount of chemical that has 
been released within its borders. Patches can execute StarLogo commands, just as turtles 
do. For example, each patch could diffuse some of its “chemical” into neighboring 
patches, or it could grow “food” based on the level of chemical within its borders. Thus, 
the environment is given a status equal to that of the creatures inhabiting it.  

StarLogo programs can be conceptualized as turtles moving on top of (and interacting 
with) a cellular-automata grid. All types of interactions are possible: turtle-turtle, turtle-
patch, and patch-patch interactions. StarLogo places special emphasis on local 
interactions—that is, interactions among turtles and patches that are spatially near one 
another. Thus, StarLogo is well-suited for explorations of self-organizing phenomena, in 
which large-scale patterns arise from local interactions. In addition, the massively 
parallel nature of StarLogo makes it well-suited for explorations of probabilistic and 
statistical concepts—and studies of people’s thinking about these concepts (Wilensky, 
1993). 

Figure 1 shows a StarLogo simulation of slime-mold cells aggregating into clusters. In 
this example, each cell emits a chemical pheromone, and it also moves in the direction 
where the pheromone is strongest (that is, it “follows the gradient” of the pheromone). At 
the same time, the patches cause the pheromone to diffuse and evaporate. With this 
simple strategy, the cells quickly aggregate into clusters—demonstrating that aggregation 
can arise from a decentralized mechanism. 

In some ways, the ideas underlying StarLogo parallel the ideas underlying the early 
versions of Logo itself. In the late 1960’s, Logo aimed to make then-new ideas from the 
computer-science community (like procedural abstraction and recursion) accessible to a 
larger number of users. Similarly, StarLogo aims to make 1990’s ideas from computer 
science (like massive parallelism) accessible to a larger audience. And whereas Logo 
introduced a new object (the turtle) to facilitate explorations of particular 
mathematical/scientific ideas, such as differential geometry (Abelson & diSessa, 1980), 
StarLogo introduces another new object (the patch) to facilitate explorations of other 
mathematical/scientific ideas (such as self-organization). 
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Figure 1: Slime-mold cells aggregating into clusters 
 

 

5. StarLogo Stories 

This section presents stories of student projects with StarLogo—describing the models 
that students constructed and what they learned in doing so. The students typically came 
to MIT for eight to ten sessions, each lasting 60 to 90 minutes. Most students worked 
together in pairs. I worked directly with the students, suggesting projects, asking 
questions, challenging assumptions, helping with programming, and encouraging 
students to reflect on their experiences as they worked with StarLogo. Computer 
interactions were saved in computer files, and all discussions were recorded on audio 
tape. In the early sessions, I typically showed students existing StarLogo programs. The 
students experimented with the programs, trying different parameters and making slight 
modifications of the programs. As the sessions progressed, I encouraged students to 
develop their own projects ideas and construct their own models, based on personal 
interests.  

5.1 Traffic Jams 

Ari and Fadhil were students at a public high-school in the Boston area. Both enjoyed 
working with computers, but neither had a very strong mathematical or scientific 
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background. At the time Ari and Fadhil started working with StarLogo, they were also 
taking a driver’s education class. Each had turned 16 years old a short time before, and 
they were excited about getting their driver’s licenses. Much of their conversation 
focused on cars. When I gave Ari and Fadhil a collection of articles to read, a Scientific 
American article titled “Vehicular Traffic Flow” (Herman & Gardels, 1963) captured 
their attention. 

Traffic flow is rich domain for studying collective behavior. Interactions among cars 
in a traffic flow can lead to surprising group phenomena. Consider a long road with no 
cross streets or intersections. What if we added some traffic lights along the road? The 
traffic lights would seem to serve no constructive purpose. It would be natural to assume 
that the traffic lights would reduce the overall traffic throughput (number of cars per unit 
time). But in some situations, additional traffic lights actually improve overall traffic 
throughput. The New York City Port Authority, for example, found that it could increase 
traffic throughput in the Holland Tunnel by 6 percent by deliberately stopping some cars 
before they entered the tunnel (Herman & Gardels, 1963). 

Traditional studies of traffic flow rely on sophisticated analytic techniques (from fields 
like queuing theory). But many of the same traffic phenomena can be explored with 
simple StarLogo programs. To get started, Ari and Fadhil decided to create a one-lane 
highway. (Later, they experimented with multiple lanes.) Ari suggested adding a police 
radar trap somewhere along the road, to catch cars going above the speed limit. But he 
also wanted each car to have its own radar detector, so that cars would know to slow 
down when they approached the radar trap.  

