
60 communications of the acm | november 2009 | vol. 52 | no. 11

contributed articles

discussing, and remixing one another’s
projects. Scratch has been called “the
YouTube of interactive media.” Each
day, Scratchers from around the world
upload more than 1,500 new projects
to the site, with source code freely
available for sharing and remixing. The
site’s collection of projects is wildly di-
verse, including video games, interac-
tive newsletters, science simulations,
virtual tours, birthday cards, animated
dance contests, and interactive tutori-
als, all programmed in Scratch.

The core audience on the site is be-
tween the ages of eight and 16 (peak-
ing at 12), though a sizeable group of
adults participates as well. As Scratch-
ers program and share interactive proj-
ects, they learn important mathemati-
cal and computational concepts, as
well as how to think creatively, reason
systematically, and work collaborative-
ly: all essential skills for the 21st cen-
tury. Indeed, our primary goal is not to
prepare people for careers as profes-
sional programmers but to nurture a
new generation of creative, systematic
thinkers comfortable using program-
ming to express their ideas.

In this article, we discuss the de-
sign principles that guided our devel-
opment of Scratch and our strategies
for making programming accessible
and engaging for everyone. But first,
to give a sense of how Scratch is being
used, we describe a series of projects
developed by a 13-year-old girl with the
Scratch screen name BalaBethany.

BalaBethany enjoys drawing anime
characters. So when she started using
Scratch, it was natural for her to pro-
gram animated stories featuring these
characters. She began sharing her proj-
ects on the Scratch Web site, and other
members of the community responded
positively, posting glowing comments
under her projects (such as “Awesome!”
and “OMG I LUV IT!!!!!!”), along with
questions about how she achieved cer-
tain visual effects (such as “How do you
make a sprite look see-through?”). En-
couraged, BalaBethany then created and
shared new Scratch projects on a regular
basis, like episodes in a TV series.

WheN Moshe Y. Vardi, Editor-in-Chief of
Communications, invited us to submit an article,
he recalled how he first learned about Scratch:
“A colleague of mine (CS faculty),” he said, “told
me how she tried to get her 10-year-old daughter
interested in programming, and the only thing
that appealed to her was Scratch.”

That’s what we were hoping for when we set out to
develop Scratch six years ago. We wanted to develop
an approach to programming that would appeal to
people who hadn’t previously imagined themselves as
programmers. We wanted to make it easy for everyone,
of all ages, backgrounds, and interests, to program
their own interactive stories, games, animations, and
simulations, and share their creations with one another.

Since the public launch in May 2007, the Scratch
Web site (http://scratch.mit.edu) has become a
vibrant online community, with people sharing,

scratch:
Programming
for all

Doi:10.1145/1592761.1592779

“Digital fluency” should mean designing,
creating, and remixing, not just browsing,
chatting, and interacting.

BY mitcheL ResnicK, John maLoneY, anDRés monRoY-
heRnánDez, nataLie RusK, eVeLYn eastmonD,
KaRen BRennan, amon miLLneR, eRic RosenBaum,
JaY siLVeR, BRian siLVeRman, anD Yasmin Kafai

P
h

o
t

o
g

r
a

P
h

 i
S

t
o

C
K

P
h

o
t

o
.C

o
M

,
S

C
r

a
t

C
h

 P
r

o
J

e
C

t
S

 f
r

o
M

 t
o

P
 L

e
f

t
 t

o
 r

i
g

h
t

:
S

a
C

K
b

o
y

2
,

a
t

y
o

-D
i

C
K

e
r

S
o

n
,

K
U

r
i

,
n

e
V

i
t

,
S

h
a

n
n

P
a

L
,

S
a

D
o

W
f

i
r

e
1

1
,

Z
a

D
a

r
M

o
3

,
K

g
r

o
D

o
n

,
S

h
a

n
e

S
t

a
,

M
t

b
o

o
M

,
n

a
t

e
.

kbrennan
Rectangle

62 communications of the acm | november 2009 | vol. 52 | no. 11

contributed articles

a step-by-step tutorial, demonstrating
a 13-step process for drawing and col-
oring anime characters.

