Embedded Networks:

Pervasive, Low-Power, Wireless Connectivity

Robert Dunbar Poor
Submitted to the Program in Media Arts and Sciences School of Architecture
and Planning in partial fulfillment of the requirements for the degree of Doctor

of Philosophy at the Massachusetts Institute of Technology

January 2001

(c) 2001 Massachusetts Institute of Technology. All Rights Reserved.

Author

Program in Media Arts and Sciences
December 1, 2000

Certified by

Michael J. Hawley
Assistant Professor of Media Arts and Sciences
Thesis Advisor

Accepted by

Stephen A. Benton
Chair

Departmental Committee on Graduate Students
Program in Media Arts and Sciences

Abstract

The lack of effective networking technologies for embedded microcontrollers is

inhibiting the emergence of smart objects and “Things That Think.”

A practical communication infrastructure for Things That Think will require wire-
less network connections built directly into microcontroller chips. After showing
that digital processing, application languages, and wireless links are not the bottle-
neck, this thesis turns its attention to network designs. It presents architectures and
algorithms that implement self-organizing networks, requiring minimal pre-plan-

ning and maintenance.

The result is a radically new model for networks—embedded networks—designed
specifically to interconnect untethered embedded microcontrollers. The thesis cul-
minates in the design, implementation and evaluation of a hardware system that

tests and validates the approach.

Thesis Advisor:
Michael J. Hawley
Assistant Professor of Media Arts & Sciences

This research was sponsored by the Things That Think Consortium. The author
gratefully thanks the Motorola Fellows Program, the AT&T Fellows Program and
DARPA for their support.

Embedded Networks:

Pervasive, Low-Power, Wireless Connectivity

Robert Dunbar Poor

The following people have served as readers for this thesis:

Reader
Andrew Lippman
Senior Research Scientist
Media Laboratory
Massachusetts Institute of Technology
Reader

William J. Kaiser
Professor

Electrical Engineering Department
University of California, Los Angeles

Contents

CHAPTER 1 A Network on Every Chipcccccceeveiiiiciiicieeeiee, 7
AN unfulfilled PromiSeccvieevieeiieeiieiieeie et eaee e s 7
Networking: the missing 1Nkcccoverieiieiieniieiee e 8
Embedded NetWorking.........c.ccceeveriieoienieeieiieiese ettt 9
The domain of Embedded Networkingcccooveiieiiniiinienieccceeeeee, 9
Constraints imposed by the host.........c.cccvecierieiieriinie e 10
Constraints imposed by the application...........ccoecvevuerieririeneiieie e 12
Contributions of this thesiS.......ccceviiiirieriiie e 13
The promise, FEVISIEEAccvervieieriiriere ettt esae e enae s 15
What Will happen?........ccooeieiirieieiere ettt 15

CHAPTER 2 Precedents in Wireless Networksccccceeveenneee. 17
Le@ACY SYSLEIMIS . c..eeriiiiiieiiieiiie ettt ettt ettt et ettt e e st e e eee 19
Local Area NetWOTKS.ccueviiiiiriiininierieteseeceeee ettt 20
Wide Area NEtWOTKS ...cc.ooiuiiiiiiiieieceee et 22
Other MUlti-hop ProOtOCOLSccvvieieriieiiiieieeiiee ettt 23
WRA’s MISSINE? ...eeuieiieiiieiieie ettt ee ettt e ste e ense e saeeeesaeennesaeennens 24

CHAPTER 3 Multi-hop Communications..........c..ceceereeerervereeennenn 25
The virtues of WhiSPering...........ccveiereririieiieie ettt 25
Single-hop and multi-hop: an idealized comparison............ccceceeeveeerencnennennee 26
POWET SAVINES ...eutieiieiieiieetieite ettt et sttt et et e et e s 28
Effects of non-uniform Spacing...........ccecuevueeverieniesieniieieieieee e 30
SUIMIMATY ..eeuiiiiieeiieeite ettt ettt ettt et e st e s bt e satesabeebeesbeesbeesnsesnseens 30

CHAPTER 4 GRAdJ: Gradient Routing for Ad Hoc Networks32
The Challenge.........oovieeiiieieeiee ettt et s saeennan 32
The GRAd alOrithmc.cociiriieiiiiee e 34
Simulation and results of GRAQccccooiiiiiiiiee, 43
Proposed extensions to GRAd...........ccceviriiiieiieciee e 54
SUIMIMATY ..eeiviiiieeiiieiee ettt ettt ettt et e e stee s bt e satesabeebaesnbeesbeesaseenseens 56

CHAPTER 5 Distributed Synchronizationcccceeeeveeniieennennne. 57
Running the algorithim..........ccoocoeoiiiiiieciee e 58
An example: synchronization for spread Spectrumcccecveveveecrienvencveenieennn. 60
SUMIMATY ..eeeiiieieieeiieiie ettt eie et ete e steeeteeteesebeesbeesseeeseessaessseassaaeseesseessenseeas 61

CHAPTER 6 Statistical Medium ACCESS........cccueerrierreeriienieenrene 62
Channel ShAaTINEooueerieriiieiieie et e 62

Medium Access and CollisSion AVOIdance...........cccoeovvveeeeveeeeeeeeeieeeeceeeeevee e 63

A statistical APPIOACKeecveiireieeiieieee ettt 64
CROOSIIE Dottt ettt ettt sttt b e eb e bt st et et enee 65
Likelihood of successful transSmiSSioN..........c.eecvereeviriierieriieieesieeseeienieeseneens 66
Statistical Medium Access in multi-hop networks...........ccoevereeieniecieneeiene 67
MiSJUAGING N .ottt ettt sb e et saeeeesbe e e saeas 68
SUIMIMATY ..eeitieiieiieeiie ettt ettt ettt e st e s bt e satesabeebaesteesbeesaseenseens 69
CHAPTER 7 ArborNet: A Proof of Concept........ccccvvevevveerreeennnenn. 70
IMOTIVALTION ...ttt ettt bttt ettt ebte b e e sae et e b e e e nbeene 70
HardWare SYSTEIMcuevuieieeiieieeieee ettt ettt esteseesresaenseennenseas 71
SOFEWATE SYSTEIM......euvieeieiieieeiieieet ettt ettt sttt e e seeestese et esseeneessesnnesseennas 75
The ArborNet packet MEChaniSM.........cccueeeveeiieeiieerieiiieee e 75
Data fIow in ATDOTNEL.c.eoivieeieiieiere ettt et enae e enne s 78
ARQ PrOCESSING. ...cuvieiietientiiieieeiieiteetetesteeteeseesseesseseensesseeseessesnsesseesesseesensaens 81
TIMING SETVICES.c.veeevieitieeiieiieeieereesteesttesteesteeesteesseessseesseesseeenseesssessseenssessseeses 83
Field tests and TESUILScceeieieeieiiee ettt st 84
TOPOLOZY LSS ..veuvieuieiieeieeiiet et ettt ste st ete sttt e st ettt ete st enaesneenseeneeseesaensennnens 85
Received packet €ITOT TALESccveeeiieiieeiieiieeieeeeeecie et eere e see e sbe e eeeeeneenes 89
GOOAPUL LESES 1.veevreeieeieeei ettt eteettetesteteste e e te e te e st esseeneesseeseessessaessessnenseensenseans 90
Distributed tempPeratiure SENSINGccvecverreeruerrierierrieeeseeeeseeesesseeseeseeseeseesens 92
Battery power: trends and OUtHIETS.c.c.eeevieiiieriienie et 95
SYNCATONIZALION ..ottt ettt te sttt e seensesaeenaeeseenees 97
CHAPTER 8 Conclusions & Future Work........cccccecvveeiiiennennne. 100
Some 1essons [earned..........coocveruirieriiiiiiiie e 100
UNLUINEd STONES ..ouevieiiriiiiinieeie sttt ettt 101
ACKNOWICAZEMENLSeovveiieiiieii ettt 103
APPENDIX A Referencesccccceeveerieerieenieeieenieeieeieesve e 105
APPENDIX B ArborNet Host Code Listingccccceeevueenenennne. 111
APPENDIX C ArborNet "BART" Code Listingcceeeunnnn. 157

List of Figures

FIGURE 1.

FIGURE 2.

FIGURE 3.

FIGURE 4.

FIGURE 5.

FIGURE 6.

FIGURE 7.

FIGURE 8.

FIGURE 9.

FIGURE 10.
FIGURE 11.
FIGURE 12.
FIGURE 13.
FIGURE 14.
FIGURE 15.
FIGURE 16.
FIGURE 17.
FIGURE 18.
FIGURE 19.
FIGURE 20.
FIGURE 21.
FIGURE 22.
FIGURE 23.
FIGURE 24.
FIGURE 25.
FIGURE 26.
FIGURE 27.
FIGURE 28.
FIGURE 29.
FIGURE 30.
FIGURE 31.

Context and constraints of embedded networkingcccceeruennee. 10
Distance versus bit rate for wireless standards...........c.ccoevveceeciecnnns 18
Single hop comMmMUNICAtIONScc.eevieuieiirieiiiie e 26
Multi-hop COMMUNICALIONSc.veeneeneieieeiieiieeeeiieee e 27
Per-node transmitter power (relative to single hop)cccceeveennee. 29
Reply Request from node A tonode B........cocoevveviiicienciiiieiee, 40
Node B replies using the reverse path..........ccceeveeieveniecieceeireeenen. 41
Packet delivery fraction............cceevevieeiereeienieeieie e e 45
AVETage delaycoeeieiiiiiii e 46
ROUtING 108 ...ceeiiiiiieieeee e e 47
GRAA vS. 802.11 MAC ..ottt 49
Disabling Route Repaircceecveeviiievieeiieiieeieie e 52
Linear network, diameter=6cccceovvveeevireeeeieeeeeeeeeeee e, 58
Time to converge increases exponentially with network diameter ...59
Convergence improves exponentially at each iteration..................... 60
COILISION ..ttt ettt st s 64
Probability of successful transmissionc.eceevveveerereeenesveneennns 65
Adjusting p as a function of the number of transmitters 66
Goodput for any of N nodes succeedingccecevveveeeceenenvennnnnnne 67
Overestimating and underestimating P..........cecvevvveciereerererieesenenens 68
One of twenty-five ArborNet N0des........ccveveveerceeniieiieenieeieeeieeennn 70
Constellation block diagram.............cccevueeiereeierieeieniere e 71
Threads and data paths in ArborNet..........ccoccveveviiecienieeeieieceeee 79
Layout of nodes in Office Ttest........ccceevieriiienieniiierieeiceecie e 88
Percentage of packets received with valid CRC.........c..c.ccceceeveennes 89
GOoOdput VErsuS NOAEccueeveriieiiiieieeieie et 91
Residential II: indoor temperaturesccveevveeveeereeeiveenieenveenneennns 93
Residential II: outdoor teMpPeraturesc.eeeeverveereereeeseeseeeeeeeenees 94
Office I: building temMpPeraturescoceeeereeverieecieneeresesee e 95
Distribution of Synchronization Deviationccccceeevervinieennennn. 98
Individual synchronization deviation (10 minute snapshot) 98

Embedded Networking

cuapter1 A Network on EV@ICV Chlp

A trillion dumb chips connected into a hive mind is the hardware. The software
that runs through it is the Network Economy. A planet of hyperlinked chips emits a
ceaseless flow of small messages, cascading into the most nimble waves of sensi-
bility. Every farm moisture sensor shoots up data, every weather satellite beams
down digitized images, every cash register spits out bit streams, every hospital
monitor trickles out numbers, every Web site tallies attention, every vehicle trans-
mits its location code; all of this is sent swirling into the web. That tide of signals is
the net.

—Kevin Kelly “New Rules for the New Economy” [Kelly 1997]

An unfulfilled promise

For years, visionaries have predicted that tiny computers will soon be woven into
the everyday fabric of our lives and a world densely populated with “smart
objects,” giving rise to “Ubiquitous Computing,” [Weiser 1991], “The Network
Economy” [Kelly 1997], and “Things That Think” [Gershenfeld 1999]. These pre-

dictions have not yet been realized. Why not?

Processing power has become cheap and plentiful. Dollar for dollar, microcontrol-
lers are a thousand times faster than a decade ago [Moravec 1998]. In the year 2000
alone, the total production of microcontrollers exceeded the world population [Ten-
nenhouse 2000]. These tiny chips are being embedded into everyday objects—
watches, pacemakers, smart cards, traffic lights, children’s toys—at a prodigious

rate. Clearly, available processing power is not the limiting factor.

Languages for microcontrollers have also proliferated. Mobile agents [Minar
1999], “thin clients” [emWare 2000], JINI [Sun 2000] and dozens of other compu-

tationally lightweight languages have been developed to support dedicated applica-

A Network on Every Chip

Legacy networks are ill-suited for
linking embedded microcontrol-
lers.

tions in embedded devices. Availability of these languages has not resulted in the

predicted explosion of smart objects.

The steadily falling price of microcontrollers has resulted in situations where the

cost of a single connector can exceed the cost of the microcontroller it connects'. In
the last few years, industry standards such as IrDA [IrDA 1998], IEEE 802.11
[IEEE 1999], and Bluetooth [Bluetooth 1999] have created wireless interconnect
systems that are less expensive than their wired counterparts. Since these wireless
technologies themselves make heavy use of semiconductor technologies, they

enjoy progressively lower cost and increased communication rates per unit power.

Despite the availability of these essential ingredients—cheap, abundant processing;
lithe application languages; and inexpensive wireless links—few everyday objects

show any signs of increased intelligence.

Networking: the missing link

A typical embedded microcontroller works in relative isolation, unable to draw
upon information or exert any influence beyond its immediate realm. For all its
computing power, it is like a genius sequestered in a basement: smart and capable,
but having neither sensory inputs to give it context nor the means to express what it
knows. We are left with ubiquitous but senseless computing and billions of Things

That Think which cannot relate.

Talk is cheap, at least among humans. But for the tiny embedded microcontrollers
found in common objects, the cost of discourse remains relatively high. Today’s
digital networks were originally designed to interconnect mainframe and mini-

computers and have been adapted, somewhat awkwardly, to connect PCs and lap-

1. A spot check of a popular electronics part supplier shows that in quantities of one hun-
dred, the popular DB9 serial connector costs $3.12, a microcontroller that processes one

million instructions per second costs only $0.94.

A Network on Every Chip

top computers. These legacy networks are ill-suited for embedded processors: they
cost too much, they consume too much power, and they don’t scale well to handle
the hundreds and thousands of connections required in a world of Things That

Think.

Embedded Networking

The lack of effective networking technologies for embedded microcontrollers is
inhibiting the emergence of smart objects. What is required is a new model of net-
working—embedded networking—designed specifically to interconnect embedded

microcontrollers.

A network must attain a critical mass if it is to be useful. As proposed by “Met-
calfe’s Law,” the value of a network rises as the square of the number of devices
connected. In a world where the number of embedded microcontrollers is growing
exponentially, the only reliable way to arrive at and to maintain critical mass is to

put the network connection directly on the chip.

The domain of Embedded Networking

Herb Simon points out that it is useful to consider a technology as “an ‘interface’...
between an ‘inner’ environment, the substance and organization of the artifact
itself, and an ‘outer’ environment, the surroundings in which it operates.” [Simon
1969]. Embedded Networks are built into embedded processors and provide com-
munication links for specific applications in a relationship portrayed below in Fig-
ure 1. These contexts dictate the fundamental design requirements of embedded

networks.

A Network on Every Chip

Embedded Networking is imple-
mented on microcontrollers (its

“inner environment”) and inter-
acts with dedicated applications
(its “outer environment”). Each
environment dictates constraints
upon its design.

An Embedded Network node must
not overly tax the microcontroller
chip on which it is built.

Application “Outer” Environment

e “instant infrastructure”

e self-configuring, “disposable” nodes

Embedded Networking

e computationally lightweight

e small silicon footprint
e low power

Microcontroller “Inner” Environment

FIGURE 1. Context and constraints of embedded networking

Constraints imposed by the host

The host microcontroller on which the Embedded Network node is fabricated—its
“inner environment”—imposes a set of constraints. The power of microcontrollers
lies in their generality: a single microcontroller architecture is suitable for a broad
range of applications. For embedded networking to be viable, it too must be adapt-
able to a broad range of applications. Since the embedded network system resides
on the microcontroller chip itself, it must not impose a significant burden on the

chip, giving rise to the following design principles:

Low POWER CONSUMPTION

For an embedded network node to be an attractive candidate for integration onto a
microcontroller, it should not exceed the power consumption of the microcontroller

itself.

10

A Network on Every Chip

One of the consequences of Moore’s Law—the proposition that the number of tran-
sistors per unit area of integrated circuit doubles every eighteen months—is that of
reduced power. Smaller devices have lower parasitic capacitance, which in turn

results in reduced switching currents. Microcontrollers now exceed 10 instructions

22

per second (“1 GIP”) per watt, or “one MIP per milliwatt,”” allowing substantial

computation to be powered by relatively small batteries.

Some of the more aggressive radio designs to date have yielded systems that con-
sume approximately 4 nano Joules per transmitted bit [Carvey 1996]. With a con-
tinuous transmission at 100 KBits/second, these radios will consume 400 pWatts—

a figure on par with the power consumption of modern host microcontrollers.

SMALL SILICON FOOTPRINT

The manufacturing cost of silicon microcontroller chips is correlated to die size.
More smaller chips can be packed onto a single silicon wafer, and smaller chips
have higher yields. In order to keep costs low, the circuitry that implements embed-
ded networking should account for a small percentage of the overall chip size. This

favors networking algorithms with small routing tables and computational simplic-

ity.

LOW COMPUTATIONAL OVERHEAD

Computing consumes power. Networking algorithms that require less computation
will be suitable for wider range of applications, especially those that are limited by

available power.

2. As of this writing, several processor families meet or exceed 1000 MIPs per Watt, includ-
ing Intel’s XScale based StrongARM, Hitachi SDH-4, Texas Instruments MSP430 and

Toshiba TX19. The list is growing rapidly.

11

A Network on Every Chip

Constraints imposed by the application

The application—the “outer environment” of Embedded Networking—imposes a

second set of design constraints?.

Things That Think will become woven into our everyday environment, standing
ready to serve wherever and whenever we want them and fading into the back-
ground whenever we don’t. The networks linking these devices will create their
own invisible mesh of communication without pre-planning, intentional placement

or maintenance. If a device demands our attention, it should be due to an applica-

tion-specific imperative and not due to a failing of the network?.

The major design principals for Embedded Networking imposed by its Outer Envi-

ronment can thus be summarized as follows:

INSTANT INFRASTRUCTURE

It is unreasonable to expect people to configure and administer a network of Things
That Think. An Embedded Network must serve its users, not the other way around.
This requires a network system that is created upon demand and automatically

reconfigures itself as devices are added to or removed from the network.

SELF-CONFIGURING, “DISPOSABLE” NODES

Properly designed Things That Think will have networking built in, not added on,

which will be reflected in their usage: devices will become integrated into a net-

work simply by physically bringing then into the networking environment®. The

3. In this setting, application means “the task to which the system is applied” as opposed to

“software written in support of a task.”

4. In the terminology of philosopher Martin Heidegger, Embedded Networking should sup-

port devices that are “ready to hand” without causing them to become “present at hand.”

12

A Network on Every Chip

network should support dynamic discovery and routing so that network services

remain available as much as possible, even as devices go oft-line or move.

The lifetime of a network connection will be the same as the lifetime of the object
into which it is embedded. The day you dispose of an object, you dispose of the net-

work connection without giving it a second thought.

CASUAL PLACEMENT

Conventional wireless networks are carefully planned with respect to location,
usage patterns and density. By contrast, the quantity and density of an Embedded
Network cannot generally be known beforehand. The design of an Embedded Net-
work should support a broad range of possible device configurations, from the few

to the many and from very sparse to very dense.

Contributions of this thesis

GRAD - GRADIENT ROUTING FOR AD HOC NETWORKS

Chapter 4 describes “GRAd,” a decentralized, self-organizing, multi-hop network
architecture that addresses many of the design issues outlined above. GRAd’s rout-
ing algorithms offer dynamic discovery and routing, and are shown to be robust
even in networks with a high degree of topological change. Its multi-hop approach
offers significant savings in radio transmit power. The decentralized approach used
by GRAd avoids the congestion of a single base station or access point, allowing it
to support up to thousands of nodes. By allowing redundancy among relaying
nodes, GRAd exhibits improved reliability over unreliable links. GRAd exploits a
simplified Medium Access (MAC) layer to attain lower power per transmitted bit

than other comparable networking algorithms. By storing only information about

5. Some applications may call for “imprinting” a device prior to its use, for example to
establish ownership. See [Stajano 1999] for an excellent description of how this can be

implemented.

13

A Network on Every Chip

routing endpoints, GRAd’s routing tables stay relatively small, and its networking
algorithms are computationally simple—both of these points work together to make

GRAd ideal for direct implementation on embedded microcontrollers.

DISTRIBUTED SYNCHRONIZATION

While multi-hop routing can significantly reduce the power used for radio transmis-
sions, it doesn’t address the power used for reception, which has been shown to
dominate the power budget of conventional self-organizing wireless networks
[Wheeler 2000]. Chapter 5, “Distributed Synchronization,” shows how nodes in a
wireless network can synchronize to one another without depending on a central-
ized time base. Once synchronized, nodes can significantly reduce their power con-

sumption by enabling their radio receivers at selected times.

STATISTICAL MEDIUM ACCESS

Because the placement of nodes in an embedded network are not generally pre-
planned, the network can experience a wide range of node density. Chapter 6, “Sta-
tistical Medium Access,” explores the effects of variable density. It will be shown
that nodes can use a technique of “statistical medium access,” to maximize the like-
lihood of successful transmission in a crowded environment. The probability of

success converges as 1/e for an arbitrary number of co-located nodes.

ARBORNET

Chapter 7 presents “ArborNet,” a prototype implementation of an embedded net-
work. Built from commercial off-the-shelf components, ArborNet employs the
basic techniques developed by this thesis to implement a self-organizing, wireless

sensor network.

14

A Network on Every Chip

The promise, revisited

An Embedded Network is a new paradigm in networking, and offers several bene-

fits over conventional wireless networks.

e [nstant Infrastructure—A node in an Embedded Network can join a network
simply by bringing it within range of other nodes. This is important for creating
“ad hoc” networks quickly on demand, such as in military and emergency appli-
cations. Embedded Networks are especially well suited for consumer applica-

tions, since new devices can be integrated into a network with minimal effort.

e Proxy Intelligence—A clock should know how to set itself. A child’s toy should
be able to recognize its owner’s voice. No particular “intelligence” is required in
the clock or toy when an Embedded Network links these devices to other com-

putational services.

e Data Aggregation—Today’s computers have been described as “deaf and
blind” [Pentland 1998], sensorially deprived and unable to act sensibly. Embed-
ded Networks can be used to gather crude data from hundreds or thousands of

sources for distillation into high-quality information.

e Cheap Links—In many cases, the cost of physical links is a significant part of a
total system budget. For example, a light switch costs only about $2 for the
switch itself, but the cost of conduit, copper wire, and installation time brings
the installed cost to over $70. In many cases, Embedded Network links offer

inexpensive alternatives to wired connections.

What will happen?

What will happen when every embedded microcontroller comes equipped with its
own wireless, self-organizing, scalable network connection? Answering this ques-
tion is a bit like trying to anticipate the effects of the Internet a decade ago. It was
widely believed that the Internet could make a large difference in the way we com-

municate, but few people could anticipate the depth and breadth of its effects.

15

A Network on Every Chip

So it is with embedded networking. While it may not be possible or practical to
anticipate the specific manifestations of embedded networking, it is entirely reason-
able to believe that the implications will be large. Some of the applications are easy

to imagine:

e ArborNet—understanding the biosphere of the forest floor. A paper company
owns thousands of acres of forest but, short of sending in survey crews, has little
knowledge of the ecology and health of the forest. So they create a small “dart”
with a tiny analysis lab in the tip and a radio link in the tail. Thousands of these
darts are scattered from an airplane over the forest, forming a complete commu-

nication mesh that informs the company about drought, flood, or fire conditions.

e OmniSense—an office building on-line. Once every light switch, thermostat,
door jamb and motion detector of a building are connected to a network, power
and security systems can be precisely managed. Over time, the system can learn
the patterns of usage, allowing it to anticipate ordinary events and to flag abnor-

mal conditions.

o Jox Populi—an inter-village telephone system. Imagine a telephone system that
is as easy to set up as handing out telephone handsets. There is no expensive
base station—the telephones themselves become the network. And as a boon (or
a bane) to the prevailing government, a system can be designed for which cen-

tralized control is neither necessary nor possible.

o GridKey—a solution to urban gridlock. Each street corner of a city has a simple
sensor that detects the passage of cars. All of the sensors are networked together
so analysts—both human and computer—can form a city-wide picture of traffic
patterns, adjusting traffic signal timing and issuing advisories to reduce conges-
tion. Individuals can access this information via mobile devices and plan their

routes accordingly.

Perhaps the best way to learn about the implications of embedded networking is to

build them. Herein lies the crux of this thesis.

16

Embedded Networking

chapter2 Precedents in Wireless Networks

Existing standards do not address
the needs of Embedded Networks.
In their quest to communicate fur-
ther and faster, none yield net-
works that are simultaneously
self-organizing, low-power and
scalable.

In the early 1970s, the Packet Radio Program, funded by the Advanced Research
Projects Administration (ARPA), and Norm Abramson’s AlohaNet laid the
groundwork for wireless digital networks [Kleinrock 1987][Abramson 1985].
Since that time, wireless digital communication systems have grown both in range
and capability. Satellite-based systems provide global wireless networks. Locally,

high-speed wireless links are commonplace in today’s office buildings.

Wireless Local Area Networks (WLANSs) offer high speed communication over
short distances. The popular 802.11 standard offers communication rates of 11
megabits per second over a range of 200 meters [IEEE 1999]. Wireless Wide Area
Networks (WWANS) offer longer range at reduced bit rates, as exemplified by the
UMTS standard with a bit rate of two megabits per second carried over cellular

telephone networks [UMTS 2000].

BLESSED ARE THE MEEK...

Wireless LAN's are optimized for speed, wireless WAN’s are optimized for dis-
tance. By contrast, the important attributes for embedded networks are neither
speed nor distance, they are power and scalability at a low cost. When voice or
image data need to be transmitted, current networks may be the most appropriate.
However, for many everyday objects, communication rates on the order of bits per

hour—not megabits per second, will suffice. Figure 2 highlights the natural home

17

Precedents in Wireless Networks

of embedded networks: low bit-rate short-haul communications, an area left

untouched by conventional wireless networks.

100
10
g ‘
g] Rooftop
=
=3
2
& o4
3 R
N-PCS
Embedded OBITEX
0.01 Networks
0.001
1 10 100 1000 10000 100000
Distance (Meters)

FIGURE 2. Distance versus bit rate for wireless standards

As established in Chapter I, a viable embedded network will have a multi-hop
architecture with decentralized control. It will have dynamic routing and will also
incorporate power conservation techniques in its core design. As shown in Table 1
below, in their quest to communicate further and faster, none of the existing stan-

dards simultaneously address all four of these attributes.

18

Precedents in Wireless Networks

TABLE 1. Packet switched wireless networks

wireless standard attributes
- %}3 . comments

:: 3

s § L 2

g £ 3 8

A A= =

‘ Historical Systems
AlohaNet X X full flood
Packet Radio X X X long-haul
‘ Wireless Local Area Networks

Bluetooth X x Eight nodes per piconet
802.11 X X base station mode
802.11 peer-to-peer X X peer to peer mode
Hiperlan/1 X x similar to 802.11
Hiperlan/2 X x proposed multi-hop option
DECT X x designed for packetized voice
HomeRF X x Hybrid of 802.11 and DECT
Wireless Wide Area Networks
Metricom Ricochet X fixed “pole top” units
Nokia Rooftop X X X One Access Point per dozen nodes.
MANET working group X X X Not a commercial standard (yet)
CDPD, UMTS, EDGE, GPRS X x Cellular Telephony networks
N-PCS, MOBITEX X x Two-way pager networks

Legacy systems

ALOHANET

AlohaNet was developed in the 1970s by Norman Abramson and his colleagues,

and is one of the earliest packet-switched wireless digital networks. It used ground-

based radios transmitting on a single shared channel. While this architecture is not

generally scalable—congestion increases with the number of nodes—AlohaNet and

19

Precedents in Wireless Networks

its analysis spawned many other systems, including Ethernet and TDMA protocols

for satellite communication.

PACKET RADIO

Packet Radio systems are among the earlier examples of multi-hop wireless com-

munication systemsl. In 1972, the ARPA launched the Packet Radio Program,
designed to develop robust communication systems for the battlefield. In the late
1970s, amateur radio operators developed “Terminal Node Controllers” (TNCs) to
form digital links among meshes of ham radios. Since then, TNCs have evolved to
support several forms of multi-hop communications, including static and dynami-

cally discovered routing (ROSE and NET/ROM respectively).