After some discussion, Ari and Fadhil decided that each StarLogo turtle/car should 
follow three basic rules: 

• If there is a car close ahead of you, slow down. 

• If there are not any cars close ahead of you, speed up (unless you are 
already moving at the speed limit). 

• If you detect a radar trap, slow down. 

Ari and Fadhil implemented these rules in StarLogo. They expected that a traffic jam 
would form behind the radar trap, and indeed it did (Figure 2). After a few dozen 
iterations of the StarLogo program, a line of cars started to form to the left of the radar 
trap. The cars moved slowly through the trap, then sped away as soon as they passed it. 
Ari explained: “First one car slows down for the radar trap, then the one behind it slows 
down, then the one behind that one, and then you’ve got a traffic jam.”  

I asked Ari and Fadhil what would happen if only some of the cars had radar detectors. 
Ari predicted that only some of the cars would slow down for the radar trap. Fadhil had a 
different idea: “The ones that have radar detectors will slow down, which will cause the 
other ones to slow down.” Fadhil was right. The students modified the StarLogo program 
so that only 25 percent of the cars had radar detectors. The result: the traffic flow looked 
exactly the same as when all of the cars had radar detectors. 
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Figure 2: Traffic jam caused by radar trap (shaded area) 
(Cars move left to right) 

 
 

What if none of the cars had radar detectors—or, equivalently, if the radar trap were 
removed entirely? With no radar trap, the cars would be controlled by just two simple 
rules: if you see another car close ahead, slow down; if not, speed up. The rules could not 
be much simpler. At first, Fadhil predicted that the traffic flow would become uniform: 
cars would be evenly spaced, traveling at a constant speed. Without the radar trap, he 
reasoned, what could cause a jam? But when the students ran the program, a traffic jam 
formed (Figure 3). Along parts of the road, the cars were tightly packed and moving 
slowly. Elsewhere, they were spread out and moving at the speed limit. 

Ari and Fadhil were surprised. And when I showed Ari and Fadhil’s program to other 
high-school students, they too were surprised. In general, the students expected the cars 
to end up evenly spaced along the highway, separated by equal distances. Several of them 
talked about the cars reaching an “equilibrium,” characterized by equal spacing. No one 
expected a traffic jam to form. Some of their predictions: 

Emily: [The cars will] just speed along, just keep going along...they will 
end up staggered, in intervals. 

Frank: Nothing will be wrong with it. Cars will just go...There’s no 
obstacles. The cars will just keep going, and that’s it. 
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Ramesh: They will probably adjust themselves to a uniform distance from 
each other. 

 
When I ran the simulation, and traffic jams began to form, the students were shocked. 

In their comments, most students revealed a strong commitment to the idea that some 
type of “seed” (like an accident or a broken bridge) is needed to start a traffic jam. 
Perhaps Frank expressed it best: “I didn’t think there would be any problem, since there 
was nothing there.” If there is nothing there—if there is no seed—there should not be a 
traffic jam. Traffic jams do not just happen; they must have localizable causes. And the 
cause must come from outside the system (not from the cars themselves). Some 
researchers who study systems talk about exogenous (external) and endogenous (internal) 
factors affecting the behavior of a system. In the minds of the students, patterns (such as 
traffic jams) can be formed only by exogenous factors. 

Fadhil suggested that the jams were caused by differences in the initial speeds of the 
cars. So the students changed the StarLogo program, starting all of the cars at the exact 
same speed. But the jams still formed. Fadhil quickly understood. At the beginning of the 
program, the cars were placed at random positions on the road. Random positioning led 
to uneven spacing between the cars, and uneven spacing could also provide the “seed” 
from which a traffic jam could form. Fadhil explained: “Some of the cars start closer to 
other cars. Like, four spaces between two of them, and two spaces between others. A car 
that’s only two spaces behind another car slows down, then the one behind it slows 
down.” 
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Figure 3: Traffic jam without radar trap 

(Cars move left to right, but jam moves right to left) 
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Next, they changed the program so that the cars were evenly spaced. Sure enough, no 
traffic jams formed. All of the cars uniformly accelerated up to the speed limit. But Ari 
and Fadhil recognized that such a situation would be difficult to set up in the real world. 
The distances between the cars had to be just right, and the cars had to start at exactly the 
same time—like a platoon of soldiers starting to march in unison.  

