
1

Decentralized Modeling and Decentralized Thinking

Mitchel Resnick
MIT Media Laboratory
mres@media.mit.edu

Published in:

 Modeling and Simulation in Precollege Science and Mathematics (pp. 114-137),
edited by W. Feurzeig and N. Roberts. Springer: New York.

1. Introduction: The Era of Decentralization

It seems fair to say that we live in an Era of Decentralization. Almost every time you
pick up a newspaper, you can see evidence of the growing interest in decentralized
systems. On the front page, you might read an article about the transition of the former
Communist states from centrally-planned economies to market-based economies. Turn to
the business page, and you might find an article about the shift in corporate organizations
away from top-down hierarchies toward decentralized management structures. The
science section might carry an article about new distributed models of the mind, and it
might include a technology column about the role of the Internet in promoting distributed
approaches to computing. And in the book review, you might discover how the latest
literary theories are based on the idea that literary meaning itself is decentralized, always
constructed by individual readers, not imposed by a centralized author.

But even as the influence of decentralized ideas grows within our culture, there is a
deep-seated resistance to such ideas. At some deep level, people seem to have strong
attachments to centralized ways of thinking. When people see patterns in the world, they
often assume that there is some type of centralized control, even when it doesn’t exist.
For example, most people assume that birds in a flock play a game of follow-the-leader:
the bird at the front of the flock leads, and the others follow. But that’s not so. In fact,
most bird flocks don’t have leaders at all. Rather, each bird follows a set of simple rules,
reacting to the movements of the birds nearby it. Orderly flock patterns arise from these
simple, local interactions. The bird in front is not a “leader” in any meaningful sense—it
just happens to end up there. The flock is organized without an organizer, coordinated
without a coordinator. Yet most people continue to assume the existence of a “leader
bird.”

This assumption of centralized control, a phenomenon I call the centralized mindset, is
not just a misconception of the scientifically naive. It seems to affect the thinking of
nearly everyone. Until recently, even scientists assumed that bird flocks must have
leaders. It is only in recent years that scientists have revised their theories, asserting that
bird flocks are leader-less and self-organized (Heppner and Grenander, 1990; Reynolds,
1987). A similar bias toward centralized theories can be seen throughout the history of
science.

In this chapter, I discuss how computer-modeling activities can help people move
beyond the centralized mindset, helping them gain new insights into (and appreciation

2

for) the workings of decentralized systems. In particular, I will discuss a programmable
modeling environment, called StarLogo, that I developed to help pre-college students
model and explore decentralized systems. By presenting “stories” of students’ activities
with StarLogo, I hope to shed light on the nature of the centralized mindset and on ways
of moving beyond it. At the same time, I have a more general goal: to present (and
defend) a set of principles to guide the uses of computer modeling in science education.

2. Learning Through Modeling

My “decentralized modeling” research project has been guided by five core principles.
In my view, these principles apply not only to my own research project, but to all
applications of computer modeling in science education.

• Principle 1: Encourage construction of models (not just manipulation of pre-existing
models). In many educational applications of computer modeling, students do little more
than twiddle parameters on pre-constructed models. For example, they are given a model
of a spring with a mass on the end, along with sliders for controlling the spring constant
and mass. That type of activity can have some value. But students are likely to make
much deeper connections with the concepts underlying the model if they are given the
opportunity to construct models on their own (Papert, 1991). Accordingly, I designed
StarLogo as a programmable modeling environment, with which students can construct
their own models.

• Principle 2: Rethink what is learned (not just how it is learned). The activity of
computer modeling provides a new opportunity for students to learn through exploration
and experimentation. But often overlooked is the potential to use modeling to rethink not
just the process but the content of science education. Too often, educators use computer
modeling as a new way to teach the same old things (e.g., the motion of springs). In my
work, the emphasis has been on using modeling to help students explore ideas and
concepts that were previously inaccessible. For example, ideas about decentralized
systems and self-organizing systems have traditionally been taught at the graduate level,
using advanced mathematics. StarLogo was designed to make these ideas accessible to
pre-college students, without any advanced mathematics.

• Principle 3: Support true computational models (not just computerization of
traditional mathematical models). For several hundred years, mathematicians and
scientists have used differential equations to model dynamical systems. Many computer-
modeling tools re-implement this approach on the computer, using the computer to
numerically solve differential equations. These tools are certainly very useful, and some
of them do a very good job of hiding the formal mathematics under graphical
descriptions of the differential equations. But the most fundamental contributions of
computer modeling are likely to come from tools that are based on totally new
representations, tailored explicitly for the computer. That is the case with StarLogo,
which is based on hundreds of individual objects acting in parallel. This type of
representation was not possible in the paper-and-pencil era, and it makes possible new
ways for even young students to explore the workings of dynamical systems.

3

• Principle 4: Facilitate personal connections (not just mathematical abstractions). In
designing new types of learning tools, it is important to consider two types of
connections (Resnick, Bruckman, and Martin, 1996). First, there are epistemological
connections: how will the tool connect to important domains of knowledge and
encourage new ways of thinking? But equally important are personal connections: how
will the tool connect to users’ interests, passions, and experiences? Many computer-
modeling tools are “impersonal”: students must manipulate either mathematical
abstractions or aggregate quantities. StarLogo aims to be more “personal,” encouraging
students to think about the actions and interactions of individual (and familiar) objects.

• Principle 5: Focus on stimulation (not just simulation). Many computer models try to
imitate some real-word system or process as accurately as possible. Computer
simulations of nuclear reactors are used to predict when the reactors might fail; computer
simulations of meteorological patterns are used to predict tomorrow’s weather. In these
cases, the more accurate the simulation, the better. But, for educational applications of
computer modeling, real-world fidelity should not be the top goal. Instead, the real world
should serve only as an inspiration, a departure point for thinking about some set of ideas
or concepts. The goal is not to simulate particular systems and processes in the world; it
is to probe, challenge, and disrupt the way people think about systems and processes in
general. That is the goal of StarLogo: to stimulate people to develop new ways of
thinking about decentralized systems.

3. The Centralized Mindset

Before exploring how computer modeling can help people move beyond the
centralized mindset, it is worth examining the nature of the centralized mindset. In some
ways, the pervasiveness of the centralized mindset might seem surprising. After all,
aren’t we living in an Era of Decentralization? Actually, it isn’t so surprising if we look
at the growing interest in decentralization from a different perspective: Why are people
becoming more interested in decentralized ideas now? Why didn’t it happen before? Why
have people resisted decentralized approaches in the past? What underlies this
persistence of resistance? What made people cling onto centralized approaches so tightly,
for so long?

