
SPECIAL SECTION

72   acm Inroads   2014 December  •  Vol. 5  •  No. 4

ENGAGING
NOVICES IN

PROGRAMMING,
EXPERIMENTING,
AND LEARNING
WITH DATA

write computer programs that can efficiently deal with large data
sets. Understanding and managing data sets is increasingly becom-
ing an integral part of not only our professional lives, but also of
our personal lives, as we record and analyze our daily activities with
fitness trackers, share data in various forms with our friends and
acquaintances through social networks, etc.

Most introductory computer science and programming courses
that are taught today, however, focus on the “process” aspect of
programming, focusing on algorithmic concepts and related areas
such as flow of control and rarely on data. While these concepts
form the fundamental pillars of programming, as a side effect of
this trend, toolkits for novice programmers rarely deal with data,
beyond relatively simple uses of variables, lists, and key-value pairs.
Also, most introductory computer science lesson plans and compu-
tational thinking frameworks do not go much beyond spreadsheets
and pen-and-paper surveys when it comes to computational explo-
rations of data.

In this article, we discuss some of the emerging opportunities
that promise to enable a much wider variety of computational proj-
ects around data, especially at the introductory level. We describe
these opportunities in the context of our ongoing and upcoming
work with Scratch [8], a visual block-based programming language
and online community developed by our research group at the MIT
Media Lab. And, we describe a number of new data-oriented fea-
tures in Scratch and discuss how they influence the ways in which
children think about the world.

Scratch has been designed especially for young programmers

We describe a number of new and upcoming
initiatives within the Scratch project that

focus on introducing programming with data to
young programmers. These initiatives are placed in
the context of emerging opportunities and trends
in computing such as the cloud, open data
initiatives, and ubiquitous sensor devices. We
describe how the initiatives take advantage of these
trends to enable young programmers to think not
just about data, but also about the role of data in
their world through computational projects that
are personally engaging and meaningful.

Many real-world computer-programming tasks are centered on
the collection and manipulation of large amounts of data. For ex-
ample, a social scientist may have to build a custom online survey
tool for his research, and after spending months collecting data
through the survey, he may have to program yet another tool for
analyzing the results for patterns and correlations. In another ex-
ample, an astronomer may have terabytes of data collected from
weeks of astronomical observations, and she may need to write a
custom program to analyze this data.

None of the people in the examples above are professional pro-
grammers, but yet, as a part of their day-to-day jobs, they have to

Sayamindu Dasgupta and
Mitchel Resnick

SPECIAL SECTION

EARLY
COMPUTING
EDUCATION

2014 December  •  Vol. 5  •  No. 4   acm Inroads   73

SPECIAL SECTION SPECIAL SECTION

ages 8-15, but is used for introduction to programming across a
much wider age range. Programming in Scratch is done through
visual blocks, which can be snapped together (virtually) to create
a sequence of instructions for on-screen graphical objects called
sprites. Using Scratch, millions of children all over the world have
created interactive animations, games, simulations, stories, and
more. Scratch also has an online community website, where young
Scratch users can share their projects, remix projects created by
other users, comment on each other’s projects, and “follow” each
other, etc. (Figure 1).

The core design approaches of Scratch are grounded in the
principles of constructionism, where Scratch enables learners to
construct public entities (projects). These projects become “objects
to think with,” where the process of constructing these projects
offers opportunities to engage in not only computational thinking,
but also in “thinking about thinking” (e.g., any exercise in debug-
ging code becomes an examination of one’s own thought process)
[6]. All this is situated in the context of the Scratch online com-
munity, a venue for exchanging ideas, learning from others, and
collaboration with others.

DATA AND THE CLOUD
Scratch 2.0, launched in 2013, moves the code editor to the Cloud,
which means that Scratch users can program and create their proj-
ects directly in the browser, and save their creations on the Scratch
website directly. A consequent effect of this design is that Scratch
users, when they are creating a project, or running one, are online
and connected to the Internet.