5.2 Termites and Wood Chips 

Termites are among the master architects of the animal world. On the plains of Africa, 
termites construct giant mound-like nests rising more than 10 feet tall, thousands of times 
taller than the termites themselves. Inside the mounds are intricate networks of tunnels 
and chambers. Each termite colony has a queen. But, as in ant colonies, the termite queen 
does not “tell” the termite workers what to do. On the termite construction site, there is 
no construction foreman, no one in charge of the master plan. Rather, each termite carries 
out a relatively simple task. Termites are practically blind, so they must interact with 
each other (and with the world around them) primarily through their senses of touch and 
smell. From local interactions among thousands of termites, impressive structures 
emerge. 

The global-from-local nature of termite constructions makes them well-suited for 
StarLogo explorations. Callie, one of the high-school students, worked on a simple form 
of termite construction: she programmed a set of termites to collect wood chips and put 
them into piles. At the start of the program, wood chips were scattered randomly 
throughout the termites’ world. The challenge was to make the termites organize the 
wood chips into a few, orderly piles. 

Callie and I worked together on the project. We started with a very simple strategy, 
programming each individual termite to obey the following rules: 

• If you are not carrying anything and you bump into a wood chip, pick it 
up. 

• If you are carrying a wood chip and you bump into another wood chip, 
put down the wood chip you’re carrying. 

At first, Callie and I were both skeptical that this simple strategy would work. There 
was no mechanism for preventing termites from taking wood chips away from existing 
piles. So while termites are putting new wood chips on a pile, other termites might be 
taking wood chips away from it. It seemed like a good prescription for getting nowhere. 
But we pushed ahead and implemented the strategy in a StarLogo program, with 1000 
termites and 2000 wood chips scattered in a 128x128 grid. 

We tried the program, and (much to our surprise) it worked quite well. At first, the 
termites gathered the wood chips into hundreds of small piles. But gradually, the number 
of piles declined, and the number of wood chips in each pile increased (see Figure 4). 
After 2000 iterations, there were about 100 piles, with an average of 15 wood chips in 
each pile. After 10,000 iterations, there were fewer than 50 piles left, with an average of 
30 wood chips in each pile. After 20,000 iterations, only 34 piles remained, with an 
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average of 44 wood chips in each pile. The process was rather slow, and it was frustrating 
to watch, as termites often carried wood chips away from well-established piles. But, all 
in all, the program worked quite well. 

Why did it work? As we watched the program, it suddenly seemed obvious. Imagine 
what happens when the termites (by chance) remove all of the wood chips from a 
particular pile. Because all of the wood chips are gone from that spot, termites will never 
again drop wood chips there. So the pile has no way of restarting. 

As long as a pile exists, its size is a two-way street: it can either grow or shrink. But 
the existence of a pile is a one-way street: once it is gone, it is gone forever. Thus, a pile 
is somewhat analogous to a species of creatures in the real world. As long as the species 
exists, the number of individuals in the species can go up or down. But once all of the 
individuals are gone, the species is extinct, gone forever. In these cases, zero is a 
“trapped state”: once the number of creatures in a species (or the number of wood chips 
in a pile) goes to zero, it can never rebound. 

Of course, the analogy between species and piles breaks down in some ways. New 
species are sometimes created, as offshoots of existing species. But in the termite 
program, there is no way to create a new pile. The program starts with roughly 2000 
wood chips. These wood chips can be viewed as 2000 “piles,” each with a single wood 
chip. As the program runs, some piles disappear, and no new piles are created. So the 
total number of piles decreases monotonically. 
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Figure 4: The number of piles decreases monotonically 
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5.3 Rabbits and Grass 

The great baseball manager Casey Stengel once said: “If you don’t know where you’re 
going, you might end up somewhere else.” My experiences with computer-based 
modeling activities have taught me a corollary: “Even if you think you know where 
you’re going, you’ll probably end up somewhere else.” 

That’s what happened to Benjamin, a high-school student, when he set out to create an 
StarLogo program that would simulate evolution by natural selection. I had given 
Benjamin a Scientific American article (Dewdney, 1989) about a computer program 
called Simulated Evolution (Palmiter, 1989). Benjamin, who had just finished his junior 
year in high school, decided that he wanted to create a StarLogo program similar to the 
commercial program described in the article. His goal was to create a set of computer 
“creatures” that would interact and evolve. 