Local Area Networks

BLUETOOTH

Developed by an industry consortium, Bluetooth specifies a radio and access proto-
col. The radios are spread-spectrum in the 2.4GHz band, and will form ad-hoc
“piconets” of up to eight devices. Within each piconet, one device is the local mas-
ter and chooses a spreading code. Other devices within that piconet use the master
for control and synchronization. One master may participate in multiple picnonets
to form a “scatternet,” but the specification does not support multi-hop communica-

tion.

802.11 WIRELESS LAN

IEEE 802.11 has been widely adopted as an industry standard for Wireless Local

Area Networks. Links are specified as 2.4 GHz spread-spectrum transceivers using

1. To be fair, Packet Radio was hardly the first multi-hop wireless communication network:
Napoleon’s Optical Telegraph, built before the turn of the 19th century, predated packet
radio by 170 years.

20

Precedents in Wireless Networks

CSMA protocols. Channel data rate is as high as 11 MBits/sec. 802.11 works well
for linking several dozen devices to a wired Access Point (base station), but will not

scale well to higher densities.

802.11 also specifies an ad hoc mode, which provides point to point links at the

expense of frame relay and power savings support.

HIPERLAN

Hiperlan/1 (High Performance European Radio Local Area Network) has been
developed by ETSI (the European Telecommunications Standards Institute) as a
second generation wireless local area network. It supports bit rates of 20 MBits/sec-
ond at distances of up to 50 meters. The standard specifies the physical layer (PHY)
and the Medium Access Layer (MAC), and while it admits the possibility of a

multi-hop architecture, it does not specify how it should be implemented.

Hiperlan/2 is a new WLAN standard being developed at ETSI. It specifies channel

bit rate of 54 MBit/second with intra-nodes distances up to 100 meters.

DECT

Development of the DECT (Digital Enhanced Cordless Telecommunications) spec-
ifications was started in the mid-1980s and finished in 1992 by ETSI. Originally
developed as a standard for cordless telephones, the scope of DECT has been
expanded to support general digital radio access. The current standard offers a base
station architecture with wireless data links of 1.152MBits/second over a range of

100 meters. According to Ericsson, DECT permits the highest user densities of any

cellular system, up to 100,000 nodes per square kilometer?.

2. See the online document http://www.ericsson.com/BN/dect2.html for more

information.

21

Precedents in Wireless Networks

HOMERF

The HomeRF Working Group is creating specifications for low-cost intra-home
networking named SWAP (Shared Wireless Access Protocol). SWAP has adopted
a hybrid approach, using 802.11 protocols to carry data and DECT protocols to
carry voice. A SWAP network will support up to six voice conversations and up to

127 devices in each network.

As in 802.11 networks, a SWAP network can work in ad hoc mode, in which all
devices have equal access to the network, and in managed mode, in which one cen-

tral device coordinates the operations of the other nodes in the network.

Wide Area Networks

RICOCHET

Developed by Metricom Corporation of Los Gatos, CA, the Ricochet Network is
one of the first commercial multi-hop wireless digital networks. A mesh of Net-
work Radios, typically mounted on utility poles one to four kilometers apart, relay
packets between Wireless Modems and wired Access Points. The first generation
of Wireless Modems offered users a channel data rate of 28.8 kilobits per second;

newer Modems provide 128 kilobits per second.

A Ricochet network is a multi-hop system, but not self-organizing: adding a new
Network Radio to the mesh requires manually incorporating it into the network and

setting up static routing to the nearest wired Access Point.

ROOFTOP

Rooftop Communications (recently purchased by Nokia) offers wireless network-
ing products that form a multi-hop, dynamically routed mesh of terrestrial radios.
Each radio runs in the 2.5 GHz ISM band, supports link rates of 1.6 MBits/second,

and has a range of approximately three miles.

22

Precedents in Wireless Networks

CDPD, UMTS, EDGE, GPRS

CDPD (Cellular Digital Packet Data), UMTS (Universal Mobile Telecommunica-
tion Systems), EDGE (Enhanced Data Rates for Global Evolution) and GPRS
(General Packet Radio Service) are wireless systems that use cellular telephone net-
works to carry digital data. Data rates range from 19.2 kilobits per second (CDPD)
to a predicted rate of 2 megabits per second (UMTS).

N-PCS, MOBITEX, ARDIS

N-PCS (Narrowband Personal Communication Services), MOBITEX and ARDIS
(Advanced Radio Data Information Services) are essentially two-way pager sys-
tems. Low bit-rate data is transferred between individual mobile units and high
power base stations. Data packets are usually of limited size, and data rates range

between 8 and 24 kilobytes per second.

Other multi-hop protocols

MANET

The mobile ad-hoc network (MANET) working group is an effort within the IETF
(Internet Engineering Task Force) to develop and evolve routing specifications for
wireless ad-hoc networks containing “up to hundreds” of nodes. The working

group has already published ten Internet Drafts for discussion and debate, and cov-

ers such topics as adaptive routing and quality of service.

A standard benchmark for MANET network protocols assumes that they are imple-
mented using 802.11 wireless links running in point-to-point “ad hoc” mode. In this
mode, individual neighbors must be known in order to achieve media access, and

the three way handshake at each packet transfer increases latency. Power conserva-

tion is not possible as the receiver cannot be turned off.

23

Precedents in Wireless Networks

OTHER PROTOCOLS

The last few years have seen many developments in ad hoc, multi-hop routing pro-
tocols. Active areas of research include data-directed routing for network effi-
ciency, data aggregation to reduce network traffic and choosing cluster heads
dynamically to reduce per-node power requirements [Intanagonwiwat 2000], [Hei-
nzelman 2000]. These techniques show promise as important components of

Embedded Networking systems.

What's missing?

Although existing wireless standards address a range of applications from low bit
rate, long distance communication to high-bandwidth, short haul systems, none of
them have the right mix of scalability, self-organization and low-power required as

a basis for embedded networking. A re-thinking of the network is needed.

24

Embedded Networking

cuarters Multi-hop Communications

Multi-hop communication con-
serves transmitter power and
increases system bandwidth.

Imagine you are at a party where the conversation flows as freely as the cham-
pagne. Suddenly, a guest picks up a bullhorn and shouts out in a booming voice to
his friend on the opposite side of the room, asking for some more duck canape. The
sound is deafening, and all other conversation comes to an abrupt stop.

The virtues of whispering

Many familiar wireless communication systems, including cellular telephones,
two-way pagers and wireless LANs use a single-hop design: a central base station
or access point maintains direct radio communication with each terminal node of
the network. A single-hop system can be likened to that bullhorn: whenever the

base station transmits, it precludes other communication within its area.

By contrast, in a multi-hop wireless network, each node transmits with reduced
power, communicating with a set of neighboring nodes within a limited range.
Those neighboring nodes in turn relay the message on behalf of the originator, and

so on, until the message arrives at intended destination.

Multi-hop networks offer advantages over their single hop counterparts. By reduc-
ing the transmit range in each node, multi-hop networks offer substantial power
savings. Multi-hop networks exploit spatial reuse, yielding higher effective band-
width. And by reducing the overall levels of radio interference and noise, multi-hop

networks can scale to handle more nodes than single-hop networks.

25

Multi-hop Communications

Single-hop and multi-hop: an idealized

comparison

In a single-hop network, each radio transmits with sufficient power to reach its ulti-

mate receiver without intervening relays. In a multi-hop system, each radio trans-

mits with enough power to reach one or more neighboring nodes, which will in turn

relay the message until it reaches its final destination.

A representation of single hop communication is shown in Figure 3.

distance = D

FIGURE 3. Single hop communications

26

Multi-hop Communications

In Figure 3, N is the originating node, Ny is the destination node, and the two

nodes are separated by a distance D. The transmit power required to span a distance

of D is defined to be P.

A multi-hop uses multiple relay stations to get the message from N to Np, as illus-

trated in Figure 4.

- < < <

/ I/\\I/\\/\\ \\
/ Ngg | Np
' o-0-0-0-9
\ \ \ \
N

FIGURE 4. Multi-hop communications

Given a system that requires P units of power to transmit its message in a single
hop and a path loss exponent of e, the per-node power required to send the message

using / hops can be approximated by

27

Multi-hop Communications

P,(h) = Ph* (EQ 1)

The system-wide transmit power is the sum over % hops, or

P(h) = Ph'"° (EQ 2)

The path loss exponent in free space has a theoretical value of 2 for free space, but

is typically cited as 4 or higher for office or urban environments.

Assume for the moment that each transmitter covers a perfectly circular area, and
the distance covered by a single hop system is D. Assume that the transmitters in an
h hop system are equally spaced at distance d = D/h. If each transmitter uses the
minimum amount of power to reach the next receiver, the total area covered by the

transmitters is given by
A(h) = nd" + (h— 1)(12(’5‘7 1). (EQ 3)

If we define k = (g - l) , Equation 3 can be written as:

A(h) = d’hk+d (n—k). (EQ 4)

Substituting D/A for d in equation 4 yields:

A (h) = Dz(g + (—“h—zk-)) . (EQ 5)

Equation 5 tells us that the area covered by transmitters in a multi-hop system

decreases roughly linearly with the number of hops.

Power savings

The rather idealized system using / hops has several advantages compared to its

single-hop counterpart. The power required by each node is reduced by 4¢, while

28

Multi-hop Communications

the total power consumed by the system is reduced by a factor of h(¢!) and the total

area covered by transmission is reduced by a factor slightly larger than 4.

As an example, assume a single hop system with a transmit distance of 100 meters
in an office environment with a path loss exponent of 4. If we replace the single hop
system with a 10 hop system, the transmit power per node is reduced by a factor of
10,000, the total system power is reduced by a factor of 1,000, and the area covered

by the transmissions is reduced by approximately a factor of 12.

Figure 5 summarizes the relative transmit power for a variety of hops and path loss

exponents.
1
0.1
g _
g e
o 0.01 -
=
©
2 e=3
0.001
e:
0-0001 T T T T T
1 2 3 4 5 6 7 8 9 10
number of hops

FIGURE 5. Per-node transmitter power (relative to single hop)

29

Multi-hop Communications

The power savings in a multi-hop network can be substantial. For example, in an
environment with a path loss exponent of 4, transmitters in a five hop system

require 0.0016 of the power compared to a single hop system.

Effects of non-uniform spacing

In the multi-hop scenario given above, relaying nodes are assumed to be evenly
spaced between the source and the destination with the transmitter power set to the
absolute minimum for reliable communication. In a practical embedded network,
nodes will unevenly spaced, and some amount of redundancy and overlap must be
expected if there is to be a continuous, reachable path between the originator and

destination nodes.

The effect of overlap does not change the per-node transmitter power required, but
it does increase the number of nodes involved in relaying the message and thus the
total system-wide transmit power. Assuming a factor of N redundancy, the system-

wide power of Equation 2 becomes:

P,(h) = PNh' ¢ (EQ 6)

Revisiting the example of a ten hop network with a path loss exponent of 4: if this
network has a factor of five redundancy, this represents a factor of 200 reduction in

total transmitted system power compared to its single-hop counterpart.

The effect of overlap is to increase the total system-wide power by a linear multi-
plier, while the savings in power through reduced distance are exponential. The net
effect is that a multi-hop system conserves transmit power compared to a single-

hop system, even when taking non-idealized spacing of nodes into account.

Summary

Multi-hop systems offer several advantages over single-hop systems.

30

Multi-hop Communications

REDUCED TRANSMITTER POWER

In a multi-hop system, the reduced distances between nodes allows the transmitter
power to be reduced exponentially. For example, assuming a path loss exponent of
4, if the 100 meter range of an 802.11 wireless LAN node is reduced to ten meters,
its transmitter power may be reduced by 40 db, or a factor of 10,000. This reduction
in power results in longer battery life for individual nodes, and reduces the overall

amount of clutter in the airwaves.

SPATIAL REUSE

In a single-hop system, transmissions from a base station to a single mobile node
blanket the airwaves surrounding the base station. In a multi-hop system, the arca
covered by transmissions are localized by approximately a factor of h, where h is
the number of hops. This permits simultaneous transmissions to take place in phys-
ically separate parts of the network—a technique sometimes referred to as Spatial
Division Multiple Access (SDMA). Since the airwaves can support multiple trans-

missions, the effective bandwidth of the overall system increases.

MAPPING THE TOPOLOGY

In a single-hop system, a node is either within range of the base station or not: noth-
ing is learned about the topology of the network. In a multi-hop system, the topol-

ogy of the network can be acquired as the nodes converse with one another. This

information can be used to establish optimal routes or physically locate a node.!

1. Using a wireless network topology to model physical topography doesn’t always work as

well as one would hope, as will be shown in Chapter 7.

31

Embedded Networking

cuarrers GRAd: Gradient Routing for Ad Hoc

Networks

This chapter presents Gradient Routing (GRAd), a novel approach to routing and
control in wireless ad hoc networks. A GRAd network attains scalability through a
multi-hop architecture: nodes that are not within range of one another can commu-
nicate by relaying messages through intermediate neighbors. Routing information
is established on-demand and is updated opportunistically as messages are passed

among nodes.

Unlike other ad hoc routing techniques, a node in a GRAd network does not single
out a particular neighboring node to relay its message. Instead, it advertises its
“cost” for delivering a message to a destination, and only those neighboring nodes
that can deliver the message at a lower cost will participate in relaying the message.
In this way, a message descends a loop-free “gradient” from originator to destina-

tion.

Since multiple neighbors can participate in the relaying of messages, GRAd main-
tains good connectivity in the face of frequently changing network topologies. A
node does not need to know the identities of its neighbors and establishes routes on
demand, making periodic “hello” beacons unnecessary and increasing the overall
security of the network. Because GRAd does not use link to link handshakes, end-

to-end latencies remain small.

The challenge

In any wireless ad hoc network, a major challenge lies in the design of routing and

network control. Lacking any centralized point of control, nodes in an ad hoc net-

32

GRAd: Gradient Routing for Ad Hoc Networks

work must cooperatively manage routing and medium access functions. Nodes may
be mobile, creating continual changes in the network topology. Also, wireless links
are not as robust as their wired counterparts; high bit error rates and packet losses

are commonplace.

In the last decade, a number of ad hoc network protocols have been proposed. As an
indicator of the amount of activity in this field, the Internet Engineering Task Force
(IETF) recently formed the Mobile Ad Hoc Networking (MANET) working group
to develop ad hoc protocol specifications and introduce them into the Internet Stan-
dards track [Macker 2000]. At this time, there are eight separate ad hoc routing

protocols under consideration by the working group.

GRAJ falls under the category of on-demand routing protocols, in which routes are
established only when nodes wish to communicate with one another; no attempt is

made to maintain state when there is no data to send.

In other on-demand routing protocols such as the Ad Hoc On-Demand Distance
Vector Routing protocol (AODV) [Perkins 1999] and the Dynamic Source Routing
protocol (DSR) [Johnson 1999], a node relays a message by sending to a particular
neighboring node. The popular 802.11 MAC layer protocol uses “virtual carrier
sensing” as part of its collision avoidance mechanism for such unicast transmis-
sions [IEEE 1999], requiring a request to send / clear to send handshake (RTS/
CTS) between each pair of wireless links. This exchange contributes to significant

delays in the relaying of messages, resulting in long latencies.

By comparison, a node in a GRAd network makes no attempt to identify which of
its neighbors is to relay a packet. Instead, it includes its “cost to destination” infor-
mation in the packet and broadcasts it. Of all the nodes that receive the broadcast,

only those that can deliver the packet at a lower cost will relay the message. In this

way, the packet descends a loop-free “gradient” towards the ultimate destination.

33

GRAd: Gradient Routing for Ad Hoc Networks

Since each transmission is a local broadcast, GRAd does not (and in fact, cannot)
use the RTS/CTS handshake associated with unicast transmissions. Consequently,

GRAAJ exhibits very low latencies.

GRAd collects cost information opportunistically: each message carries with it the
cost since origination, which is recorded at each node that overhears the transmis-
sion, and is incremented when the message is relayed. Thus, the simple act of pass-

ing a message quickly and efficiently updates the cost estimates in nearby nodes.

GRAd demonstrates very good immunity to rapidly changing topologies. Since
each message reaches a number of neighboring nodes, a single link failure will not
cause a break in the communication path as long as another neighbor is available to

relay the message.

The GRAd algorithm

ASSUMPTIONS

GRAd is designed for use in multi-hop wireless networks, and makes relatively few
assumptions about the underlying physical medium. It does assume that links are
symmetrical: if Node A can receive messages from Node B, then Node B can
receive messages from Node A. In a practical wireless network, strict symmetry is
impossible to guarantee due to the mobility of the nodes and time-varying environ-
mental noise. As will be shown in by simulation, GRAd continues to work well in

cases where only partial symmetry holds.

GRAd assumes a local broadcast model of connectivity. When a node transmits a

message, all neighboring nodes within range simultaneously receive the message.

GRAd provides best effort delivery of messages with the understanding that higher-

level protocols will handle retransmission and reordering of packets as needed.

34

GRAd: Gradient Routing for Ad Hoc Networks

The propagation of a message through the network establishes and updates reverse
path routing information to the originator of the message. Consequently, GRAd is
most efficient when the network traffic has a “call and response” pattern, such as

streamed packet data with periodic acknowledgments.

GRAD MESSAGE FORMAT

Messages passed among nodes in a GRAd network carry a header containing the

fields shown in Table 2. A description of each field follows.

msg_type originator_id ‘secL# ‘target_id accrued_cost |remaining_value

TABLE 2. GRAd message format

msg_type: Takes on one of two values, M_REQUEST for a reply request message

and M_DATA for all others.

originator_id: The id of the node originating this message. This id may be stat-

ically assigned, or may be dynamically generated on a per-session basis.

seq_#: A sequence number associated with the originator id, and incremented
each time the originator issues a new message. The combination of
[originator id, sequence #] uniquely identifies a message, so a receiving

node can distinguish a new message from a copy of a message already received.

target_id: The id of the ultimate target for this message.

accrued_cost: Upon origination, the accrued_cost of a message is set to 0.0.
When the message is relayed, the relaying node increments this field by one. Thus,
accrued_cost represents the estimated number of hops required to return a mes-

sage to originator_ id.

remaining value: Upon origination, this field is initialized to the estimated

number of hops to target id. Whenever the message is relayed, this field is dec-

35

GRAd: Gradient Routing for Ad Hoc Networks

remented by one. The remaining value field represents the “time to live” of the

message: if it ever reaches zero, the message is dropped.

COST TABLE

Each node maintains a cost table, analogous to the routing table of other algo-

rithms!. The cost table plays two important roles in GRAJ. First, the cost table can
answer the question “Is this message a copy of a previously received message?”
This is determined by comparing the seq_# in the message from a particular origi-
nating node against the last seq_# recorded in the cost table for that originator.
Second, it can answer the question “What is the estimated cost of sending a mes-
sage to target node X?” This cost estimate is formed by recording the

accrued_cost fields for each origninator id in received messages.

COST TABLE FORMAT

Each entry in the table holds state information about a remote node, as shown in

Table 3.

target_id seq # est_cost expiration

TABLE 3. Cost table entry

target_id: The id of a remote node to which this cost entry refers.

seqg_#: The highest sequence # received so far in a message from target id.
When compared against the seq_# of a newly arrived message, this field discrimi-

nates between a new message and a copy of a previously received message.

est_cost: The most recent and best estimated cost (number of hops) for deliver-

ing a message to target_id.

1. The term “cost table” is chosen over the more conventional “routing table” to emphasize
that GRAd does not prescribe a specific route to a target node, but rather it maintains an

estimated cost to the target.

36

GRAd: Gradient Routing for Ad Hoc Networks

expiration: When a cost entry is updated, this field is set to the current time plus
cost_entry timeout. If the current time ever exceeds expiration, the cost

entry is purged from the table.

COST TABLE MAINTENANCE

When a message is received at a node, the originator id of the message is com-

pared against the target id of each entry in the cost table.

If no matching entry is found, a new cost entry is created, for which target idis
copied from the message’s originator id, seq # is copied from the seq #
field, and est_cost is copied from the accrued cost field. The message is

marked as “fresh.”

Ifa target id is found that matches the originator id of the incoming mes-
sage, and if seq_# in that entry is lower than the seq_# of the incoming message,
the message is marked fresh and the cost entry fields are updated from the corre-

sponding fields in the message.

Otherwise, the message is marked as “stale”—it is a copy of a message previously
received. However, if the messages offers a lower cost estimate in its
accrued_cost field than the recorded cost in the est _cost field, the lower cost
is recorded. This has the effect that if a copy of a previously received message sub-

sequently arrives by means of a shorter path, the shorter path is recorded.

MESSAGE ORIGINATION AND RELAYING

When a node wishes to send a message to a destination for which the cost to the tar-
get is known, it transmits a message with the msg_type field set to M_DATA, speci-
fying the destination in the target id field and the cost to that destination in the

remaining value field.

Of the neighboring nodes that receive the message, only those that can relay the

message at a lower cost, as indicated by their cost tables, will do so. Before a neigh-

37

GRAd: Gradient Routing for Ad Hoc Networks

boring node relays a message, it debits the remaining value field by one. As this
process repeats, the message “rolls downhill,” following an ever decreasing gradi-

ent from the originator to the target.

At the same time, the message carries the originator of the message in the
origination id field and the accumulated relay cost since origination in the
accrued_cost field. Upon origination, the accrued_cost is set to 0. Each node
that receives the message increments the accrued_cost field of the message and
then updates its cost table entry for the originating node based on this information.
If and when the message is relayed, it is re-sent using the incremented
accrued_cost. By this process, any node that receives a message can update its
cost estimate for returning a message to the originating node, whether or not the

node is actively involved in relaying the message.

REPLY REQUEST MESSAGES

When a node wishes to send a message to another node for which there is no entry
in the cost table, it initiates a “reply request” process. To do so, the originating node
transmits a message whose msg_type field is set to M_REQUEST, specifying the

destination in the target id field and initializing the remaining value field to

default_request_cost.

Relaying of the message proceeds much in the same manner as for a M_DATA mes-
sage, but with one important exception: any node that receives an M_REQUEST mes-
sage will always relay the message the first copy of the message it receives, unless
the remaining_ value field has reached zero. As with an M_DATA message, the
node will increment the accrued_cost and decrement the remaining value

fields of the message before relaying the message.

If a node receives a copy of a previously received message, it will update its cost
table entry for the originator of the message if the copy represents a lower cost to

the originator, but the node will not relay the copy.

38

GRAd: Gradient Routing for Ad Hoc Networks

Two important things happen in the reply request process. First, if the destination
node is present anywhere in the network (within a radius of

default request cost hops), it will receive the M REQUEST message and ini-
tiate a reply. Second, each node that receives the M REQUEST message establishes a
cost estimate for returning a message to the originator. Consequently, when the des-
tination node responds to the originating node’s request, it can use the more effi-

cient M_DATA message to deliver the reply.

CALL AND RESPONSE

GRAA is uses on demand routing: none of the nodes have any a priori knowledge
of one another. Until a node turns on its transmitter, its presence in the network is
not known to other nodes. The general rule for such networks is “if you wish to be

spoken to, you must first speak.”

The following two figures illustrate the Reply Request process in an ad hoc net-
work, in which Node A initiates a request to Node B, and Node B subsequently
responds. It is assumed that initially none of the nodes in the network have any

knowledge about nodes A or B.

Figure 6 shows the state of the network after the propagation of a Reply Request
message from Node A to Node B. The dashed circle around Node A shows the
range of an individual transmitter. Node A starts by transmitting a Reply Request
message with an accrued cost of 0 and a target id set to the ID of Node B. The two
neighbors to A each increment the accrued_cost field of the message, record the

fact that they are each one hop away from A, and relay the message. This process

39

GRAd: Gradient Routing for Ad Hoc Networks

continues until all the nodes in the network have received and relayed the Reply

Request message.

costto A=3

FIGURE 6. Reply Request from node A to node B

By the time A’s Reply Request message has arrived at node B, all of the interven-
ing nodes in the network have established a cost estimate for returning a message to

A, as shown by the numbers next to each node in Fig. 1.

When Node B receives the Reply Request message from Node A, it responds by
originating an “ordinary” message with msg_type set to M _DATA, accrued_cost set

to 0, and remaining cost set to 3, the known cost required to reply to Node A.

Referring to Figure 7, when B transmits this message, the neighboring nodes C and
D lie within range and receive the transmission. The cost table of C indicates that A
is two hops away, and since the message has an advertised remaining cost of
three, node C should relay the message after decrementing its remaining cost.
Node D, on the other hand, is four hops away from node A, and since it is unable to
relay the message at a cost lower than the remaining cost advertised by the

message, it drops the message.

40

GRAd: Gradient Routing for Ad Hoc Networks

(cost to A) | (cost to B) -

FIGURE 7. Node B replies using the reverse path

As the message is relayed towards A, intermediate nodes also create entries for
returning a message to node B. Figure 7 shows the state of the cost tables after the
reply has been received at Node A. Next to each node that participated in the reply,
the estimated cost for sending a message to node A is shown to the left of the verti-

cal bar, the cost to node B is shown to the right.

In this example, nodes D and E received the message from B, but did not actively
participate in relaying it. Nonetheless, by virtue of “overhearing” the message,
these nodes have established an estimated cost for sending a message to Node B

should the need ever arise.

ROUTE REPAIR

As nodes in the network enter or leave the network, or move relative to one another,
the topology of the network can change dynamically, rendering the individual

nodes’ cost estimates inaccurate.

If the path between originator and target becomes shorter, GRAd will automatically

compensate for the change by “skipping over” one or more intervening nodes, and

41

GRAd: Gradient Routing for Ad Hoc Networks

the revised cost estimates will be reflected in the participating nodes’ cost tables

after a single call and response pair of messages.

In the event that the path become longer, or intervening nodes change their posi-
tions, there is the possibility that the originator’s cost estimate no longer has suffi-

cient “potential” to reach the target destination.

GRAd uses end-to-end acknowledgments. If an acknowledgment is not received
within a fixed amount of time, the originator can re-send the message, but this time
using a higher estimated cost to the destination in the remaining cost field of
the message. This has the effect that more intermediate nodes will participate in
relaying the message towards its destination. As before, by the time the message
reaches its destination, all of the intermediate nodes will have fresh cost estimates
for returning a message to the originator, so the destination node’s acknowledge-

ment will be able to follow an updated gradient back to the originator.

If the first attempt to re-send a message with an increased estimated cost fails to
reach the destination, the originator can repeat the process, incrementing the initial

estimated cost each time.

If, after several attempts, the message fails to reach the destination, the originator

can issue a new Reply Request message to create fresh cost estimates from scratch.

IMPLICIT ACKNOWLEDGMENT

To reduce the number of redundant messages transmitted, GRAd uses a variant of
passive acknowledgment called implicit acknowledgment. A message to be relayed
is stored in a MAC-level buffer while it awaits transmission. If a node overhears a
neighbor relay a copy of that same message, but at a lower remaining cost, then
the node can assume that the neighbor has succeeded in delivering the message

closer to the destination than this node, therefore it can delete the message from the

MAC queue and cancel its transmission.

42

GRAd: Gradient Routing for Ad Hoc Networks

When the ultimate target node receives a message, it re-transmits the message with
aremaining cost set to zero. This has the effect of notifying any neighbors still
waiting to relay the message that the target has received the message and that they

may abandon their efforts.

Simulation and results of GRAd

Performance of GRAd was simulated using Jasper [Poor 2001], an event driven
network simulator. The main objectives of the simulation were to characterize the
performance of GRAJ as a function of transmitted packets and the amount of

mobility among the nodes in the network.

SIMULATION ENVIRONMENT

Jasper provides detailed models for components of a multi-hop, mobile, wireless ad

hoc network.

The radio modelled by Jasper emulates an FM or spread-spectrum radio, such as
would be used in a wireless local area network, operating in an urban or dense
office environment. In the absence of other transmissions, a transmitter/receiver
pair has a nominal range of 250 meters. Transmit power falls off as the cube of the
distance, and a receiver can acquire lock on a transmitter if the signal to interfer-
ence ratio exceeds 10db. Once locked, a receiver can hold lock as long as the signal
to interference ratio exceeds 6db. During reception of a packet, if the signal to inter-
ference ratio drops below 6db, the packet is marked as corrupted. The bit rate of the

transmitter is 2Mb/sec.

GRAd’s MAC layer uses a technique of carrier sense with exponential backoff:
when a node wishes to transmit a packet, it first waits for a random interval

between T}, and 27}, seconds. At the end of that time, if the carrier sense detects that
the local airwaves are in use, it doubles the value of 7}, (up to an upper limit) and

waits again. If the airwaves are free, it halves the value of T}, (down to a lower

43

GRAd: Gradient Routing for Ad Hoc Networks

limit) and transmits the packet. If the MAC transmit buffer becomes empty, T, is

reset to its minimum value.

Mobility and traffic models were chosen to emulate those described in [Brooch
1998]. Fifty nodes in a 1500m x 300m arena travel according to the random way-
point algorithm: each node travels towards randomly chosen locations within the
arena at random speeds (evenly distributed between 0 and 20m/sec.). After reach-
ing its destination, the node pauses for a fixed amount of time before setting out for
its next randomly chosen location. The pause time is varied from 0 seconds for con-
tinuous motion to 900 seconds in which case the nodes are stationary for the dura-

tion of the simulation.