The centralized mindset can be seen throughout the history of science. Until the mid-
19th century, almost everyone embraced the idea that living systems were designed by
some God-like entity. Even scientists were convinced by the so-called “watchmaker
argument” (or the “argument from design”), proposed by theologian William Paley in his
book Natural Theology (Paley, 1802). Paley noted that watches are very complex and
precise objects. If you found a watch on the ground, you could not possibly believe that
such a complex object had been created by random chance. Instead, you would naturally
conclude that the watch must have ad a maker. For Paley, the same logic applies to living
systems: they, too, must have a maker.

It is not surprising that scientists accepted Paley’s argument in the early 19th century,
since there were no viable alternative explanations for the complexity of living systems.
What is surprising is how strongly scientists held onto centralized beliefs even after

4

Darwin provided a viable (and more decentralized) alternative. Science historian Ernst
Mayr (1982) notes that biologists put up “enormous resistance” to Darwin’s theories for a
full 80 years after publication of Origin of Species, generally preferring more centralized
alternatives.

The history of research on slime-mold cells, as told by Evelyn Fox Keller (1985),
provides another example of centralized thinking. During their life cycle, slime-mold
cells sometimes gather together into clusters. For many years, scientists believed that the
aggregation process was coordinated by specialized slime-mold cells, known as
“founder” or “pacemaker” cells. According to this theory, each pacemaker cell sends out
a chemical signal, telling other slime-mold cells to gather around it, resulting in a cluster.
In 1970, Keller and Segel (1970) proposed an alternative model, showing how slime-
mold cells can aggregate without any specialized cells. Nevertheless, for the following
decade, other researchers continued to assume that special pacemaker cells were required
to initiate the aggregation process. As Keller (1985) writes, with an air of disbelief: “The
pacemaker view was embraced with a degree of enthusiasm that suggests that this
question was in some sense foreclosed.” By the early 1980’s, researchers began to accept
the idea of aggregation among homogeneous cells, without any pacemaker. But the
decade-long resistance serves as some indication of the strength of the centralized
mindset.

People also view the workings of the economy in centralized ways, assuming singular
causes for complex phenomena. Children, in particular, seem to assume strong
governmental control over the economy. Of course, governments do play a large role in
most economies, but children assume that governments play an even larger role than they
actually do. In interviews with Israeli children between 8 and 15 years old, psychologist
David Leiser (1983) found that nearly half of the children assumed that the government
sets all prices and pays all salaries. Even children who said that employers pay salaries
often believed that the government provides the money for the salaries. A significant
majority of the students assumed that the government pays the increased salaries after a
strike. And many younger children had the seemingly contradictory belief that the
government is also responsible for organizing strikes. As Leiser writes: “The child finds
it easier to refer unexplained phenomena to the deliberate actions of a clearly defined
entity, such as the government, than to impersonal ‘market forces.’”

In some ways, it is not surprising that people have such strong commitments to
centralized approaches. Many phenomena in the world are, in fact, organized by a central
designer. These phenomena act to reinforce the centralized mindset. When people see
neat rows of corn in a field, they assume (correctly) that the corn was planted by a
farmer. When people watch a ballet, they assume (correctly) that the movements of the
dancers were planned by a choreographer. When people see a watch, they assume
(correctly) that it was designed by a watchmaker.

Moreover, most people participate in social systems (such as families and school
classrooms) where power and authority are very centralized. These hierarchical systems
serve as strong models. Many people are probably unaware that other types of
organization are even possible. In an earlier research project, I developed a programming
language (called MultiLogo) based on “agents” that communicated with one another. In

5

using the language, children invariably put one of the agents “in charge” of the others.
One student explicitly referred to the agent in charge as “the teacher.” Another referred to
it as “the mother” (Resnick, 1990).

Perhaps most important, our intuitions about systems in the world are deeply
influenced by our conceptions of ourselves. The human mind is composed of thousands
of interacting entities (e.g., Minsky, 1987), but each of us experiences our own self as a
singular entity. This is a very convenient, perhaps necessary, illusion for surviving in the
world. When I do something, whether I’m painting a picture or organizing a party, I feel
as if “I” am playing the role of the “central actor.” It feels like there is one entity in
charge: me. So it is quite natural that I should expect most systems to involve a central
actor, or some entity that is in charge. The centralized mindset might be viewed as one
aspect (and a lasting remnant) of the egocentrism that Piaget identified in early
childhood.

4. Tools for Decentralized Thinking

In some ways, people already have a great deal of experience with decentralized
systems: they observe decentralized systems in the natural world, and they participate in
decentralized social systems in their lives. But, of course, observation and participation
do not necessarily lead to strong intuitions or deep understanding. People observed bird
flocks for thousands of years before anyone suggested that flocks are leader-less.
Observation and participation are not enough. People need a richer sense of engagement
with decentralized systems. One way to do that is to give people opportunities to design
decentralized systems.

At first glance, this approach to the study of decentralized systems might seem like a
contradiction. After all, how can you design decentralized phenomena? By definition,
decentralized patterns are created without a centralized designer. But there are ways to
use design in the study of decentralized systems. Imagine that you could design the
behaviors of lots of individual components—then observe the patterns that result from all
of the interactions. This is a different sort of design: You control the actions of the parts,
not of the whole. You are acting as a designer, but the resulting patterns are not designed.

Over the years, computer scientists have developed a variety of computational tools
that can be used for this type of “decentralized design.” Cellular automata represent one
example (Toffoli & Margolus, 1987). In cellular automata, a virtual world is divided into
a grid of “cells.” Each cell holds a certain amount of “state.” (On the computer screen,
different states are usually represented by different colors.) In the simplest cases, each
cell might hold just a single piece of state, indicating whether the cell is “alive” or
“dead.” There is a transition rule that determines how each cell changes from one
generation to the next. Transition rules are typically based on the states of a cell’s
“neighbors.” For example, a cell might become “alive” if the majority of its neighboring
cells are alive. Each cell executes the same rule, over and over. Cellular automata have
proved to be an extraordinarily rich framework for exploring self-organizing phenomena.
Simple rules for each cell sometimes lead to complex and unexpected large-scale
structures.

6

To engage students in thinking about decentralized systems, I wanted to provide an
environment similar to cellular automata, but more connected to students’ interests and
experiences. While cellular automata are well-suited for computer hackers and
mathematicians, they seem ill-suited for people who have less experience (or less interest
in) manipulating abstract systems. The objects and operations in cellular automata are not
familiar to most people. The idea of writing “transition rules” for “cells” is not an idea
that most people can relate to.

Instead, I decided to create an environment based on the familiar ideas of “creatures”
and “colonies.” The goal was to enable students to investigate the ways that colony-level
behaviors (such as bird flocks or ant foraging trails) can arise from interactions among
individual creatures.1 Logo seemed like a good starting point for my computational
system (Papert, 1980; Harvey, 1985). The traditional Logo “turtle” can be used to
represent almost any type of object in the world: an ant in a colony, a car in a traffic jam,
an antibody in the immune system, or a molecule in a gas. But traditional versions of the
Logo language are missing several key features that are needed for explorations of
colony-type behaviors. So I developed a new version of Logo, called StarLogo, that
extends Logo in three major ways (Resnick, 1991, 1994).