At the core of Benjamin’s simulation were turtles and food. His basic idea was simple: 
turtles that eat a lot of food reproduce, and turtles that don’t eat enough food die. 
Eventually, he planned to add “genes” to his turtles. Different genes could provide turtles 
with different levels of “fitness” (perhaps different capabilities for finding food). But 
Benjamin never got around to the genes. Rather, on the road to evolution, Benjamin got 
sidetracked into an interesting exploration of ecological systems (in particular, predator-
prey systems). 

Benjamin began by making food grow randomly throughout the StarLogo world. 
(During each time step, each StarLogo patch had a random chance of growing some 
food.) Then he created some turtles. The turtles had very meager sensory capabilities. 
They could not “see” or “smell” food at a distance. They could sense food only when 
they bumped directly into it. So the turtles followed a very simple strategy: Wander 
around randomly, eating whatever food you bump into. 

Benjamin gave each turtle an “energy” variable. Every time a turtle took a step, its 
energy decreased a bit. Every time it ate some food, its energy increased. Then Benjamin 
added one more rule: if a turtle’s energy dipped to zero, the turtle died. With this 
program, the turtles do not reproduce. Life is a one-way street: turtles die, but no new 
turtles are born. Still, even with this simple-minded program, Benjamin found some 
surprising and interesting behaviors. 

Benjamin ran the program with 300 turtles. But the environment could not support that 
many turtles. There wasn’t enough food. So some turtles began to die. The turtle 
population fell rapidly at first, then it leveled out at about 150 turtles. The system seemed 
to reach a steady state with 150 turtles: the number of turtles and the density of food both 
remained roughly constant. 

Then Benjamin tried the same program with 1000 turtles. If there wasn’t enough food 
for 300 turtles, there certainly wouldn’t be enough for 1000 turtles. So Benjamin wasn’t 
surprised when the turtle population began to fall. But he was surprised with how far the 
population fell. After a while, only 28 turtles remained. Benjamin was puzzled: “We 
started with more, why should we end up with less?” After some discussion, he realized 
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what had happened. With so many turtles, the food shortage was even more critical than 
before. The result: mass starvation. Benjamin still found the behavior a bit strange: “The 
turtles have less (initial energy as a group), and less usually isn’t more.” 

Next, Benjamin decided to add reproduction to his model. His plan: whenever a 
turtle’s energy increases above a certain threshold, the turtle should “clone” itself, and 
split its energy with its new twin. That can be accomplished by adding another demon 
procedure to the program. 

Benjamin assumed that the rule for cloning would somehow “balance” the rule for 
dying, leading to some sort of “equilibrium.” He explained: “Hopefully, it will balance 
itself out somehow. I mean it will. It will have to. But I don’t know what number it will 
balance out at.” After a little more thought, Benjamin suggested that the food supply 
might fall at first, but then it would rise back and become steady: “The food will go 
down, a lot of them will die, the food will go up, and it will balance out.” 

Benjamin started the program running. As Benjamin expected, the food supply 
initially went down and then went up. But it didn’t “balance out” as Benjamin had 
predicted: it went down and up again, and again, and again. Meanwhile, the turtle 
population also oscillated, but out of phase with the food.  

On each cycle, the turtles “overgrazed” the food supply, leading to a scarcity of food, 
and many of the turtles died. But then, with fewer turtles left to eat the food, the food 
became more dense. The few surviving turtles thus found a plentiful food supply, and 
each of them rapidly increased its energy. When a turtle’s energy surpassed a certain 
threshold, it cloned, increasing the turtle population. But as the population grew too high, 
food again became scarce, and the cycle started again. 

Visually, the oscillations were striking. Red objects (turtles) and green objects (food) 
were always intermixed, but the density of each continually changed. Initially, the screen 
was dominated by red turtles, with a sparse scattering of green food. As the density of red 
objects declined, the green objects proliferated, and the screen was soon overwhelmingly 
green. Then the process reversed: the density of red increased, with the density of green 
declined. 

Depending on the particular parameters, the oscillations took on different forms. In 
Benjamin’s initial program, the oscillations were damped: With each cycle, the peaks 
were a little less high, the troughs a little less deep. In the first cycle, the turtle population 
dwindled to just 26 turtles, then it rose to 303 turtles. In the next cycle, the population 
shrank to 47 turtles, then up to 244 turtles. Eventually, the turtle population stabilized 
between 130 and 160 turtles. 