Traffic is generated by constant bit rate (CBR) sources, randomly chosen among
the 50 nodes. Each CBR source targets a randomly chosen destination among the
remaining 49 nodes. A CBR source generates four 64 byte packets per second. The
load on the network is controlled by the changing number of CBR sources. In the

tests, 10, 20, 30 and 40 CBR sources were used to generate traffic.

Messages from the CBR source sit in a queue until a route is discovered. To prevent
indefinite buffering, messages are dropped if they remain in the queue for over 30

seconds.

Entries in cost tables are set to time out if not updated within four seconds.

In the simulation, a target sends a 32 byte acknowledgment to the CBR source once
every two seconds. This acknowledgement message has the dual effect of notifying
the CBR source that messages are reaching the target, but more importantly, it

refreshes the path from the CBR to the target.

Each test was run for 900 simulated seconds and the results were averaged over ten

consecutive runs in order to account for different network topologies.

44

GRAd: Gradient Routing for Ad Hoc Networks

EVALUATION AND DISCUSSION

Three key performance metrics are evaluated: (i) Packet Delivery Fraction—the
ratio of data packets successfully delivered to those originated; (ii) the Average
Latency—the measure of the total end-to-end delay in delivering a packet to a des-
tination; (iii) Normalized Routing Load—the ratio of the total number of packets
transmitted by any node to the number of packets successfully delivered to the des-

tination.

Figure 8 shows the Packet Delivery Fraction as a function of pause time and for dif-
ferent numbers of CBR sources. As can be seen from the graph, GRAd is insensi-
tive to variable mobility—the percentage of good packets delivered remains

essentially constant as the pause time changes.

100%

90%

S XX =X — —X—
S 80% X X X
[S]
E
Lg, 70% —&— 10 Sources
2 —m— 20 Sources
8 60% —a— 30 Sources
g —x — 40 Sources
& 50%
40%

0 100 200 300 400 500 600 700 800 900
Pause Time (sec)

FIGURE 8. Packet delivery fraction

GRAA is robust in the face of changing topology because it enlists multiple neigh-
boring nodes to relay messages from one place to another. If one node moves out of
place, other nodes are often available to relay the packet without resorting to

rebuilding the route.

45

GRAd: Gradient Routing for Ad Hoc Networks

Figure 9 shows the average end-to-end latency for successfully delivered packets.
In GRAd, latency remains under 7 milliseconds, even under conditions of high
mobility and load. By contrast, [Das 2000] reports end-to-end delays of more than
100 milliseconds, and as high as one second for heavily loaded networks. It must be
pointed out that is not an exact comparison: in [Das 2000], packet size was 512

bytes and the radio is simulated using a different path loss model.

0.01
0.009 -
—~ 0.008 -
8 0.007 { X
g Y . 3 —9
3 0.005 " o
g, 0.004 —e— 10 Sources
S 0.003 —m— 20 Sources
Z 0.002 —a— 30 Sources
0.001 —X—40 Sources
0
0 100 200 300 400 500 600 700 800 900
Pause Time (sec)

FIGURE 9. Average delay

In any practical implementation, GRAA is still likely to show small latencies since

it avoids the RTS/CTS link to link handshake used in other protocols.

46

GRAd: Gradient Routing for Ad Hoc Networks

However, there is a price to pay for the “fast and loose” routing approach used by

GRAAJ. Fig. 5 shows the routing load for various pause times and CBR sources.

10
el
@
o
-
()]
£ 6
3
r 5
3 4 —e— 10 Sources
% —— 20 Sources
% 3 —a— 30 Sources
z 2 —X—40 Sources
1 A
0 100 200 300 400 500 600 700 800 900
Pause Time (sec)

FIGURE 10. Routing load

As Figure 10 shows, for every one data packet received at the ultimate destination,
between six and eight packets have been transmitted. Some of these “extra” packets
are inevitable, for example, if a path requires two hops from source to destination,
this will be recorded as a routing load of two. A destination node always sends an

implicit acknowledgment notification, as described in the section on “Implicit

Acknowledgement,” which contributes to the load. Relatively few of the overhead

packets are Reply Request messages, even in scenarios with high mobilityz. The
majority of the overhead packets are due to multiple neighbors attempting to relay
the same packet. A consequence of this overhead is that GRAd networks exhibit

more congestion than other network algorithms for the same offered load.

2. In atypical test with 10 sources and 0 second pause time, only 2.5% of all messages

transmitted were M_REQUEST messages.

47

GRAd: Gradient Routing for Ad Hoc Networks

CHOICE OF MAC LAYER

In any ad hoc network, there is no centralized control to control access to the air-
waves, so nodes depend upon the MAC mechanism to cooperatively share the air-
waves. GRAA, in particular, taxes the MAC layer since multiple neighboring nodes
will attempt to relay a message soon after receiving it. It was therefore suspected

that performance of GRAd would be sensitive to the choice of MAC layer.

The 802.11 MAC layer [IEEE 1999] is considerably more “fair” than GRAd’s sim-
ple carrier sense and exponential back off approach described in the section on
“Simulation Environment.” In the 802.11 approach, the MAC layer implements a
countdown timer which is initialized to a random duration proportional to an expo-
nential back off constant. The timer counts down only when the local airwaves are
clear. When the timer expires, the MAC layer transmits the packet. This approach

distributes air time evenly among neighboring nodes.

The tests were run for 10 CBR sources using the 802.11 MAC layer and compared
against the same tests using the GRAd MAC layer—the results are shown in Figure
11. It is interesting to note that there was little effect on the overall performance of

GRAd using two substantially different MAC layers.

48

GRAd: Gradient Routing for Ad Hoc Networks

100%

90%

80%

70%

60%

Packet Delivery Fraction (%).

50%

40%

—e—3802.11 MAC

—m— GRAd MAC

0

100 200 300 400 500 600 700 800 900
Pause Time (sec)

FIGURE 11.

(a) Packet Delivery Fraction (10 Sources)
GRAd vs. 802.11 MAC

49

GRAd: Gradient Routing for Ad Hoc Networks

&!k<a><u:;

—e—3802.11 MAC

—a— GRAd MAC

0 100 200 300 400 500 600 700 800 900
Pause Time (sec)

(b) Average Delay (10 Sources)

—e—3802.11 MAC

—m— GRAd MAC

0.01
0.009
0.008

'S 0.007
k)
> 0.006
&
8 0.005
:'Sfa 0.004
2 0.003
<
0.002
0.001
0
10
9,
g 8
S
o 71
£
5
[}

x 5

K

N 4

S

£ 3
o

z 2
1
0

0

100 200 300 400 500 600 700 800 900
Pause Time (sec)

(c) Normalized Routing Load (10 Sources)
FIGURE 11. GRAd vs. 802.11 MAC

50

GRAd: Gradient Routing for Ad Hoc Networks

DISABLING ROUTE REPAIR

A previous section describes GRAd’s mechanism for Route Repair: if the receiver
fails to receive a packet from a sender within the expected period of time, it sends a

reply to the sender with an increased remaining cost.

To gain insights to the effectiveness of the route repair mechanism, the tests were
run with route repairs disabled: if the network topology changed so an originator no
longer reached its destination (more accurately, if an originator stopped receiving
packets from its destination), the entries in the cost table would time out and the

originator would start a new Reply Request process.

Figure 12 shows the effects of disabling the Route Repair mechanism. The packet
delivery fraction drops almost insignificantly, but somewhat surprisingly, the aver-

age latency and routing load are both improved.

51

GRAd: Gradient Routing for Ad Hoc Networks

100%

—~ 90%

S

c

£ 80%

o

[T

> 70%

(0]

=

©

9 60%

L

[&]

©

o 50%
40%

XxXsg =X

o U ——

—e— 10 Sources
—— 20 Sources
—a— 30 Sources
—X — 40 Sources

0

100 200 300 400 500 600 700 800 900
Pause Time (sec)

(a) Packet Delivery Fraction

FIGURE 12. Disabling Route Repair

52

GRAd: Gradient Routing for Ad Hoc Networks

0.01
0.009 -
0.008
g 0.007 |
g 1 ay=X X . X
& 0006 W
8 0.005
S 0.004 1
[0
5 0.003 —— 10 Sources
z —m— 20 Sources
0.002 —a— 30 Sources
0.001 —X—40 Sources
0
0 100 200 300 400 500 600 700 800 900
Pause Time (sec)
(b) Average Delay
10
9
o 8
@®
37
o X /X — % ____——X
£ Xy X ———h——
= 6 X
o [
xr 5
©
8 4
E 3 —e— 10 Sources
g —— 20 Sources
2 —a— 30 Sources
1 —X— 40 Sources
0
0 100 200 300 400 500 600 700 800 900
Pause Time (sec)
(c) Normalized Routing Load
FIGURE 12. Disabling Route Repair

53

GRAd: Gradient Routing for Ad Hoc Networks

Proposed extensions to GRAd

The results of GRAd are encouraging, but there are a number unanswered questions
whose answers may give insights to the operation of GRAd and suggest areas for

improvement.

CONSIDERING MORE THAN NUMBER OF HOPS

Throughout this chapter, the term “cost” has been used to mean “number of hops,”
but metrics other than the number of hops are possible. For example, a node can
charge a higher cost for relaying a message if it notices that its local airwaves are
becoming congested, or if its local topology is changing rapidly. The higher relay
cost will cause messages to flow around the node if there are other nodes that can

relay at a lower cost.

To generalize, in a multi-hop wireless network, the only real choice a node can
make is whether or not to relay a message that it has received, and if so, when to
relay it. As suggested in [Kramer 1999], it may be useful to structure the problem of
routing as a set of software agents residing in the nodes and in the messages; the
agents decide what should be relayed and when. The network can then be viewed as
a series of activation and inhibition functions, the former causing a message to be

transmitted, the latter preventing it [Intanagonwiwat 2000].

PREFERRED NEIGHBORS

GRAd and AODV share many traits, including on-demand route discovery and
updating reverse path information as a message is relayed from one node to next.
GRAd permits any neighbor to participate in relaying a message, AODV insists
upon a particular neighbor. A compromise between these two approaches shows
some promise: A relaying node advertises a cost for relaying a message (a la
GRAAJ) and suggests a preferred neighbor to do the relaying (a la AODV). If that
neighbor is not observed to relay the message within a certain amount of time, then

non-preferred neighbors may attempt to relay the message. This approach could

54

GRAd: Gradient Routing for Ad Hoc Networks

reduce some of the routing overhead observed in GRAd while still maintaining

robustness in dynamically changing networks.

FUNCTIONAL ADDRESSING

The broadcast nature of GRAd’s Reply Request encourages functional addressing,
in which a node initiates an M_REQUEST message containing a predicate rather than
a specifying a fixed target ID. The predicate is a piece of software that embodies a
query such as “Are you a color printer?,” “Are you a gateway to a wired network?,”
or “Are you an ARP server?” Each receiving node evaluates the predicate and
sends a reply to the requestor if the predicate evaluates to be true. If the requestor
receives multiple replies, it can choose the reply that offers the lowest
accrued_cost (i.e. is topologically closest) or that best satisfies some other appli-

cation specific criteria.

PER-SESSION ADDRESSING

In GRAJ, routes are created on demand, entries in cost tables are short lived and
persist only for the duration of a dialog between two nodes. The identities of the
intermediate nodes are not required for passing messages. This opens the possibil-
ity of per-session addressing, in which an originating and replying nodes choose

network IDs at random to be used for the duration of a session.

The space of IDs can be made large enough so the chance of two nodes choosing

the same ID is insignificant.

Per-session addressing offers two advantages. The first is security: by changing its
advertised address for each session, a node gains some measure of anonymity and

protection against malicious eavesdroppers.

Second, manufacturing costs are reduced since network IDs don’t need to be

assigned and individually burned in at the time of manufacturing.

55

GRAd: Gradient Routing for Ad Hoc Networks

Summary

GRAAJ offers a new approach to ad hoc, on-demand routing. Rather than sending
unicast packets, it exploits local broadcasting to contact multiple neighboring
nodes. Messages descend a cost gradient from originator to destination without
needing to identify individual intermediate nodes. Cost functions are updated

opportunistically as messages are passed from one node to the next.

Through simulation, the performance of GRAd has been tested and characterized
under a variety of load and mobility conditions. The results of the tests show that
GRAd exhibits very low end-to-end packet delays and offers good immunity to rap-
idly changing topologies.

56

Embedded Networking

cuarrers Distributed Synchronization

In a decentralized multi-hop network, it is often desirable to distribute shared infor-
mation among all the nodes in the network. Since each node can communicate with
only a subset of the rest of the network, information must propagate in multiple

hops if it is to reach all of the nodes in the network.

Of particular interest are the dynamics of attaining synchronization across a net-
work of nodes. Using today’s technology, it is unreasonable to assume that nodes
will be fabricated with permanent real-time clocks or will have access to a common
wireless time base, such as Global Positioning System (GPS) timing information.

Consequently, timing must be agreed upon dynamically.

The algorithm for distributed synchronization is simple: once every T seconds,
node n broadcasts its internal time value, ‘¥, to its neighbors. Upon receiving a

message from a neighbor, a node adjusts its internal time to the average of its previ-

ous time and the time advertised in the message.

Given a network of N co-located nodes in which every node can receive the trans-
missions of all other nodes, it is easy to show that the maximum spread of the

shared time will decrease by a factor of two each time a node broadcasts its value,

or a factor of 2N every T, seconds.

Predicting the rate of convergence for networks that are not co-located is not so

simple. The maximum error among the nodes depends on both initial conditions

1. In practice, the T interval will be randomized slightly to reduce the chance of repeated

collisions among neighboring nodes.

57

Distributed Synchronization

and the order in which the nodes advertise their times, so a strict analytical
approach is difficult. But using statistical models, it is straightforward to determine

an upper bound for the rate of convergence.

In modeling the rate of convergence, the single most important parameter is the
“diameter” of the network, where the diameter is defined to be the number of hops
in the shortest path between the furthest pair of nodes. The worst case for conver-
gence is when the nodes are arranged in a linear array with the node at one end of
the array initialized to a maximum value (assumed in these tests to be 1.0) and all

other nodes set to 0.0:

1,n =20
v, = (EQ7)
0,n #0

A linear network of diameter 6 is shown in Figure 13, below.

(0000009

FIGURE 13. Linear network, diameter=6

Running the algorithm

At the beginning of each trial run, a random permutation P(n) on the set of integers

0...N-1 is generated. This determines the order in which nodes broadcast.

In the course of a single iteration, each node broadcasts its internal time value, ‘¥,
to its neighboring nodes, so that the function:
Yy 1=WM,t¥,_,)/2

(EQ 8)
¥, = (Y, +¥,.)/2

58

Distributed Synchronization

is performed N times, once for each ».

In the results shown below, deviation is defined as the maximum magnitude differ-

ence from the mean of all '¥,,, and iterations is how many iterations were required

to bring the deviation below a given threshold.

100000
y=1.82x"?
10000 1 y=1.49x""
=1.34x"*®
2 1000 o
.2
©
2 100
10 -
1 ‘ ‘
1 10 100 1000
network diameter
= 1% deviation .1% deviation « .01 % deviation

FIGURE 14. Time to converge increases exponentially with network
diameter

Figure 14 shows that the number of iterations required to attain a given deviation
increases exponentially with the diameter of the network. While theoretically trou-
bling, this is unlikely to be a problem in practice. Both the constant and the expo-
nent are small. To put this in context, a circular network of 1000 nodes and no
overlap will have a diameter of 34. If every node in the network runs its algorithm
once every second, the system is guaranteed to converge to within 0.01% of maxi-
mum deviation within approximately 1,000 seconds, or 17 minutes. For many

applications, this is a trivially short amount of time.

59

Distributed Synchronization

Figure 15, below, shows deviation as a function of iterations for a variety of net-
work diameters. It is reassuring to note that the deviation improves exponentially

over linear time.

rate of convergence

+ dia=3 e dia=6 x dia=15 = dia=10 ‘

0 50 100 150 200
1.E+00 %N
1.E-02

1.E-03 -
1.E-04 -

y= 0.4961701912
1.E-05

N

7 y =0.2652¢ % %%

X

max deviation

y=0.3469¢ ">

y=0.8109¢ 6%

1.E-06

iterations

FIGURE 15. Convergence improves exponentially at each iteration

An example: synchronization for spread spectrum

Decentralized synchronization can be used to dynamically establish a common time
base among nodes in a network. A common time base can be used to coordinate the
hopping sequence in spread spectrum receivers in the network, dramatically reduc-
ing the time required to attain synchronization in the receivers. The 8§02.11 (FH)
wireless Local Area Network standard specifies a hop duration of 10 mSec. If the
receivers can tolerate a 10% timing error to attain synchronization, it is sufficient to

synchronize the nodes within 1 mSec of one another. The hop sequence repeats

60

Distributed Synchronization

once every 660 mSec, so synchronization within 1 part in 660, or 0.15%, is suffi-

cient.

If 100 nodes are arranged evenly in a circular area, the resulting network will have
a diameter of approximately 11. By running the simulator (or by extrapolating from
the Figure 15 above) it is shown that the system will converge in under 100 itera-

tions. From a cold start, if each node transmits a timing beacon once every second,

the system will attain synchronization in under two minutes.

Summary

These results show that a network can cooperatively establish a shared value where
each node node periodically broadcasts its time information to its immediate neigh-
bors and takes the average when receiving it. This approach is provably stable, and
shows exponential reductions in maximum deviation in linear time for a given net-

work diameter.

It is important to note that the figures given here are for worst-case initial condi-
tions. Several factors can lead to substantial reductions in the time to attain a given
deviation. First, perhaps contrary to intuition, mobility among nodes will tend to
decrease the time required to attain a given deviation since mobility causes the

errors to diffuse more rapidly.

The convergence time can be substantially reduced for nodes entering a pre-exist-
ing network simply by having the newcomers “listen but don’t talk” for a period of
time. This will cause the new nodes to converge rapidly on the values that the

incumbent nodes have already agreed upon.

61

Embedded Networking

cuapters Statistical Medium Access

If it were necessary for a node to
know the identities of its neigh-
bors before communicating with
them, how would the node dis-
cover their identities?

Channel sharing

In any network, it is often desirable to provide a communication channel to be
shared among all nodes in the network. In a self-organizing network, this channel
takes on special significance since it provides a mechanism for a node to share state
information with its neighbors without any a priori knowledge of their individual

identities.

Since this mechanism is used for network control and discovery, we will refer to

this channel as the control channel through the rest of this section.

There are several ways to implement a shared channel in wireless systems, depend-

ing on the link layer communication scheme.

A DEDICATED LINK

A node can be built with two wireless links: one to carry network control informa-
tion and the other to carry data packets. This approach has several advantages. The
control channel link can be implemented as a low power, low bit rate radio. Its
receiver can be always on, and the rest of the system lies dormant until a message is
received. Additionally, this scheme does not require nodes to be synchronized to

one another.

This approach has disadvantages. The cost of the additional radios may be signifi-
cant. Due to differing propagation characteristics, connectivity among control

channel links may be different from connectivity among the data channel links.

62

Statistical Medium Access

A DEDICATED TIME SLOT

Nodes can agree on a common time slot to be used for control information. The pri-
mary advantage of this approach is cost and simplicity: no extra radio systems are

required.

There is a price to pay for this approach: all nodes must be synchronized to one
another. This synchronization requires that nodes are aware of one another, which
is at odds with the stated design goal that the control channel is the mechanism used

for nodes to discover one another.

A DEDICATED SPREADING CODE

For systems that use spread spectrum communication, a predetermined spreading
code can be dedicated to the control channel. This has the advantage that control
information can be transmitted at any time with minimal impact on data transmis-

sions.

Using a dedicated spreading code for the control channel requires that the radio
receiver in every node has two demodulators—one for the data channel and one for
the control channel. This will increase the cost and power consumption of the sys-
tem. If the radio systems are to attain fast synchronization at the start of each

packet, the nodes themselves must be synchronized to one another.

Medium Access and Collision Avoidance

Whether the control channel is implemented as a dedicated radio frequency, time

slot or spreading code, it is still a shared resource and subject to contention. If mul-

63

Statistical Medium Access

tiple nodes transmit on the control channel simultaneously, there may be collisions

resulting in lost information.

- ~~ ~~ ~
// // N // N N
| A B \ c\ \
|
. -0-0 |
\\ \\ /\\ / /
N /\/ /\/ //

FIGURE 16. Collision

For example, the figure above depicts three nodes. Nodes A and C are within trans-
mit range of node B. If both A and C transmit simultaneously on the control chan-
nel, B will not be able to discriminate between the two transmissions and the

information will be corrupted, leading to lost data.

A statistical approach

In order for information to be conveyed on a shared channel in a given time slot,
exactly one node must transmit. If zero nodes transmit data, no information is con-
veyed. Similarly, if two or more nodes transmit, there is a collision, and again no

information is conveyed.

In statistical channel access, every node that wishes to communicate on a shared
channel does so at an agreed upon time slot, but with some probability less than
one. The goal is to find the probability that optimizes the chance of successful com-

munication, in particular, that exactly one node transmits data.

64

Statistical Medium Access

Choosing p

If there is one receiving node within range of N potential transmitting nodes, and
each transmitting node transmits with probability p, the likelihood of one and only

one of the N nodes transmitting is given by:

fip) = p(1—p)*~! (EQ9)

When p is set to zero, the transmitters never transmit, so f(0) is zero. When p is set
to one, the transmitters always transmit, so if there is more than one neighbor,
transmissions always collide. Somewhere in between the two, f(p) rises to a maxi-
mum, depending on the number of transmitters in the vicinity of the receiver. The
plot below shows the “goodput,” or probability of a successful transmission for dif-

ferent number of transmitters as p varies from 0 to 1.

0.16

0.14 ¢

0.12 ¢

0.1r

0.08 ¢

p(1-p) " (N-1)

=
I
o

0.06 1

0.04 | N=10

goodput

0.02} /_N=20

0.2 0.4 0.6 0.8 1

FIGURE 17. Probability of successful transmission

To find the value of p that maximizes the goodput, we take the derivative of (EQ 9)
and solve for f*(p) = 0:

) = A-Np)(1-p)*" 2 =0 (EQ 10)

65

Statistical Medium Access

By inspection, it is easy to see that there are N-2 zeros when p=1 and one remaining

zero when (1-Np)=0, or p=1/N.

This indicates that in order to maximize the goodput, a node that wishes to transmit
to a particular receiver should do so with a probability of 1/N, where N is the num-

ber of transmitters wishing to transmit and within range of that receiver.

Likelihood of successful transmission

Substituting //N for p in equation (EQ 9) gives optimal goodput:

_w-p'!

fN)
N

(EQ 11)

A plot of goodput versus number of nodes follows. The topmost line is the optimal
goodput, attained when p is set to 1/N, where N is the number of transmitters that
simultaneously wish to transmit. The two other curves correspond to p=.5(1/N) and

p=2(1/N) to show the effect of non-optimal choice of p.

0.25r

p=1/N (optimal)
0.2

0.15r

p(1-p) " (N-1)

0.1r

Goodput

FIGURE 18. Adjusting p as a function of the number of transmitters

66

Statistical Medium Access

This is a function that falls off essentially as K/N, where N is the number of nodes

that wish to transmit on the medium and K is 1/E, or 0.367879.

Statistical Medium Access in multi-hop networks

In multi-hop networks, it is often the case that multiple nodes attempt to relay an
identical message on behalf of their neighbors. In this case, if N nodes are attempt-
ing to deliver the same message, it does not matter which one of the N nodes suc-
ceed. To reflect this, (EQ 11) can be multiplied by a factor of N, producing:
N-¥!
N-1

(EQ 12)

fp)N = =y

As the following plot shows, the probability of successful transmission converges

on 1/e (0.367879) as N increases.

1
- o.8t
A
<
& 0.6t
—
[oR
Z
JSJI a 5(1/N
3 p-.5 (1/N)
B
2 0.2}
0 p=2 (1/N)
2 4 6 8 10

FIGURE 19. Goodput for any of N nodes succeeding

67

Statistical Medium Access

Misjudging N

In general, it is impossible to know exactly the number of neighbors surrounding
the intended recipient of a message. What happens to the overall efficiency if send-

ing nodes over- or under-estimate the node density?

To understand the effects of non-optimal choice of p, assume a constant node den-

sity—every node has N neighbors—and that every node wants to transmit.

0.25

(N—1)

0.15¢

= p(L-p)

GOooaput

0.05r

2.5 5 7.5 10 12.5 15 17.5 2(

FIGURE 20. Overestimating and underestimating p

Figure 20 shows the likelihood of successful transmission using probabilities of 1/
2, 1/4, 1/8, and 1/16. When p is chosen too large (as in underestimating N), the effi-
ciency drops off quickly as the number of nodes increases. When p is chosen too
small (as in overestimating N), the efficiency starts out lower than it would for opti-

mal p and tapers off gradually.

Consequently, if the number of neighbors is not known precisely, it is better to

overestimate N and choose a value of p smaller than optimal.

68

Statistical Medium Access

Summary

Statistical Media Access can provide a simple and fair mechanism for multiple
transmitters to gain access to a shared communication channel in a decentralized
network. In a multi-hop wireless network where each transmitter has limited range,
Shared Media Access is ideal for broadcasting information to neighboring nodes.
Unlike other media access strategies, such as MACA or MACAW, it is not neces-
sary for each transmitting node to know the identities of the receiving nodes in
order to initiate a transmission. All that is required for efficient communication is
an estimate of how many nearby nodes wish to transmit. When multiple nodes are
attempting to convey the same piece of information, worst-case efficiency is 1/E, or

0.367879.

69

Embedded Networking

cuarter7 ArborNet: A Proof of Concept

Motivation

Up to this point, this dissertation has moved in the virtual domain, using statistics
and simulation to predict the behavior of Embedded Networks. But there are
insights to be gained by building physical systems and reducing theory to practice.

Thus it was that ArborNet was created.

ArborNet is self-organizing network consisting of twenty-five wireless nodes. Each
node is housed in a small weatherproof plastic box, and contains a microcontroller,
a digital radio transceiver, three AA sized batteries, a collection of sensors, Light

Emitting Diodes (LEDs) and assorted “glue logic.” An ArborNet node with its clear

plastic cover removed is shown below in Figure 21.

FIGURE 21. One of twenty-five ArborNet nodes

70

ArborNet: A Proof of Concept

Hardware system

The heart of an ArborNet node is the “Constellation” board, designed by Andy
Wheeler with assistance by the author. The Constellation board integrates a versa-
tile 8-bit microcontroller with a short-range radio transceiver, and has proven itself

to be a sound platform for network development and testing.

A block diagram of the primary components of the Constellation board is shown

below in Figure 22.
gt 3 |
“‘BART”
PSD813F3 PIC |— TX b
— [ASH+ [8B qgras < kX |
ADuC824 RAM TR1000
915MHz
2 = Radio
3.3 Vreg

FIGURE 22. Constellation block diagram

PROCESSOR

The Constellation board is built around an Analog Devices ADuC824 microcon-
troller. The processor is a variant of the mature 8051 family of 8-bit microcontrol-
lers, and contains a set of features that make it especially appealing for Embedded

Processing applications.

Power: the ADuC824 is a low-power device for its class. The system uses a 32KHz
watch crystal as its primary system clock which is frequency multiplied via a Phase
Locked Loop (PLL) to 12MHz, giving a nominal instruction cycle time of 1 micro-

second with excellent power management features. The processor draws a nominal

71

ArborNet: A Proof of Concept

5SmA while running, but can be put to sleep, during which time the power consump-

tion drops to approximately SuA.

Real Time Clock: The ADuC824 has an on-board Real Time Clock (RTC), which
measures years, months, days, hours, minutes, seconds with resolution down to 1/
128 of a second. When the main processor is put to sleep, the RTC keeps running,

so time measurements are unaffected by processor sleep times.

Digital Input/Output: The ADuC824 has a large collection of input/output lines,
with support for serial I/O, 12C and ISP devices.

Analog Telemetry: The ADuC has a high-resolution A/D converter with variable
gain, multiplexed inputs—a design that made it easy to add sensors to the Constel-
lation board with a minimum of additional circuitry. The ADuC824 also has a pair

of 12 bit D/A converters, though they were not used in ArborNet application.

FLASH/RAM EXPANSION

Since the ADuC (and most 8051 based systems) are limited in RAM size, the Con-
stellation includes a PSD813F memory and I/O expansion chip, manufactured by
Wafer Scale Integration. The PSD813F adds 128KBytes of FLASH program mem-
ory and 2K of general purpose RAM to the system. It includes a JTAG program-
ming port, which greatly speeds up development time during multiple revisions of

the firmware.

The PSD813F also provides 32 general I/O ports. Some of these are dedicated to
communication with the ADuC824, the remaining lines connect to LEDs and the

BART radio interface (q.v.).

RADIO SYSTEM

The Constellation board uses the TR1000 radio transceiver, a single-chip device
designed by RF Monolithics. It supports bi-directional digital communications at

rates up to 115K Bits/second using an unlicensed ISM frequency band of 915MHz.

72

ArborNet: A Proof of Concept

The antenna is an integrated patch device made by Lynx technologies. The radio
system has been measured to communicate reliably at a range of 30 meters in an

open space.