In some ways, Scratch projects can be thought of mini “web-
apps” running in the browser. Traditional web apps often come with
support for storing data online (“in the cloud”), and, in Scratch, we
designed a new feature called Cloud data that adds an online, per-
sistent storage layer to Scratch projects.

Cloud data enables Scratch programmers to build projects that
can store data online, and each Scratch project has a Cloud data-
store that is shared persistently and in real-time between instances.
The data storage functionality is implemented through extending
Scratch data-structures (scalar variables and lists), where a given

data-structure can be marked as a “Cloud variable” or “Cloud list,”
making it persistent. Persistence and sharedness make it possible to
create projects such as surveys (where each survey choice is repre-
sented as a cloud variable), high score lists, etc.

Scratch users have created a wide variety of projects with Cloud
data. One of the more popular genre of Cloud data projects consist
of comparatively simple “collaborative clicking” projects, where a
shared Cloud variable is incremented every time someone clicks
on a button in the project, and the goal is to collaboratively reach
a certain milestone (e.g., 100,000 clicks). While this type of proj-

ect itself is simple in terms of programmatic
complexity, the jump from traditional Scratch
data-structures to shared and persistent data-
structures, in terms of functional understand-
ing, is significant.

Analysis of Cloud data projects in the
Scratch website show that the single most pop-
ular use of the feature is for high-score leader-
boards in games (more than 20%) [2]. This il-
lustrates how young programmers, who will not
normally work on a “data-only” project, use data
to extend the functionality of a project belong-
ing to a genre that they care about.

The “wide walls” approach of Scratch [8],
where the tool is designed to engage children
having a wide variety of interests and passions,

gets reflected in the larger corpus of Cloud data projects. Cloud
data projects include

■	� surveys (Figure 2);
■	� multiplayer games using Cloud data structures as message-passing

systems;
■	� crowd-sourced pixel art projects where the entire Scratch canvas is

turned into a grid, with grid element (pixel) states represented by
a persistent Cloud list; and

■	� virtual currency transaction systems called “Sipcoins,” inspired by
Bitcoins [2].

Figure 1: Scratch code and the Scratch online community homepage

Figure 2: Cloud Data Survey Project on Favorite Browser

SPECIAL SECTION

74   acm Inroads   2014 December  •  Vol. 5  •  No. 4

Engaging novices in programming, experimenting, and learning with data

SPECIAL SECTION

ONLINE DATA SOURCES
Support for persistent data, however, is only one small slice of the
possibilities as we move towards programming with data in an on-
line coding platform. Over the last few years, a large number of
open-data resources have started to appear online, and these range
from real-time meteorological data to rich geographical data sets
made available by government agencies and municipalities. These
data resources have given rise to a large number of innovative and
useful tools, visualizations, etc. Additionally, a subset of these re-
sources has also contributed significantly to the increase in richness
and variety of sample data sets intended to be used for program-
matic explorations of data.

This emergence of open-data resources was one of the mo-
tivating factors behind a new feature in Scratch, known as the
Extension System. The Scratch Extension System is a frame-
work that enables anyone to extend the Scratch vocabulary by
implementing custom programming blocks using JavaScript.
Thus, for example, a Scratch user familiar with JavaScript can
create a Scratch extension that provides blocks that fetch real-
time weather data for any location on the globe, using an online
web service like weather.com. This extension, shared with the
larger community, can enable other Scratch users to incorporate
weather information into their own projects. In a sample project
that was developed to illustrate the use of the extensions system,
the user running the project is prompted to enter the city that
he lives in, and then, based on the current temperature in the
city fetched through the extension, he is recommended ice cream
or hot-chocolate (Figure 3). While still in early beta mode, we
have already seen extensions from enthusiastic Scratch users that
fetch the latest statistics on the recently concluded soccer world-
cup, translate text using online web-services, lookup definition of
words using online dictionary services, and so forth.