Benjamin recognized that this result depended critically on the parameters in his 
StarLogo program. He wondered: What would happen if the food grew just half as 
quickly? He figured that this new world would support fewer turtles, but how many 
fewer? In the original version of his StarLogo program, each patch had a 1 in 1000 
chance of growing food. Benjamin changed it to 1 in 2000. 
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When Benjamin ran the program, he was in for another surprise: all of the turtles died. 
But Benjamin, who had just finished graphing the oscillations from the previous 
experiment, quickly realized what had happened. “The oscillation must be between some 
number and negative something,” he said. That is: the trough of the oscillation must drop 
below zero. And once the population drops below zero, it can never recover. There is no 
peak after a negative trough. Extinction is forever: it is a “trapped state.” 

The problem lay in the initial conditions. Benjamin had started the simulation with 
1000 turtles. If there were fewer initial turtles, the first trough wouldn’t sink so deep. 
Benjamin came up with an ingenious solution. “I’ll start with just one (turtle),” he 
explained. “It will definitely survive. I’ll put money on it.” Benjamin started the program 
again, this time with a single turtle. For a while, the single turtle roamed the world by 
itself. Benjamin cheered it on: “Come on. Hang on there. Come on. Get some food.” 
Finally, the turtle cloned, and then there were two. “He’s going to live,” exclaimed 
Benjamin. 

The turtle population rose to about 130 turtles, leveled off, then fell. As before, the 
turtle population went up and down in a damped oscillation. Eventually, the population 
stabilized at about 75 turtles. So with food growing at half the rate as before, the turtle 
population stabilized at about half the level as before. The “equilibrium population” 
seemed to be proportional to the rate of food growth. 

Before running the program, Benjamin had predicted that the equilibrium population 
would be more drastically affected by the reduction in food growth. He expected the 
population to stabilize with considerably fewer than 75 turtles. But after watching the 
program run, he developed a explanation for the proportional relationship. Looking at the 
dots of food on the screen, he noted that the “food density” at equilibrium looked about 
the same as in the previous experiment, despite the change in the rate of food growth. 
That made sense to him: a certain food density is needed to keep the turtles just on the 
brink between death and reproduction. To reach a relatively steady state, the system 
needed to maintain that special food density. Given that the food was growing just half as 
quickly as before, it made sense that the system could support only half as many turtles. 

Benjamin’s reasoning is an example of what Hut and Sussman (1987) dubbed 
“analysis by synthesis.” Traditionally, synthesis and analysis have been seen in 
opposition to one another, two alternate ways of solving problems. But with computer-
based explorations, the two approaches get mixed and blurred. It is very unlikely that 
Benjamin could have developed his explanation without actually viewing (and 
manipulating) the simulation. Only by building and creating (synthesis) was Benjamin 
able to develop a well-reasoned explanation for the behavior of the turtles (analysis). 

The oscillating behavior in Benjamin’s project is characteristic of ecological systems 
with predators (in this case, turtles) and prey (in this case, food). Traditionally, scientific 
(and educational) explorations of predator-prey systems are based on sets of differential 
equations, known as the Lotka-Volterra equations (Lotka 1925; Volterra 1926). For 
example, the changes in the population density of the prey (n1) and the population 
density of the predator (n2) can be described with the following differential equations: 
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dn1/dt = n1(b - k1n2) 

dn2/dt = n2(k2n1 - d) 

where b is the birth rate of the prey, d is the death rate of the predators, and k1 and k2 
are constants. It is straightforward to write a computer program based on the Lotka-
Volterra equations, computing how the population densities of the predator and prey vary 
with time (e.g., Roberts 1983). 

This differential-equation approach is typical of the way that scientists have 
traditionally modeled and studied the behaviors of all types of systems (physical, 
biological, and social). Scientists typically write down sets of differential equations then 
attempt to solve them either analytically or numerically. These approaches require 
advanced mathematical training; usually, they are studied only at the university level. 