“BART?” RADIO INTERFACE

The ArborNet radio communicates at a basic channel rate of 113,630 bits per sec-
ond, requiring accurate 8.8 uSec timing per bit. To reduce the real-time processing
requirements on the system microcontroller, the BART (Block Asynchronous
Receive/Transmit) interface serves as an intermediary between the ADuC824
microcontroller and the radio. BART is implemented by a PIC16F84 microcontrol-

ler clocked at 20MHz.

To the microcontroller, the BART presents an 8-bit parallel port1 with a 32 byte
internal buffer. For the radio, the BART manages the serial data streams, providing

accurate timing on transmit and byte- and bit-level framing on receive?.

The BART provides DC balancing of the data: every 8 bits of host data is converted
to 12 bits of DC balanced data upon transmission, and converted back to 8 bits
upon receipt. The BART also generates and strips synchronization headers at the
start of each packet, and doesn’t initiate a transfer to the host microcontroller until a
valid header is seen. This drastically reduces the amount of time the host microcon-

troller spends servicing spurious packets.

All higher level processing, including the generation and verification of per-packet

CRC codes, is handled by the host microcontroller.

1. The BART’s parallel port actually connects to the PSD expansion chip, not to the micro-

controller. From a programmer’s point of view, the distinction is unimportant.

2. It is worth noting that the BART chip attains bit level synchronization of the received
radio bit stream to within four processor cycles, or 800 nanoseconds, without the addition

of special purpose hardware.

73

ArborNet: A Proof of Concept

POWER SUPPLY

The ArborNet node is powered by three primary AA cells wired in series, which
will deliver 4.5 volts when the batteries are new, drooping to under 2.4 volts over
time. Since components on the Constellation board require a regulated 3.3 volts, a
switching step-up/step-down voltage regulator has been included to provide a con-

stant supply of 3.3V over the life of the batteries.

SENSORS

The Constellation board provides inputs for one high resolution (24 bit) and one
medium resolution (16 bit) analog signals. In addition, the ADuC824 has an on-
chip temperature sensor, calibrated in degrees Celsius. The Constellation board also
connects a battery voltage monitor to one of the analog inputs on the ADuC A/D

converter, so each node can monitor and report its own battery status.

Although the Constellation boards have been tested using photo sensors and exter-
nal temperature sensors, the experiments described here use only the on-chip tem-

perature and battery voltage sensors.

CONNECTORS

The Constellation board has number of connectors for communication and configu-

ration, listed here.

Serial I/O 4 pins for serial input and output. Provides RX, TX, GND, +3.3V

JTAG Port 14 pins. Used to program the microcontroller and PSD expansion
chips.

PIC programmer 6 pins. Used to program the on-board PIC (BART chip).

Analog In 6 pins. Provides GND, +3.3V and two analog inputs.

Jumper block 8 pins. Controls programming of the ADuC824 (_PSEN and

_EA), and connects to two general purpose inputs on the
ADuC824 for user configuration bits.

12C/SPI 6 pins. I2C and SPI high-speed serial interface for small periph-
eral devices, such as real time clocks, D/A converters, flash RAM.

TABLE 4. Constellation’s I/O Connectors

74

ArborNet: A Proof of Concept

Software system

One of the design challenges for ArborNet was fitting the software system into an
eight-bit microcontroller with limited code and data storage. For the task, a small
real-time kernel, “RTX51 Tiny” by Keil Software, was chosen as the basic frame-

work for the ArborNet system.

The bulk of the ArborNet system was implemented in 3300 lines of C code over a
period of four months. The development tools from Keil were easy to use. The
ArborNet system made extensive use of the RTX51 thread mechanism, which
resulted in code that was easy to maintain and understand. Even though the RTXS51
kernel offers round robin scheduling, it was disabled in the ArborNet system to
simplify the coding and eliminate the risk of race conditions. Given this conserva-
tive approach, the RTX51 kernel proved to be robust: no system errors were

observed that could be ascribed to the kernel.

The ArborNet packet mechanism

SERVICES, NOT LAYERS

Classic network architectures such as the Open Systems Interconnection (OSI) net-
working suite defines networking as a set of layers of abstraction, providing well-
defined functionality and interfaces at each layer. A layer is designed as a “black
box,” hiding implementation details and communicating only its immediate super-
and sub-layers. This approach is designed to simplify the implementation and test-
ing of network systems, but in hiding information at each level from other levels,
information that is required at several layers must be replicated, leading to compu-

tational and storage inefficiencies.

Embedded Networking algorithms such as GRAA thrive on “hints,” and can take
advantage of all available information to increase the network efficiency. As an
example, it can be useful for the MAC system in a wireless network to keep track of

how many distinct neighbors are in the vicinity of the node—the MAC can use this

75

ArborNet: A Proof of Concept

to predict congestion and adjust its holdoff times accordingly. In a typical layered
network model, the MAC is precluded from examining any except the MAC header
of received packets, so the network ID of the sending node must be included both in

the MAC header as well as in the routing header.

This replication of information results in longer transmitted packets and more stor-
age in the microcontroller. Since conserving power and storate are priorities in the
design of Embedded Networking, ArborNet abandons the classic layered model in

favor of a “services” oriented design.

LINKING, NOT ENCAPSULATION

In ArborNet, the basic unit of information transfer is a data packet—when the radio
transmits data, it transmits a single packet. Each packet is implemented as a linked
list of segments, where each segment carries a segment type and a payload specific
to that type. The format of each segment is published and comes with a set of soft-

ware functions to access the specific fields.

Consequently, any software module in the ArborNet system is allowed to examine
an entire received packet for segments that it might find useful. On transmission, a
packet is formed quickly and efficiently by pushing segments onto a linked list and
is passed around as a single unit—no copying of memory is required as it would be

for an model that uses encapsulation.

Software modules may “decorate” a packet, augmenting the information carried by
the packet simply by pushing additional segments onto it. As an example, this tech-
nique was used to add networking statistics information to packets to ArborNet dur-

ing system testing and debugging.

76

ArborNet: A Proof of Concept

PACKET MEMORY MANAGEMENT

The Constellation board has only 2KBytes of RAM memory, which is dominated
by packet buffer storage. In this limited environment, the use of linked segments for

representing packets made memory management unexpectedly efficient.

The message packet system is initialized with a pool of fixed-size segment struc-
tures, all linked into a single freelist. When any software module wishes to allocate
a segment, the next available segment is simply removed from the head of the
freelist. Each segment is filled in with its segment type, segment size and any
appropriate data. When a software module is finished with the segment, it is pushed

back onto the freelist.

The size of the fixed-length segment structure is chosen to be long enough to hold
the longest segment data. Consequently, many segment types don’t fill out the
entire segment storage. During radio transmission, the segment is compressed by
sending a single byte length field followed by the segment type and only as many
bytes of the segment payload as are actually used. Upon reception, the inverse pro-
cess takes place: compressed segment structures are expanded out into fixed length
segments as they are received, the component segments of a packet are linked into a
single list and, if the packet is observed to be free of errors, passed to other software
modules for processing. After the last software module has processed the packet,

the entire packet is returned to the segment freelist.

77

ArborNet: A Proof of Concept

PACKET SEGMENT TYPES

The ArborNet system implements the following segment types.

SEG_GRAD

Gradient Routing segment. Contains originating node ID, destination
node ID, packet sequence number, accrued cost and remaining budget.

SEG_DISCO

Gradient Discovery segment, identical in content to a SEG_GRAD
packet, but obeys different rules for relaying.

SEG_COST L
SEG_COST H

Cost Table segments, containing the contents of the originating node’s
cost tables. This is split into two segment types, one for the low half of
the table and one for the high, because of hardware limitations on the
maximum packet size.

SEG_STATS

Node Statistics segment used for debugging and network testing. Con-
tains various statistics, such as the number of packets originated, number
of packets received, number of packet relayed.

SEG_TELEM

Telemetry information. Contains the readings of the sensor array on the
originating node.

SEG_ARQ

Automatic Retry Request segment. The packet carries with it the retry ID
and a number of retries remaining before giving up.

SEG ACK

Acknowledgement segment, sent in response to a SEG_ARQ. Contains
the retry ID of the SEG_ARQ being acknowledged.

SEG_APPX

Request for Application Transmission segment. The packet names a des-
tination node that is requesting regular updates in the form of
SEG_COST_L, SEG_COST H, SEG_TELEM, SEG_STATS and
SEG_TIME packets from the receiving node.

SEG_PING

Ping segment. Contains node ID and local system time. Used to advertise
presence and synchronization information to neighboring nodes.

SEG_TIME

Time and synchronization status. The packet contains the sending node’s
current time, the maximum timing error recently seen and the number of
SEG_PING packets generated and received.

TABLE 5. Segment types in ArborNet

Data flow in ArborNet

The ArborNet system is implemented using a number of threads and packet queues.

Figure 23 below shows the arrangement: rounded boxes represent processing

78

ArborNet: A Proof of Concept

thread, bracketed boxes represent packet queues, and lines with arrows trace the

flow of packets.

ARQ RETRY
Queue Iy
MAC
APPX to Radio
Queue
—/
)
MAIN SYNC
. /
APPR fi
rom
APPR Queue RADR Radio
N
main processor | | BART chip

FIGURE 23. Threads and data paths in ArborNet

MAIN THREAD

The Main thread handles the initialization of the system, spawning all the other
threads. Once the system is running, it monitors the RS232 serial input line for
commands and displays the synchronization status of the real time clock by flash-

ing the on-board yellow LED once every two seconds.

ARQ THREAD

The ARQ thread manages the retransmission of ARQ (automatic reply request)
packets. A full description of the ARQ mechanism is described below in “ARQ

processing.”

79

ArborNet: A Proof of Concept

SYNC THREAD

The Sync thread generates periodic “ping” packets that broadcast the nodes’s Real
Time Clock timing information to its immediate neighbors. Upon receiving a ping
packet, the system adjusts its Real Time Clock as described in Chapter 5, “Distrib-
uted Synchronization.” Implementation details of the synchronization mechanism

are described below in “Timing services.”

APPR THREAD

The Application Receive thread monitors the APPR queue, waiting for packets
received by the radio mechanism to come available. When a packet is inserted in
the APPR queue, the APPR thread wakes up, removes the packet from the queue,
and distributes the packet on a segment-by-segment basis to other software mod-
ules. For example, if the incoming packet contains a segment of SEG_TYPE_PING,

it passes the packet to the synchronization system for processing.

The APPR thread also prints the contents of each incoming packet in hexadecimal

form to the serial output port. This is useful for debugging3, but is designed so any

node can be a “gateway node” and log incoming packet data via the serial port.

APPX THREAD

The Application Transmit thread is responsible for sending periodic status reports
to a remote node. It waits until it receives a packet containing SEG_TYPE APPX,
that identifies a node wishing to receive status reports and how often those status

reports should be sent. It then enters a loop, composing and transmitting cost table

3. The printing of each received packet almost certainly results in some dropped packets:
Due to the non-preemptive scheduling of threads, if a new packet arrives while the sys-
tem is printing another packet, the 32-byte BART FIFO can overflow, resulting in a trun-

cated packet which will be discarded due to a CRC mismatch.

80

ArborNet: A Proof of Concept

reports, analog sensor readings, synchronization status, and packet statistic packets

to the requesting node.

As written, the APPX thread sends a packet on the average of once every ten sec-

onds.

MAC THREAD

The Medium Access thread monitors the MAC queue for available packets to trans-
mit. When a packet becomes available, the MAC thread delays for a random hold-
off interval, using the 802.11-style exponential backoff technique described in the
chapter on Gradient Routing. When the holdoff expires, the radio transmitter is set
to transmit mode and the packet is passed to the BART radio interface for transmis-

sion.

RRCYV THREAD

The Radio Receive Thread waits for an interrupt from the BART radio interface,
announcing the arrival of a new packet, and proceeds to read bytes from the BART
as they become available. Upon reading the end of the packet, the Radio Receive
Thread verifies the packet. If the packet is valid, it is stored in the APPR queue and
the APPR thread is notified of its arrival.

ARQ processing

ArborNet implements a simple but effective Automatic Repeat Request (ARQ)
mechanism. As described in Chapter 5, Gradient Routing works by using reverse
path routing information, so sending occasional acknowledgements to an originat-

ing node is a natural and useful mechanism for keeping the routing information up

to date®.

Prior to transmission, an application may augment any packet that contains a GRAd

routing segment with an ARQ segment (of type SEG_TYPE_ARQ), containing an

81

ArborNet: A Proof of Concept

ARQ reference number and a retry count. The packet is subsequently inserted in the

MAC queue for normal transmission.

When the MAC module removes a packet from its queue just prior to transmission,
the packet is examined. If the packet contains an ARQ segment and the retry count
of the segment is non-zero, a copy of the entire packet is installed in the ARQ’s

Retry Queue. The original packet is transmitted as normal.

Whenever a packet containing an Acknowledgement segment (of SEG_TYPE ACK)
is received, its reference number is compared against that of each ARQ segment of
packets waiting in the Retry queue. If the reference number matches, the corre-
sponding packet in the Retry queue is removed and freed—it has been acknowl-

edged and no further retries are required.

Concurrently, the ARQ thread is run whenever a packet is installed in the Retry
queue. It sets a time-out counter before attempting retransmission (typically 500
milliseconds). After the time-out expires, the ARQ thread checks to see if there is
still a packet available in the Retry queue, since the queued packet may have been
acknowledged and removed in the interim. If the packet is still available at the end
of the timeout period, its retry count is decremented and its routing header updated

before installing it in the MAC queue for subsequent transmission.

When a node receives a packet containing an ARQ segment, it responds by creating
a packet with an Acknowledgement segment (of type SEG_TYPE ACK) with a

matching reference number and sending it to the originating node.

4. In the experiments described later in this chapter, the ARQ retry count was set to zero.
This means that the recipient would generate ACK replies, but an unreceived ACK never

results in retransmission of the original message.

82

ArborNet: A Proof of Concept

Timing services

ArborNet nodes implement the synchronization mechanism previously described in
Chapter 5, “Distributed Synchronization.” This section describes the details of the

implementation.

In an ArborNet node, local time is represented by an integer indicating 1/128ths of
a second and is taken modulus 7680. Consequently, the system has a time resolu-
tion of 7.8125 milliseconds and cycles once every minute. These values were cho-
sen based on the resolution of the ADuC824 Real Time Clock hardware and the
limits of imposed by representing values in a sixteen bit unsigned integer. As an
implementation detail, the current time is formed by reading the Real Time Clock
and adding its value to an offset. When adjusting the local time, ArborNet code

never explicitly sets the Real Time Clock, it only modifies the local offset.

A ping segment has the following fields:

fNodelD Node ID of the transmitting node.
fTimeX Local time of the sending node.
fTimeR Local time of the receiving node.

TABLE 6. Contents of a SEG_TYPE_PING packet

The purpose of the SYNC thread is to broadcast the node’s local time to its immedi-
ate neighbors quasi-periodically. The thread first pauses for a randomly chosen
amount of time between 0.5 and 1.5 seconds then generates a packet containing a
single ping segment (of type SEG_TYPE PING). Although the segment contains a
structure slot for the local time (£ETimeX), it isn’t filled in yet. The packet is

installed in the MAC queue for transmission like any other packet.

The MAC contains code for special handling of SEG_TYPE PING segments. At the
onset of every transmission, the MAC code caches the local time. While the packet
is being copied into the transmit buffer for processing by BART, if a segment of

type SEG_TYPE PING is detected, the previously cached time is written into the

83

ArborNet: A Proof of Concept

fTimeX slot of the segment. This technique eliminates any timing jitter introduced

by the MAC exponential backoff mechanism.

Similarly, upon receipt, the Radio Receive mechanism caches the local time when a
packet first starts to arrive. In the course of reading the packet, if the Radio Receive
code detects a segment of type SEG_TYPE_PING then it copies the cached local
time into the £TimeR slot. The packet is then installed in the Application Receive
queue like any other packet. This technique eliminates any timing error that would
result while the packet sits waiting for processing in the Application Receive

queue.

When the Application Receive thread eventually dequeues the packet, it is passed
to the synchronization mechanism for processing. There, the error between £Timex
and £TimeR is computed and the system clock is advanced or retarded by one half

of the error.

In addition to its role as keeper of local time, the synchronization system also main-
tains statistics on how many ping packets were sent, how many were received, and
a measure of the maximum timing error observed recently. These statistics are

made available for transmission in a SEG_TYPE_TIME segment whenever the appli-

cation transmit thread requests them.

Field tests and results

ArborNet was subjected to field tests in two different locales. The first tests were
conducted in a residential setting, for which the nodes were placed around the
author’s house and garden. Other tests were conducted in an office setting: the

nodes were distributed around the fourth floor of the MIT Media Laboratory.

84

ArborNet: A Proof of Concept

A summary of the tests are show in Table 7, below.

Test name Locale Start Time End Time Duration # nodes
Residential | Residence 01:16 08:04 7h50m 15
Residential I Residence 08:15 12:15 4h00m 15
Office I Media Lab 21:00 00:00 3h00m 21

TABLE 7. Field test overview

In each test, node A (“Aspen”) was designated as the collection point and gateway
for ArborNet data. Its serial port was connected to a laptop computer which was
used to log the incoming data for subsequent analysis. Tests ranged from three
hours to nearly eight hours, during which time over five megabytes of raw data

were collected.

The logged data consists of reports from each node in the network as it was
received wirelessly at the central collection point. Reports gave a historical view of
the state of each node at ten-second intervals, describing the node’s cost tables, syn-
chronization status, packet reliability statistics, on-chip temperature and system

battery voltage.

Topology tests

As part of the GRAd routing mechanism, each node maintains a cost table indicat-
ing the cost (or number of hops) required to relay a packet to a particular destina-
tion. This cost estimate is formed by observing how many hops were previously
required to receive a packet from the destination node. Inherent in this technique is
the assumption of symmetrical communication channels: if node X can receive
packets from node Y, then it is assumed that node Y can receive packets from node

X. In practice, radio links are not symmetrical.

Since each node reports its routing costs for all the other nodes, and since that data
is collected at a single point, it is possible to derive full connectivity graphs for the

network. Two such snapshots are shown below in Table 8 and Table 9. Each row

85

ArborNet: A Proof of Concept

displays one node’s costs, measured in hops, to the node in each column. An aster-
isk indicates an unknown cost. If the system has completely symmetrical links, the

graph will be symmetrical around the diagonal.

A few things can be observed from these graphs. Nodes E, G, P, and U (aka Elder,
Ginkgo, Pear, Sycamore, and Uri) were not active during these tests, and as the

gateway, node A (Aspen) did not log reports on itself.

The smaller network deployed in the residential setting displays nearly perfect sym-
metry. Few of the paths require more than one hop and the physical environment
didn’t pose a challenge to RF communications: the paths were short and there were

no significant sources of RF interference.

SD ABCDEVFGHI J KLMNUOPQR
A 0

B Ljof 11| *|t|p* 11121112 *1]1
C Lfrpof1p*yr)p*p 1111|1112} *1]2
D L1y 1fop*|1|* 1112|1222 *]2]2
E 00 IE N TN N I I I N N B AN R B N BN I I
F L1y 1frp*jo)p*1(1p1{2)1p1f(1}(2*1]1
G * * * * * * * sk sk * sk * sk * *

H L1y *jtryp*of1p1{2)1p1f(1(2*1]1
I 1y 1rfrp*jpryp*p1(op1j2)p1rp1(1(2p*1]1
J Ly *jr)p*1(1po0j2)1p1f(1(2*1]1
K 201 (12 *) | *f{1{2]2|]01[1}1}2|*]1]|2
L L1y 1f1rp*|pr)p*p1f1f1j1jo0o)1f1f2)*1]2
M L1y 1f1rf*|yr)p*p 1111 rjpof1f1}*j1]2
N 12 *|tr)p* 11111y 1fof1}*{1]1
o 2020202 %2 *(2(2]2|2)1|1]1]0|*]1]|2
P * * * * * * * * * * * * * * * * * *
Q Ly 1rf2p*yr)p*p 111111 11}f* 2
R 201201 *| 1| *1(1j1]2|2|2[2(2]*|2]|0

TABLE 8. Connectivity graph for Residential I and II tests

86

ArborNet: A Proof of Concept

The cells of the table that correspond to asymmetrical links are highlighted in gray

in these tables. For clarity, only cells on the lower diagonal of the table are high-

lighted.

The connectivity graph for the Office I test paints a different picture, as seen in

Table 9 below.

s\d ABCDEFGHI JKLMNOPQRST VWXYZ
A 0

B 1 o] 1] 1) * 1] * 2| 2| 1| 2| 3| 3| 3] 2 3| 2 3 4| 3] 4| 1| 2
C 1) 1f O] 1| *[2| *| 3| 3| 1| 1] 2| 3| 3| 2 31 2 3 4] 3| 4| 2| 3
D 21 11 2| O *| 2| *| 3| 3| 1| 2| 3| 3] 3| 1 211 2 21 2] 3] 2] 1
E k| osk| k| k| k| k| k| k| k| k[k| sk| k| k| sk L k k| k| k| k| ok
F) 1f 1] 2| *{ O] *| 1| 1| 2| 2| 2| 3| 5| 2 21 2 3 ¥ 3150 2|1
G k| sk k| k| k| k| k| k[k| k[k| sk| k| k| sk I k k| k| k| k| ok
H 21 21 2| *| *| 1] *| 0] 2| 2| 2| 2| 3] 3| 1 31 2 3 ¥k ¥ 3] 2
| 2| 2 FORLLL *[L] O] *| *| 3| *| 5| 2 3| * K K 3] 2
J 1) 1 1] 1) *| 2| *| 2| 3] O 1| 3| 2| 2| 1 21 2 3 3| 3| 4] 2| 2
K 201 2| 1 1) *| 2| *| 2| *[1| 0] 1] 2| 2| 1 2| 2 3 4| 3] 4| 2| 2
L 31 21 %[1] *{ 2| *| 2] 3] 1| 1] O 1] 1] 1 21 2 3 4 31 4| 1] 1
(0] 2 2 * 20 ¢ 1p 3 1] 1] 1] 2] 2| O 3| 2 2 3| 2| 4] 2| 1
P sk sk sk k| k| k| sk sk sk k| k| k| k[sk sk * * * L
Q 21 2] * 1) *| 2| *| 2| 3| 2| 2| 2| 3| 4| 1 0] 1 2 2|1 311
R 21 21 2| 1| * 2| *{ 3| 3| 2| 2| 2| 3| 4| 2 11 0 1 11 1] 2 1
S k| sk k| sk k| k| k| k| k| k[k| k| k| k| sk L k k| k| k| k| ok
U k| sk k| sk k| k| k| k| k[k[k| sk| k| k| sk I k k| k| k| k| ok
Y 2|1 1] 2| 2| *| 2| *| 3| 3| 2 1| 2 2| 2 3] 3 * * ¥ 50 0] 2
V4 20 20 ¥ 1| * 1] * 2| 2| 2 2| 1| 2| 2| 1 1 2 3| 2| 3] 3] 0

TABLE 9. Connectivity graph for Office I test

87

ArborNet: A Proof of Concept

The network is not only larger, but the paths are longer and asymmetry is prevalent.

The Media Lab is a modern office building with concrete load-bearing walls, metal

doors and equipped with wireless networking gear competing in the same 915MHz

frequency band as the ArborNet transceivers.

A diagram of the physical layout of the Media Laboratory and the placement of the

nodes offers some additional insights to the network, shown below in Figure 24.

F
A0SR, |_4u5

410 I
an I L
a
LiF]]' I:|—
[t €
[414

—
W3
ssin Jaote faic
=1 wr

40110
—
1

40

403 I 52 | 401
Mbepiar

e

clT

Hp

()

S0LA
| . - L mnl
4440 14k
O 10 bebew ABLE
(RZ) IS el |
e e
a0l | 4200 |4zw D1 4
R il TR PR T
v [2%
- N
mg | am '
S
-'T;r.m'
LT
ey AT0AA
AT7 e
4630
_axTe
“aata || 481 Jesie
s ke Sairay Lak

.

FIGURE 24. Layout of nodes in Office I test

Each circle represents the placement of a node. The letter is the node ID, the num-

ber is the number of hops from the central collection point (node A) located in

Room 468 towards the east side of the building.

88

ArborNet: A Proof of Concept

One thing to note is that physical distance is not necessarily a good indicator of the
number of hops requires to relay a message. For example, node H (Holly) reported
a cost of three hops to relay a message to node A, while node I (Ironwood) required

only two hops, even though it was further away and on the far side of a metal door.

Received packet error rates

Each node keeps statistics on packets transmitted and received and reports these
statistics back to the data collection node in SEG_TYPE_STATS packets. One set of
statistics is maintained by the radio receive process, and simply logs how many
packets are received with valid CRCs and how are invalid. A rough measure of the

quality of reception at each node can be had by computing

validPackets
validPackets + invalidPackets

(EQ 13)

This success rate for the Office I is shown for each node below in Figure 25. These
figures do not account for packets with damaged synchronization headers since
such packets are filtered out by the BART radio interface chip without notifying the

host processor.

100%

0%

80% -+ —

0% = — — — — — —

0% H — 1 — — — — — —— — |

i B e e B e e e e e N e B e B e B e B e B e e e e B e N e N e

B e e e e e e e e e e e e e e M

percentage

i B e e B e e e e e B e B e B e B e B e B e e B e e B e B e N e

v e e e e e e e e e e e e e M

w4111 —HF

0% T T T T T T T T T T T T T T T T T T T

B ¢ D F H I J K L M N O a R T ¥ W X ¥ Z
Node ID

FIGURE 25. Percentage of packets received with valid CRC

89

ArborNet: A Proof of Concept

It can be seen that nodes J, L, N, and X have marginal reception, as evidenced by
their low percentage of valid packets received. Although not shown in the floor-

plan, nodes L, N and X are relatively isolated and separated from other nodes by
steel fireproof doors, which could account for their poor reception. It is not clear
why node J has poor reception. It is located near a 915MHz wireless network

access point, but so are nodes D and K, which didn’t suffer from poor reception.

Goodput tests

While the number of valid packets received is one way to characterize the network,
it doesn’t answer how successful the network is in relaying messages back to a cen-
tral collection point. A more significant measure is the ratio of the number of pack-
ets originated at each node versus the number of good packets received at the

collection point, or the “goodput.”

Nodes were programmed to transmit a status report to the central collection node
approximately once every ten seconds, so in the course of a three hour test one
would expect 1062 reports from each node. An examination of the log files show
that three nodes stopped transmitting before the full three hours had elapsed, so in
measuring the goodput, number of transmitted nodes was prorated by the duration

of the each node’s lifetime. Figure 26, below, shows the goodput for each node.

90

ArborNet: A Proof of Concept

100%

90%

80%

T0% 9

60% T

50%

goodput

40% —
30%
20% 1
10% 1

0% +

B C D F H I J K L M N O a R T ¥ W X ¥ Z
Node 1D

‘D packets received/packets originated B normalized by hops

FIGURE 26. Goodput versus node

For each node, two values are shown: one is the goodput, which is simply the ratio
of the number of packets received to the number of packets originated. The other
value is the goodput normalized by the number of hops:

norm = goodputl/(h()ps) (EQ 14)

which is a measure of the average reliability of each link independent of the number

of hops.

This goodput shows some unexplained anomalies compared to Figure 25. For
instance, node J showed a high percentage of bad received packets (as seen in Fig-
ure 25), yet is among the most successful at delivering packets to the collection
point (Figure 26). It is possible that there is something about the placement or even

the fabrication of the node that makes its radio receiver less sensitive.

By contrast, Figure 25 showed that Node M was able to receive packets reliably, yet
it shows the poorest performance in delivering packets to the collection point.
Looking at the floorplan in Figure 24 offers a hint as to what might be going on.

Packets from node M are relayed through node N, which is demonstrably bad at

91

ArborNet: A Proof of Concept

A network of simple temperature
sensors can detect when a house
mate is taking a shower or when a
cloud passes overhead.

receiving packets. It is likely that N is dropping many of the packets that M expects

it to relay on its behalf.

Despite these low percentages, most of the network continued to deliver reliable
data over the course of the test. Many of the techniques described in GRAd were
omitted in these tests, including timing out of cost table entries and Route Repair,

so higher goodput should be easily attainable.

Distributed temperature sensing

Each ArborNet node is equipped with a temperature sensor incorporated into the
ADuC microprocessor. The microprocessor itself consumes about 15 mW of
power, so it contributes little to the overall heat of the system. When located away
from direct sunlight, the air temperature inside the box is a reasonable approxima-
tion of the external air temperature, making it a useful tool for measuring the ambi-

ent temperature.

For both residential tests, ArborNet nodes were scattered indoors as well as out-
doors, so a single data collection point served to measure the entire environment. A
plot of the indoor temperatures, measured between 8:15 AM and 12:15 PM on a

chilly Cambridge day tells an interesting story, as shown here in Figure 27.