First, StarLogo has many more turtles. While commercial versions of Logo typically
have only a few turtles, StarLogo has thousands of turtles, and all of the turtles can
perform their actions at the same time, in parallel.2 For many colony-type explorations,
having a large number of turtles is not just a nicety, it is a necessity. In many cases, the
behavior of a colony changes qualitatively when the number of creatures is increased. An
ant colony with 10 ants might not be able to make a stable pheromone trail to a food
source, whereas a colony with 100 ants (following the exact same rules) might.

Second, StarLogo turtles have better “senses.” The traditional Logo turtle was
designed primarily as a “drawing turtle,” for creating geometric shapes and exploring
geometric ideas. But the StarLogo turtle is more of a “behavioral turtle.” StarLogo turtles
come equipped with “senses.” They can detect (and distinguish) other turtles nearby, and
they can “sniff” scents in the world. Such turtle-turtle and turtle-world interactions are
essential for creating and experimenting with decentralized and self-organizing
phenomena. Parallelism alone is not enough. If each turtle just acts on its own, without
any interactions, interesting colony-level behaviors will generally not arise.

Third, StarLogo reifies the turtles’ world. In traditional versions of Logo, the turtles’
world does not have many distinguishing features. The world is simply a place where the
turtles draw with their “pens.” Each pixel of the world has a single piece of state
information—its color. StarLogo attaches a much higher status to the turtles’ world. The

1 I am using the terms “creature” and “colony” rather broadly. On a highway, each car can be
considered a “creature,” and a traffic jam can be considered the “colony.”

2 The initial version of StarLogo was implemented on a massively-parallel computer, the Connection
Machine. We have since implemented StarLogo on traditional sequential computers by simulating
parallelism. To download a copy of StarLogo, see http://www.media.mit.edu/~starlogo/

7

world is divided into small square sections called patches. The patches have many of the
same capabilities as turtles, except that they can not move. Each patch can hold an
arbitrary variety of information. For example, if the turtles are programmed to release a
“chemical” as they move, each patch can keep track of the amount of chemical that has
been released within its borders. Patches can execute StarLogo commands, just as turtles
do. For example, each patch could diffuse some of its “chemical” into neighboring
patches, or it could grow “food” based on the level of chemical within its borders. Thus,
the environment is given a status equal to that of the creatures inhabiting it.

StarLogo programs can be conceptualized as turtles moving on top of (and interacting
with) a cellular-automata grid. All types of interactions are possible: turtle-turtle, turtle-
patch, and patch-patch interactions. StarLogo places special emphasis on local
interactions—that is, interactions among turtles and patches that are spatially near one
another. Thus, StarLogo is well-suited for explorations of self-organizing phenomena, in
which large-scale patterns arise from local interactions. In addition, the massively
parallel nature of StarLogo makes it well-suited for explorations of probabilistic and
statistical concepts—and studies of people’s thinking about these concepts (Wilensky,
1993).

Figure 1 shows a StarLogo simulation of slime-mold cells aggregating into clusters. In
this example, each cell emits a chemical pheromone, and it also moves in the direction
where the pheromone is strongest (that is, it “follows the gradient” of the pheromone). At
the same time, the patches cause the pheromone to diffuse and evaporate. With this
simple strategy, the cells quickly aggregate into clusters—demonstrating that aggregation
can arise from a decentralized mechanism.

In some ways, the ideas underlying StarLogo parallel the ideas underlying the early
versions of Logo itself. In the late 1960’s, Logo aimed to make then-new ideas from the
computer-science community (like procedural abstraction and recursion) accessible to a
larger number of users. Similarly, StarLogo aims to make 1990’s ideas from computer
science (like massive parallelism) accessible to a larger audience. And whereas Logo
introduced a new object (the turtle) to facilitate explorations of particular
mathematical/scientific ideas, such as differential geometry (Abelson & diSessa, 1980),
StarLogo introduces another new object (the patch) to facilitate explorations of other
mathematical/scientific ideas (such as self-organization).

8

 t = 0 t = 20 t = 40

 t = 60 t = 80 t = 100

Figure 1: Slime-mold cells aggregating into clusters

5. StarLogo Stories

This section presents stories of student projects with StarLogo—describing the models
that students constructed and what they learned in doing so. The students typically came
to MIT for eight to ten sessions, each lasting 60 to 90 minutes. Most students worked
together in pairs. I worked directly with the students, suggesting projects, asking
questions, challenging assumptions, helping with programming, and encouraging
students to reflect on their experiences as they worked with StarLogo. Computer
interactions were saved in computer files, and all discussions were recorded on audio
tape. In the early sessions, I typically showed students existing StarLogo programs. The
students experimented with the programs, trying different parameters and making slight
modifications of the programs. As the sessions progressed, I encouraged students to
develop their own projects ideas and construct their own models, based on personal
interests.

5.1 Traffic Jams

Ari and Fadhil were students at a public high-school in the Boston area. Both enjoyed
working with computers, but neither had a very strong mathematical or scientific

9

background. At the time Ari and Fadhil started working with StarLogo, they were also
taking a driver’s education class. Each had turned 16 years old a short time before, and
they were excited about getting their driver’s licenses. Much of their conversation
focused on cars. When I gave Ari and Fadhil a collection of articles to read, a Scientific
American article titled “Vehicular Traffic Flow” (Herman & Gardels, 1963) captured
their attention.

Traffic flow is rich domain for studying collective behavior. Interactions among cars
in a traffic flow can lead to surprising group phenomena. Consider a long road with no
cross streets or intersections. What if we added some traffic lights along the road? The
traffic lights would seem to serve no constructive purpose. It would be natural to assume
that the traffic lights would reduce the overall traffic throughput (number of cars per unit
time). But in some situations, additional traffic lights actually improve overall traffic
throughput. The New York City Port Authority, for example, found that it could increase
traffic throughput in the Holland Tunnel by 6 percent by deliberately stopping some cars
before they entered the tunnel (Herman & Gardels, 1963).

Traditional studies of traffic flow rely on sophisticated analytic techniques (from fields
like queuing theory). But many of the same traffic phenomena can be explored with
simple StarLogo programs. To get started, Ari and Fadhil decided to create a one-lane
highway. (Later, they experimented with multiple lanes.) Ari suggested adding a police
radar trap somewhere along the road, to catch cars going above the speed limit. But he
also wanted each car to have its own radar detector, so that cars would know to slow
down when they approached the radar trap.

After some discussion, Ari and Fadhil decided that each StarLogo turtle/car should
follow three basic rules:

• If there is a car close ahead of you, slow down.

• If there are not any cars close ahead of you, speed up (unless you are
already moving at the speed limit).