Over the course of a year, BalaBeth-
any programmed and shared more
than 200 Scratch projects, covering a
range of project types (stories, contests,
tutorials, and more). Her programming
and artistic skills progressed, and her
projects clearly resonated with the
Scratch community, receiving more
than 12,000 comments.

Why Programming?
It has become commonplace to refer to
young people as “digital natives” due
to their apparent fluency with digital
technologies.15 Indeed, many young
people are very comfortable sending
text messages, playing online games,
and browsing the Web. But does that
really make them fluent with new tech-
nologies? Though they interact with
digital media all the time, few are able
to create their own games, animations,
or simulations. It’s as if they can “read”
but not “write.”

As we see it, digital fluency requires
not just the ability to chat, browse, and
interact but also the ability to design,
create, and invent with new media,16 as
BalaBethany did in her projects. To do
so, you need to learn some type of pro-
gramming. The ability to program pro-
vides important benefits. For example,
it greatly expands the range of what you

She periodically added new charac-
ters to her series and at one point asked
why not involve the whole Scratch com-
munity in the process? She created and
uploaded a new Scratch project that
announced a “contest,” asking other
community members to design a sister
for one of her characters (see Figure 1).
The project listed a set of requirements
for the new character, including “Must
have red or blue hair, please choose”
and “Has to have either cat or ram
horns, or a combo of both.”

The project received more than 100
comments. One was from a commu-
nity member who wanted to enter the
contest but said she didn’t know how
to draw anime characters. So BalaBeth-
any produced another Scratch project,

can create (and how you can express
yourself) with the computer. It also ex-
pands the range of what you can learn.
In particular, programming supports
“computational thinking,” helping you
learn important problem-solving and
design strategies (such as modulariza-
tion and iterative design) that carry
over to nonprogramming domains.18
And since programming involves the
creation of external representations of
your problem-solving processes, pro-
gramming provides you with opportu-
nities to reflect on your own thinking,
even to think about thinking itself.2

Previous Research
When personal computers were first
introduced in the late 1970s and 1980s,
there was initial enthusiasm for teach-
ing all children how to program. Thou-
sands of schools taught millions of stu-
dents to write simple programs in Logo
or Basic. Seymour Papert’s 1980 book
Mindstorms13 presented Logo as a cor-
nerstone for rethinking approaches to
education and learning. Though some
children and teachers were energized
and transformed by these new pos-
sibilities, most schools soon shifted
to other uses of computers. Since that
time, computers have become perva-
sive in children’s lives, but few learn
to program. Today, most people view
computer programming as a narrow,
technical activity, appropriate for only figure 2. sample scratch scripts.

figure 1. screenshots from BalaBethany’s anime series, contest, and tutorial.

kbrennan
Rectangle

contributed articles

november 2009 | vol. 52 | no. 11 | communications of the acm 63

a small segment of the population.
What happened to the initial enthu-

siasm for introducing programming to
children? Why did Logo and other ini-
tiatives not live up to their early prom-
ise? There were several factors:

Early programming languages ˲

were too difficult to use, and many chil-
dren simply couldn’t master the syntax
of programming;

Programming was often intro- ˲

duced with activities (such as generat-
ing lists of prime numbers and making
simple line drawings) that were not
connected to young people’s interests
or experiences; and

Programming was often intro- ˲

duced in contexts where no one could
provide guidance when things went
wrong—or encourage deeper explora-
tions when things went right.