92

ArborNet: A Proof of Concept

40

35

w
S

Temperature (C)

815 &30 845 900 915 930 945 10:00 1015 1030 1045 11.00 11:15 1130 1145 1200 1215
Time of Day

‘ — beech — chestnut dogwood fig — hiolly — ironwood — juniper

FIGURE 27. Residential II: indoor temperatures

The plot of indoor temperatures shows several significant features. The downstairs
rooms (as measured by Beech, Chestnut and Dogwood), are approximately four
degrees colder than the upstairs rooms (measured by Holly, Ironwood and Juniper).
Ironwood, located in the upstairs bathroom, detected someone taking a shower at
09:15. The water and drain pipes run alongside the downstairs bathroom, causing it
to warm up as well (Chestnut). Fig reports that the utility closet, containing the fur-
nace for the baseboard heaters, is a balmy 37 degrees during the night as it struggles
to keep the house warm, but cools off by more than ten degrees during the day as

the rising outdoor temperatures reduce the thermal burden on the furnace.

93

ArborNet: A Proof of Concept

—
=1

@
=1

]
=]

s \
@
5 40 /
=
5 /
& 20
E /
@
F 20
10
P a4
/mﬂ-_/ _}
0 +—— ‘ ‘ ‘ ‘ :
815 &30 845 900 915 930 945 1000 1015 10:30 1045 11.00 1115 11:30 1145 1200 1215
Time of Day
| — kapok linden magnolia nyssa olive quince rechwood

FIGURE 28. Residential II: outdoor temperatures

A plot of the outdoor temperatures, measured by the same network over the same
period of time, shows even greater dynamics. The night air was below freezing, but
temperatures climbed after sunrise. The temperatures in ArborNet node packages
subjected to direct sunlight (Kapok, Linden, Magnolia) rose quickly to above 60
degrees. Kapok was located below a horizontal plank that acted as a gnomon, cast-
ing a shadow on it between 10:15 and 11:00 and causing it to cool. A cloud passed
overhead around 10:50, as evidenced by a dip in temperature across all of the out-

door nodes.

It is significant that nodes equipped with something as simple as a single tempera-
ture sensor can be linked in a distributed network to glean information that would

not be possible from more complicated sensors located at a single source.

A temperature graph created from the Office I test shows considerably less move-

ment over time than the residential tests, as shown in Figure 29 below.

94

ArborNet: A Proof of Concept

35

— Beech

—— Chestnut
Diogwood
Fig

— Holly

30

— Ironwiood

e 2 & —— Juniper

;;
|
§
;
|
(

— Kapok
Linden

[
=]
]

Magnolia

Room 490 Neem

Clive
Quince

Temperature (C)

15 Tt s

e e A e e P P e g P PP] Redwaood
Tupela
Wiburnur
10 T T T T T — Willow
21:00 21:30 22:00 2230 23.00 23:30 0:00 Hylosma

Time of Day few
Zenohia

FIGURE 29. Office I: building temperatures

Three of the nodes (Beech, Willow, Yew) are located on metal window sills, so
they register a temperature much colder than the rest of the building. Nodes Mag-
nolia and Olive were placed on top of lighted exit signs, thus registering a consider-
ably warmer reading. But one office, Room 490 as reported by Ironwood, clearly

stands out as several degrees colder than the rest of the building.

When dense networks of sensors are located in and around office buildings, mainte-
nance personnel can monitor large heating and air conditioning systems continu-
ously and to a level of detail not otherwise possible, which will lead to less wasted

energy and happier building occupants.

Battery power: trends and outliers

As previously stated, it is important for nodes in a self-organizing network to be as
autonomous as possible. In a typical network, nodes that are powered by batteries
can be problematic, since it may not be clear if a loss of communication is due to

the batteries running out or due to some other failure.

95

ArborNet: A Proof of Concept

Nodes in ArborNet include an on-board battery monitor (measured before the volt-

age regulator), and are programmed to report their battery status regularly to the

central data collection point. The table below shows the battery voltages in each

node at the start and end of each of the three field tests, as reported wirelessly to the

logging node.
Residential 1 Residential 1T Office I

Node ID start end start end start end

B 4.245 4.138 4.134 4.111 4.050 3.961
C 4.443 4.250 4.244 4.202 4.212 4.169
D 4.467 4.263 4.259 4.201 4.216 4.174
F 3.922 3.859 3.856 3.798 3.740 3.689
H 4.536 4318 4.312 4.260 4.251 4.219
I 4.527 4.320 4315 4.265 4.237 4.191
J 4.488 4314 4.310 4.261 4.263 4.219
K 4.429 4.141 4.136 4.217 4.199 4.152
L 4.259 3.965 3.963 4.164 4.148 4.102
M 4.496 4.194 4.188 4.228 4.249 4.225
N 4.536 4.205 4.199 4.177 4.246 4.242
o 4.548 4.227 4.221 4.279 4.280 4.254
Q 4.514 4.189 4.182 4.140 4.231 4.188
R 4.514 4.192 4.186 4.111 4.204 4.165
T -na- -na- -na- -na- 4.643 4.488
\Y -na- -na- -na- -na- 4.625 4.578
W -na- -na- -na- -na- 4.591 4.423
X -na- -na- -na- -na- 4.625 4.565
Y -na- -na- -na- -na- 4.698 4.494
Z -na- -na- -na- -na- 4.684 4.480

TABLE 10. Battery voltages before and after each field test.

Even after a total of fifteen hours of service, the voltage in most of the batteries is

still over 4.1 volts. It is clear that node B and F (Beech and Fig) were used for addi-

tional tests before the start of the field tests, and that the batteries in nodes T

through Z (Tupelo through Zylosma) were fresh at the start of the Office I test.

96

ArborNet: A Proof of Concept

Being able to continuously monitor the supply voltage of each node has already
shown itself to be an important feature in the development and maintenance of bat-
tery powered wireless nodes. By reading many nodes at once, it is possible to detect

overall trends as well as individual exceptions.

Synchronization

The nodes in ArborNet implement the synchronization techniques described in
Chapter 5, “Distributed Synchronization.” To verify correct operation of the syn-
chronization algorithm, each node issues regular reports on its synchronization
state, indicating the node’s local time, the maximum short-term inter-node timing

difference, and the number of SEG_TYPE PING packets issued and received.

The real time clock on the Constellation board has a resolution of 1/128 of a sec-
ond, which sets ArborNet’s limits of synchronizations. The synchronization status
reports will only report synchronization to within 3/128 of a second, even while the

internal synchronization is more accurate®. Consequently, the minimum reported

error will be never be less than 23.4 milliseconds.

A graph of the error distribution of the synchronization reports in the Office I test
indicate that nodes are synchronized within 300 milliseconds of their neighbors

over 93% of the time, shown here in Figure 30.

5. This resolution could easily be improved by using software or hardware phase locked

loops.

6. The short-term timing difference decays exponentially as each PING packet is received.
The exponential decay is computed using simple integer arithmetic and errors less than 3

are internally truncated to zero. Fixpoint arithmetic would solve the problem handily.

97

ArborNet: A Proof of Concept

100%

0%

80%

70%

60%

50%

40%

30%

error distribution

20%

10%

0%
=30mS =300mS =35 =305
synchronization deviation (S)

FIGURE 30. Distribution of Synchronization Deviation

However, that there are any errors greater than 300 milliseconds is unexpected. A
snapshot of the individual synchronization errors across five nodes offers a some

insights, shown below in Figure 31.

10,00

1.00

0.10

deviation (seconds)

001
1:00 1o 102 103 1:.04 105 1:.06 107 1.08 1:08 110

time (hh:mm)

+B=C D «F xH

FIGURE 31. Individual synchronization deviation (10 minute snapshot)

98

ArborNet: A Proof of Concept

Plotted on a logarithmic scale to accentuate the errors, it can be seen that the nodes
report the minimum synchronization error (23.4 milliseconds) most of the time, but
occasionally report errors in excess of one second. These errors do not appear to be
the isolated to individual nodes; whatever the source, the errors spread like small

firestorms through all the nodes in the network.

Although the log files don’t capture enough information to pinpoint the source, it is

possible to make some educated guesses as to the cause of the errors.

One unlikely scenario is that the real time clocks internal to the ADuC824 exhibit
sufficient drift that they will fall out of synchronization after a few minutes. If a
node is isolated from its neighbors for an extended period of time due to transmis-
sion errors, when it finally manages to exchange a SEG_TYPE_PING packet with its
neighbors, its internal clock has drifted sufficiently far that it causes a ripple of syn-
chronization error to be propagated through the network. However, the 32.768 KHz
crystals used for the Constellation board’s timing have an accuracy of 20 parts per
million, or about 1.2 milliseconds maximum drift per minute, which doesn’t

explain the large timing deviations observed in the network.

A more likely cause of these errors is that nodes incorrectly exchange their internal
time reference with their neighbors. For example, if the advertised synchronization
information was constantly slightly behind the node’s internal real time, then all the
nodes in the network would retard their internal clocks as a group. However, if one
node fell out of communication with other nodes, it would be free to run at the
proper speed. When it re-establishes communication with other nodes, it would

cause a large perturbation in the overall synchronization of the network.

A solution to this problem will require more detailed data collection and analysis.
Despite these occasional timing errors, the fundamental goal has been achieved,
showing that nodes can synchronize accurately to one another in a decentralized

network.

99

Embedded Networking

cuaprters Conclusions & Future Work

Because it has no other means to communicate, a smoke detector in the basement
can only scream when it detects smoke and beep futilely when its batteries run low.
Given a more sensible means of expression, it could do a much better job of pro-
tecting a home and its occupants.

Microprocessor chips have already reached the point where their usefulness is not
limited by their processing power, but rather by a lack of context. Isolated from the
rest of the world, the majority of these chips can neither sense the world around

them nor participate in any meaningful discourse with other chips in their environ-

ment.

Some lessons learned

This thesis has presented Embedded Networking, an integrated approach to scal-
able, self-organizing networks designed to give voice to microprocessors. Several

good and surprising results have arisen in the course of developing this art.

Embedded Networks are attainable. Embedded Networks can be built today. A
practical implementation does not hinge upon as-yet-undeveloped technologies or
exotic components. Because Embedded Networking has been designed to be “radio
agnostic,” it can use existing radios and still take advantage of the inevitable devel-

opments in new wireless technologies.

Data aggregation is a powerful tool. It is astonishing how much can be learned by
having multiple data points. As an example, the interplay of outdoor temperatures,
measured at just seven different points during the course of a sunrise, told a much

more interesting story than seven readings from one sensor possibly could.

100

Conclusions & Future Work

Embedded Networks must be proactive. David Tennenhouse is right: if computing
systems are to become useful, they must do so with a minimum of attention from
their human stewards [Tennenhouse 2000]. For example, it proved to be remark-
ably useful to have each node in the ArborNet proof of concept system monitor its
own battery voltage. This simple approach removed doubts as to whether nodes
were running low on power or not. As an unexpected benefit, it proved very easy to
answer the question “do alkaline batteries run down faster when they are subjected
to sub-freezing temperatures?” (The answer was that they did not drain appreciably

faster than their warmer neighbors.)

Gradient Routing works in theory and in practice. Gradient Routing, a cornerstone
of the Embedded Networking systems described here, proved itself to be an effec-
tive technique. It succeeded in relaying data packets from one wireless node to
another without either the need for preplanning the network or for human interven-

tion during its operation.

Unturned Stones

Paradoxically, the hallmark of satisfying research is that it leaves one hungry to do
more, and the work here has been no exception. This early exploration into the the-
ory and practice Embedded Networking has perhaps raised one new question for
every question answered. A few of these “unturned stones” are offered with the
thought that they might prove to be interesting and worthwhile avenues for further

research.

DEEPEN UNDERSTANDING OF RADIO PROPAGATION

It would be informative to conduct a detailed study of the connectivity characteris-
tics among all nodes in a network, directly measuring the bit error and packet error
characteristics between each combination of nodes. Although the error rates will

depend upon radio technology and environment, some other questions will fall out

as a direct consequence: How symmetrical are wireless communication links in

101

Conclusions & Future Work

practice? What is a good estimate of path loss, and how well does spatial division
multiplexing work? How closely does physical topography correspond to network
topology? This kind of information is typically difficult to gather, but a decentral-

ized multi-hop wireless network such as ArborNet makes it quite easy.

BUILD A WIRELESS SUNDIAL

Chapter 5 described techniques for a community of nodes to agree on a common
time base, appropriate for sub-millisecond measurements, but not rooted in any
physical time base. Working with ArborNet suggests a somewhat whimsical
approach to accurate timekeeping in an unattended network by building a “wireless

sundial” from multiple embedded networking nodes.

Each node is powered entirely by solar cells, so it would only wake up when there
was sun to measure. Once awake, a node would track the position of a shadow cast
by a gnomon using simple photocells, and report the position of the shadow to its

neighbors. Using multiple nodes would eliminate errors due to clouds, and on clear
days, the network could accurately report both the solar time of day and the day of

the year. The system would be guaranteed to be free of any long-term drift.

IMPLEMENT DYNAMIC DUTY CYCLE

Distributed Synchronization is a first step towards power savings. If all nodes in the
network can agree on a common time base, they can all sleep at the same time and
wake up simultaneously in order to exchange packets during network “business

hours.”

Assume that nodes draw no power while they sleep and constant power while they

are awake, independent of radio activity. Let T,,,;, denote the amount of time that

the they are awake and T}, the time during which they sleep, the duty cycle for

leep

the system is then:

102

Conclusions & Future Work

T k
T = _____wake EQ 15
pc T T T ()

wake sleep

The system power consumed will be reduced by a factor of T, while the load on

the airwaves will be increase by the same factor.

Since many embedded network applications need only communicate to for a few
milliseconds out of every minute, this approach can lead to substantial power sav-

ings.

DEVELOP MECHANISMS FOR RELOADING CODE

For all its ease in measuring and gathering data, the Embedded Networks presented
here don’t offer any mechanism for reloading code over the network. Part of this is
due to limitations in hardware: the Constellation boards used in the ArborNet sys-
tem have no provisions for dynamically reloading code. But a degree of caution
influenced the design: one bad byte distributed among all the nodes could immedi-

ately bring down the network.

Nonetheless, the value in being able to dynamically reload code in order to conduct
different networking tests is obvious. An embedded network system designed to
dynamically update its own networking code would be an extremely useful
research tool. A longer-term goal would be to create robust mechanisms for dynam-

ically reloading code for applications outside of the laboratory.

Acknowledgements

Entering the Media Laboratory is like embarking on some strange and wonderful
journey: When I started five years ago, I didn’t know where it would lead me, but I
had a hunch that I would have many adventures and encounter some wonderful
people along the way. Time has validated my intuition, and in retrospect, I could

not have scripted a better cast of characters.

103

Conclusions & Future Work

My advisor, Mike Hawley, jarred me loose from my everyday life and into the Lab
in the first place, and it is his ongoing vision of building smart, useful objects that
has kept me happily working late nights. Committee member and sailing captain
Andy Lippman has always offered good criticisms of my work, backed up with
sound reasoning. Bill Kaiser, expert in the field of self-organizing networks, has
always expressed enthusiasm about my work, sensibly tempering my elation by
introducing me to work other people have already done in the field. I’ve had many
stimulating talks with LCS professor Hari Balakrishnan and his students about the
finer points of embedded networks—it is wonderful to have a local expert in the
field. David Tennenhouse did me a great service by making me promise that I
would stay focussed on completing the dissertation before being distracted by the

Next Big Thing.

I have been fortunate to have been supported as a Motorola Fellow for much of my
time as a Media Lab student. But the support hasn’t been simply financial: I’ve
been constantly inspired by my interactions with the engineers and managers of

Motorola, and I especially appreciate Sheila Griffin’s handling of the program.

I feel particularly lucky to be part of Hawley’s Personal Information Architecture
team. Past members Maria Redin, Manish Tuteja and John Underkoffler have
remained great friends and helped me through the inevitable bumps along the road
to a degree. Current colleagues Chris Newell, Roshan Baliga and especially Paul
Pham have spent large blocks of their time making ArborNet into a reality, and I

have come to depend upon Bill Butera for seeing technical holes that I have missed.

Two people deserve special mention, without whose help I cannot imagine this
research coming to fruition. Andy Wheeler designed the Constellation board and
many other elegant (though often unsung) hardware systems. Through his own
example, Andy has pushed me to think harder and build more. Charlotte Burgess
advanced this research in more ways than can be counted, from proofreading and
graphic design to emotional and moral support. Charlotte has a talent for asking the
question that unties whatever Gordian knot I am struggling with. To both Andy and

Charlotte, I give special thanks.

104

Embedded Networking

APPENDIX A References

[Abelson 1995] Hal Abelson, Tom Knight, Gerald Sussman. “Amorphous Comput-
ing.” MIT LCS internal White Paper. Draft of October 14, 1995.

[Abramson 1985] Norman Abramson. “Development or the ALOHANET” IEEE
Transactions on Information Theory, Vol. IT-31, pp. 119-123, March 1985.

[Bertsekas 1992] Dimitri Bertsekas, Robert Gallager. “Data Networks” Second
Edition. Prentice Hall Englewood Cliffs, New Jersey, 1992. 4 dependable textbook

on the networking and queuing theory.

[Bluetooth 1999] Bluetooth specification, available online at http://www.blue-

tooth.com/developer/specification/specification.asp

[Broch 1998] J. Broch, D. A. Maltz, D. B. Johnson, Y-C. Hu, J. Jetcheva. “A per-
formance comparison of multi-hop wireless ad hoc networking protocols,” in Pro-
ceedings of the 4th International Conference on Mobile Computing and
Networking (ACM MOBICOM 98), pp. 85-97, October 1998.

[Bult 1996] K. Bult, A. Burstein, D. Chang, M. Dong, M. Dielding, E. Kruglick, J.
Ho, F. Lin, T. H. Lin, W. J. Kaiser, R. Mukai, P. Nelson, F. L. Newburg, K. S. J.
Pister, G. Pottie, H. Sanchez, O. M. Stafsuff, K. B. Tan, C. M. Ward, G. Yng, S.
Xue, H. Marcy, J. Yao. “Wireless Integrated Microsensors.” Proceedings of the
1996 Hilton Head Transducers Conference, June 1996. An early paper on Bill Kai-

sers excellent WINS program.

[Carvey 1996] Phillip Carvey. “BodyLAN.” IEEE Circuits and Devices, V4 No 12
July 1996. Describes the design for Phil Carvey's ultra low-power radio design—a

105

nifty bag of tricks that attains 4x10°° Joules per received bit and 2x10°° Joules per

transmitted bit.

[Das 2000] S. Das, C. Perkins, E. Royer. “Performance comparisons of two on-
demand routing protocols for ad hoc networks,” Proceedings of the IEEE Confer-
ence on Computer Communications (INFOCOM), Tel Aviv, Israel, March 2000,
pp- 3—12.

[Demers 1994] Alan Demers, Scott Elrod, Christopher Kantarkiev, Edward Rich-
ley. “A Nano-Cellular Local Area Network Using Near-Field RF Coupling.” CSL-
94-8 Xerox Corporation, Palo Alto Research Center. October 1994. Describes a
nobel radio system developed at Xerox PARC as part of their Ubiquitous Comput-
ing program. They essentially use inductively coupled systems and exploit the rapid

falloff for high-density wireless systems.

[emWare 2000] Documentation available online at http://www.emware.com/solu-
tions/emit/. emWare makes a suite of “thin clients” that run on small microcontrol-

lers connected (generally via wired links) to larger systems that act as proxies.

[Fall 1998] K. Fall and K. Varadhan (editors) “ns Notes and Documentation.”
Lawrence Berkeley Nantional Laboratories, August 1998. Available online at http:/
/wwwmash.cs.berkeley.edu/ns/. ns has become is the industry standard for quanti-

fying the performance of network protocols.

[Gershenfeld 1999] N. Geshenfeld. “When Things Start To Think.” Henry Holt and
Company, New York, 1999. Articulates the vision of Things That Think.

[Heidegger 1968] Martin Heidegger (translators John Macquarrie and Edward Rob-
inson). “Sein und Zeit.” Harper & Row, San Francisco. 1962. This famous existen-
tialist starts with first principals in describing the relation of humans to the world

around them. As such, he has a greater influence in the topic of user interfaces than

some might imagine.

106

[Heinzelman 2000] W. Rabiner Heinzelman, A. Chandrakasan, and H. Balakrish-
nan “Energy-Efficient Communication Protocol for Wireless Microsensor Net-
works,” Proceedings of the 33rd International Conference on System Sciences
(HICSS '00), January 2000. This paper describes LEACH (Low Energy Adaptive
Clustering Hierarchy), a technique that dynamically chooses local cluster heads in
multi-hop, ad hoc networks in order to balance and reduce the total amount of

energy spent by individual nodes.

[IEEE 1999] IEEE Std. 802.11, 1999 Edition. “Information technology—Telecom-
munications and information exchange between systems—Local and metropolitan
area networks—Specific requirements—Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications.” IEEE Standards Asso-
ciation, 1999. ISBN 0-7381-1809-5 Description of 802.11 wireless LAN standard

[Intanagonwiwat 2000] Chalermek Intanagonwiwat, Ramesh Govindan, and Debo-
rah Estrin. “Directed Diffusion: A Scalable and Robust Communication Paradigm
for Sensor Networks.” Proceedings of the Sixth Annual International Conference

on Mobile Computing and Networks (MobiCOM 2000), August 2000.

[IrDA 1998] Infrared Data Association, IrDA specification, available online at

http://www.irda.org

[Johansson 1999] P. Johansson, T. Larsson, N. Hedman, B. Mielczarek. “Routing

protocols for mobile ad hoc networks—a comparitive performance analysis,” Pro-
ceedings of the 5th International Conference on Mobile Computing and Network-

ing (ACM MOBICOM 99), pp. 195-206, August 1999.

[Johnson 1996] D. B. Johnson, D. A. Maltz. “Dynamic source routing in ad hoc
networks,” in Mobile Computing, T. Imielinski and H. Korth, Eds., Kulwer, 1996,
pp- 152-81.

107

[Kelly 1997] Kevin Kelly. “New Rules for the New Economy.” Wired Magazine,
5.09 pp 140-197, September 1997. Kevin Kelly's vision, not just of a world densely

populated with smart devices, but how these devices will change the rules.

[Kleinrock 1987] Leonard Kleinrock and John Silvester. “Spatial reuse in multihop
packet radio networks.” Proceedings of the IEEE, 75(1):156-167, January 1987.

MANET was not the first foray into multi-hop packet radio systems.

[Kramer 1999] K. H. Kramer, N. Minar, P. Maes. “Tutorial: Mobile Software
Agents for Dynamic Routing,” Mobile Computing and Communications Review

(ACM SIGMOBILE), vol. 3, no. 2, 1999, pp. 12-16.

[Kumar 2000] S. Kumar. “Sensor Information Techology (SenselT) Program”,
described in http://www.darpa.mil/ito/research/sensit/, DARPA Information Tech-
nology Office, April 2000.

[Macker 2000] J. Macker, S. Corson. “Mobile Ad-hoc Networks (manet) Charter.”

http://www.ietf.org/html.charters/manet-charter.html, February 2000

[Metcalfe 1976] Robert M. Metcalfe and David R. Boggs. “Ethernet: Distributed
packet switching for local computer networks.” Communications of the ACM 19, 7

July 1976, pp 395-404. One of the original papers on Ethernet.

[Mills 1991] David L. Mills. “Internet time synchronization: the Network Time
Protocol.” IEEE Trans. Communications COM-39, pages 1482-1493, October
1991. Available online as http://www.eecis.udel.edu/~mills/database/papers/

trans.ps

[Minar 1999] Nelson Minar, Matthew Gray, Oliver Roup, Raffi Krikorian, Pattie
Maes. “Hive: Distributed Agents for Networking Things.” Presented at ASA/MA

August 1999. Available on-line as http://www.hivecell.net/hive-asama.html

[Moravec 1998] Hans P. Moravec. Robot: mere machine to transcendent mind.

Oxford University Press, November 1998. Has an excellent graph of MIPs per dol-

108

lar. See also the online WEB pages for regularly updated numbers: http://

www.fre.ri.cmu.edu/~hpm/book97/ch3/processor.list

[Pentland 1996] Alex P. Pentland. “Smart Rooms.” Scientific American, 274(4) pp.
68-76. April 1996. At the time this article was published, Pentland made a convinc-
ing argument that computational systems of were sensorially deprived. Five years

later it still holds true.

[Perkins 1999] C. Perkins and E. Royer. “Ad-hoc on-demand distance vector rout-
ing,” Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and
Applications, pp. 90-100, February 1999.

[Poor 2001] R. Poor. “Jasper: a Java-based dynamic simulator for ad hoc wireless

networks,” unpublished.

[Simon 1969] Herb Simon. “The Sciences of the Artificial.” MIT Press, Cambridge
Massachusetts, 1969. Economics meets Artificial Intelligence meets Complexity
Theory, offering useful tools for thinking about problems. A wonderfully readable

survey of Simon's work.

[Stajano 1999] Frank Stajano and Ross Anderson. “The Resurrecting Duckling:
Security Issues for Ad-Hoc Wireless Networks.” Chapter in Security Protocols, 7th
International Workshop Proceedings, Lecture Notes in Computer Science, 1999.
Springer-Verlag Berlin Heidelberg 1999. Describes techniques for “imprinting” in
wireless devices in ad-hoc networks can be “imprinted” to describe ownership and

other security attributes.

[Sun 2000] Sun Microsystems. “JINI Architecture Specification, Version 1.1.”

available online at http://www.sun.com/jini/specs/

[Tennenhouse 2000] David Tennenhouse. “Proactive Computing.” Communica-
tions of the ACM, May 2000, Volume 43, #5. David makes the argument that since

there are so many embedded computers, they must operate autonomously and sen-

109

sibly—humans must be able to “get out of the loop.” This issue of CACM is dedi-
cated to the topic of “Embedding The Internet.”

[UMTS 2000] Information available online at http://www.umts-forum.org. UMTS
(universal mobile telecommunication system) is being being developed by the Inter-
national Telecommunications Union as the successor to GSM cellular telephone

systems, featuring bandwidths between 144KBps and 2MBps.

[Weiser 1991] Mark Weiser. “The Computer for the Twenty-First Century.” Scien-
tific American, 265(3) pp. 94-104, September 1991. Mark Weiser s famous paper
on Ubiquitous Computing. It still make good sense after all these years, and

reminds us of some of the things we are trying to attain.

[Wheeler 2000] Andy Wheeler, Aggelos Bletsas. “Energy Efficiency Study of
Routing Protocols for Mobile Ad-hoc Networks” Final project paper for 6.899

Computer Networks, taught by Professor Hari Balakrishnan.

[W3C 2000] World Wide Web Consortium (W3C). “Extensible Markup Language
(XML) 1.0” second version edition 6 October 2000. Available on the web at http://
www.w3.org/TR/REC-xml

110

APPENDIX B \AN\.@Q&/\QN Host QQQNQ N\NMNNEW

Following is the ArborNet C source code that is executed by the ADuC824
host processor on the Constellation board. More information on the ArborNet

system can be found in Chapter 7.

#ifndef ADC H
#define ADC_H
// -*- Mode: C++ -*-

//

// File: adc.h

// Description: routines to read the A/D converters
//

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

// For general public use.

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

#include "pkt.h"

// routines to read, packetize, print the analog to digital converter
// thermistor (external temp) on AIN1l (primary)

// photocell on AIN1 (aux)

// Battery monitor on AIN4 (aux)

// chip temperature on aux

typedef struct _adcPayload {

// unsigned long fExtTemp;
// unsigned int fLight;
unsigned int fIntTemp;
unsigned int fVBATMon;
adcPayload;

void adc_init();

pkt_t xdata *adc_report (pkt_t xdata *next);
// create packet and fill with a fresh set of readings

#endif

File: adc.c

// -*- Mode: C++ -*-

//

// File: adc.c

// Description: routines to read the A/D converters
//

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

// For general public use.

// This distribution is approved by Walter Bender, Director of the

111

// Media Laboratory, MIT. Permission to use, copy, or modify this // while (!RDYO0) {

// software and its documentation for educational and research // os_wait2 (K_TMO, 1); // buzz...