• If you detect a radar trap, slow down.

Ari and Fadhil implemented these rules in StarLogo. They expected that a traffic jam
would form behind the radar trap, and indeed it did (Figure 2). After a few dozen
iterations of the StarLogo program, a line of cars started to form to the left of the radar
trap. The cars moved slowly through the trap, then sped away as soon as they passed it.
Ari explained: “First one car slows down for the radar trap, then the one behind it slows
down, then the one behind that one, and then you’ve got a traffic jam.”

I asked Ari and Fadhil what would happen if only some of the cars had radar detectors.
Ari predicted that only some of the cars would slow down for the radar trap. Fadhil had a
different idea: “The ones that have radar detectors will slow down, which will cause the
other ones to slow down.” Fadhil was right. The students modified the StarLogo program
so that only 25 percent of the cars had radar detectors. The result: the traffic flow looked
exactly the same as when all of the cars had radar detectors.

10

 t = 0

 t = 10

 t = 20

 t = 30

 t = 40

 t = 50

 t = 60

 t = 70

Figure 2: Traffic jam caused by radar trap (shaded area)
(Cars move left to right)

What if none of the cars had radar detectors—or, equivalently, if the radar trap were
removed entirely? With no radar trap, the cars would be controlled by just two simple
rules: if you see another car close ahead, slow down; if not, speed up. The rules could not
be much simpler. At first, Fadhil predicted that the traffic flow would become uniform:
cars would be evenly spaced, traveling at a constant speed. Without the radar trap, he
reasoned, what could cause a jam? But when the students ran the program, a traffic jam
formed (Figure 3). Along parts of the road, the cars were tightly packed and moving
slowly. Elsewhere, they were spread out and moving at the speed limit.

Ari and Fadhil were surprised. And when I showed Ari and Fadhil’s program to other
high-school students, they too were surprised. In general, the students expected the cars
to end up evenly spaced along the highway, separated by equal distances. Several of them
talked about the cars reaching an “equilibrium,” characterized by equal spacing. No one
expected a traffic jam to form. Some of their predictions:

Emily: [The cars will] just speed along, just keep going along...they will
end up staggered, in intervals.

Frank: Nothing will be wrong with it. Cars will just go...There’s no
obstacles. The cars will just keep going, and that’s it.

11

Ramesh: They will probably adjust themselves to a uniform distance from
each other.

When I ran the simulation, and traffic jams began to form, the students were shocked.

In their comments, most students revealed a strong commitment to the idea that some
type of “seed” (like an accident or a broken bridge) is needed to start a traffic jam.
Perhaps Frank expressed it best: “I didn’t think there would be any problem, since there
was nothing there.” If there is nothing there—if there is no seed—there should not be a
traffic jam. Traffic jams do not just happen; they must have localizable causes. And the
cause must come from outside the system (not from the cars themselves). Some
researchers who study systems talk about exogenous (external) and endogenous (internal)
factors affecting the behavior of a system. In the minds of the students, patterns (such as
traffic jams) can be formed only by exogenous factors.

Fadhil suggested that the jams were caused by differences in the initial speeds of the
cars. So the students changed the StarLogo program, starting all of the cars at the exact
same speed. But the jams still formed. Fadhil quickly understood. At the beginning of the
program, the cars were placed at random positions on the road. Random positioning led
to uneven spacing between the cars, and uneven spacing could also provide the “seed”
from which a traffic jam could form. Fadhil explained: “Some of the cars start closer to
other cars. Like, four spaces between two of them, and two spaces between others. A car
that’s only two spaces behind another car slows down, then the one behind it slows
down.”

 t = 0

 t = 10

 t = 20

 t = 30

 t = 40

 t = 50

 t = 60

 t = 70

Figure 3: Traffic jam without radar trap

(Cars move left to right, but jam moves right to left)

12

Next, they changed the program so that the cars were evenly spaced. Sure enough, no
traffic jams formed. All of the cars uniformly accelerated up to the speed limit. But Ari
and Fadhil recognized that such a situation would be difficult to set up in the real world.
The distances between the cars had to be just right, and the cars had to start at exactly the
same time—like a platoon of soldiers starting to march in unison.

5.2 Termites and Wood Chips

Termites are among the master architects of the animal world. On the plains of Africa,
termites construct giant mound-like nests rising more than 10 feet tall, thousands of times
taller than the termites themselves. Inside the mounds are intricate networks of tunnels
and chambers. Each termite colony has a queen. But, as in ant colonies, the termite queen
does not “tell” the termite workers what to do. On the termite construction site, there is
no construction foreman, no one in charge of the master plan. Rather, each termite carries
out a relatively simple task. Termites are practically blind, so they must interact with
each other (and with the world around them) primarily through their senses of touch and
smell. From local interactions among thousands of termites, impressive structures
emerge.

The global-from-local nature of termite constructions makes them well-suited for
StarLogo explorations. Callie, one of the high-school students, worked on a simple form
of termite construction: she programmed a set of termites to collect wood chips and put
them into piles. At the start of the program, wood chips were scattered randomly
throughout the termites’ world. The challenge was to make the termites organize the
wood chips into a few, orderly piles.

Callie and I worked together on the project. We started with a very simple strategy,
programming each individual termite to obey the following rules:

• If you are not carrying anything and you bump into a wood chip, pick it
up.

• If you are carrying a wood chip and you bump into another wood chip,
put down the wood chip you’re carrying.

At first, Callie and I were both skeptical that this simple strategy would work. There
was no mechanism for preventing termites from taking wood chips away from existing
piles. So while termites are putting new wood chips on a pile, other termites might be
taking wood chips away from it. It seemed like a good prescription for getting nowhere.
But we pushed ahead and implemented the strategy in a StarLogo program, with 1000
termites and 2000 wood chips scattered in a 128x128 grid.

We tried the program, and (much to our surprise) it worked quite well. At first, the
termites gathered the wood chips into hundreds of small piles. But gradually, the number
of piles declined, and the number of wood chips in each pile increased (see Figure 4).
After 2000 iterations, there were about 100 piles, with an average of 15 wood chips in
each pile. After 10,000 iterations, there were fewer than 50 piles left, with an average of
30 wood chips in each pile. After 20,000 iterations, only 34 piles remained, with an

13

average of 44 wood chips in each pile. The process was rather slow, and it was frustrating
to watch, as termites often carried wood chips away from well-established piles. But, all
in all, the program worked quite well.

Why did it work? As we watched the program, it suddenly seemed obvious. Imagine
what happens when the termites (by chance) remove all of the wood chips from a
particular pile. Because all of the wood chips are gone from that spot, termites will never
again drop wood chips there. So the pile has no way of restarting.