As a large number of open datasets come with geo-encoded
data (i.e., where data-points have geographical coordinates), an-
other ongoing test feature in Scratch is map support (Figure 4).
Here the background of the Scratch stage is replaced by satellite
imagery or street maps from Google Maps, and objects on the
Scratch stage (called sprites) are aware of geographical coordinates
through blocks like “move to location ().” While there is a wide va-
riety of uses of map support in Scratch (e.g., interactive tours of
neighborhoods, stories of vacation trips, geographical games like
Geoguessr [3]), any project that uses geo-encoded data will also
benefit significantly from this feature.

Another compelling source of data for Scratch users is the
Scratch online community itself. The community is a rich source
of data, both at a macro level (e.g., overall community statistics), as
well as a micro-level (data on a specific project such as the number
of users who have favorited it or data on a specific user such as the
number of projects shared by the user). Scratch users in the past
have used macro-statistics to celebrate community milestones, for
example, creating projects to commemorate the millionth shared
project. Through an initiative that we have just started, we plan to
provide access to this data through Scratch blocks—effectively, we
are making the Scratch website application programming interface
(API) available from within Scratch. Through these blocks, young
users of Scratch will be able to analyze and visualize their online
learning activities and participation within the Scratch community.
As most of the public data or metadata on the Scratch website will
be available through these Scratch blocks, these blocks will enable
a wide range of creative uses, ranging from extension of Scratch
website features (e.g., list of projects being bookmarked by a set
of users), to block analysis tools (e.g., find computational music
projects by looking at the block repertoire used in each member of
a set of projects).

HARDWARE SENSORS
Apart from online sources of data, another compelling class of
data-sources consists of hardware sensors. In developed countries
(and increasingly, in developing countries) the rise of smartphones
means that everyone is carrying a sophisticated sensing device with
them. A modern smartphone device can detect ambient light, ac-
celeration, geographical location, barometric pressure, and more.
Low cost sensors are also becoming ubiquitous, with platforms
like the Arduino and the Raspberry-Pi emerging as easy-to-use,
affordable, and readily available controllers for these sensors. The
Scratch Extension system, described above, in conjunction with a
hardware support browser plugin that we have developed, can be
used to enable Scratch projects to gather data from such sensors
[4]. This is not a new feature, as older versions of Scratch have had
support for devices like the PicoBoard, which had built-in sen-
sors, as well user-attachable ones [5]. However, with the sensor
landscape dramatically changing over the last few years and with
the emergence of paradigms such as the Internet of Things, novel
and creative instances of bridges between the physical world and
Scratch is poised to grow even more.

Figure 3: Project using Scratch Extension to fetch real-time weather data

Figure 4: Map programming blocks in Scratch

2014 December  •  Vol. 5  •  No. 4   acm Inroads   75

SPECIAL SECTION SPECIAL SECTION

as they build projects that collect data (through surveys or crowd-
sourcing), begin to engage with topics like privacy and scale in their
own terms, through discussions in the online community. As they
move from being consumers of data-tools to creators, these chil-
dren start to understand the privacy and anonymity implications of
these tools from a completely new perspective. Through the pro-
cess of building systems that collect data in the form of surveys,
high-score lists, virtual transactions, etc. young Scratch program-
mers realize the nuanced ways in which they have control over the
data that they collect and store.

With the initiatives that we have outlined in this article, we
strive to enable children to create projects that help them think
about data and their world. The initial results from these initiatives
have been positive, but a lot more needs to be done. A few years
ago, an 11-year-old Scratch user wrote on a public blog,

I have made many projects. Now I have what I call a “Pro-
grammer’s mind.” That is where I think about how anything
is programmed. This has gone from toasters, car electrical
systems, and soooo much more. [7]

Through programming with Scratch, this young Scratch user was
starting to see the world around him in a new way. In a similar fash-
ion, we hope that as we design, create, and share the technologies and
toolkits described in this article, we help a new generation of learners
better understand the world of data they are stepping into. Ir

ACKNOWLEDGMENTS
The work described in this article has been guided by discussions with Natalie Rusk and other
members of the Scratch team at MIT. Brian Silverman and Paula Bonta from the Playful Invention
Company have also provided invaluable advice, along with Professor Hal Abelson from MIT CSAIL.
John Maloney, Shane Clements, and Chris Willis-Ford have carried out a large part of the technical
design and implementation. Financial support has come from National Science Foundation (grant
numbers 1002713, 1027848, and 1417952). We would also like to acknowledge the contribution
of the wider community of Scratch users, who continue to inspire us with their creativity, ingenuity,
and enthusiasm.