Papert argued that programming
languages should have a “low floor”
(easy to get started) and a “high ceil-
ing” (opportunities to create increas-
ingly complex projects over time). In
addition, languages need “wide walls”
(supporting many different types of
projects so people with many different
interests and learning styles can all be-
come engaged). Satisfying the triplet of
low-floor/high-ceiling/wide-walls hasn’t
been easy.3

In recent years, new attempts have
sought to introduce programming to
children and teens.7 Some use profes-
sional programming languages like
Flash/ActionScript; others use new
languages (such as Alice7 and Squeak
Etoys5) developed specifically for young-
er programmers. They have inspired
and informed our work on Scratch. But
we weren’t fully satisfied with the exist-
ing options. In particular, we felt it was
important to make the floor even lower
and the walls even wider while still sup-
porting development of computational
thinking.

To achieve these goals, we estab-
lished three core design principles for
Scratch: Make it more tinkerable, more
meaningful, and more social than
other programming environments. In
the following sections, we discuss how
each of these principles guided our de-
sign of Scratch.

more tinkerable
Our Lifelong Kindergarten research
group at the MIT Media Lab (http://

have hexagon-shaped voids, indicating
a Boolean is required.

The name “Scratch” itself high-
lights the idea of tinkering, as it comes
from the scratching technique used by
hip-hop disc jockeys, who tinker with
music by spinning vinyl records back
and forth with their hands, mixing mu-
sic clips together in creative ways. In
Scratch programming, the activity is
similar, mixing graphics, animations,
photos, music, and sound.

Scratch is designed to be highly in-
teractive. Just click on a stack of blocks
and it starts to execute its code imme-
diately. You can even make changes to a
stack as it is running, so it is easy to ex-
periment with new ideas incrementally
and iteratively. Want to create parallel
threads? Simply create multiple stacks
of blocks. Our goal is to make parallel
execution as intuitive as sequential ex-
ecution.

The scripting area in the Scratch
interface is intended to be used like a
physical desktop (see Figure 3). You
can even leave extra blocks or stacks
lying around in case you need them
later. The implied message is that it’s
OK to be a little messy and experimen-
tal. Most programming languages (and
computer science courses) privilege
top-down planning over bottom-up tin-
kering. With Scratch, we want tinkerers
to feel just as comfortable as planners.

The emphasis on iterative, incre-
mental design is aligned with our own
development style in creating Scratch.
We selected Squeak as an implementa-
tion language since it is well-suited for

llk.media.mit.edu) has worked closely
with the Lego Company (http://www.
lego.com/) for many years, helping
develop Lego Mindstorms and other
robotics kits.17 We have always been
intrigued and inspired by the way chil-
dren play and build with Lego bricks.
Given a box full of them, they immedi-
ately start tinkering, snapping together
a few bricks, and the emerging struc-
ture then gives them new ideas. As they
play and build, plans and goals evolve
organically, along with the structures
and stories.

We wanted the process of program-
ming in Scratch to have a similar feel.
The Scratch grammar is based on a
collection of graphical “programming
blocks” children snap together to cre-
ate programs (see Figure 2). As with
Lego bricks, connectors on the blocks
suggest how they should be put togeth-
er. Children can start by simply tinker-
ing with the bricks, snapping them
together in different sequences and
combinations to see what happens.
There is none of the obscure syntax or
punctuation of traditional program-
ming languages. The floor is low and
the experience playful.

Scratch blocks are shaped to fit to-
gether only in ways that make syntactic
sense. Control structures (like for-
ever and repeat) are C-shaped to
suggest that blocks should be placed
inside them. Blocks that output values
are shaped according to the types of
values they return: ovals for numbers
and hexagons for Booleans. Condition-
al blocks (like if and repeat-until)

figure 3. scratch user interface.

kbrennan
Rectangle

64 communications of the acm | november 2009 | vol. 52 | no. 11

contributed articles

personalization missing from 3D au-
thoring environments.

The value of personalization is cap-
tured nicely in this blog post from a
computer scientist who introduced
Scratch to his two children: “I have to
admit that I initially didn’t get why a
kids’ programming language should
be so media-centric, but after seeing
my kids interact with Scratch it became
much more clear to me. One of the nic-
est things I saw with Scratch was that it
personalized the development experi-
ence in new ways by making it easy for
my kids to add personalized content
and actively participate in the develop-
ment process. Not only could they de-
velop abstract programs to do mindless
things with a cat or a box, etc… but they
could add their own pictures and their
own voices to the Scratch environment,
which has given them hours of fun and
driven them to learn.”