As long as a pile exists, its size is a two-way street: it can either grow or shrink. But
the existence of a pile is a one-way street: once it is gone, it is gone forever. Thus, a pile
is somewhat analogous to a species of creatures in the real world. As long as the species
exists, the number of individuals in the species can go up or down. But once all of the
individuals are gone, the species is extinct, gone forever. In these cases, zero is a
“trapped state”: once the number of creatures in a species (or the number of wood chips
in a pile) goes to zero, it can never rebound.

Of course, the analogy between species and piles breaks down in some ways. New
species are sometimes created, as offshoots of existing species. But in the termite
program, there is no way to create a new pile. The program starts with roughly 2000
wood chips. These wood chips can be viewed as 2000 “piles,” each with a single wood
chip. As the program runs, some piles disappear, and no new piles are created. So the
total number of piles decreases monotonically.

ITERATIONS

5000 10000 15000

400

300

200

100

N
U
M
B
E
R

O
F

P
I
L
E
S

Figure 4: The number of piles decreases monotonically

14

5.3 Rabbits and Grass

The great baseball manager Casey Stengel once said: “If you don’t know where you’re
going, you might end up somewhere else.” My experiences with computer-based
modeling activities have taught me a corollary: “Even if you think you know where
you’re going, you’ll probably end up somewhere else.”

That’s what happened to Benjamin, a high-school student, when he set out to create an
StarLogo program that would simulate evolution by natural selection. I had given
Benjamin a Scientific American article (Dewdney, 1989) about a computer program
called Simulated Evolution (Palmiter, 1989). Benjamin, who had just finished his junior
year in high school, decided that he wanted to create a StarLogo program similar to the
commercial program described in the article. His goal was to create a set of computer
“creatures” that would interact and evolve.

At the core of Benjamin’s simulation were turtles and food. His basic idea was simple:
turtles that eat a lot of food reproduce, and turtles that don’t eat enough food die.
Eventually, he planned to add “genes” to his turtles. Different genes could provide turtles
with different levels of “fitness” (perhaps different capabilities for finding food). But
Benjamin never got around to the genes. Rather, on the road to evolution, Benjamin got
sidetracked into an interesting exploration of ecological systems (in particular, predator-
prey systems).

Benjamin began by making food grow randomly throughout the StarLogo world.
(During each time step, each StarLogo patch had a random chance of growing some
food.) Then he created some turtles. The turtles had very meager sensory capabilities.
They could not “see” or “smell” food at a distance. They could sense food only when
they bumped directly into it. So the turtles followed a very simple strategy: Wander
around randomly, eating whatever food you bump into.

Benjamin gave each turtle an “energy” variable. Every time a turtle took a step, its
energy decreased a bit. Every time it ate some food, its energy increased. Then Benjamin
added one more rule: if a turtle’s energy dipped to zero, the turtle died. With this
program, the turtles do not reproduce. Life is a one-way street: turtles die, but no new
turtles are born. Still, even with this simple-minded program, Benjamin found some
surprising and interesting behaviors.

Benjamin ran the program with 300 turtles. But the environment could not support that
many turtles. There wasn’t enough food. So some turtles began to die. The turtle
population fell rapidly at first, then it leveled out at about 150 turtles. The system seemed
to reach a steady state with 150 turtles: the number of turtles and the density of food both
remained roughly constant.

Then Benjamin tried the same program with 1000 turtles. If there wasn’t enough food
for 300 turtles, there certainly wouldn’t be enough for 1000 turtles. So Benjamin wasn’t
surprised when the turtle population began to fall. But he was surprised with how far the
population fell. After a while, only 28 turtles remained. Benjamin was puzzled: “We
started with more, why should we end up with less?” After some discussion, he realized

15

what had happened. With so many turtles, the food shortage was even more critical than
before. The result: mass starvation. Benjamin still found the behavior a bit strange: “The
turtles have less (initial energy as a group), and less usually isn’t more.”

Next, Benjamin decided to add reproduction to his model. His plan: whenever a
turtle’s energy increases above a certain threshold, the turtle should “clone” itself, and
split its energy with its new twin. That can be accomplished by adding another demon
procedure to the program.

Benjamin assumed that the rule for cloning would somehow “balance” the rule for
dying, leading to some sort of “equilibrium.” He explained: “Hopefully, it will balance
itself out somehow. I mean it will. It will have to. But I don’t know what number it will
balance out at.” After a little more thought, Benjamin suggested that the food supply
might fall at first, but then it would rise back and become steady: “The food will go
down, a lot of them will die, the food will go up, and it will balance out.”

Benjamin started the program running. As Benjamin expected, the food supply
initially went down and then went up. But it didn’t “balance out” as Benjamin had
predicted: it went down and up again, and again, and again. Meanwhile, the turtle
population also oscillated, but out of phase with the food.

On each cycle, the turtles “overgrazed” the food supply, leading to a scarcity of food,
and many of the turtles died. But then, with fewer turtles left to eat the food, the food
became more dense. The few surviving turtles thus found a plentiful food supply, and
each of them rapidly increased its energy. When a turtle’s energy surpassed a certain
threshold, it cloned, increasing the turtle population. But as the population grew too high,
food again became scarce, and the cycle started again.

Visually, the oscillations were striking. Red objects (turtles) and green objects (food)
were always intermixed, but the density of each continually changed. Initially, the screen
was dominated by red turtles, with a sparse scattering of green food. As the density of red
objects declined, the green objects proliferated, and the screen was soon overwhelmingly
green. Then the process reversed: the density of red increased, with the density of green
declined.

Depending on the particular parameters, the oscillations took on different forms. In
Benjamin’s initial program, the oscillations were damped: With each cycle, the peaks
were a little less high, the troughs a little less deep. In the first cycle, the turtle population
dwindled to just 26 turtles, then it rose to 303 turtles. In the next cycle, the population
shrank to 47 turtles, then up to 244 turtles. Eventually, the turtle population stabilized
between 130 and 160 turtles.

Benjamin recognized that this result depended critically on the parameters in his
StarLogo program. He wondered: What would happen if the food grew just half as
quickly? He figured that this new world would support fewer turtles, but how many
fewer? In the original version of his StarLogo program, each patch had a 1 in 1000
chance of growing food. Benjamin changed it to 1 in 2000.

16

When Benjamin ran the program, he was in for another surprise: all of the turtles died.
But Benjamin, who had just finished graphing the oscillations from the previous
experiment, quickly realized what had happened. “The oscillation must be between some
number and negative something,” he said. That is: the trough of the oscillation must drop
below zero. And once the population drops below zero, it can never recover. There is no
peak after a negative trough. Extinction is forever: it is a “trapped state.”