The StarLogo approach to modeling systems (exemplified by Benjamin’s project) is 
sharply different. StarLogo makes systems-related ideas more accessible to younger 
students by providing them with a stronger personal connection to the underlying models. 
Traditional differential-equation approaches are “impersonal” in two ways. The first is 
obvious: they rely on abstract symbol manipulation (accessible only to students with 
advanced mathematical training). The second is more subtle: differential equations deal 
in aggregate quantities. In the Lotka-Volterra system, for example, the differential 
equations describe how the overall populations (not the individual creatures) evolve over 
time. There are now some very good computer modeling tools—such as Stella (Roberts 
et al., 1983) and Model-It (Jackson et al., 1996)—based on differential equations. These 
tools eliminate the need to manipulate symbols, focusing on more qualitative and 
graphical descriptions. But they still rely on aggregate quantities.  

In StarLogo, by contrast, students think about the actions and interactions of individual 
objects or creatures. StarLogo programs describe how individual creatures (not overall 
populations) behave. Thinking in terms of individual creatures seems far more intuitive, 
particularly for the mathematically uninitiated. Students can imagine themselves as 
individual turtles/creatures and think about what they might do. In this way, StarLogo 
enables learners to “dive into” the model (Ackermann, 1996) and make use of what 
Papert (1980) calls “syntonic” knowledge about their bodies. By observing the dynamics 
at the level of the individual creatures, rather than at the aggregate level of population 
densities, students can more easily think about and understand the population oscillations 
that arise. Future versions of StarLogo will enable users to zoom in and out, making it 
easier for users to shift back and forth in perspective from the individual level to the 
group level. 

I refer to StarLogo models as “true computational models” (Resnick, 1997), since 
StarLogo uses new computational media in a more fundamental way than most computer-
based modeling tools. Whereas most tools simply implement traditional mathematical 
models on a computer (e.g., numerically solving traditional differential-equation 
representations), StarLogo provides new representations that are tailored explicitly for 
the computer. Of course, differential-equation models are still very useful—and superior 
to StarLogo-style models in some contexts. But too often, scientists and educators see 
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traditional differential-equation models as the only approach to modeling. As a result, 
many students (particularly students alienated by traditional classroom mathematics) 
view modeling as a difficult or uninteresting activity.  What is needed is a more 
pluralistic approach, recognizing that there are many different approaches to modeling, 
each with its own strengths and weaknesses. A major challenge is to develop a better 
understanding of when to use which approach, and why. 

6. Decentralized Thinking 

As students began working with StarLogo, they almost always assumed centralized 
causes in the patterns they observed, and they almost always imposed centralized control 
when they wanted to create patterns. But as students continued to work on StarLogo 
projects, most of them began to develop new ways of thinking about decentralization. In 
almost all cases, they developed an appreciation for and a fascination with decentralized 
systems. At one point, while we were struggling to get our termite program working, I 
asked Callie if we should give up on our decentralized approach and program the termites 
to take their wood chips to pre-designated spots. She quickly dismissed this suggestion: 

Mitchel: We could write the program so that the termites know where the 
piles are. As soon as a termite picks up a wood chip, it could just go to the 
pile and put it down. 

Callie: Oh, that’s boring! 

Mitchel: Why do you think that’s boring? 

Callie: Cause you’re telling them what to do. 

Mitchel: Is this more like the way it would be in the real world? 

Callie: Yeah. You would almost know what to expect if you tell them to go 
to a particular spot and put it down. You know that there will be three 
piles. Whereas here, you don’t know how many mounds there are going to 
be. Or if the number of mounds will increase or decrease. Or things like 
that... This way, they [the termites] made the piles by themselves. It wasn’t 
like they [the piles] were artificially put in. 

For Callie, pre-programmed behavior, even if effective, was “boring.” Callie preferred 
the decentralized approach since it made the termites seem more independent (“they 
made the piles by themselves”) and less predictable (“you don’t know how many mounds 
there are going to be”). 

Over time, other students shared Callie’s fascination with decentralization, though 
they often struggled in their efforts to use decentralized strategies in analyzing and 
constructing new systems. As I worked with students, I assembled a list of “guiding 
heuristics” that students used as they began to develop richer models of decentralized 
phenomena. These heuristics are not very “strong.” They are not “rules” for making sense 
of decentralized systems. Rather, they are loose collections of ideas associated with 
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decentralized thinking. Pedagogically, they serve as good discussion points for provoking 
people to think about decentralization. They also serve as a type of measuring stick for 
conceptual change: as students worked on StarLogo projects, they gradually began to 
integrate these heuristics into their own thinking and discourse. In this section, I discuss 
five of these guiding heuristics. 