We continue to be amazed by the
diversity of projects that appear on the
Scratch Web site. As expected, there
are lots of games, ranging from pains-
takingly recreated versions of favorite
video games (such as Donkey Kong) to
totally original games. But there are
many other genres, too (see Figure 4).
Some Scratch projects document life
experiences (such as a family vacation
in Florida); others document imaginary
wished-for experiences (such as a trip to
meet other Scratchers). Some Scratch

rapid prototyping and iterative design.
Before we launched Scratch in 2007, we
continually field-tested prototypes in
real-world settings, revising over and
over based on feedback and sugges-
tions from the field.4

more meaningful
We know that people learn best, and
enjoy most, when working on person-
ally meaningful projects. So in devel-
oping Scratch, we put a high priority on
two design criteria:

Diversity. Supporting many different
types of projects (stories, games, ani-
mations, simulations), so people with

widely varying interests are all able to
work on projects they care about; and

Personalization. Making it easy for
people to personalize their Scratch
projects by importing photos and mu-
sic clips, recording voices, and creating
graphics.14

These priorities influenced many of
our design decisions. For example, we
decided to focus on 2D images, rather
than 3D, since it is much easier for peo-
ple to create, import, and personalize
2D artwork. While some people might
see the 2D style of Scratch projects as
somewhat outdated, Scratch projects
collectively exhibit a visual diversity and

figure 5. sample scratch script (from Pong-like paddle game) highlighting computational
and mathematical concepts.

figure 4. screenshots from sample scratch projects.

kbrennan
Rectangle

contributed articles

november 2009 | vol. 52 | no. 11 | communications of the acm 65

projects (such as birthday cards and
messages of appreciation) are intended
to cultivate relationships. Others are
designed to raise awareness on social
issues (such as global warming and ani-
mal abuse). During the 2008 U.S. presi-
dential election, a flurry of projects fea-
tured Barack Obama and John McCain
and later a series of projects promoted
members of the Scratch online commu-
nity for the not-quite-defined position
of “President of Scratch.”

Some Scratch projects grow out of
school activities. For an Earth-science
class, a 13-year-old boy from India cre-
ated a project in which an animated
character travels to the center of the
Earth, with a voice-over describing the
different layers along the way. As part of
a social-studies class, a 14-year-old boy
from New Jersey created a simulation of
life on the island of Rapa Nui, designed
to help others learn about the local cul-
ture and economy.

As Scratchers work on personally
meaningful projects, we find they are
ready and eager to learn important
mathematical and computational
concepts related to their projects (see
Figure 5). Consider Raul, a 13-year-old
boy who used Scratch to program an in-
teractive game in his after-school cen-
ter.9 He created the graphics and basic
actions for the game but didn’t know
how to keep score. So when a research-
er on our team visited the center, Raul
asked him for help. The researcher
showed Raul how to create a variable
in Scratch, and Raul immediately saw
how he could use it for keeping score.
He began playing with the blocks for
incrementing variables, then reached
out and shook the researcher’s hand,
saying “Thank you, thank you, thank
you.” The researcher wondered how
many eighth-grade algebra teachers
get thanked by their students for teach-
ing them about variables?

more social
Development of the Scratch program-
ming language is tightly coupled with
development of the Scratch Web site.12
For Scratch to succeed, the language
needs to be linked to a community
where people can support, collaborate,
and critique one another and build on
one another’s work.1

The concept of sharing is built into
the Scratch user interface, with a prom-

inent “Share” menu and icon at the top
of the screen. Click the Share icon and
your project is uploaded to the Scratch
Web site (see Figure 6) where it is dis-
played at the top of the page, along with
the “Newest Projects.” Once a project is
on the Web site, anyone can run it in a
browser (using a Java-based player),
comment on it, vote for it (by clicking
the “Love It?” button), or download it
to view and revise the scripts. (All proj-
ects shared on the site are covered by
Creative Commons license.)