The problem lay in the initial conditions. Benjamin had started the simulation with
1000 turtles. If there were fewer initial turtles, the first trough wouldn’t sink so deep.
Benjamin came up with an ingenious solution. “I’ll start with just one (turtle),” he
explained. “It will definitely survive. I’ll put money on it.” Benjamin started the program
again, this time with a single turtle. For a while, the single turtle roamed the world by
itself. Benjamin cheered it on: “Come on. Hang on there. Come on. Get some food.”
Finally, the turtle cloned, and then there were two. “He’s going to live,” exclaimed
Benjamin.

The turtle population rose to about 130 turtles, leveled off, then fell. As before, the
turtle population went up and down in a damped oscillation. Eventually, the population
stabilized at about 75 turtles. So with food growing at half the rate as before, the turtle
population stabilized at about half the level as before. The “equilibrium population”
seemed to be proportional to the rate of food growth.

Before running the program, Benjamin had predicted that the equilibrium population
would be more drastically affected by the reduction in food growth. He expected the
population to stabilize with considerably fewer than 75 turtles. But after watching the
program run, he developed a explanation for the proportional relationship. Looking at the
dots of food on the screen, he noted that the “food density” at equilibrium looked about
the same as in the previous experiment, despite the change in the rate of food growth.
That made sense to him: a certain food density is needed to keep the turtles just on the
brink between death and reproduction. To reach a relatively steady state, the system
needed to maintain that special food density. Given that the food was growing just half as
quickly as before, it made sense that the system could support only half as many turtles.

Benjamin’s reasoning is an example of what Hut and Sussman (1987) dubbed
“analysis by synthesis.” Traditionally, synthesis and analysis have been seen in
opposition to one another, two alternate ways of solving problems. But with computer-
based explorations, the two approaches get mixed and blurred. It is very unlikely that
Benjamin could have developed his explanation without actually viewing (and
manipulating) the simulation. Only by building and creating (synthesis) was Benjamin
able to develop a well-reasoned explanation for the behavior of the turtles (analysis).

The oscillating behavior in Benjamin’s project is characteristic of ecological systems
with predators (in this case, turtles) and prey (in this case, food). Traditionally, scientific
(and educational) explorations of predator-prey systems are based on sets of differential
equations, known as the Lotka-Volterra equations (Lotka 1925; Volterra 1926). For
example, the changes in the population density of the prey (n1) and the population
density of the predator (n2) can be described with the following differential equations:

17

dn1/dt = n1(b - k1n2)

dn2/dt = n2(k2n1 - d)

where b is the birth rate of the prey, d is the death rate of the predators, and k1 and k2
are constants. It is straightforward to write a computer program based on the Lotka-
Volterra equations, computing how the population densities of the predator and prey vary
with time (e.g., Roberts 1983).

This differential-equation approach is typical of the way that scientists have
traditionally modeled and studied the behaviors of all types of systems (physical,
biological, and social). Scientists typically write down sets of differential equations then
attempt to solve them either analytically or numerically. These approaches require
advanced mathematical training; usually, they are studied only at the university level.

The StarLogo approach to modeling systems (exemplified by Benjamin’s project) is
sharply different. StarLogo makes systems-related ideas more accessible to younger
students by providing them with a stronger personal connection to the underlying models.
Traditional differential-equation approaches are “impersonal” in two ways. The first is
obvious: they rely on abstract symbol manipulation (accessible only to students with
advanced mathematical training). The second is more subtle: differential equations deal
in aggregate quantities. In the Lotka-Volterra system, for example, the differential
equations describe how the overall populations (not the individual creatures) evolve over
time. There are now some very good computer modeling tools—such as Stella (Roberts
et al., 1983) and Model-It (Jackson et al., 1996)—based on differential equations. These
tools eliminate the need to manipulate symbols, focusing on more qualitative and
graphical descriptions. But they still rely on aggregate quantities.

In StarLogo, by contrast, students think about the actions and interactions of individual
objects or creatures. StarLogo programs describe how individual creatures (not overall
populations) behave. Thinking in terms of individual creatures seems far more intuitive,
particularly for the mathematically uninitiated. Students can imagine themselves as
individual turtles/creatures and think about what they might do. In this way, StarLogo
enables learners to “dive into” the model (Ackermann, 1996) and make use of what
Papert (1980) calls “syntonic” knowledge about their bodies. By observing the dynamics
at the level of the individual creatures, rather than at the aggregate level of population
densities, students can more easily think about and understand the population oscillations
that arise. Future versions of StarLogo will enable users to zoom in and out, making it
easier for users to shift back and forth in perspective from the individual level to the
group level.

I refer to StarLogo models as “true computational models” (Resnick, 1997), since
StarLogo uses new computational media in a more fundamental way than most computer-
based modeling tools. Whereas most tools simply implement traditional mathematical
models on a computer (e.g., numerically solving traditional differential-equation
representations), StarLogo provides new representations that are tailored explicitly for
the computer. Of course, differential-equation models are still very useful—and superior
to StarLogo-style models in some contexts. But too often, scientists and educators see

18

traditional differential-equation models as the only approach to modeling. As a result,
many students (particularly students alienated by traditional classroom mathematics)
view modeling as a difficult or uninteresting activity. What is needed is a more
pluralistic approach, recognizing that there are many different approaches to modeling,
each with its own strengths and weaknesses. A major challenge is to develop a better
understanding of when to use which approach, and why.

6. Decentralized Thinking

As students began working with StarLogo, they almost always assumed centralized
causes in the patterns they observed, and they almost always imposed centralized control
when they wanted to create patterns. But as students continued to work on StarLogo
projects, most of them began to develop new ways of thinking about decentralization. In
almost all cases, they developed an appreciation for and a fascination with decentralized
systems. At one point, while we were struggling to get our termite program working, I
asked Callie if we should give up on our decentralized approach and program the termites
to take their wood chips to pre-designated spots. She quickly dismissed this suggestion:

Mitchel: We could write the program so that the termites know where the
piles are. As soon as a termite picks up a wood chip, it could just go to the
pile and put it down.

Callie: Oh, that’s boring!

Mitchel: Why do you think that’s boring?

Callie: Cause you’re telling them what to do.

Mitchel: Is this more like the way it would be in the real world?

Callie: Yeah. You would almost know what to expect if you tell them to go
to a particular spot and put it down. You know that there will be three
piles. Whereas here, you don’t know how many mounds there are going to
be. Or if the number of mounds will increase or decrease. Or things like
that... This way, they [the termites] made the piles by themselves. It wasn’t
like they [the piles] were artificially put in.

For Callie, pre-programmed behavior, even if effective, was “boring.” Callie preferred
the decentralized approach since it made the termites seem more independent (“they
made the piles by themselves”) and less predictable (“you don’t know how many mounds
there are going to be”).