// purposes only and without fee is hereby granted, provided that this // '}

// copyright notice and the original authors' names appear on all // ap->fExtTemp = (ADOH << 16) | (ADOM << 8) | ADOL;

// copies and supporting documentation. If individual files are // ap->fExtTemp = ADOH;

// separated from this distribution directory structure, this // ap->fExtTemp <<= 8;

// copyright notice must be included. For any other uses of this // ap->fExtTemp |= ADOM;

// software, in original or modified form, including but not limited // ap->fExtTemp <<= 8;

// to distribution in whole or in part, specific prior permission must // ap->fExtTemp |= ADOL;

// be obtained from MIT. These programs shall not be used, rewritten,

// or adapted as the basis of a commercial software or hardware // adc_read_secondary (BITMASK(0,0,0,0,1,0,0,0) | PHOTOCELL CHANNEL) ;
// product without first obtaining appropriate licenses from MIT. MIT // ap->fLight = (AD1H << 8) | AD1L;

// makes no representations about the suitability of this software for

// any purpose. It is provided "as is" without express or implied adc_read_secondary (BITMASK(0,0,0,0,1,0,0,0) i CHIPTEMP_CHANNEL) ;
// warranty. ap->fIntTemp = (AD1H << 8) | AD1L;

#include "arbor.h" adc_read_secondary (BITMASK(0,0,0,0,1,0,0,0) i VBATMON_CHANNEL) ;
#include <rtx5ltny.h> // for os wait()... ap->fVBATMon = (AD1H << 8) _ AD1L;

#include <aduc824.h> // aduc register defs

#include "constell.h" // leds, etc }

#include "adc.h"

#include <string.h> // ===
#include <stdio.h> // ==============z===z==z==z==z=========z=======z========================
#include "screen.h" // published routines

// NOTE: With the current board design, VBATMON will stay pegged at

// full scale until VBAT drops to less than 1.25V. void adc_init () A
// fastest, noisiest input
SF = 0x0d;
S — }
A ——

// internal routines
pkt_t xdata *adc report (pkt_t xdata *next) {

#define PHOTOCELL CHANNEL 0x00 /* AIN3 */ // allocate a packet, take a set of readings. Note that adc_read()
#define VBATMON_ CHANNEL 0x10 /* AIN4 */ // is asynchronous, and may take significant time to complete.
#define CHIPTEMP_CHANNEL 0x20 /* AINTEMP */ pkt_t xdata *pkt = pkt_alloc();
#define AINS_CHANNEL 0x30 /* AINS */ pkt_type (pkt) = SEG_TYPE_ADC;
pkt_size (pkt) = sizeof (adcPayload) ;

static void adc_read secondary (unsigned char adlcon) ﬁ adc_read((adcPayload xdata *)pkt payload (pkt)) ;

// Take a reading on a secondary ADC channel. 16 bit result is in pkt_next (pkt) = next;

// AD1H,AD1L upon returning from the routine. return pkt;

AD1CON = adlcon; }

ADMODE = BITMASK(0,0,0,1,0,0,1,0); // secondary, single shot

RDY1l = 0;

while (!RDY1) {
os_wait2(K_TMO, 1); // buzz..

void adc_read(adcPayload xdata *ap) ﬁ
// take a reading of the four analog sources: photocall, battery
// monitor, chip temperature, and thermistor. Store results in
// adcPayload structure, passed by reference.

// thermistor is on primary A/D...

// ADOCON = BITMASK(0,0,0,0,0,1,1,1); // AIN1-GND, unipolar, 2.56V
// ADMODE = BITMASK(0,0,1,0,0,0,1,0); // primary, single shot

// RDYO = 0; // start conversion on primary A/D

112

File: appr.h

#ifndef APPR_H
#define APPR _H

//

-*- Mode: C++ -*-

File: appr.h
Description: Application Receive process

Copyright 2001 by the Massachusetts Institute of Technology. All
rights reserved.

This MIT Media Laboratory project was sponsored by the Defense
Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
content of the information does not necessarily reflect the
position or the policy of the Government, and no official
endorsement should be inferred.

For general public use.

This distribution is approved by Walter Bender, Director of the
Media Laboratory, MIT. Permission to use, copy, or modify this
software and its documentation for educational and research
purposes only and without fee is hereby granted, provided that this
copyright notice and the original authors' names appear on all
copies and supporting documentation. If individual files are
separated from this distribution directory structure, this
copyright notice must be included. For any other uses of this
software, in original or modified form, including but not limited
to distribution in whole or in part, specific prior permission must
be obtained from MIT. These programs shall not be used, rewritten,
or adapted as the basis of a commercial software or hardware
product without first obtaining appropriate licenses from MIT. MIT
makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied
warranty.

#include "pkt.h"

void appr_ recvPkt (pkt_t xdata *pkt);

//
//

//
//

stuff a received packet into the receive queue, notify
the receive process

void appr_task(void) _task APPR TASK {
application receive thread.

void appr didXmit (pkt_t xdata *pkt);

// called from the mac layer immediately after a packet has been
// passed to the radio and just before it is freed.
#endif

File: appr.c

-*- Mode: C++ -*-

File: appr.c
Description: Application Receive: manage incoming packets

Copyright 2001 by the Massachusetts Institute of Technology. All
rights reserved.

This MIT Media Laboratory project was sponsored by the Defense
Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
content of the information does not necessarily reflect the
position or the policy of the Government, and no official
endorsement should be inferred.

For general public use.

This distribution is approved by Walter Bender, Director of the
Media Laboratory, MIT. Permission to use, copy, or modify this
software and its documentation for educational and research
purposes only and without fee is hereby granted, provided that this
copyright notice and the original authors' names appear on all
copies and supporting documentation. If individual files are
separated from this distribution directory structure, this
copyright notice must be included. For any other uses of this
software, in original or modified form, including but not limited
to distribution in whole or in part, specific prior permission must
be obtained from MIT. These programs shall not be used, rewritten,
or adapted as the basis of a commercial software or hardware
product without first obtaining appropriate licenses from MIT. MIT
makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied
warranty.

#include "adc.h"
#include "appx.h"
#include "arbor.h"
#include "arg.h"

#include "costTable.h"
#include "grad.h"

// ct_costTo()
// grad_seqno ()

#include "id.h"
#include "sync.h"
#include "pkt.h"
#include "mac.h"
#include "screen.h"
#include "stats.h"
#include "vector.h"

#include <rtx5ltny.h>

// for os wait()...

#include <stdio.h>

//

queue for received packets waiting for processing by APPR_TASK

113

// (the application receive thread)

//

#define APPR QUEUE SIZE 10

DEFINE_VECTOR (gAppRQueue, APPR_QUEUE_SIZE) ;

 mmm e e
// Queue up a received packet. Packets are put here by the radio
// receive thread and are removed by the application process. If
// the queue fills up, dump the oldest.

// ## must not be called until APPR_TASK has been started

void appr recvPkt (pkt t xdata *pkt) {
// handle a packet received by the radio process by putting in the
// APP receive queue and notifying the APR task. Normally called
// from within RADR_TASK
//
pkt_free(vector_shove (VECTOR (gAppRQueue), pkt));
// stats_appQueuePkt (vector count (VECTOR (gAppRQueue))) ;

os_send_signal (APPR_TASK) ; // notify app task there's a packet
}
// ===s=s=s===z====
// Application Receive task
//

// Wait for a packet to arrive in the receive queue, then distribute
// the packet to the various services that might want to know about

// it.
static void appr_servicePkt (pkt_t xdata *pkt, pkt t xdata *gradSeg) ;
void appr_task(void) _task_ APPR_TASK {

// one-time initialization of the application's receive queue
vector_init (VECTOR (gAppRQueue), APPR_QUEUE_SIZE) ;

while (1) {
pkt_t xdata *pkt;
pkt_t xdata *gradSeg;

while ((pkt = vector_dequeue (VECTOR (gAppRQueue))) == NULL) {
os_wait2 (K _SIG, 0); // appr_recvPkt () will generate signal
}

gradSeg = grad_find segment (pkt) ;

if (gradSeg == NULL) ({
// no routing header? Pass it along anyway...
appr_servicePkt (pkt, gradSeg);
pkt_free (pkt) ;

} else if (!grad segIsFresh(gradSeg)) ({
// packet is stale - drop now
SCREEN_TASK(("stale")) ;
pkt_free (pkt) ;

} else {
if (grad_isForMe (gradSeg)) {
appr_servicePkt (pkt, gradSeg);
}

// relay or drop the message. Either way, pkt is guaranteed
// to be freed by grad relayIfNeeded() .
grad_relayIfNeeded (pkt, gradSeg) ;
}
}
}

static void appr_servicePkt (pkt_t xdata *pkt, pkt_t xdata *grad) {
// always print received packet in hex on serial port

#ifdef SCREEN ENABLE
screen_goto (14, 1);

#endif
pkt_dumpHex (pkt) ;

// do additional servicing as needed
while (pkt != NULL) {

switch (pkt_type(pkt)) {

case SEG_TYPE_GRADIENT:

case SEG_TYPE DISCOVERY:
// grad updates already happened in appr task() above
break;

case SEG_TYPE_ARQ:
arq_serviceArq(pkt, grad);
break;

case SEG_TYPE_ ACK:
arq_serviceAck (pkt) ;
break;

case SEG TYPE APPX:
appx_serviceSeg (pkt) ;
break;

case SEG TYPE PING:
sync_serviceSeg(pkt) ;
break;

case SEG TYPE TEXT:

case SEG TYPE COST L:

case SEG_TYPE_COST_H:

case SEG TYPE STATS:

case SEG_TYPE_ADC:

case SEG_TYPE TIME:

default:
// contents of the packet has already been printed (above)
break;

}

pkt = pkt_ next (pkt) ;

void appr_didxXmit (pkt_t xdata *pkt) {
// Called after pkt has been transmitted by the radio, appr didXmit ()
// gives individual services a chance to take some action when the
// transmission has finished. Notably, arg needs a chance to grab
// a copy of any packets that need rescheduling
arqg didXmit (pkt) ;

114

File: appx.h

#ifndef APPX_H
#define APPX H
// -*- Mode: C++ -*-

//

// File: appx.h

// Description: Application Transmit support
//

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

// For general public use.

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

#include "arbor.h"
#include "pkt.h"

// Application Transmit process periodically sends info from this
// node to a designated collection point.

typedef struct _
node_id fHost;
unsigned int fDelayTics;
} appxPayload;

appxPayload {
// host to send data to
// inter-report delay (in system tics)

void appx_startReporting(node_id destination) ;
// broadcast a SEG_TYPE APPX to all nodes, asking them to start
// sending reports to the named destination node.

void appx_stopReporting() ;
// broadcast a SEG_TYPE APPX to all nodes, asking them to stop
// sending reports.

pkt_t xdata *appx_makeSeg(pkt_t xdata *next, node_id host);
// allocate a appx segment, link it in with next

void appx_serviceSeg(pkt_t xdata *seg);
// act upon an incoming appx message

#endif

File: appx.c

// -*- Mode: C++ -*-

// File: appx.c
// Description: Application Transmit: generate periodic reports

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

// For general public use.

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

#include "adc.h"
#include "appx.h"

#include "arg.h" // for arg makeArq()
#include "constell.h"
#include "costTable.h" // for ct_report(), ct_reset_except ()

#include "grad.h"
#include "id.h"
#include "mac.h"
#include "sync.h"
#include "screen.h"
#include "stats.h"

115

#include <limits.h>

#include <rtx5ltny.h> // for os_wait()...
#include <stdio.h> // printf

#include <stdlib.h> // rand()

#include <string.h>

// sDirectives stores the recipient for reports and the report interval
static appxPayload sDirectives;

// Note that even though there's a slot in an appxPayload packet
// specifically to control the delay time between appx reports, it
// will always be set to DEFAULT APPX DELAY. This could be made
// variable, if needed.

#define DEFAULT APPX DELAY 1060

// set a limit to the minimum delay between appx reports
#define MIN APPX DELAY (OS TICS PER_SECOND/2)

void appx_startReporting(node id destination) {
// broadcast a SEG_TYPE APPX to all nodes, asking them to start
// sending reports to the named destination node.
mac_xmitPkt (grad_makePkt (appx_makeSeg (NULL, destination),
BROADCAST_NODE)) ;

}

void appx_stopReporting() {
// broadcast a SEG_TYPE APPX to all nodes, asking them to stop
// sending reports.
mac_xmitPkt (grad_makePkt (appx_makeSeg (NULL, 0), BROADCAST NODE)) ;

}

pkt_t xdata *appx_makeSeg(pkt_t xdata *next, node_id host) {
// create a SEG_TYPE APPX packet, requesting that nodes send periodic
// reports to <hosts>
pkt_t xdata *seg = pkt_alloc();
appxPayload xdata *xp = pkt_payload(seg) ;
pkt_type(seg) = SEG_TYPE_APPX;
pkt_size(seg) = sizeof (appxPayload) ;
xp->fHost = host;
xp->fDelayTics = DEFAULT_APPX DELAY;
pkt_next (seg) = next;
return seg;

void appx_serviceSeg(pkt t xdata *seg) {
// When a SEG_TYPE APPX packet is received, copy the appxPayload to
// the local state and notify the APPX TASK. The APPX TASK will
// start sending the requested information to the host specified in
// the header.

//
// As a side effect, an APPX packet also resets all the statistics
// information and routing table info for the node. Short of creating

// a new packet type, this is the only convenient way to clear all
// the logging and statistics info.

appxPayload xdata *xp = pkt_payload(seg) ;

SCREEN_TASK (("appx_ss()")); PKT_PRINT (seg) ;

memcpy (&sDirectives, xp, sizeof (appxPayload)) ;

stats_reset () ; // reset packet statistics
sync_reset () ; // reset sync statistics
ct_reset_except (xp->fHost) ; // reset cost table except to host
os_send_signal (APPX_TASK) ;

static void _wrapAndSend (pkt t xdata *pkt) {
// "Decorate" pkt with a request for reply (arqg) and a grad
// header before passing it to the MAC system for transmission.
LED_ON (GREEN_LED) ;
mac_xmitPkt (grad_makePkt (arq_makeArq(pkt), sDirectives.fHost));
LED_OFF (GREEN_LED) ;

static void _bide (unsigned int tics) A
// wait for the given number of tics to elapse. Each tic is
// approx 9.6 mSec, or 106 tics per second.
while (tics != 0) {
unsigned char t = (tics > UCHAR MAX) ?UCHAR_MAX:tics;
os_wait2 (K_TMO, t);
nwomlnn»

// Wait until we're directed to send our status to a particular host,

// then start sending periodic updates.

//

void appx_task(void) _task APPX TASK {
// one-time initialization
sDirectives.fHost = 0;
sDirectives.fDelayTics = 0;

while (1) {
SCREEN_TASK (("appx_task(1)"));

while (sDirectives.fHost == 0)
os_wait2 (K _SIG, 0);
// before starting the appx process, choose a random delay
// to cut down on collisions
os_wait2 (K _TMO, rand());

}

// enforce minimum delay
if (sDirectives.fDelayTics < MIN_APPX DELAY) {
sDirectives.fDelayTics = MIN_APPX DELAY;

SCREEN_TASK(("h=%bx d=%0bx", sDirectives.fHost,
sDirectives.fDelayTics)) ;

// I: send low half of cost table and sync state

_wrapAndSend (ct_report 1 (sync_report (NULL))) ;

_bide(shirectives.fDelayTics) ;

// II: send high half of cost table and sync state
_wrapAndSend (ct_report_h(sync_report (NULL))) ;

116

}

}

_bide (sDirectives.fDelayTics) ;

// III: send packet statistics and ADC values
_wrapAndSend (stats_report (adc_report (NULL))) ;
_bide (sDirectives.fDelayTics) ;

File: arbor.h

#ifndef ARBOR_H

#define ARBOR H

// -*- Mode: C++ -*-

//

// File: arbor.h

// Description: General system definitions for ArborNet nodes

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

// For general public use.

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

#ifndef NULL

#define NULL (void *)O0

#endif

// pervasive data types
typedef unsigned char node_id;
typedef unsigned char cost_t;
typedef unsigned char seq t;
// too handy not to define

#define BITMASK (b7,b6,b5,b4,b3,b2,bl,bo) \
((b7<<7) | (b6<<6) | (b5<<5) | (b4<<4) | (b3<<3) | (b2<<2) | (bl<<1) | (bO)

// units for os_wait (), assuming 12Mhz clock
#define OS_TICS_PER_SECOND 106

// system-wide definitions

117

//

#define MAIN_TASK
#define RADR _TASK
#define MAC_TASK
#define SYNC_TASK
#define APPR_TASK
#define ARQ TASK
#define APPX_TASK

// radio receive thread

// radio transmit thread
periodic ping thread

// packet receiver task

// retry packets until ack'd

// send data to collection point

AUl WN KO
~
~

#endif // ARBOR_H

File: arbor.c

//

-*- Mode: C++ -*-

File: arbor.c
Description: initialization and main process loop for ArborNet

Copyright 2001 by the Massachusetts Institute of Technology. All
rights reserved.

This MIT Media Laboratory project was sponsored by the Defense
Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
content of the information does not necessarily reflect the
position or the policy of the Government, and no official
endorsement should be inferred.

For general public use.

This distribution is approved by Walter Bender, Director of the
Media Laboratory, MIT. Permission to use, copy, or modify this
software and its documentation for educational and research
purposes only and without fee is hereby granted, provided that this
copyright notice and the original authors' names appear on all
copies and supporting documentation. If individual files are
separated from this distribution directory structure, this
copyright notice must be included. For any other uses of this
software, in original or modified form, including but not limited
to distribution in whole or in part, specific prior permission must
be obtained from MIT. These programs shall not be used, rewritten,
or adapted as the basis of a commercial software or hardware
product without first obtaining appropriate licenses from MIT. MIT
makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied
warranty.

Main startup file for arbor system.

#include "arbor.h"

#include "adc.h" // adc_init ()

#include "appx.h" // appx_startReporting()
#include "arqg.h" // arq_init ()

#include "constell.h" // for LEDs

#include "costTable.h" // ct_init()

#include "grad.h" // grad_init ()

(
#include "id.h" // nodeName () ...
#include "pkt.h" // pkt_init ()
#include "rad.h" // rad_init ()
#include "screen.h"
#include "serial.h" // serial init()
#include "stats.h" // stats_reset(
#include "sync.h" // sync_getLocalTime ()
#include <aduc824.h> // for PLLCON
#include <rtx51ltny.h> // for os_wait()...
#include <stdio.hs> // puts()
#include <stdlib.h> // srand()

#define BIDE(tics) os_wait2 (K _TMO, (tics))
// sleep for the given number of tics. Each tic is approximately
// 9.4 mSec. tics must be less than 256.

void test leds() ({
int i;

for (i=0; i<2; i++) {
LED_ON (AMBER_LED) ;
LED_OFF (YELLOW_LED) ;
BIDE (20) ;
LED_ON (RED_LED) ;
LED_OFF (AMBER_LED) ;
BIDE (20) ;
LED_ON (ORANGE_LED) ;
LED_OFF (RED_LED) ;
BIDE (20) ;
LED_ON (GREEN_LED) ;
LED_OFF (ORANGE_LED) ;
BIDE (20) ;
LED_ON (YELLOW_LED) ;
LED_OFF (GREEN_LED) ;
BIDE (20) ;

}

LED_OFF (YELLOW_LED) ;

}

// Install jumper 0 to blast packets directly to the radio.
// Used for debugging.
static void _blast packets() {
os_delete_ task (SYNC_TASK) ;
while (JUMPER 0()) {
// blast packets
pkt_t xdata *pkt = adc_report (NULL) ;
rad xmitPkt (pkt) ;
pkt_free (pkt) ;
os_wait2 (K _TMO, 20);
}

os_create_task (SYNC_TASK) ; // restart sync task.

// program entry point here

118

void init () _task_ MAIN_TASK { // Note that sync_getLocalTime () returns time in units of 128ths

// experiment to see if setting radio pins early makes a difference... // of a second. When assigned to prevRTC and tmp, it's truncated
TR1000_CTL DIRECTION = BITMASK(0,0,0,0,0,1,1,0); // setup mode ctl pins // to an unsigned char, or 256 tics, or two seconds.
TR1000_CTL_DRIVE = 0x00; // standard CMOS I/O prevRTC = sync_getLocalTime () ; // truncated to 2 seconds
TR1000_CTLO = 1; // set TR1000 to receive mode while (!serial_charIsAvailable()) {

TR1000_CTL1 = 1;

// blast packets if jumper 0 installed
BIDE (4) ; if (JUMPER _0()) _blast_packets() ;
PLLCON = 0x00; // 12 MHz

tmp = sync_getLocalTime () ; // also truncated...
TIMECON = 0x13; // configure TIMECON to: if (tmp < prevRTC) // virtual RTC rolled over
// x0xxxxxxXx - count hours 0 to 255 LED_ON (YELLOW_LED) ;
// xx01lxxxx - count in seconds if ((sync_getLocalTime() & O0xff00) == 0) {
// xxxx0xxx - auto reload TIC os_wait2(K_TMO, 20); // long flash on the minute
// xxxxx0xx - clear TIC interrupt flag } else {
// xxxxxxlx - enable counting of TIC os_wait2(K_TMO, 1); // blip otherwise
// xxxxxxxl - enable counting of RTC }
LED_OFF (YELLOW_LED) ;
LED_INIT() ; } else {
test_leds(); // One RTC tic is 7.8125 mSec. One OS tic is 9.44 tics.
srand (nodeID()) ; // We expect tmp to roll over in 256 - tmp RTC tics, so
// we conservatively wait (256-tmp)/2 OS tics before
serial init(); // set up baud rate // checking again.
pkt_init(); // init packet storage os_wait2(K_TMO, (256-tmp)>>1);
BIDE (10) ; // os_wait2(K_TMO, ((256-tmp)>>1)+10);
printf ("\r\n\r\narbor x0.10 %s\r\n", nodeName()) ; }
prevRTC = tmp;
LED_ON (AMBER_LED) ; }
adc_init () ; // initialize analog module // here when a serial char became available
ct_init(); // init cost tables tmp = getchar();
grad_init () ; // init gradient routing module if (tmp == 'H') A
rad_init () ; // init radio module printf ("...start reporting");
stats_reset () ; appx_startReporting (nodeID()) ;
} else if (tmp == 'S') {
LED_OFF (AMBER_LED) ; printf ("...stop reporting") ;
appx_stopReporting() ;
os_create_task (MAC_TASK) ; // start mac process } else {
os_create_task (APPR_TASK) ; // app receive thread putchar('?"');
os_create_task (APPX_TASK) ; }
os_create_task (ARQ TASK) ; }
// MAC_TASK must be started before SYNC TASK }
os_create_task (SYNC_TASK) ; // start sync task.
os_create task (RADR_TASK) ; // restart receiver

SCREEN_CLEAR () ;

while (1) {
unsigned char prevRTC, tmp;

SCREEN_TASK(("%s command: ", nodeName())) ;

// This loop does two things: It breaks when a character has been
// typed on the serial input. While it's waiting, it flashes the
// yellow LED whenever the local clock crosses a 2 second boundary.
// This should give a visual indication of synchronization among
// nodes.

119

File: arq.h

#ifndef ARQ H
#define ARQ H

//

-*- Mode: C++ -*-
File: arg.h
Description: Header file for Automatic Reply reQuest mechanism

Copyright 2001 by the Massachusetts Institute of Technology. All
rights reserved.

This MIT Media Laboratory project was sponsored by the Defense
Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
content of the information does not necessarily reflect the
position or the policy of the Government, and no official
endorsement should be inferred.

For general public use.

This distribution is approved by Walter Bender, Director of the
Media Laboratory, MIT. Permission to use, copy, or modify this
software and its documentation for educational and research
purposes only and without fee is hereby granted, provided that this
copyright notice and the original authors' names appear on all
copies and supporting documentation. If individual files are
separated from this distribution directory structure, this
copyright notice must be included. For any other uses of this
software, in original or modified form, including but not limited
to distribution in whole or in part, specific prior permission must
be obtained from MIT. These programs shall not be used, rewritten,
or adapted as the basis of a commercial software or hardware
product without first obtaining appropriate licenses from MIT. MIT
makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied
warranty.

#include "pkt.h"

//
//

an originator that wants a reply installs an arg segment in
the message. The receiver will send an ack packet in reply.

segments with SEG_TYPE_ARQ or SEG_TYPE ACK have this
as their payload. The originator and destination
ids are assumed to be available in a grad seg in the
same packet. the fTimeout and fRetries fields are
artifacts that simplify the programming and offer

a little debugging info.

BIG OL' NOTE: The ARQ DETAULT RETRIES has been set to zero, which

effectively prevents the ARQ system from ever sending repeat packets.

The number of ARQ (requests) issued and the number of ACK (replies)
are logged in the statistics, though.

This is because the ARQ/ACK sytem has been shown to work, but for
testing, we don't want the variability introduced by repeated ARQ

//

packets -- we'd rather just drop the packet than retry.

#define ARQ DEFAULT RETRIES 0

//

ARQ quits re-sending a packet after RETRIES attempts

typedef struct _argPayload {

unsigned char fReference;
unsigned char fRetries;

// packet ID
// # of times remaining

} argPayload;

typedef struct _ackPayload {

unsigned char fReference;

} ackPayload;

pkt_t xdata *arqg makeArq(pkt_t xdata *pkt);

//

install SEG_TYPE_ARQ segment in pkt

pkt_t xdata *arqg _makeAck (pkt_t xdata *pkt, unsigned char reference);

//

install SEG_TYPE_ACK segment in pkt

void arqg serviceArq(pkt_ t xdata *seg, pkt_t xdata *grad);

//
//

Handle an incoming ARQ packet.
sending it to the originator.

Respond by creating an ACK packet and

void arg_serviceAck (pkt_t xdata *seg);

//
//

Handle an incoming ACK packet. Respond by finding and deleting the
corresponding packet in the retry queue.

void arg didXmit (pkt_t =xdata *pkt);

// Called by the MAC thread when a packet is sent. If the packet

// contains an ARQ header and its retry count is greater than 0,

// create a copy of the packet and install the copy in the retry

// queue.

// void arq task(void) _task_ ARQ TASK

// Task regularly examines retry queue. If there is a packet in the
// retry queue, remove it from the queue and pass it to the MAC layer
// for transmission.

#endif

-*- Mode: C++ -*-

File: arqg.c
Description: Automatic Reply reQuest: manage ARQ and ACK packets

Copyright 2001 by the Massachusetts Institute of Technology. All
rights reserved.

This MIT Media Laboratory project was sponsored by the Defense
Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
content of the information does not necessarily reflect the
position or the policy of the Government, and no official

120

// endorsement should be inferred.
// For general public use.

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

#include "appr.h"
#include "arbor.h"
#include "arg.h"
#include "grad.h"
#include "id.h"
#include "mac.h"
#include "pkt.h"
#include "screen.h"
#include "stats.h"
#include "vector.h"
#include <rtx5ltny.h>
#include <stdio.h>

// for os wait()...

// The gRetryQueue is the home for packets awaiting an ACK
// from a remote host.

#define RETRY_QUEUE_SIZE 4

DEFINE_VECTOR (gRetryQueue, RETRY QUEUE_SIZE) ;

#define ARQ INTERVAL_ TICS OS_TICS_PER_SECOND

// Once every ARQ INTERVAL TICS, examine the retry queue. If there
// is a packet available, remove it and pass it to the MAC layer for
// retransmission. This limits the maximum rate of retries.

static unsigned char gReference;
// A reference number for each ACK packet generated.

// public routines

pkt_t xdata *arqg makeArq(pkt_t xdata *pkt) {
// add an arg segment to this packet
pkt_t xdata *argSeg = pkt_alloc();
argPayload xdata *ap = pkt_payload(argSeg) ;

ap->fReference = gReference++;
ap->fRetries = ARQ DEFAULT RETRIES;

pkt_size(argSeg) = sizeof (argPayload) ;
pkt_type (argSeg) = SEG_TYPE_ARQ;
pkt_next (argSeg) = pkt; // link to main packet

return argSeg;

pkt_t xdata *arg_makeAck (pkt_t xdata *pkt, unsigned char reference)
// add an ack segment to packet
pkt_t xdata *ackSeg = pkt_alloc();
ackPayload xdata *ap = pkt_payload(ackSeg) ;

ap->fReference = reference;
pkt_size (ackSeg) = sizeof (ackPayload) ;

pkt_type (ackSeg) = SEG_TYPE ACK;

pkt_next (ackSeg) = pkt; // link to main packet
stats_arqg() ; // log a request for acknowlegement

return ackSeg;

void arqg serviceArq(pkt t xdata *seg, pkt t xdata *grad) ({

{

// Handle an incoming ARQ packet. Respond by creating an ACK packet

// and sending it to the originator. seg is known to be a segment of

// type SEG_TYPE ARQ, grad (if non null) is SEG_TYPE GRAD.
gradPayload xdata *gp;
argPayload xdata *ap;

// can't handle a packet with no return address

if (grad == NULL) return;
gp = (gradPayload xdata *)pkt_ payload(grad) ;
ap = (argPayload xdata *)pkt_payload(seg) ;

mac_xmitPkt (grad_makePkt (arg_makeAck (NULL, ap->fReference),gp-
>fOriginator)) ;

}

void arq serviceAck (pkt_t xdata *seg) {
// seg is known to be SEG_TYPE ACK, and part of a packet targeted
// for this node. If it is an acknowlegement for an ARQ packet
// festering in the retry queue, now is the time to delete it.

// ## don't call before ARQ TASK is started

ackPayload xdata *ackh = pkt payload(seg) ;
unsigned char i = VECTOR (gRetryQueue) ->fCount;
stats_ack() ; // log an acknowlegement received
while (i--) {

pkt_t xdata *retryPkt;

pkt_t xdata *argSeg;

retryPkt = fast_vector_ref (VECTOR (gRetryQueue), 1i);

argSeg = pkt_find segment (retryPkt, SEG_TYPE_ARQ) ;

if (argSeg != NULL) {

argPayload xdata *argh = pkt_payload(argSeg) ;

121

if (argh->fReference == ackh->fReference) {
// found a match. Remove retryPkt from the retry queue.
pkt_free(fast_vector remove (VECTOR (gRetryQueue), 1i));
return;

void arqg didXmit (pkt_t xdata *pkt) {

// Called by the MAC thread when a packet is sent. If this node
// is the originator and it has an ARQ header and its retry count
// is greater than 0, create a copy of the packet and install it
// in the retry queue.