In the 27 months following the
Scratch launch, more than 500,000 proj-
ects were shared on the Scratch Web site.
For many Scratchers, the opportunity
to put their projects in front of a large
audience—and receive feedback and
advice from other Scratchers—is strong
motivation. The large library of projects
on the site also serves as inspiration. By
exploring projects there, Scratchers get
ideas for new projects and learn new
programming techniques. Marvin Min-
sky once said that Logo had a great gram-
mar but not much literature.11 Whereas
young writers are often inspired by read-
ing great works of literature, there was
no analogous library of great Logo proj-
ects to inspire young programmers. The
Scratch Web site is the beginning of a
“literature” for Scratch.

The site is also fertile ground for
collaboration. Community members
are constantly borrowing, adapting,
and building on one another’s ideas,
images, and programs. Over 15% of
the projects there are remixes of oth-
er projects on the site. For example,
there are dozens of versions of the
game Tetris, as Scratchers continue
to add new features and try to improve
gameplay. There are also dozens of
dress-up-doll projects, petitions, and
contests, all adapted from previous
Scratch projects.

At first, some Scratchers were upset
when their projects were remixed, com-
plaining that others were “stealing”
from them. That led to discussions on
the Web site’s forums about the value
of sharing and the ideas behind open
source communities. Our goal is to cre-
ate a culture in which Scratchers feel
proud, not upset, when their projects
are adapted and remixed by others. We
have continually added new features to
the site to support and encourage this
mind-set. Now, when someone remixes

three core design
principles for
scratch: make it
more tinkerable,
more meaningful,
and more social
than other
programming
environments.

kbrennan
Rectangle

66 communications of the acm | november 2009 | vol. 52 | no. 11

contributed articles

a project, the site automatically adds a
link back to the original project, so the
original author gets credit. Also, each
project includes links to its “derivatives”
(projects remixed from it), and the “Top
Remixed” projects are featured promi-
nently on the Scratch homepage.

Some projects focus on the site it-
self, providing reviews and analyses of
other projects there. One early example
was called SNN, for Scratch News Net-
work, featuring the Scratch cat (the
default character in Scratch) delivering
news about the Scratch community,
much like a CNN anchor. At first, we
saw it as a “simulated newscast” but
then realized it was a real newscast,
providing news of interest to a real
community—the Scratch online com-
munity. The SNN project inspired oth-
ers, leading to a proliferation of online
newsletters, magazines, and TV shows,
all programmed in Scratch, reporting
on the Scratch community.

Other Scratchers formed online
“companies,” working together to cre-
ate projects that their individual mem-
bers could not have produced on their
own. One company got its start when
a 15-year-old girl from England, with
screen name BeeBop, created a project
full of animated sprites and encouraged
others to use them in their projects or
place special requests for custom-made
sprites. She was setting up a no-fee con-
sulting business. A 10-year-old girl, also
from England, with screen name Mu-
sicalMoon, liked BeeBop’s animations
and asked if she’d be willing to create
a background for one of her projects.
This collaboration gave rise to Mesh
Inc., a self-proclaimed “miniature com-
pany” to produce “top quality games”
in Scratch. A few days later, a 14-year-
old boy from New Jersey, screen name
Hobbit, discovered the Mesh Inc. gal-
lery and offered his services, saying,
“I’m a fairly good programmer, and I
could help with debugging and stuff.”
Later, an 11-year-old boy from Ireland,
with screen name Marty, was added to
the Mesh Inc. staff due to his expertise
in scrolling backgrounds.