Over time, other students shared Callie’s fascination with decentralization, though
they often struggled in their efforts to use decentralized strategies in analyzing and
constructing new systems. As I worked with students, I assembled a list of “guiding
heuristics” that students used as they began to develop richer models of decentralized
phenomena. These heuristics are not very “strong.” They are not “rules” for making sense
of decentralized systems. Rather, they are loose collections of ideas associated with

19

decentralized thinking. Pedagogically, they serve as good discussion points for provoking
people to think about decentralization. They also serve as a type of measuring stick for
conceptual change: as students worked on StarLogo projects, they gradually began to
integrate these heuristics into their own thinking and discourse. In this section, I discuss
five of these guiding heuristics.

• Positive Feedback Isn’t Always Negative

When people think about the scientific idea of positive feedback, they typically think
of the screeching sound that results when a microphone is placed near a speaker. Positive
feedback is viewed as a destructive force, making things spiral out of control. By
contrast, negative feedback is viewed as very useful, keeping things under control.
Negative feedback is symbolized by the thermostat, keeping room temperature at a
desired level by turning the heater on and off as needed.

When I asked high-school students about positive feedback, most were not familiar
with the term, but they were certainly familiar with the concept. When I explained what I
meant by positive feedback, students quickly generated examples involving something
getting out of control, often with destructive consequences. One student talked about
scratching a mosquito bite, which made the bite itch even more, so she scratched it some
more, which made it itch even more, and so on. Another student talked about stock-
market crashes: a few people start selling, which makes more people start selling, which
makes even more people start selling, and so on.

Despite these negative images, positive feedback often plays a crucial role in
decentralized phenomena. Economist Brian Arthur (1990) points to the geographic
distribution of cities and industries as an example of a self-organizing process driven by
positive feedback. Once a small nucleus of high-technology electronics companies
started in Santa Clara County south of San Francisco, an infrastructure developed to
serve the needs of those companies. That infrastructure encouraged even more electronics
companies to locate in Santa Clara County, which encouraged the development of an
even more robust infrastructure. And thus, Silicon Valley was born.

For some students who used StarLogo, the idea of positive feedback provided a new
way of looking at their world. One day, one student came to me excitedly. He had been in
downtown Boston at lunch time, and he had a vision. He imagined two people walking
into a deli to buy lunch.

Once they get their food, they don’t eat it there. They bring it back with
them. Other people on the street smell the sandwiches and see the deli
bag, and they say, ‘Hey, maybe I’ll go to the deli for lunch today!” They
were just walking down the street, minding their own business, and all of
the sudden they want to go to the deli. As more people go to the deli,
there’s even more smell and more bags. So more people go to the deli. But
then the deli runs out of food. There’s no more smell on the street from the
sandwiches. So no one else goes to the deli.

20

• Randomness Can Help Create Order

Like positive feedback, randomness has a bad image. Most people see randomness as
annoying at best, destructive at worst. They view randomness in opposition to order:
randomness undoes order, it makes things disorderly.

In fact, randomness plays an important role in creating order in many self-organizing
systems. People often assume that “seeds” are needed to initiate patterns and structures.
In general, this is a useful intuition. The problem is that most people have too narrow a
conception of “seeds.” They think only of preexisting inhomogeneities in the
environment—like a broken bridge on the highway, or a piece of food in an ant’s world.

This narrow view of seeds causes misintuitions. In self-organizing systems, seeds are
neither preexisting nor externally imposed. Rather, self-organizing systems often create
their own seeds. It is here that randomness plays a crucial role. Random fluctuations act
as the “seeds” from which patterns and structures grow. Randomness creates the initial
seeds, then positive feedback makes the seeds grow. For example, the differing velocities
of cars on a highway create the seeds from which traffic jams can grow.

• A Flock Isn’t a Big Bird

In trying to make sense of decentralized systems and self-organizing phenomena, the
idea of levels is critically important. Interactions among objects at one level give rise to
new types of objects at another level. Interactions among slime-mold cells give rise to
slime-mold clusters. Interactions among cars give rise to traffic jams. Interactions among
birds give rise to flocks.

In many cases, the objects on one level behave very differently than objects on another
level. For some high-school students, these differences in behavior were very surprising
(at least initially). For example, the students working on the StarLogo traffic project were
shocked by the behavior of the traffic jams: the jams moved backwards even though all
of the cars within the jams were moving forward.

Confusion of levels is not restricted to scientifically naive high-school students. I
showed the StarLogo traffic program to two visiting computer scientists. They were not
at all surprised that the traffic jams were moving backwards. They were well aware of
that phenomenon. But then one of the researchers said: “You know, I’ve heard that’s why
there are so many accidents on the freeways in Los Angeles. The traffic jams are moving
backwards and the cars are rushing forward, so there are lots of accidents.” The other
researcher thought for a moment, then replied: “Wait a minute. Cars crash into other cars,
not into traffic jams.” In short, he believed that the first researcher had confused levels,
mixing cars and jams inappropriately. The two researchers then spent half an hour trying
to sort out the problem. It is an indication of the underdeveloped state of decentralized
thinking in our culture that two sophisticated computer scientists needed to spend half an
hour trying to understand the behavior of a ten-line decentralized computer program
written by a high-school student.

21

• A Traffic Jam Isn’t Just a Collection of Cars

For most everyday objects, it is fair to think of the object as a collection of particular
parts: a chair has four particular legs, a particular seat, and so on. But not so with objects
like traffic jams. Thinking of a traffic jam as a collection of particular parts leads to
confusion. The cars composing a traffic jam are always changing, as some cars leave the
front of the jam and other join from behind. Even when all of the cars in the jam are
replaced with new cars, it is still the same traffic jam. A traffic jam can be thought of as
an “emergent object”—it emerges from the interactions among lower-level objects (in
this case, cars).

As students worked on StarLogo projects, they encountered many emergent objects. In
the termite example, the wood-chip piles can be viewed as emergent objects. The precise
composition of the piles is always changing, as termites take away some wood chips and
add other wood chips. After a while, none of the original wood chips remains, but the pile
is still there.

• The Hills are Alive

In Sciences of the Artificial (1969), Herbert Simon describes a scene in which an ant is
walking on a beach. Simon notes that the ant’s path might be quite complex. But the
complexity of the path, says Simon, is not necessarily a reflection of the complexity of
the ant. Rather, it might reflect the complexity of the beach. Simon’s point: don’t
underestimate the role of the environment in influencing and constraining behavior.
People often think of the environment as something to be acted upon, not something to
be interacted with. People tend to focus on the behaviors of individual objects, ignoring
the environment that surrounds (and interacts with) the objects.

A richer view of the environment is important in thinking about decentralized and self-
organizing systems. In designing StarLogo, I explicitly tried to highlight the
environment. Most creature-oriented programming environments treat the environment as
a passive entity, manipulated by the creature that move within it. In StarLogo, by
contrast, the “patches” of the world have equal status with the creatures that move in the
world. By reifying the environment, I hoped to encourage people to think about the
environment in new ways.