// ## don't call before ARQ TASK is started
pkt_t xdata *argSeg;

pkt_t xdata *gradSeg;
argPayload xdata *ap;

if ((argSeg = pkt_find segment (pkt, SEG_TYPE ARQ)) == NULL) {
// no ARQ segment in the packet - fuggeddaboudit
return;
}
if (((gradSeg = grad find segment (pkt)) == NULL) ||
(((gradPayload xdata *)pkt_payload(gradSeg))->fOriginator !=
nodeID())) {
// we weren't the originator
return;
}
ap = (argPayload xdata *)pkt_payload(argSeg) ;
if (ap->fRetries-- > 0) {

}

// There are one or more retries left in this packet. Make a

// copy of the packet and install the copy in the retry queue.

pkt = pkt_ copy (pkt) ; // make a copy

pkt_free(vector_shove (VECTOR (gRetryQueue), pkt));

os_send_signal (ARQ_TASK) ; // tell ARQ TASK to check retry queue
}

void arqg task(void) _task ARQ TASK {

// Task regularly examines the retry queue, passing messages to the
// MAC layer for retransmission as they become available.
pkt_t xdata *pkt;

// one time initialization
vector init (VECTOR (gRetryQueue), RETRY_QUEUE SIZE) ;
gReference = 0;

while (1) {

do {
// Block until there might be a packet in the retry queue.
if (vector count (VECTOR (gRetryQueue)) == 0) *
os_wait2 (K_SIG, 0); // arqg_didxmit () will generate signal

}

// This wait () regulates the max rate at which retries are sent

os_wait2(K_TMO, ARQ INTERVAL TICS);

// the packet may have been removed by serviceAck() while we were

// waiting. Check if the packet is still there before continuing.
v while ((pkt = vector dequeue (VECTOR (gRetryQueue))) == NULL) ;

// pkt is the packet to be retransmitted. Update grad info

// and pass ot MAC layer for retransmission

grad_updateSeg (pkt) ;

mac_xmitPkt (pkt) ;

SCREEN_TASK(("arg task(3) %bu", vector_count (VECTOR (gRetryQueue)))) ;

122

File: constell.h char byte;

Register bits;
} Mixed_Reg;

// address offsets of PSD control registers

#define DATAIN_A (volatile Mixed Reg xdata
#define DATAIN_B volatile Mixed Reg xdata
#define DATAIN_ C volatile Mixed Reg xdata

#ifndef _CONSTELL_H_
#define CONSTELL H_
// -*- Mode: C++ -*-

PSD_REG_BASE+0x00
PSD_REG_BASE+0x01
PSD_REG_BASE+0x10

““ File: constell.h #define DATAIN_D volatile Mixed Reg xdata PSD_REG_BASE+0x11

N) ces P . #define DATAOUT A volatile Mixed Reg xdata PSD_REG_BASE+0x04
““ WMMMMMWnHOD. wwwwswwwam@mowmwo definitions for Constellation board #define DATAOUT B volatile Mixed Reg xdata PSD_REG_BASE+0x05
77 ’ #define DATAOUT C volatile Mixed Reg xdata PSD REG BASE+0x12

#define DATAOUT D
#define DIRECTION A
#define DIRECTION_B
#define DIRECTION C
#define DIRECTION D
#define DRIVE_A
#define DRIVE_B
#define DRIVE_C
#define DRIVE_D

PSD_REG_BASE+0x13
PSD_REG_BASE+0x06
PSD_REG_BASE+0x07
PSD_REG_BASE+0x14
PSD_REG_BASE+0x15
PSD_REG_BASE+0x08
PSD_REG_BASE+0x09
PSD_REG_BASE+0x16
PSD_REG_BASE+0x17

volatile Mixed Reg xdata
volatile Mixed Reg xdata
volatile Mixed Reg xdata
volatile Mixed Reg xdata
volatile Mixed Reg xdata
volatile Mixed Reg xdata
volatile Mixed Reg xdata
volatile Mixed Reg xdata
volatile Mixed Reg xdata

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

““ For general public use #define OUTENABLE A volatile Mixed Reg xdata PSD_REG_BASE+0x0C
// K P ’ #define OUTENABLE B PSD_REG_BASE+0x0D

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

#define OUTENABLE D
#define CONTROL A
#define CONTROL_B
#define IMC_A
#define IMC_B
#define IMC_C
#define OMC_AB
#define OMC_BC
#define OMCMASK_AB
#define OMCMASK BC
#define MAINPROTECT
#define ALTPROTECT
#define JTAG
#define PMMRO
#define PMMR2
#define PAGE
#define VM

PSD_REG_BASE+0x1B
PSD_REG_BASE+0x02
PSD_REG_BASE+0x03
PSD_REG_BASE+0x0A

PSD_REG_BASE+0x0B
PSD_REG_BASE+0x18
PSD_REG_BASE+0x20
PSD_REG_BASE+0x21
PSD_REG_BASE+0x22
PSD_REG_BASE+0x23
PSD_REG_BASE+0xCO
PSD_REG_BASE+0xC2
PSD_REG_BASE+0xC7
PSD_REG_BASE+0xBO
PSD_REG_BASE+0xB4
PSD_REG_BASE+0xEO
PSD_REG_BASE+0xE2

volatile Mixed Reg xdata
volatile Mixed Reg xdata
volatile Mixed Reg xdata
volatile Mixed Reg xdata
volatile Mixed Reg xdata
volatile Mixed Reg xdata
volatile Mixed Reg xdata
volatile Mixed Reg xdata
volatile Mixed_ Reg xdata
volatile Mixed Reg xdata
volatile Mixed Reg xdata
volatile Mixed Reg xdata
volatile Mixed Reg xdata
volatile Mixed Reg xdata
volatile Mixed Reg xdata
volatile Mixed Reg xdata

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
volatile Mixed Reg xdata *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
volatile Mixed Reg xdata *

(())
((())
((())
((())
((())
((())
((())
((())
((())
((())
((())
((())
((())
((())
((())
((())
((())
((())
#define OUTENABLE C ((volatile Mixed_Reg xdata *) (PSD_REG_BASE+0x1A))
((())
((())
((())
((())
((())
((())
((())
((())
((())
((())
((())
((())
((())
((())
((())
((())
((())

#define PSD REG BASE 0x2000

. . . . PSD PORTA
// general structure of 8-bit register allowing bit access /

tvoedef struct #define PAO bit0
ﬁ<w #define PAl bitl
unsigned char bit0 : 1; MMMMMMM WWW WMMW
unsigned char bitl 1; #define PA4 bita
unsigned char bit2 1; #define PAS bits
unsigned char bit3 1; 4define PAG bite
unsigned char bit4 1; #define PA7 bit7
unsigned char bit5s 1;
unsigned char bité 1; //PSD PORTB
i d ch bit7 1; .
} wmcMMMMMw char bl #define PBO bito
g i #define PB1 bitl
. #define PB2 bit2
// union allowing either byte or bit access to 8-bit register #define PB3 bit3

typedef union

123

#define PB4 bit4 #define TR1000_CTL1 DATAOUT_D->bits.PD2

#define PB5 bits #define TR1000_CTL_DIRECTION DIRECTION_D->byte
#define PB6 bité #define TR1000 CTL DRIVE DRIVE D->byte
#define PB7 bit7 #define BART DATA DIRECTION DIRECTION_B->byte

#define BART DATA DRIVE DRIVE_B->byte
//PSD PORTC #define BART DATA CONTROL CONTROL_B->byte
#define PCO bit0 #define BART DATA OUT DATAOUT B->byte
#define PC1 bitl #define BART DATA IN DATAIN B->byte
#define PC2 bit2 #define LED_DIRECTION DIRECTION_A->byte
#define PC3 bit3 #define LED_DRIVE DRIVE_A->byte
#define PC4 bit4 #define LED_CONTROL CONTROL_A->byte
#define PC5 bit5 #define LED SET DATAOUT A
#define PCe bité #define BART READY INTO
#define PC7 bit7 #define BART CLOCK TO

#define BART MODE T1
//PSD PORTD
#define PDO bito // values for BART MODE
#define PD1 bitl #define BART MODE XMIT 0
#define PD2 bit2 #define BART MODE_RECV 1
//PSD JTAG // values for xxx DIRECTION registers
#define JEN bito // JTAG enable #define XMIT OxFF

#define RECV 0x00
//PSD PMMRO

#define APD ENABLE bitl #define LED_INIT() LED_DIRECTION = Ox1F; \
#define PLD_TURBO bit3 LED_DRIVE = 0x00; \
#define PLD ARRAY CLK bit4 LED CONTROL = 0x00; \
#define PLD_MCELL_CLK bits LED_SET->byte = O0xFF
//PSD PMMR2 // To turn LED on, pull pin down to ground because other end is connected to
#define PLD_CNTLO bit2 // Vec. To turn LED off, pull pin up.
#define PLD CNTL1 bit3
#define PLD CNTL2 bit4 #define LED_ON(b) LED_SET->bits.b = 0
#define PLD_ALE bits #define LED_ OFF (b) LED_SET->bits.b = 1
#define PLD DBE bité #define ALL LEDS ON() LED SET->byte = 0x00
#define ALL_LEDS OFF() LED SET->byte = Oxff
//PSD VM
#define SRAM CODE bito #define AMBER LED PAO
#define EE_CODE bitl #define RED LED PAL
#define FL_CODE bit2 #define ORANGE_LED PA2
#define EE DATA bit3 #define GREEN LED PA3
#define FL_DATA bit4 #define YELLOW_LED PA4
#define PIO_EN bit7
// return true when jumper installed
// Flash parameters #define JUMPER_O () (!DATAIN C->bits.PC2)
#define JUMPER_1 () (IDATAIN C->bits.PC7)
#define NVM_DATA POLL 0x80 // flash status "data poll" bit at DQ7
#define NVM_DATA TOGGLE 0x40 // flash status "toggle poll" bit at DQ6 #endif // CONSTELL H
#define NVM_ERROR 0x20 // flash status "error" bit at DQ5

// For F2 with EEPROM boot

#define MAX_EEPROM_RETRY OxOFFF

// Maximum number of attemps to check status after
// a write opertaion to EEPROM

// sfr PLLCON = 0xD7;

#define TR1000_CTLO DATAOUT_D->bits.PD1

124

File: costTable.h

// -*- Mode: C++ -*-

//

// File: costTable.h

// Description: header file for cost table routines
//

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

// For general public use.

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

#ifndef COST TABLE_H
#define COST TABLE H

#include "arbor.h"
#include "grad.h" // for gradPayload
#include "pkt.h" // for pkt_t def

#define COST_ UNKNOWN ((cost_t)Oxff)

// A costRecord represents this node's cost to a given originator. A
// message leaves behind a trial of costRecords as it hops from node
// to node.

// ## NB: Since the cost table is now layed out with the N'th entry
// corresponding to fOriginator == N, the fOriginator field in the
\\OOmnxmoowamanonCHmHmz_nﬂmmww<nm@cwwma.

typedef struct {
node_id fOriginator;
seq_t fSequence;
cost_t fCost;

// originator of this costRecord
// orignator's sequence number
// accrued cost since origination

} costRecord;
// Support for costRecords

void ct_init();
// initialize the cost table

void ct_reset_except (node_id target) ;
// reset all entries in the cost table except for
// target. If target is out of range, resets all.

bit ct_update (gradPayload xdata *gh) ;

// Create or update a costRecord for originator, returning true if

// originator/sequence pair corresponds to fresh message. Even if the
// message is stale, the hops field is updated if the new record is

// advantageous.

bit ct_shouldRelay(gradPayload xdata *gh, bit isDiscovery) ;

// Look up the cost for destination in the routing table. If a record
// for the destination doesn't exist, return false. If a record does
// exist, return true if the cost table's hop count is smaller than

// the given budget. Otherwise return false.

cost_t ct_costTo(node_id node) ;
// Return the cost to the given node, or COST UNKNOWN if there is no
// costRecord in the routing table.

pkt_t xdata *ct_report_l(pkt_t xdata *next);
pkt_t xdata *ct_report_h(pkt_t xdata *next);
// return packets with low half and high half of routing table.

#endif

File: costTable.c

// -*- Mode: C++ -*-

// File: costTable.c
// Description: maintain cost estimates to other nodes

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

// For general public use.
// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research
// purposes only and without fee is hereby granted, provided that this

125

// copyright notice and the original authors' names appear on all if (index !'= -1) {

// copies and supporting documentation. If individual files are costRecord xdata *cr = &_costRecords [index] ;
// separated from this distribution directory structure, this cr->fOriginator = gp->fOriginator;
// copyright notice must be included. For any other uses of this cr->fSequence = gp->fSequence;
// software, in original or modified form, including but not limited cr->fCost = gp->fCostAccrued;
// to distribution in whole or in part, specific prior permission must }
// be obtained from MIT. These programs shall not be used, rewritten, }
// or adapted as the basis of a commercial software or hardware
// product without first obtaining appropriate licenses from MIT. MIT // ==============z===z======z=====z====================================
// makes no representations about the suitability of this software for // exported procedures
// any purpose. It is provided "as is" without express or implied
// warranty. void ct_init() {
// initialize the cost table with unused cost records
// ct_reset_ except (NULL_ORIGINATOR) ;
// Support for cost tables }
//
// 08Nov2000 r@media.mit.edu void ct_reset except (node id target) {
// clear cost entry for all nodes except the specified target
// Modified fancy LRU cost table to direcly indexed one node/one entry unsigned char i;

// form. This is simple and fast, but not scalable.
for (i=0; i<MAX COSTRECORDS; i++) {

#include "costTable.h" costRecord xdata *cr;
#include "id.h" if (i != _recordIndex(target)) A
#include <stdio.h> cr = & costRecords[i];
cr->fOriginator = NULL_ORIGINATOR;
// ==================z=====z===========z============================== cr->fCost = COST UNKNOWN;
// the actual storage for vector and costRecords v
}
#define MAX COSTRECORDS 26 v
#define COST_ REPORT_SIZE 13
#define IS_NEWER (segA, segB) ((((segB)-(seqgAh)) & 0xf0) != 0)
// IDs are biased by this offset // IS_NEWER() returns true if sequence number A is newer than sequence
#define MIN_ID 'A!' // number B, in this case, within 16 counts. A and B are interpreted to

// be MOD 256 (one byte) .
// allocate a static pool of cost records

static costRecord xdata _costRecords [MAX COSTRECORDS] ; bit ct_update (gradPayload xdata *gp) {
// Create or update a cost record for originator, returning true if
// ==================================z============================== // originator/sequence pair corresponds to fresh message. Even if
// internal procedures // the message is stale, the cost field is updated if the new record
// is advantageous.
static int _findRecord(node_id originator) ; unsigned char index;
static void _createRecord(gradPayload xdata *gp); costRecord xdata *cr;
#define NULL ORIGINATOR (node_id)O0 if (gp->fOriginator == nodeID()) A
// I was the originator of this message. Feggadaboudit.

static int _recordIndex(node_id originator) ({ return 0;

// map a node id to a cost table index, returning -1 if the }

// node id is out of range.

if ((originator < MIN_ID) || (originator >= (MIN_ID + MAX_ COSTRECORDS))) ({ index = _recordIndex(gp->fOriginator) ;

return -1;
} else { if (index == -1) {
return originator-MIN_ID; _createRecord (gp) ;

} return 1;
} }
static void _createRecord(gradPayload xdata *gp) ﬁ cr = & costRecords [index] ;

// copy gradPayload's salient points into the cost table.

unsigned char index = _recordIndex(gp->fOriginator) ; if (IS_NEWER (gp->fSequence, cr->fSequence)) {

126

cr->fSequence = gp->fSequence; return ct_report (SEG_TYPE_COST_L, 0, next);

cr->fCost = gp->fCostAccrued; }
return 1;
} pkt_t xdata *ct_report_h(pkt_t xdata *next) {
// create a packet with the high half of the routing table in
if ((gp->fSequence == cr->fSequence) && (gp->fCostAccrued < cr->fCost)) { // the payload
// this sequence number already seen, but adverized cost is better return ct_report (SEG_TYPE_COST_H, COST_REPORT_SIZE, next);
// Update cost estimate }

cr->fCost = gp->fCostAccrued;

}

return O;

bit ct_shouldRelay (gradPayload xdata *gp, bit isDiscovery) ({
// if not discovery: look up cost to destination in cost table.

// if unknown, return false.
// else return true if the message's cost budget is larger than
// this node's cost to the destination.
// if discovery:
// return true if the message's cost budget is larger than 0
cost_t myCost = (cost_t) ((isDiscovery)?0:ct_costTo(gp->fDestination)) ;
if (myCost == COST_UNKNOWN) {
return O;
} else {

return (gp->fCostBudget > myCost) ;
}
}

cost_t ct_costTo(node id node) {
// Return the cost to the given node, or COST UNKNOWN if there is no
// record in the routing table.
int i = _recordIndex(node) ;
if (1 == -1) {
return COST_ UNKNOWN;
} else {
costRecord xdata *cr = & costRecords[i];
return cr->fCost;

static pkt_t xdata *ct_report (seg_type t,
unsigned char offset,
pkt_t xdata *next) {
unsigned char i;
pkt_t xdata *pkt = pkt_alloc();
unsigned char *p = pkt_payload(pkt) ;
pkt_type(pkt) = t;
pkt size(pkt) = COST REPORT SIZE;

for (i=0; i<COST REPORT_SIZE; i++) {
*p++ = (_costRecords[i+offset]) .fCost;

}

pkt_next (pkt) = next;

return pkt;

pkt t xdata *ct report 1 (pkt t xdata *next) {
// create a packet with the low half of the routing table in
// the payload

127

File: grad.h

#ifndef GRAD_H

#define GRAD H

// -*- Mode: C++ -*-

//

// File: grad.h

// Description: header file for gradient routing support

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

// For general public use.

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

#include "arbor.h"
#include "pkt.h" // for pkt_t

// A gradPayload contains the information used by the gradient routing
// mechanism. A gradPayload can be found in the payload of any packet
// segment whose type is SEG_TYPE GRADIENT or SEG TYPE DISCOVERY.

typedef struct gradPayload {
node_id fOriginator;
unsigned char fSequence;
unsigned char fCostAccrued;
node_id fDestination;
unsigned char fCostBudget;
} gradPayload;

// a node that will never be a target
#define BROADCAST NODE Oxff

#define DEFAULT DISCOVERY_COST 25
// ASSERT (sizeof (gradPayload)<MAX PAYLOAD SIZE, "gradPkt payload too big");

void grad_init () ;
// intialize the gradient routing system

pkt_t xdata *grad_find_segment (pkt_t xdata *pkt);
// find a SEG_TYPE GRADIENT or SEG TYPE DISCOVERY segment in the packet

pkt_t xdata *grad makePkt (pkt_t xdata *pkt, node_id dest);
// install a GRAd segment in this packet.

void grad updateSeg(pkt_t xdata *pkt);
// find the SEG TYPE DISCOVERY or SEG_TYPE GRADIENT segment in this
// packet. 1In-place, fixup current sequence number and cost info.

bit grad segIsFresh(pkt_t xdata *gradSeg) ;
// seg must refer to a packet segment of type SEG_TYPE_ DISCOVERY
// or SEG_TYPE GRADIENT. Updates cost tables, returns true if
// this packet hasn't been seen before.

bit grad isForMe (pkt_ t xdata *gradSeg) ;
// seg must refer to a packet segment of type SEG_TYPE DISCOVERY
// or SEG_TYPE_GRADIENT. Returns true if the packet is destined
// for this node (dest is either BROADCAST NODE or this node) .

void grad_relayIfNeeded (pkt_t xdata *pkt, pkt_t xdata *gradSeg) ;
// seg must refer to a packet segment of type SEG_TYPE DISCOVERY
// or SEG_TYPE GRADIENT. Relay pkt if appropriate, else just
// free it.

#endif

File: grad.c

// -*- Mode: C++ -*-

//

// File: grad.c

// Description: To relay or not to relay? Answered here...
//

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

// For general public use.
// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research

128

#i
#i
#i
#i
#i
#i
#i
#i

st

//

//
//

purposes only and without fee is hereby granted, provided that this
copyright notice and the original authors' names appear on all
copies and supporting documentation. If individual files are
separated from this distribution directory structure, this
copyright notice must be included. For any other uses of this
software, in original or modified form, including but not limited
to distribution in whole or in part, specific prior permission must
be obtained from MIT. These programs shall not be used, rewritten,
or adapted as the basis of a commercial software or hardware
product without first obtaining appropriate licenses from MIT. MIT
makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied
warranty.

GRAd is responsible for the routing of packets. Upon reception,
GRAd decides whether to relay a packet, pass it to the application

level, or to drop it. For transmission, GRAd appends a routing
header that will be used by the GRAd service in receiving nodes.
nclude "arbor.h"
nclude "grad.h"
nclude "costTable.h" // ct_costTo()
nclude "id.h" // nodelD ()
nclude "stats.h" // stats_origPkt ()
nclude "mac.h" // mac_xmitPkt () ...
nclude "arqg.h" // arq_recvPkt ()
nclude <stdio.h>

atic unsigned char gSequence;
Sequence number for next originated packet.

exported routines

void grad init () {

}

(
gSequence = 0;

pkt t xdata *grad find segment (pkt_t xdata *pkt) {

// search the list of segments for a packet that contains a
// gradPayload.

while (pkt != NULL) ({
seg_type t = pkt_type (pkt) ;
if ((t == SEG_TYPE GRADIENT) || (t == SEG TYPE DISCOVERY)) return pkt;

pkt = pkt_next (pkt) ;

}

return NULL;

static seg_type grad prepPayload(gradPayload xdata *payload, node_id dest)

{

// £ill in a gradPayload with dest, cost, sequence, etc. Returns
// SEG_TYPE DISCOVERY or SEG_TYPE GRADIENT as appropriate.

cost_t cost = ct_costTo(dest) ;
payload->fOriginator = nodeID() ;
payload->fSequence = gSequence++;
payload->fCostAccrued = 1;

payload->fDestination = dest;

// receivers are already one hop away

if (cost == COST_UNKNOWN) {
payload->fCostBudget = DEFAULT_DISCOVERY_COST;
stats_floodPkt () ; // note a flood packet
return SEG_TYPE_DISCOVERY;

} else {
payload->fCostBudget = cost;
stats_origPkt () ;
return SEG_TYPE_GRADIENT;

// note a routed packet

void grad updateSeg(pkt t xdata *pkt) {
// find the SEG_TYPE_DISCOVERY or SEG_TYPE GRADIENT segment in this
// packet. 1In-place, fixup current sequence number and cost info.
// Currently, this routine is used to update ARQ packets when they
// are retransmitted.
pkt_t xdata *gradSeg;
gradPayload xdata *gp;

if ((gradSeg = grad find segment (pkt)) == NULL) {
return;

}

gp = (gradPayload xdata *)pkt payload(gradSeg) ;

pkt_type (gradSeg) = grad prepPayload(gp, gp->fDestination) ;

pkt_t xdata *grad_makePkt (pkt_t xdata *pkt, node_id dest)

// Tack a GRAd routing header on the front of this packet. If the

// cost to dest is known, it creates a regular GRAd data packet. If

// the cost isn't known, it creates a discovery packet.

pkt_t xdata *seg = pkt_alloc();

pkt_size(seg) = sizeof (gradPayload) ;

pkt_type(seg) = grad_prepPayload((gradPayload xdata *)pkt_payload(seg),
dest) ;

pkt_next (seg) = pkt;

return seg;

}

bit grad_segIsFresh(pkt_t xdata *gradSeg) {
// seg must refer to a packet segment of type SEG_TYPE DISCOVERY
// or SEG_TYPE GRADIENT. Updates cost tables, returns true if
// this packet hasn't been seen before.
return ct_update ((gradPayload xdata *)pkt payload(gradSeg)) ;

// link pkt in as next in line

bit grad isForMe (pkt t xdata *gradSeg) ({
// seg must refer to a packet segment of type SEG_TYPE DISCOVERY
// or SEG_TYPE_GRADIENT. Returns true if the packet is destined
// for this node (dest is either BROADCAST NODE or this node) .
gradPayload xdata *gp = pkt_ payload(gradSeg) ;
return (gp->fDestination == nodeID()) ||
(gp->fDestination == BROADCAST NODE) ;

void grad relayIfNeeded (pkt t xdata *pkt, pkt t xdata *gradSeg) {
// seg must refer to a packet segment of type SEG_TYPE DISCOVERY
// or SEG_TYPE_GRADIENT. Relay pkt if appropriate, else just

129

// free it.

gradPayload xdata *gp = pkt_payload(gradSeg) ;

if (ct_shouldRelay(gp, pkt_ type (gradSeg)==SEG TYPE DISCOVERY)) {
// pkt should be relayed. Update the grad header and schedule the
// packet for re-transmission.
gp->fCostAccrued++; // one hop further from originator
gp->fCostBudget--; // one hop closer to destination
stats_relayPkt () ; // note a relayed packet
mac_xmitPkt (pkt) ;

} else {
// Packet is not to be relayed. Drop it.
pkt_free (pkt) ;

File: id.h

#ifndef ID_H
#define ID_H
// -*- Mode: C++ -*-

//

// File: id.h

// Description: header file for node IDs
//

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

// For general public use.

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

char *nodeName () ;
unsigned char nodeID() ;

#endif

File: id.c

// -*- Mode: C++ -*-

//

// File: id.c

// Description: defines nodeName () and nodeID()
//

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

130

This MIT Media Laboratory project was sponsored by the Defense

Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The char *nodeName () {
content of the information does not necessarily reflect the return NODE_NAME;
position or the policy of the Government, and no official }

endorsement should be inferred.

unsigned char nodeID()

For general public use. return NODE_NAME [0] ;
}

This distribution is approved by Walter Bender, Director of the

Media Laboratory, MIT. Permission to use, copy, or modify this

software and its documentation for educational and research

purposes only and without fee is hereby granted, provided that this

copyright notice and the original authors' names appear on all

copies and supporting documentation. If individual files are

separated from this distribution directory structure, this

copyright notice must be included. For any other uses of this

software, in original or modified form, including but not limited

to distribution in whole or in part, specific prior permission must

be obtained from MIT. These programs shall not be used, rewritten,

or adapted as the basis of a commercial software or hardware

product without first obtaining appropriate licenses from MIT. MIT

makes no representations about the suitability of this software for

any purpose. It is provided "as is" without express or implied

warranty.

#include "id.h"

// NODE_NAME can be defined from the command line
// Maybe.

#ifndef NODE_NAME

// #define NODE NAME "Aspen" // 0x4l
// #define NODE NAME "Beech" // 0x42
// #define NODE_NAME "Chestnut" // 0x43
// #define NODE NAME "Dogwood" // 0x44
// #define NODE NAME "Elm" // 0x45
// #define NODE_NAME "Fig" // 0x46
// #define NODE NAME "Ginkgo" // 0x47
// #define NODE NAME "Holly" // 0x48
// #define NODE_NAME "Ironwood" // 0x49
// #define NODE NAME "Juniper" // Ox4a
// #define NODE NAME "Kapok" // 0x4b
// #define NODE_NAME "Linden" // O0x4c
// #define NODE NAME "Magnolia" // 0x4d
// #define NODE NAME "Nyssa" // Ox4e
// #define NODE_NAME "Olive" // O0x4f
// #define NODE NAME "Pear" // 0x50
// #define NODE NAME "Quince" // 0x51
// #define NODE_NAME "Redwood" // 0x52
// #define NODE NAME "Sycamore" // 0x53
// #define NODE NAME "Tupelo" // 0x54
// #define NODE_NAME "Uri" // 0x55
// #define NODE NAME "Viburnum" // 0x56
// #define NODE NAME "Willow" // 0x57
// #define NODE_NAME "Xylosma" // 0x58
// #define NODE NAME "Yew" // 0x59
#define NODE NAME "Zelkova" // 0x5a
#endif

131

File: mac.h

#ifndef MAC_H

#define MAC_H

// -*- Mode: C++ -*-

//

// File: mac.h

// Description: header file for Medium Access support

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

// For general public use.

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

#include "pkt.h"
// void mac_task(void) _task_ MAC_TASK;
void mac_startTimer() ;

// Grab TMR1 and use it to count down gBackoffCounter for MAC timing.
// TMR1 is "stolen" by the radio whenever a packet is actively being

// transmitted or received, so counting stops when the radio is active.

// (This is a feature, not a bug.)

void mac_xmitPkt (pkt_t xdata *pkt);

// queue a packet for subsequent transmission by the MAC task. Called
// by anybody that wishes to send a packet, but normally called from
// the GRAd thread.

void mac_recvPkt (pkt_t xdata *pkt);
// Pass a packet to the MAC layer. If GRAD runs in a separate thread,

// this will queue the packet until GRAd fetches it. Otherwise, it is
// passed directly to grad_recvPkt () for processing.

#endif

File: mac.c

// -*- Mode: C++ -*-

//

// File: mac.c

// Description: medium access. defer transmission until presumed safe.
//

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

// For general public use.