Such collaborations open opportuni-
ties for many different types of learning.
Here’s how a 13-year-old girl from Cali-
fornia, who started a Scratch company
called Blue Elk Productions, described
her experience:

“What is fun about Scratch and

about organizing a company to write
games together is that I’ve made a lot of
friends and learned lots of new things.
I’ve learned a lot about different kinds
of programming by looking at other
games with interesting effects, down-
loading them, and looking at and modi-
fying the scripts and sprites. I really like
programming! Also, when I started with
Scratch I didn’t think I was a very good
artist. But since then, just by looking at
other people’s art projects, asking them
questions, and practicing drawing us-
ing programs like Photoshop and the
Scratch paint editor, I’ve gotten a lot
better at art... Another thing I’ve learned
while organizing Blue Elk is how to
help keep a group of people motivated
and working together… I like Scratch
better than blogs or social networking
sites like Facebook because we’re creat-
ing interesting games and projects that
are fun to play, watch, and download. I
don’t like to just talk to other people on-
line, I like to talk about something cre-
ative and new.”

To encourage international shar-
ing and collaboration, we’ve placed a
high priority on translating Scratch into
multiple languages. We created an in-
frastructure that allows the Scratch pro-
gramming blocks to be translated into
any language with any character set. A
global network of volunteers has pro-
vided translations for more than 40 lan-
guages. Children around the world now
share Scratch projects with one another,
each viewing the Scratch programming
blocks in their own language.

future Directions
A growing number of K–12 schools
around the world, and even some uni-
versities (including Harvard and the
University of California, Berkeley),8 use
Scratch as a first step into programming.
A natural question is What comes next?
In the Scratch discussion forums, there
are ongoing debates about what pro-
gramming language should be used af-
ter Scratch. We receive many requests to
add more advanced features to Scratch
(such as object inheritance and recur-
sive list structures), hoping that Scratch
itself could be the “next step.”

We plan to keep our primary focus
on lowering the floor and widening the
walls, not raising the ceiling. For some
Scratchers, especially those who want to
pursue a career in programming or com-

the scratch Web
site has become
a vibrant online
community, with
people sharing,
discussing, and
remixing one
another’s projects.

kbrennan
Rectangle

contributed articles

november 2009 | vol. 52 | no. 11 | communications of the acm 67

References
1. Bransford, J., Brown, A., and Cocking, R. How People

Learn: Mind, Brain, Experience, and School. National
Academies Press, Washington, D.C., 2000.

2. diSessa, A. Changing Minds: Computers, Learning, and
Literacy. MIT Press, Cambridge, MA, 2000.

3. Guzdial, M. Programming environments for novices. In
Computer Science Education Research, S. Fincher and
M. Petre, Eds. Taylor & Francis, Abingdon, U.K., 2004,
127–154.

4. Kafai, Y., Peppler, K., and Chiu, G. High-tech
programmers in low-income communities: Seeding
reform in a community technology center. In
Communities and Technologies, C. Steinfield, B.
Pentland, M. Ackerman, and N. Contractor, Eds.
Springer, New York, 2007, 545–564.

5. Kay, A. Squeak etoys, children, and learning; http://
www.squeakland.org/resources/articles.

6. Kelleher, C. and Pausch, R. Using storytelling to
motivate programming. Commun. ACM 50, 7 (July
2007), 58–64.

7. Kelleher, C. and Pausch, R. Lowering the barriers
to programming: A taxonomy of programming
environments and languages for novice programmers.
ACM Computing Surveys 37, 2 (June 2005), 83–137.

8. Malan, D. and Leitner, H. Scratch for budding computer
scientists. ACM SIGCSE Bulletin 39, 1 (Mar. 2007),
223–227.

9. Maloney, J., Peppler, K., Kafai, Y., Resnick, M., and
Rusk, N. Programming by choice: Urban youth learning
programming with Scratch. ACM SIGCSE Bulletin 40,
1 (Mar. 2008), 367–371.

10. Margolis, J. Stuck in the Shallow End: Education, Race,
and Computing. MIT Press, Cambridge, MA, 2008.

11. Minsky, M. Introduction to LogoWorks. In LogoWorks:
Challenging Programs in Logo, C. Solomon, M. Minsky,
and B. Harvey, Eds. McGraw-Hill, New York, 1986.