Initially, some students resisted the idea of an active environment. When I explained a
StarLogo ant-foraging program to one student, he was worried that pheromone trails
would continue to attract ants even after the food sources at the ends of the trails had
been fully depleted. He developed an elaborate scheme in which the ants, after collecting
all of the food, deposited a second pheromone to neutralize the first pheromone. It never
occurred to him to let the first pheromone evaporate away. In his mind, the ants had to
take some positive action to get rid of the first pheromone. They could not rely on the
environment to make the first pheromone go away.

22

7. New Media, New Mindsets

There is an old saying that goes something like this: “Give a person a hammer, and the
whole world looks like a nail.” Indeed, the ways we see the world are deeply influenced
by the tools and media at our disposal. If we are given new tools and media, not only can
we accomplish new tasks, but we begin to view the world in new ways.

Often, we hardly recognize how our tools and media are influencing our ways of
viewing the world. For several centuries now, scientists have described the world in
terms of differential equations. Is that because differential equations are the best way to
represent and describe the world? Or is it because the common media of the era (paper
and pencil) are well suited to manipulations of differential equations? Could we say:
“Give a scientist paper and pencil, and the whole world looks like differential
equations”?

New computational media now hold the promise for radically reshaping how people
model (and think about) the world. But this shift won’t happen automatically. Computer
modeling will make bring profound change to the classroom only if modeling tools take
full advantage of new computational representations. Just as sculptors need to understand
the qualities of clay (or whatever material they are using), designers of computer-
modeling tools need to understand their chosen medium. StarLogo, for example,
leverages two new computational paradigms—massive parallelism and object-oriented
programming. These new paradigms offer new design possibilities: new ways to create
decentralized models. But even more importantly, these new paradigms offer new
epistemological possibilities: a new decentralized framework for making sense of many
phenomena in the world.

Adding new tools to the carpenter’s toolkit changes the way the carpenter looks at the
world. So, too, with computational ideas and paradigms. That is the central challenge for
computer-modeling activities in education: not only to help students create models in
new ways, but also to help students develop fundamentally new ways of thinking about
the systems and phenomena that they are modeling.

Acknowledgments

Brian Silverman, Andy Begel, Hal Abelson, Seymour Papert, Uri Wilensky, and Larry
Latour have provided inspiration and ideas for the StarLogo project. The LEGO Group
and the National Science Foundation (Grants 9153719-MDR, 9358519-RED, 9553474-
RED) have provided generous financial support. Portions of this chapter were previously
published elsewhere (Resnick, 1994, 1996, 1997), and are reprinted with permission.

References

Abelson, H., & diSessa, A. (1980). Turtle Geometry: The Computer as a Medium for
Exploring Mathematics. Cambridge, MA: MIT Press.

23

Ackermann, E. (1996). Perspective-Taking and Object Construction: Two Keys to
Learning. In Y. Kafai & M. Resnick (eds.), Constructionism in Practice (pp. 25-35).
Mahwah, NJ: Lawrence Erlbaum.

Arthur, W.B. (1990). Positive Feedbacks in the Economy. Scientific American, 262 (2),
92-99.

Dewdney, A.K. (1989). Simulated Evolution: Wherein bugs learn to hunt bacteria.
Scientific American, 260 (5), 138-141.

Harvey, B. (1985). Computer Science Logo Style. Cambridge, MA: MIT Press.
Heppner, F., and Grenander, U. (1990). “A Stochastic Nonlinear Model for Coordinated

Bird Flocks.” In S. Krasner (Ed.), The Ubiquity of Chaos. Washington, D.C.: AAAS
Publications.

Herman, R., & Gardels, K. (1963). Vehicular Traffic Flow. Scientific American, 209 (6),
35-43.

Hut, P., and Sussman, G.J. (1987). Advanced Computing for Science. Scientific
American, 255 (10).

Jackson, S., Stratford, S., Krajcik, J., & Soloway, E. (1996). A Learner-Centered Tool for
Students Building Models. Communications of the ACM, 39 (4), 48-49.

Keller, E.F. (1985). Reflections on Gender and Science. New Haven: Yale University
Press.

Keller, E.F., and Segel, L. (1970). “Initiation of Slime Mold Aggregation Viewed as an
Instability.” Journal of Theoretical Biology, 26, 399-415.

Leiser, D. (1983). Children’s Conceptions of Economics—The Constitution of a
Cognitive Domain. Journal of Economic Psychology, 4, 297-317.

Lotka, A.J. (1925). Elements of Physical Biology. New York: Dover Publications
(reprinted 1956).

Mayr, E. (1982). The Growth of Biological Thought. Cambridge, MA: Harvard
University Press.

Minsky, M. (1987). The Society of Mind. New York: Simon & Schuster.
Paley, W. (1802). Natural Theology—or Evidences of the Existence and Attributes of the

Deity Collected from the Appearances of Nature. Oxford: J. Vincent.
Palmiter, M. (1989). Simulated Evolution. Bayport, NY: Life Science Associates.
Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York:

Basic Books.
Papert, S. (1991). Situating Constructionism. In I. Harel & S. Papert (Eds.),

Constructionism. Norwood, NJ: Ablex Publishing.
Resnick, M. (1990). MultiLogo: A Study of Children and Concurrent Programming.

Interactive Learning Environments, 1 (3), 153-170.

24

Resnick, M. (1991). Animal Simulations with StarLogo: Massive Parallelism for the
Masses. In J.A. Meyer & S. Wilson (Eds.), From Animals to Animats. Cambridge,
MA: MIT Press.

Resnick, M. (1994). Turtles, Termites, and Traffic Jams: Explorations in Massively
Parallel Microworlds. Cambridge, MA: MIT Press.

Resnick, M. (1996). Beyond the Centralized Mindset. Journal of the Learning Sciences,
5 (1), 1-22.

Resnick, M. (1997). Learning Through Computational Modeling. Computers in the
Schools.

Resnick, M., Bruckman, A., & Martin, F. (1996). Pianos Not Stereos: Creating
Computational Constructions Kits. Interactions.

Reynolds, C. (1987). “Flocks, Herds, and Schools: A Distributed Behavioral Model.”
Computer Graphics, 21 (4), 25-36.

Roberts, N., Anderson, D., Deal, R., Garet, M., & Shaffer, W. (1983). Introduction to
Computer Simulation: A System Dynamics Modeling Approach. Reading, MA:
Addison-Wesley.

Simon, H. (1969). The Sciences of the Artificial. Cambridge, MA: MIT Press.
Toffoli, T., & Margolus, N. (1987). Cellular Automata Machines. Cambridge, MA: MIT

Press.
Volterra, V. (1926). Fluctuations in the Abundance of a Species Considered

Mathematically. Nature, 188, 558-560.
Wilensky, U. (1993). Connected Mathematics: Building Concrete Relationships with

Mathematical Knowledge. Doctoral dissertation. Cambridge, MA: MIT Media Lab.