REFERENCES
	 [1]	� Bienkowski, M. et al. Enhancing teaching and learning through educational data mining and

learning analytics: An issue brief. US Department of Education, 2012.
	 [2]	� Dasgupta, S. “Surveys, collaborative art and virtual currencies: Children programming with

online data.” International Journal of Child-Computer Interaction. 1, 3–4 (Sep. 2013): 88–98.
	 [3]	� GeoGuessr; https://geoguessr.com/. Accessed July 2014.
	 [4]	� Idlbi, A. Y. Personalized Extensions:  Democratizing the Programming of Virtual-Physical

Interactions. Masters Thesis, Massachusetts Institute of Technology, 2014.
	 [5]	� Millner, A.D. Computer as chalk : cultivating and sustaining communities of youth as design-

ers of tangible user interfaces. PhD Thesis, Massachusetts Institute of Technology, 2010.
	 [6]	� Papert, S. Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, Inc., 1980.
	 [7]	� Resnick, M. Learn to Code, Code to Learn; https://www.edsurge.com/n/2013-05-08-learn-to-

code-code-to-learn. Accessed July 2014.
	 [8]	� Resnick, M. et al. “Scratch: Programming for All.” Communications of the ACM 52, (Nov.

2009): 60.

SAYAMINDU DASGUPTA, MITCHEL RESNICK
MIT Media Lab, 75 Amherst Street, Cambridge, Massachusetts 02142 USA

sayamindu@media.mit.edu, mres@media.mit.edu

Categories and Subject Descriptors: K.3.2 [Computers and Education]: Computer Science
Education; D.3.3 [Programming Languages]: Language Constructs and Features – Data types and
structures
General Terms: Human Factors, Languages, Design
Keywords: programming, data, scratch

DOI: 10.1145/2684721.2684737� © 2014 ACM 2153-2184/14/12 $15.00

LEARNING AND UNDERSTANDING
LEARNING IN A “DATA DRIVEN
SOCIETY”
Learners today are growing up in a world and society that is be-
coming more and more “data driven.” Visualization, analysis, and
understanding of patterns in data are becoming integral parts and
requirements of every field. As illustrated in the examples at the
beginning of this article, learning to program with data is becom-
ing an essential skill in almost any field.

With the Scratch extension system and Map Scratch, young
programmers gain access to a diverse range of data sets, opening up
pathways for different interests and passions. A Scratch user who is
interested in soccer can incorporate authentic, real-world statistics
into his fantasy soccer project, while another user who is interested
in aviation can make airport control-tower simulator projects with

real-world and real-time wind and cloud conditions.
Additionally, learning itself is also changing. As we learn today,

our learning activities and patterns are increasingly being analyzed
and mined in ways that were simply unimaginable even a few years
back. In such a scenario, it is crucial for designers, educators, and
researchers to enable young learners to understand the “data driven”
world around them. A 2012 issue brief on educational data mining
and learning analytics from the US Department of Education [1],
summarizes this need in the following terms.

As colleges and schools move toward the use of fine-grained
data from learning systems and student data aggregated
from multiple sources, they need to help students under-
stand where the data come from, how the data are used by
learning systems, and how they can use the data to inform
their own choices and actions.

The Scratch website data block system attempts to address this
need in the context of Scratch and the Scratch online community
by enabling learners to build tools to understand their own learning
and their own learning community.

In addition to the above, there are also larger topics around data
with which learners need to engage. Questions and ideas about
privacy and anonymity have never been as relevant in the context
of learning and education as they are now. While analyzing uses of
the Cloud data system in Scratch, we have started to see children,

Figure 5: Scratch code using input from a light sensor

[W]e strive to enable children to
create projects that help them

think about data and their world.