• Positive Feedback Isn’t Always Negative 

When people think about the scientific idea of positive feedback, they typically think 
of the screeching sound that results when a microphone is placed near a speaker. Positive 
feedback is viewed as a destructive force, making things spiral out of control. By 
contrast, negative feedback is viewed as very useful, keeping things under control. 
Negative feedback is symbolized by the thermostat, keeping room temperature at a 
desired level by turning the heater on and off as needed. 

When I asked high-school students about positive feedback, most were not familiar 
with the term, but they were certainly familiar with the concept. When I explained what I 
meant by positive feedback, students quickly generated examples involving something 
getting out of control, often with destructive consequences. One student talked about 
scratching a mosquito bite, which made the bite itch even more, so she scratched it some 
more, which made it itch even more, and so on. Another student talked about stock-
market crashes: a few people start selling, which makes more people start selling, which 
makes even more people start selling, and so on. 

Despite these negative images, positive feedback often plays a crucial role in 
decentralized phenomena. Economist Brian Arthur (1990) points to the geographic 
distribution of cities and industries as an example of a self-organizing process driven by 
positive feedback. Once a small nucleus of high-technology electronics companies 
started in Santa Clara County south of San Francisco, an infrastructure developed to 
serve the needs of those companies. That infrastructure encouraged even more electronics 
companies to locate in Santa Clara County, which encouraged the development of an 
even more robust infrastructure. And thus, Silicon Valley was born. 

For some students who used StarLogo, the idea of positive feedback provided a new 
way of looking at their world. One day, one student came to me excitedly. He had been in 
downtown Boston at lunch time, and he had a vision. He imagined two people walking 
into a deli to buy lunch. 

Once they get their food, they don’t eat it there. They bring it back with 
them. Other people on the street smell the sandwiches and see the deli 
bag, and they say, ‘Hey, maybe I’ll go to the deli for lunch today!” They 
were just walking down the street, minding their own business, and all of 
the sudden they want to go to the deli. As more people go to the deli, 
there’s even more smell and more bags. So more people go to the deli. But 
then the deli runs out of food. There’s no more smell on the street from the 
sandwiches. So no one else goes to the deli. 
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• Randomness Can Help Create Order 

Like positive feedback, randomness has a bad image. Most people see randomness as 
annoying at best, destructive at worst. They view randomness in opposition to order: 
randomness undoes order, it makes things disorderly. 

In fact, randomness plays an important role in creating order in many self-organizing 
systems. People often assume that “seeds” are needed to initiate patterns and structures. 
In general, this is a useful intuition. The problem is that most people have too narrow a 
conception of “seeds.” They think only of preexisting inhomogeneities in the 
environment—like a broken bridge on the highway, or a piece of food in an ant’s world. 

This narrow view of seeds causes misintuitions. In self-organizing systems, seeds are 
neither preexisting nor externally imposed. Rather, self-organizing systems often create 
their own seeds. It is here that randomness plays a crucial role. Random fluctuations act 
as the “seeds” from which patterns and structures grow. Randomness creates the initial 
seeds, then positive feedback makes the seeds grow. For example, the differing velocities 
of cars on a highway create the seeds from which traffic jams can grow. 

• A Flock Isn’t a Big Bird 

In trying to make sense of decentralized systems and self-organizing phenomena, the 
idea of levels is critically important. Interactions among objects at one level give rise to 
new types of objects at another level. Interactions among slime-mold cells give rise to 
slime-mold clusters. Interactions among cars give rise to traffic jams. Interactions among 
birds give rise to flocks. 

In many cases, the objects on one level behave very differently than objects on another 
level. For some high-school students, these differences in behavior were very surprising 
(at least initially). For example, the students working on the StarLogo traffic project were 
shocked by the behavior of the traffic jams: the jams moved backwards even though all 
of the cars within the jams were moving forward.  

