

Growing Up Programming: Democratizing
the Creation of Dynamic, Interactive Media

Abstract
Young people interact with games, animations, and
simulations all of the time. But few of them are able to
create interactive media. The obstacle: traditional
programming languages are too difficult to learn and
understand. This panel brings together a group of
researchers, developers, and educators who are aiming
to democratize the activity of programming. They are
developing a new generation of programming
environments that enable children and teens to create
their own interactive games, stories, animations, and
simulations. Panelists will discuss and critique their
programming environments, then set up interactive
demonstration stations for focused exploration and
small-group discussion. Audience members will also
have the opportunity to download the environments
onto their own laptops, so that they can experiment in
greater depth.

Keywords
End-user programming, learning, education, children

ACM Classification Keywords
K.3.2 [Computers and Education]: Computer and
Information Science Education; D.1.7 [Programming
Techniques]: Visual Programming; D.2.6 [Software
Engineering]: Programming Environments.

Copyright is held by the author/owner(s).

CHI 2009, April 4 – April 9, 2009, Boston, MA, USA

ACM 978-1-60558-247-4/08/04.

Mitchel Resnick
MIT Media Lab

20 Ames Street

Cambridge, MA 02139 USA

mres@media.mit.edu

Mary Flanagan
Tiltfactor, Dartmouth College

304 North Fairbanks

Hanover, NH 03755 USA

mary@maryflanagan.com

Caitlin Kelleher
Washington University

1 Brookings Dr.

St Louis, MO 63130 USA

ckelleher@cse.wustl.edu

Matthew MacLaurin
Microsoft Research

One Microsoft Way

Redmond, WA 98052 USA

mattmac@microsoft.com

Yoshiki Ohshima
Viewpoints Research Institute

1209 Grand Central Ave.

Glendale, CA 91201 USA

yoshiki@vpri.org

Ken Perlin
Media Research Lab, NYU

719 Broadway, Room 1202

New York, NY 10003 USA

perlin@nyu.edu

Robert Torres
New York University

designbydesign.org

354 West 37th Street, Ste 3

robert@designbydesign.org

 2

Introduction
Today’s world is full of interactive objects. Walk up to a
door, and it opens automatically. Play with a toy, and it
flashes, beeps, and talks in response to your actions.
Connect to a website, and animations react to the
movements of your mouse. Log into an online game,
and you can interact with fantasy creatures and other
virtual objects. Boot up a science simulation, and you
can explore the behavior of a bird flock or motions of
the planets.

Young people interact with these objects everyday. But
very few of them can create these objects. The creation
of interactive objects requires the ability to program,
but traditional programming languages are notoriously
difficult to learn and understand. As a result, most
young people are not fully fluent with digital media –
they can “read” but not “write.” While Web 2.0 has
opened up opportunities for everyone to create and
express themselves with text, audio, and video, only a
small subset of the population can create and express
themselves with interactive media.

This panel brings together a group of researchers,
developers, and educators who are aiming to
democratize the activity of programming. They are
developing a new generation of programming
environments that enable children and teens to create
their own interactive games, stories, animations, and
simulations. The goal is to transform programming
from a specialized activity for a small sub-community of
experts to an everyday activity for a diverse range of
participants, so that everyone has an opportunity to
become a fully fluent contributor to today’s digital
society.

Panelists will discuss the ideas underlying their
programming environments, show sample projects, and
analyze what young people learn as they program
within these environments. After the opening
presentations, panelists will set up demonstration
stations around the room, providing audience members
an opportunity to interact with the environments, see
more detailed demonstrations and examples, and
engage in small-group discussions with the creators of
the environments. Audience members will also have the
opportunity to download the environments onto their
own laptops, so that they can explore and experiment
in greater depth. In the final portion of the session, the
panelists will reassemble on the stage to answer
questions and discuss future directions

Why Programming?
In its report Being Fluent with Information Technology,
the National Research Council (NRC) defined digital
fluency as “the ability to reformulate knowledge, to
express oneself creatively and appropriately, and to
produce and generate information (rather than simply
to comprehend it)…[Fluency] goes beyond traditional
notions of computer literacy…[It] requires a deeper,
more essential understanding and mastery of
information technology for information processing,
communication, and problem solving than does
computer literacy as traditionally defined.”

According to the NRC report, skills associated with
programming play a “central role” in the development
of fluency. The ability to program offers many
important benefits:

 It expands the range of what you can create with
software, so that you are no longer limited to the

 3

features provided by standard applications –
transforming your relationship with digital
technology from “consumer” to “creator.”

 It helps you develop a deeper understanding of
how computers work, enabling you to use
computer applications more effectively and analyze
them more critically.