12. Monroy-Hernández, A. and Resnick, M. Empowering
kids to create and share programmable media.
Interactions 15, 2 (Mar.–Apr. 2008), 50–53.

13. Papert, S. Mindstorms: Children, Computers, and
Powerful Ideas. Basic Books, New York, 1980.

14. Peppler, K. and Kafai, Y. From SuperGoo to Scratch:
Exploring creative media production in informal
learning. Journal on Learning, Media, and Technology
32, 7 (2007), 149–166.

15. Prensky, M. Digital natives, digital immigrants. On the
Horizon 9, 5 (Oct. 2001), 1–6.

16. Resnick, M. Sowing the seeds for a more creative
society. Learning and Leading with Technology (Dec.
2007), 18–22.

17. Resnick, M. Behavior construction kits. Commun. ACM
36, 7 (July 1993), 64–71.

18. Wing, J. Computational thinking. Commun. ACM 49, 3
(Mar. 2006), 33–35.

Mitchel Resnick, John Maloney, Andrés Monroy-
Hernández, Natalie Rusk, Evelyn Eastmond, Karen
Brennan, Amon Millner, Eric Rosenbaum, and Jay
Silver are all researchers and members of the Scratch
Team (http://scratch.mit.edu) at the Media Laboratory of
the Massachusetts Institute of Technology, Cambridge,
MA. Brian Silverman is president of the Playful Invention
Company, Montreal, Quebec, Canada. Yasmin Kafai is
a professor in the Graduate School of Education of the
University of Pennsylvania, Philadelphia, PA.

© 2009 ACM 0001-0782/09/1100 $10.00

puter science, it is important to move
on to other languages. But for many
other Scratchers, who see programming
as a medium for expression, not a path
toward a career, Scratch is sufficient
for their needs. With Scratch, they can
continue to experiment with new forms
of self-expression, producing a diverse
range of projects while deepening their
understanding of a core set of computa-
tional ideas. A little bit of programming
goes a long way.

As we develop future versions, our
goal is to make Scratch even more tin-
kerable, meaningful, and social. With
our Scratch Sensor Board (http://info.
scratch.mit.edu/Sensor_Boards), peo-
ple can create Scratch projects that
sense and react to events in the physi-
cal world. We are also developing a
version of Scratch that runs on mobile
devices and a Web-based version that
enables people to access online data
and program online activities.

Probably the biggest challenges for
Scratch are not technological but cul-
tural and educational.10 Scratch has
been a success among early adopters,
but we need to provide better educa-
tional support for it to spread more
broadly. We recently launched a new
online community, called Scratch-
Ed (http://scratched.media.mit.edu),
where educators share their ideas, ex-
periences, and lesson plans for Scratch.

More broadly, there needs to be a shift
in how people think about program-
ming, and about computers in gen-
eral. We need to expand the notion of
“digital fluency” to include designing
and creating, not just browsing and in-
teracting. Only then will initiatives like
Scratch have a chance to live up to their
full potential.

acknowledgments
Many people have contributed to the
development of Scratch and even
more to the ideas underlying Scratch.
We’d like to thank friends and former
members of the Lifelong Kindergarten
group who have worked on Scratch, es-
pecially Tammy Stern, Dave Feinberg,
Han Xu, Margarita Dekoli, Leo Burd,
Oren Zuckerman, Nick Bushak, and
Paula Bonta. We are grateful to Kylie
Peppler, Grace Chui, and other mem-
bers of Yasmin Kafai’s research
team, who conducted and partici-
pated in field studies in Scratch’s
early development. Scratch was
deeply influenced and inspired by the
work of Seymour Papert and Alan Kay.
We appreciate financial support from
the National Science Foundation
(grant ITR-0325828), Microsoft, Intel
Foundation, Nokia, and MIT Media
Lab research consortia. The names
of all children mentioned here are
pseudonyms.

figure 6. scratch Web site.

kbrennan
Rectangle