Confusion of levels is not restricted to scientifically naive high-school students. I 
showed the StarLogo traffic program to two visiting computer scientists. They were not 
at all surprised that the traffic jams were moving backwards. They were well aware of 
that phenomenon. But then one of the researchers said: “You know, I’ve heard that’s why 
there are so many accidents on the freeways in Los Angeles. The traffic jams are moving 
backwards and the cars are rushing forward, so there are lots of accidents.” The other 
researcher thought for a moment, then replied: “Wait a minute. Cars crash into other cars, 
not into traffic jams.” In short, he believed that the first researcher had confused levels, 
mixing cars and jams inappropriately. The two researchers then spent half an hour trying 
to sort out the problem. It is an indication of the underdeveloped state of decentralized 
thinking in our culture that two sophisticated computer scientists needed to spend half an 
hour trying to understand the behavior of a ten-line decentralized computer program 
written by a high-school student. 
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• A Traffic Jam Isn’t Just a Collection of Cars 

For most everyday objects, it is fair to think of the object as a collection of particular 
parts: a chair has four particular legs, a particular seat, and so on. But not so with objects 
like traffic jams. Thinking of a traffic jam as a collection of particular parts leads to 
confusion. The cars composing a traffic jam are always changing, as some cars leave the 
front of the jam and other join from behind. Even when all of the cars in the jam are 
replaced with new cars, it is still the same traffic jam. A traffic jam can be thought of as 
an “emergent object”—it emerges from the interactions among lower-level objects (in 
this case, cars). 

As students worked on StarLogo projects, they encountered many emergent objects. In 
the termite example, the wood-chip piles can be viewed as emergent objects. The precise 
composition of the piles is always changing, as termites take away some wood chips and 
add other wood chips. After a while, none of the original wood chips remains, but the pile 
is still there.  

• The Hills are Alive 

In Sciences of the Artificial (1969), Herbert Simon describes a scene in which an ant is 
walking on a beach. Simon notes that the ant’s path might be quite complex. But the 
complexity of the path, says Simon, is not necessarily a reflection of the complexity of 
the ant. Rather, it might reflect the complexity of the beach. Simon’s point: don’t 
underestimate the role of the environment in influencing and constraining behavior. 
People often think of the environment as something to be acted upon, not something to 
be interacted with. People tend to focus on the behaviors of individual objects, ignoring 
the environment that surrounds (and interacts with) the objects. 

A richer view of the environment is important in thinking about decentralized and self-
organizing systems. In designing StarLogo, I explicitly tried to highlight the 
environment. Most creature-oriented programming environments treat the environment as 
a passive entity, manipulated by the creature that move within it. In StarLogo, by 
contrast, the “patches” of the world have equal status with the creatures that move in the 
world. By reifying the environment, I hoped to encourage people to think about the 
environment in new ways.  

Initially, some students resisted the idea of an active environment. When I explained a 
StarLogo ant-foraging program to one student, he was worried that pheromone trails 
would continue to attract ants even after the food sources at the ends of the trails had 
been fully depleted. He developed an elaborate scheme in which the ants, after collecting 
all of the food, deposited a second pheromone to neutralize the first pheromone. It never 
occurred to him to let the first pheromone evaporate away. In his mind, the ants had to 
take some positive action to get rid of the first pheromone. They could not rely on the 
environment to make the first pheromone go away. 
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7. New Media, New Mindsets 

There is an old saying that goes something like this: “Give a person a hammer, and the 
whole world looks like a nail.” Indeed, the ways we see the world are deeply influenced 
by the tools and media at our disposal. If we are given new tools and media, not only can 
we accomplish new tasks, but we begin to view the world in new ways. 

Often, we hardly recognize how our tools and media are influencing our ways of 
viewing the world. For several centuries now, scientists have described the world in 
terms of differential equations. Is that because differential equations are the best way to 
represent and describe the world? Or is it because the common media of the era (paper 
and pencil) are well suited to manipulations of differential equations? Could we say: 
“Give a scientist paper and pencil, and the whole world looks like differential 
equations”? 

New computational media now hold the promise for radically reshaping how people 
model (and think about) the world. But this shift won’t happen automatically. Computer 
modeling will make bring profound change to the classroom only if modeling tools take 
full advantage of new computational representations. Just as sculptors need to understand 
the qualities of clay (or whatever material they are using), designers of computer-
modeling tools need to understand their chosen medium. StarLogo, for example, 
leverages two new computational paradigms—massive parallelism and object-oriented 
programming. These new paradigms offer new design possibilities: new ways to create 
decentralized models. But even more importantly, these new paradigms offer new 
epistemological possibilities: a new decentralized framework for making sense of many 
phenomena in the world.  

Adding new tools to the carpenter’s toolkit changes the way the carpenter looks at the 
world. So, too, with computational ideas and paradigms. That is the central challenge for 
computer-modeling activities in education: not only to help students create models in 
new ways, but also to help students develop fundamentally new ways of thinking about 
the systems and phenomena that they are modeling.  
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