 It offers a meaningful context for learning
important mathematical concepts, including some
concepts that are already taught in pre-college
curricula (such as “variables”) and others that are
typically seen as too advanced for pre-college
students (such as “feedback” and “emergence”).

 It supports the development of “computational
thinking,” providing experience with important
problem-solving and design strategies (such as
modularization and iterative design) that carry over
to non-programming domains. By providing an
external representation of your problem-solving
processes, it also offers opportunities to reflect on
your own thinking – and to think about thinking
itself.

Previous Research
When personal computers were first introduced in the
late 1970s and 1980s, there was initial enthusiasm for
teaching all children how to program. Thousands of
schools taught millions of students to write simple
programs in the Logo or Basic programming languages.
Seymour Papert’s book Mindstorms presented Logo as
a cornerstone for rethinking approaches to education
and learning. Although some children and teachers
were energized and transformed by these new
possibilities, most schools soon shifted to other uses of
computers. In the past 20 years, computers have

become a pervasive presence in children’s lives, but
few children learn to program. Today, most people view
computer programming as a narrow, technical activity,
appropriate only for a small segment of the population.

What happened to the initial enthusiasm for introducing
programming to children? Why did Logo and other
initiatives not live up to their promise? There were
many factors:

 Early programming languages were too difficult to
use. Many children had difficulty mastering the
syntax of programming languages.

 Programming was often introduced with activities
(generating lists of prime numbers, or making
simple line drawings) that were not connected to
children’s interests or experiences.

 Children did not have access to a “literature” of
interesting computer programs. Whereas young
writers are often inspired by reading great works of
literature, there was no analogous literature of
programming projects to inspire new programmers.

 Programming was often introduced in contexts
where no one had the expertise needed to provide
guidance when things went wrong – or encourage
deeper explorations when things went right.

Featured Projects
The panel will feature six programming environments,
each designed to make the activity of programming
more intuitive and the core concepts of programming
more understandable. The projects overcome
limitations of earlier initiatives by building upon recent
HCI research in the areas of end-user programming,
graphical interface design, collaborative learning, and

 4

interaction design for children. The panelists are all
core members of the design teams for their respective
projects.

Alice 2 and Storytelling Alice are designed to enable
novice programmers to learn basic programming
constructs while creating their own 3D animations and
games. Alice 2 targets college and high school students
learning computer programming in a formal classroom
setting. Storytelling Alice is designed for middle school
students, particularly girls. (Caitlin Kelleher)

Boku is an exploratory programming environment
situated within a modern, high-quality 3D video game
running on either a PC or an XBox 360 game console.
In Boku, kids can interactively edit the world, place
characters, and give those characters autonomous
behaviors using a purpose-built iconic programming
language. Typing is optional: all programming is done
with a standard game controller. (Matthew MacLaurin)

Etoys (http://squeakland.org) is an interactive
multimedia authoring tool designed for children (around
5th-6th graders) which draws upon the ideas of Logo,
Smalltalk, Hypercard, and StarLogo. Built on top of the
Squeak programming language, Etoys pioneered a tile-
scripting interface in which a user can drag and drop
graphical tiles to construct "scripts" for the multimedia
objects. The creators of Etoys envisioned the use of
computers in mathematics, science, and computing
education. Etoys offers features that make it easy to
describe the discrete form of differential equations, and
support materials for Etoys demonstrate how to model
physical phenomenon in Etoys. (Yoshiki Ohshima)

Gamestar Mechanic is an RPG (Role‐Playing Game) 
style online game where middle and high school‐age 
players learn the fundamentals of game design by playing 
roles as “game mechanics” charged with the making and 
“modding” (modifying) of games.  The game’s online social 
networking feature allows player‐designers to play and 
comment on each other’s games.  Gamestar Mechanic is a 
collaborative research and development project between 
Gamelab, a game company in New York, and the Games, 
Learning, and Society Program at the University of 
Wisconsin, Madison. (Robert Torres)

RAPUNSEL is the name of the research project that
developed the PEEPS game for "real-time, applied
programming for underrepresented students' early
literacy (RAPUNSEL)." The team's design goal was to
develop an entertaining venue for programming
education among middle school girls in informal
settings. Our goal of addressing girls in particular
through the design is related to gender equity and the
digital divide. (Mary Flanagan and Ken Perlin)

Scratch enables young people (ages 8 and up) to
create their own interactive stories, games, and
animations – and share their creations on the web.
Scratch is designed to make programming more
tinkerable, more meaningful, and more social. Since
Scratch was launched in May 2007, more than 300,000
projects have been shared on the Scratch website
(http://scratch.mit.edu), which has been called “the
YouTube of interactive media.” As young people create
and share Scratch projects, they learn to think
creatively, reason systematically, and work
collaboratively. (Mitchel Resnick)