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

// ================mmmmmmmmmmmmmsmsssssssssss==ss===mmmmmmmmmmmmmes

// queue for outgoing and incoming packets
#include "mac.h"

#include "arbor.h"
#include "stats.h"

#include "vector.h" // for DEFINE VECTOR() ...
#include <aduc824.h> // for register defs
#include <rtx5ltny.h> // for K SIG, etc
#include <stdlib.h> // for rand()

#include "rad.h" // rad_xmitPkt () ...
#include "appr.h" // for appr didXmit ()

#include "screen.h"

132

#define MAC_BACKOFF_TICS (0x10000 - 5000)

// non-essential timing: we want to generate a TRM1 ISR once every
// 5 mSec, or once every 5000 TMR1l tics, not counting when the

// radio is in use

// queue for packets waiting to be transmitted by MAC TASK
#define MAC QUEUE SIZE 10
DEFINE_VECTOR (gMacQueue, MAC_QUEUE_SIZE) ;

// binary exponential backoff

// counts down whenever radio is idle. When it hits zero, we send
// the next packet.
unsigned char gBackoffCounter;

static unsigned char gBackoffExponent;
#define MAX_BACKOFF 8

static unsigned char const _masks[MAX BACKOFF] = {
0x07, O0x0f, ox1f, o0x3f, 0x7f, 0x7f, 0x7f, 0x80

}i

static unsigned char const _mindly[MAX BACKOFF] = {
0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x80

}i

// gBackoffExponent is the exponent of the backoff. The range of possible
// backoff values returned by backof () looks something like this:
// dly: 01234567890123456789012345678901234567890123456789012345678
/] 9=0: --------
// g=1:
// g=2:
/] 9=3: ...
static unsigned char generateBackoff () *

// compute a random delay, measured in tics, according to the

// current backoff exponent.

unsigned char dly;

dly = _mindly[gBackoffExponent] + (rand() & _masks[gBackoffExponent]) ;

stats_backoff (dly) ; // log longest backoff

return dly;

}
static void resetBackoff () {
gBackoffExponent = 0;
}
static void incrementBackoff () {
if (gBackoffExponent != MAX BACKOFF-1) gBackoffExponent++;
}
#1if 0
static void decrementBackoff () *
if (gBackoffExponent != 0) gBackoffExponent--;
}
#endif

// MAC transmit thread.
// loop: [1] wait for a packet to appear in gMacQueue

// [2] set backoff counter, wait for it to count down
// [3] if packet is still in gMacQueue, transmit it
// [4] loop

// The actual transmission is handled in this thread.

//

void mac_task(void) _task MAC_TASK {

// one-time initialization
vector_init (VECTOR (gMacQueue), MAC_QUEUE_SIZE) ;
resetBackoff () ;

gBackoffCounter = 0;

mac_startTimer () ;

while (1) {
pkt_t xdata *pkt;
// Wait for a packet to become available. Don't remove from the
// queue it until after we've waited for the backoff interval,
// since some other thread might wish to prune the packet from the
// queue in the interim.
SCREEN_TASK (("mac_task(1)")) ;

while (vector count (VECTOR (gMacQueue)) == 0) {
resetBackoff () ;
os_wait2 (K _SIG, 0); // mac_xmitPkt () will generate signal

}

// Initialize the backoff counter according to the current backoff
// exponent and then wait until it counts down to zero
gBackoffCounter = generateBackoff () ;
while (gBackoffCounter > 0) {
// tmrl interrupt () will signal us when gBackoffCounter hits 0
os_wait2 (K_SIG, 0);

}

// backoff has expired. If there's still a packet available,
// format and transmit the packet. Tell APP that the packet
// was sent, then free it.

if ((pkt = vector_dequeue (VECTOR (gMacQueue))) != NULL) {
rad_xmitPkt (pkt) ;
SCREEN_TASK(("mac xmt: ")); PKT PRINT (pkt) ;

appr_didXmit (pkt) ;
pkt_free (pkt) ;

void tmrl_interrupt (void) interrupt 3 using 2
// Called regularly whenever TMR1l is configured as the MAC backoff
// counter, namely, whenever the radio isn't sending or receiving.
// This has the effect that gBackoffCounter only decrements

133

// when the airwaves are idle. When gBackoffCounter hits zero,
// this ISR sends a signal to the MAC task.
TH1 = MAC_BACKOFF_TICS>>8; // reload TMR1
TL1 = MAC_BACKOFF_TICS&Oxff; //
if (gBackoffCounter > 0)
if (--gBackoffCounter == 0) isr send signal (MAC_TASK) ;

void mac_startTimer () {
// Configure TMR1 to count down MAC backoff tics, generating an
// interrupt once every 1 mSec.

//

// see also rad startTimer() in rad.c

TR1 = 0; // stop running

TMOD &= O0xOf; // clear bits for TMR1

TMOD |= BITMASK(0,0,0,1,0,0,0,0); // 16 bit mode for TMR1

TH1 = MAC_BACKOFF_TICS>>8; // setup reload value

TL1 = MAC_BACKOFF TICS&Oxff; //

TR1 = 1; // start running

ET1 = 1; // enable TMR1 interrupts
}
A ——

// queue a packet for subsequent transmission by the MAC task
// Called by anybody that wishes to send a packet, but normally
// called from the application thread. If the queue fills up,
// throw away the oldest.

void mac_xmitPkt (pkt_t xdata *pkt) {
// ## don't call until MAC TASK has been started
pkt_free(vector_shove (VECTOR (gMacQueue), pkt));
// stats_macQueuePkt (vector_ count (VECTOR (gMacQueue))) ;

if (rad_isBusy()) incrementBackoff () ;
os_send_signal (MAC_TASK) ; // tell mac that a packet is waiting

File: pkt.h

// -*- Mode: C++ -*-

#ifndef PKT_H

#define PKT_H

// -*- Mode: C++ -*-

//

// File: pkt.h

// Description: support for packets, segments and payloads

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

// For general public use.

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

// A packet carries information among nodes. A packet has an external
// and an internal representation. The external form of a packet is a
// serial stream of bytes, passed to the radio. The internal form is

// a linked list of pkt structures. Each pkt structure corresponds to
// an abstraction layer, and can be conveniently appxed onto the head

// of the pkt list when generated or popped from the list when

// received.

// payload size determined by size of largest packet, currently the
// cost table reports.
#define MAX_PAYLOAD SIZE 16

// Each packet segment carries a type with it. Perhaps this is not
// the cleanest abstraction, but all the specific packet types are
// listed here.
typedef enum {

SEG_TYPE_EOP = 0,

134

SEG_TYPE_GRADIENT, // 01 payload contains gradient routing info
SEG_TYPE_DISCOVERY, // 02 payload contains discovery routing request
SEG_TYPE TEXT, // 03 payload contains text

SEG_TYPE_COST L, // 04 payload contains low half of cost table
SEG_TYPE_COST_H, // 05 payload contains high half of cost table
SEG_TYPE_ STATS, // 06 payload contains logging statistics
SEG_TYPE_ADC, // 07 payload contains analog readings
SEG_TYPE_ARQ, // 08 payload contains request for reply
SEG_TYPE ACK, // 09 payload contains reply

SEG_TYPE_APPX, // Oa payload contains params for appx process
SEG_TYPE PING, // Ob ping packet

SEG_TYPE_TIME,
MAX SEG TYPE
} seg_type;

// Oc time report

typedef struct _pkt t {

struct _pkt_t xdata *fNext;

seg_type fType;

unsigned char fSize;

unsigned char fPayload[MAX PAYLOAD SIZE];
} pkt_t;

// initialize the packet system
void pkt_init();

pkt_t xdata *pkt_alloc();
// allocate a single packet segment

void pkt_ free(pkt_t xdata *head);
// free a chain of packet segments

pkt_t xdata *pkt copy(pkt_t xdata *pkt);
// make a "deep copy" of pkt

#define pkt_type(p) ((p)->fType)

// get/set the packet type for this segment

// seg_type pkt_getType (pkt_t xdata *pkt);

// void pkt_setType (pkt t xdata *pkt, seg type type);

#define pkt_size(p) ((p)->fSize)

// get/set the number of bytes in the payload.

// unsigned char pkt getSize(pkt t xdata *pkt);

// void pkt_setSize (pkt_t xdata *pkt, unsigned char size);

#define pkt next (p) ((p)->fNext)

// get/set the next packet in the list of packets

// pkt_t xdata *pkt getNext (pkt_ t xdata *pkt);

// void pkt_setNext (pkt t xdata *pkt, pkt t xdata *next);

#define pkt payload(p) ((p)->fPayload)
// reference the first byte of the payload
// unsigned char xdata *pkt_getPayload(pkt_t xdata *pkt);

pkt_t xdata *pkt_ find segment (pkt_t xdata *pkt, seg_type type);
// find a packet segment of the given type in the packet
// chain, returning NULL if not found

void pkt_print (pkt_t xdata *seg) ;

//

print one segment in hex

void pkt_ dumpHex (pkt_t xdata *pkt);

//

print a string of segments in hex

#endif

File: pkt.c

-*- Mode: C++ -*-

File: pkt.c
Description: support for packets, segments and payloads

Copyright 2001 by the Massachusetts Institute of Technology. All
rights reserved.

This MIT Media Laboratory project was sponsored by the Defense
Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
content of the information does not necessarily reflect the
position or the policy of the Government, and no official
endorsement should be inferred.

For general public use.

This distribution is approved by Walter Bender, Director of the
Media Laboratory, MIT. Permission to use, copy, or modify this
software and its documentation for educational and research
purposes only and without fee is hereby granted, provided that this
copyright notice and the original authors' names appear on all
copies and supporting documentation. If individual files are
separated from this distribution directory structure, this
copyright notice must be included. For any other uses of this
software, in original or modified form, including but not limited
to distribution in whole or in part, specific prior permission must
be obtained from MIT. These programs shall not be used, rewritten,
or adapted as the basis of a commercial software or hardware
product without first obtaining appropriate licenses from MIT. MIT
makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied
warranty.

#include "pkt.h"
#include "arbor.h"
#include "constell.h"
#include <stdio.h>
#include <string.h>
#include "screen.h"
#include "grad.h"
#include "arg.h"
#include "appx.h"

//
//

managing packets

135

// a global pool of pkt structures }

static pkt_t xdata * data gFree = NULL; }
static unsigned char gAvail = 0; // debug

// make a deep copy of a packet chain
#define MAX_ PACKETS 30 pkt_t xdata *pkt_copy(pkt_t xdata *pkt) {
static pkt_t xdata _pkts[MAX PACKETS] ; pkt_t xdata *first = NULL;

pkt_t xdata *prev = NULL;
static char _is_valid(pkt_t xdata *p) {

return (_pkts <= p) && (p < & pkts[MAX PACKETS]) ; while (pkt != NULL) A
} pkt_t xdata *seg = pkt_alloc();
// I could be clever and only copy the part of the payload that's
static void pkt free seg(pkt t xdata *seg) { // active, but
// return a single packet segment to the freelist memcpy (seg, pkt, sizeof (pkt_t));
// PRINTF (("pkt fs(%x) ", (short)seg)); if (prev == NULL) ﬁ
if (!_is_valid(seg)) return; first = seg;
gAvail++; } else {
seg->fNext = gFree; pkt_next (prev) = seg;
gFree = seg; }
SCREEN (("Avail=%2bu", gAvail)); prev = seg;
} pkt = pkt next (pkt) ;
}
void pkt_init() { return first;
// set up the pool of packet structures }
int i=MAX PACKETS;
gFree = NULL; pkt_t xdata *pkt_find_ segment (pkt_t xdata *pkt, seg type type) {
gAvail = 0; // find a packet segment of the given type in the packet
while (i--) { // chain, returning NULL if not found
_pkt_free_seg (& pkts[il); while (pkt != NULL) {
} if (pkt_type(pkt) == type) return pkt;
} pkt = pkt next (pkt) ;
}
pkt t xdata *pkt_alloc() return NULL;
// pop a packet segment from the freelist }

pkt_t xdata *p;
// since we're sending raw binary over the serial port, the
g Y b

// PRINTF (("pkt_a() => %x ", (short)gFree)); // author of the server wanted a little error check to help

if (gFree == NULL) { // stay in sync. Each segment count byte has the high order
printf ("no more packets"); // bit turned on, each packet size byte has the high two order
while (1); // bits turned on.

} #define SEG_COUNT_FLAG 0x80

p = gFree; #define PKT_ SIZE FLAG 0xCO

gFree = p->fNext;

if (!_is valid(gFree)) { static unsigned char pkt_countsegs (pkt_t xdata *pkt) {
printf ("freelist clobbered") ; unsigned char i = 0;
while (1) ; while (pkt != NULL) {

} 1++;

gAvail--; pkt = pkt_ next (pkt) ;

SCREEN (("avail=%2bu", gAvail)); }

p->fNext = (short)O0; return i;

return p; }

static unsigned char code toHex[16]={
// free the entire packet chain headed by head. TQY,tLY,r20, 130,140, r5 rgr 17
void pkt free(pkt t xdata *seg) { '8','9', 'a', 'b','c','d",'e', "£'};
while (seg) {
pkt_t xdata *next = pkt next (seg);
_pkt_free seg(seqg) ; static void puthex(unsigned char ch) ({
seg = next; putchar (toHex [ch>>4]) ;

136

}

putchar (toHex [ch&0x0f]) ;

void pkt_print (pkt_t xdata *seg) {

}

unsigned char i = seg->fSize;
char *p = pkt_payload(seg) ;
puthex (i+1) ;
puthex (seg->fType) ;
while (i--) {

puthex (*p++) ;

}

void pkt dumpHex (pkt t xdata *pkt) {

}

// dump pkt to serial port in sligtly formatted hex form
printf ("\n") ;
puthex (pkt_countsegs (pkt)) ;
while (pkt != NULL) ({
printf ("\n ");
pkt_print (pkt) ;
pkt = pkt_next (pkt) ;

}

File: rad.h

#ifndef RAD_H
#define RAD_H
// -*- Mode: C++ -*-

//

// File: rad.h

// Description: low-level radio support
//

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

// For general public use.

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

#include "pkt.h"

void rad init();
// cold start for the radio

#if 0
void rad printBuffer();
#endif

bit rad isBusy();

// returns true whenever the radio is actively transmitting or

// receiving.

void rad_xmitPkt (pkt_t xdata *pkt);

// Transmit contents of packet immediately. Kills RADR _TASK thread,
// handles transmission in caller's thread, the restarts RADR TASK.
// NOT to be called from the RADR TASK thread.

pkt_t xdata *rad_recvPkt() ;

137

// Block until a buffer of data has been received. Parse the buffer
// into a pkt_t structure and (if CRC is valid) return it. If CRC is
// invalid, returns NULL. MUST be called from within RADR TASK

void rad_standby () ;
// shut down radio

#endif

File: rad.c

// -*- Mode: C++ -*-

// File: rad.c
// Description: low-level I/O support for BART and TR1000 radio

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

// For general public use.

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

#include "rad.h"
#include "pkt.h"

#include "arbor.h"

#include <rtx5ltny.hs> // for os_wait()...
#include <aduc824.h> // for register defs
#include "constell.h" // for LEDs

#include "id.h" // for nodelID()
#include "stats.h"

#include "sync.h"

#include "appr.h" // for appr_recvPkt ()

#include "mac.h"
#include "screen.h"
#include <stdio.hs>

// for mac_startTimer (

#define BART HOLDOFF TICS (256-35)

// essential timing: BART needs BART CLK stable for 35 uSec after each
// transition. Assuming a 12MHz system clock and a 1 uSec cycle time,
// TMR1 must roll over once every 35 tics.

#define AWAIT BART () os_wait2 (K_TMO | K_SIG, 1)
// #define AWAIT BART() os_wait2(K_SIG, 0)

#define BART_IS_READY() (!BART_READY)

// Set the holdoff timer counting. TFl1 will be set at the end of
// the holdoff period.

#define RESTART HOLDOFF () \
TL1 = BART_ HOLDOFF_TICS; \
TF1 = 0

// Busy wait until holdoff flag is set. Assumes RESTART HOLDOFF ()
// has been invoked previously
#define AWAIT_ HOLDOFF () while (!TF1)

/] ==========s=======ssssmmmmmmscsssssssssssssmmmmmmmmmm=ssssssss

// Local function prototypes

static void _rad_setRecvMode () ;
// configure the radio (and bart chip, and timers, and data lines)
// for receive mode.

static void _rad recvBuffer();
// configure radio to receive, await a packet of data, and read it
// into this module's internal buffer

static unsigned char _rad getByte();
// get a single byte from the radio (via the BART chip)

static pkt_t xdata *rad import();
// convert the "raw" contents of the radio's internal buffer
// into a linked packet structure. Return NULL for bad packet.

void rad_export (pkt_t xdata *pkt);
// copy and convert the contents of a linked packet structure
// into "raw" format in the radio's internal buffer.

static void _rad xmitBuffer();
// configure the radio to transmit, send a packet of data from this

// module's internal buffer, reconfigure radio to receive

static void _rad putByte (unsigned char b);
// write a single byte to the radio (via the BART chip)

static void _rad setBARTXmit () ;
// configure the bart chip for transmit mode.

static void _rad finishBARTXmit () ;

// finish any transmit in progress, then configure bart chip for receive.

138

typedef short crc_t;

static crc_t gCRC;

#define _crc_state() gCRC

static void _crc_init();

static unsigned char _crc(unsigned char c);
unsigned char hexToNibble (unsigned char ch) ;

// Radio "staging" buffer

// The radio requires high-speed data transfer into and out of a
// dedicated buffer. The STAGING AREA macro defines in which
// segment this buffer resides

// #define STAGING IN PDATA

// STAGING IN PDATA doesn't work. Every packet sent and received
// appears to have a bad checksum. Without resorting to a 'scope,
// my guess is that data transfers between pdata and the radio are
// slow, resulting in under- and over-runs.

// STAGING BUFFER_SIZE is hand chosen to fill out the area without

// overflowing it. It determines the maximum number of bytes that

// may be transmitted in a radio packet. This controls the number

// of byte in data space dedicated to a "staging" buffer for the

// low-level radio I/O. There are only 128 bytes of data space available
// in the system, so if choosing STAGING BUFFER_SIZE is a tradeoff: too
// small and packet size is limited. Too large, data space is eaten up.

#ifdef STAGING_IN_PDATA

#define STAGING_AREA pdata
#define STAGING BUFFER SIZE Oxfe
#else

#define STAGING_AREA data

// #define STAGING BUFFER SIZE 43
#define STAGING BUFFER_SIZE 43
#endif

// Dedicated buffer in data space for radio I/0. See note in
// _rad recvBuffer() regarding the +1
static unsigned char STAGING_AREA sRadBuf [STAGING BUFFER_SIZE + 1];

// place to cache RTC clock values at the onset of receiving a
// packet. Used as part of the time synchronization process.
static vtime_t gRecvTime;

// TMR1 management

// When start _macTimer () is called, it sets up TMR1l to
// interrupt once every millisecond. The TMR1 interrupt
// service decrements gMACBackoffCounter, and if it hits
// zero, signals the MAC task.

// When start_radio_ timer() is called, it sets up TMR1l to
// set its flag every 35 uSec, and disables its interrupt
// flag to inhibit the calling of the interrupt service.

// This has the properties we want: when the radio is
// busy sending or receiving data, we want to inhibit
// the counting down of the gMACBackoffCounter. This
// is an approximate implementation of the 802.11 style
// MAC layer.

bit gRadIsBusy;

static void rad_startTimer () {
// Configure TMR1l to auto-reload once every BART HOLDOFF_TICS,
// disable interrupts.
ET1 = 0; // disable TMR1 interrupts
TR1 = 0; // stop running
TMOD &= 0xO0f; // clear bits for TMR1
TMOD |= BITMASK(0,0,1,0,0,0,0,0); // auto reload (mode 2) for TMR1
TH1 = BART HOLDOFF TICS; // setup reload value
TR1 = 1; // start running
RESTART HOLDOFF () ;

2
// initialization and interrupt code

void rad_init () {
TR1000_CTL_DIRECTION = BITMASK(0,0,0,0,0,1,1,0); // setup mode ctl pins

TR1000 CTL DRIVE = 0x00; // standard CMOS I/O
BART DATA CONTROL = 0x00; // for pins PBO - PB7
BART DATA DRIVE = 0x00; // standard CMOS I/O

// enable external interrupts on INTO, edge trigger

ITO = 1; // INTO edge triggered
EX0 = 1; // enable INTO interrupts
_rad_setRecvMode () ; // configure for receive mode

}

void intO_interrupt (void) interrupt 0 using 2
// Notify the RADR TASK that BART READY has come true. Note that
// INTO interrupts arrive as interrupt 0. This routine uses
// register bank 2 to avoid copying registers.
isr_send signal (RADR_TASK) ;

bit rad isBusy () {
return gRadIsBusy;

}

#if 0
void rad_printBuffer() {
unsigned char i;
for (i = 0; i<RAD BUF SIZE; i++) {

printf ("$02bx ", sRadBuf[i]);
if ((i+1)%16 == 0) puts("");
}
}
#endif

// Receiving Data static void _rad_recvBuffer() {
// // fetch a packet of data from the radio into sRadBuf[].
// [1] Force the BART chip to search for new sync header. BART
// == // (in _rad_getByte()) will return the first character found
// Receive Task // after a sync header.
// // [2] Read the byte. If it is not RAD PKT_LEADER, goto [1].
// Repeatedly try to read a packet from the radio. When a valid // [3] Read in a series of segments. Each segment starts with
// packet is found, call mac_recvPkt() to process it. // a byte count, followed by that many bytes of data. The
// subsequent byte is the byte count for the next segment.
void radr task() _task RADR TASK { // A byte count of zero terminates the chain.
pkt_t xdata *p; // [4] Return
unsigned char data len;
while (1) A unsigned char STAGING_AREA * data p;
SCREEN_TASK(("radr_task(1)")); unsigned char STAGING AREA * data pEnd;
p = rad_recvPkt () ;
if (p != NULL) A LED_OFF (RED_LED) ; // clear bad pkt indicator
PKT_PRINT (p) ;
stats_goodRecvPkt () ; // note a good packet p = sRadBuf;
appr_recvPkt (p) ; pEnd = &sRadBuf [STAGING_BUFFER_SIZE] ;
} else {
stats_badRecvPkt () ; // not a good packet. _rad_setRecvMode () ;
}
} while (!BART IS READY())
} AWAIT_BART() ;
}
pkt_t xdata *rad_recvPkt () * rad_startTimer () ; // got first char, stop counting mac tics
pkt_t xdata *pkt; gRadIsBusy = 1;
pkt_t xdata *pingSeg;
gRecvTime = sync_getLocalTime(); // capture time at onset of reception
// block (in _rad recvBuffer()) until a low-level buffer of data
// has been received. Parse the buffer into a pkt_t structure LED_ON (ORANGE LED) ; // actively receiving
// and (if CRC is valid) return it. If CRC is invalid, returns len = _rad getByte();
// NULL.
_rad_recvBuffer() ; while (len != 0) *
pkt = rad_import () ; // this loop can overshoot the buffer length by one, so we've
// made the buffer one extra byte long...
// If there is a PING segment in the received packet, £ill in the *p++ = len;
// received time field with the onset time of reception, gRecvTime, while ((len--) && (p<pEnd)) *
// as captured by _rad_recvBuffer(); *p++ = _rad_getByte();
if ((pingSeg = pkt find segment (pkt, SEG _TYPE PING)) != NULL) { }
pingPayload xdata *pp = pkt_payload(pingSeg) ; if (p >= pEnd) break;
pp->fTimeR = gRecvTime; len = _rad_getByte();
} }
return pkt; *p = 0; // write terminating byte
}
LED_OFF (ORANGE_ LED) ; // no longer receiving
static void _rad_ setRecvMode () * AWAIT HOLDOFF () ;
// configure radio, BART, and TMR1l for receiving radio data mac_startTimer () ; // start counting MAC backoff again
rad_startTimer () ; // momentarily steal TMR1 gRadIsBusy = 0;
gRadIsBusy = 1; }
_rad_setBARTXmit () ; // force BART into known mode
_rad finishBARTXmit () ; // L static unsigned char rad getByte() {
TR1000_CTLO = 1; // set TR1000 to receive mode // receive a byte from the radio via the BART interface. If the
TR1000_CTL1 = 1; // BART receive buffer is empty, the caller's thread will be
mac_startTimer () ; // resume counting MAC backoff tics // blocked. Assumes the radio is in receive mode.
gRadIsBusy = 0; unsigned char b;
} AWAIT_HOLDOFF () ; // buzz until prior holdoff elapses

140

// link this packet into chain of packets

// BART_READY line is now guaranteed to valid. Check its value, if (prev == NULL) ({
// block this thread if BART's input FIFO is empty. head = pkt;
while (!BART_IS READY()) { } else {
AWAIT_ BART () ; pkt_next (prev) = pkt;
} }
prev = pkt;
BART_CLOCK = 1; // request the data }
RESTART HOLDOFF () ; // hold BART CLOCK high for holdoff period
AWAIT_HOLDOFF () ; /] ... crcFound = 0;
if ((type == SEG _TYPE EOP) && (len == 5)) ({
b = BART DATA IN; // data now valid. latch it // good prospects. Read in last 4 bytes as hex chars,
BART_CLOCK = 0; // finish data transfer // compare against accumulated CRC value
RESTART HOLDOFF () ; // hold BART CLOCK low for holdoff period for (len = 0; len < 4; len++) {
// next call to _rad getByte() will complete the holdoff crcFound <<= 4;
// AWAIT_ HOLDOFF () ; crcFound += hexToNibble (*src++) ;
}
return b; }
}
if (_crc state() == crcFound) ({
LED_OFF (RED_LED) ;
static unsigned char _pkt_isReasonable (unsigned char len, unsigned char return head; // a valid packet!
type) { } else {
// try to filter out stupid packets before we allocate storage for them LED ON(RED_LED) ; // bad pkt indicator
// pkt_free (head) ; // release bogus segments
if ((len == 0) || (len > MAX PAYLOAD SIZE+l)) return O; return NULL;
if ((type == SEG_TYPE EOP) || (type == 0x88)) return 0; }
return 1; }
}
// =====sssssssccssssssscccssssssscsssssssssssssssssssssssssoosmsss
static pkt_t xdata *rad_import () { // ==
// read the radio's raw data buffer into pkt structures, // Transmitting Data
// perform checksumming, etc. Return a packet structure //
// if the data is intact, NULL otherwise
unsigned char STAGING AREA *src; void rad xmitPkt (pkt t xdata *pkt) {
unsigned char len, type; // Transmit a packet immediately. NOT to be called from within the
unsigned short crcFound; // RADR_TASK thread.
unsigned char xdata * data pay; pkt_t xdata *pingSeg = pkt_ find segment (pkt, SEG_TYPE_PING) ;
pkt_t xdata * data pkt;
pkt_t xdata * data prev; SCREEN_TASK (("rad_xmitPkt (1) ")) ;
pkt_t xdata * data head;
os_delete task (RADR_TASK) ; // stop the receiver
src = &sRadBuf [0];
_crc_init(); // If the packet contains a SEG_TYPE PING segment, copy the
head = prev = NULL; // nodeID and local time into it just prior to transmission.
if (pingSeg != NULL) {
while (1) { pingPayload xdata *pp = pkt_ payload(pingSeg) ;
len = _crc(*src++); pp->fNodeID = nodeID() ;
type = _crc(*src++); pp->fTimeX = sync_getLocalTime () ;
if (!_pkt isReasonable(len,type)) break; v
len--; // account for type field just read.
pkt = pkt_alloc(); SCREEN_TASK (("rad_xmitPkt (2) ")) ;
pkt_size(pkt) = len; rad_export (pkt) ; // copy in to data-space buffer
pkt_type (pkt) = type; _rad_xmitBuffer(); // blurt
pay = pkt_payload (pkt) ; // MAC is responsible for freeing the packet
while (len--) ({ // pkt_free (pkt) ; // free the packet
*pay++ = _crc(*src++); SCREEN_TASK(("rad_xmitPkt (3)"));
} os_create_task (RADR_TASK) ; // restart receiver

141

} // get the radio out of transmit mode gracefully...

_rad_finishBARTXmit () ; // wait for BART xmit fifo to drain
TR1000_CTLO = 1; // switch TR1000 to receive mode
void rad_export (pkt_t xdata *pkt) { TR1000_CTL1 = 1;
// write the contents of the pkt structures headed by pkt into the
// radio's low-level buffer, complete with checksum. LED_OFF (AMBER LED) ; // indicate end of transmit mode
unsigned char STAGING_AREA *dst; mac_startTimer () ; // resume counting MAC backoff tics
unsigned char len; gRadIsBusy = 0;
unsigned char xdata *pay; }
dst = &sRadBuf[0]; static void _rad putByte (unsigned char b) *
_crc_init(); // Send a byte to the radio via the BART interface chip. If the
while (pkt) // BART transmit buffer is full, the caller's thread will be
len = pkt_size (pkt); // blocked. Assumes the radio is in transmit mode.
*dst++ = _crc(len + 1); // payload + type BART DATA OUT = b; // set up the data on the i/o lines
*dst++ = _crc(pkt_type(pkt)); AWAIT_ HOLDOFF () ; // buzz until prior holdoff elapses
pay = pkt_payload(pkt) ;
while (len--) * // BART READY line is now guaranteed to valid. Check its value,
*dst++ = _crc(*pay++) ; // block this thread if BART's input FIFO is full.
} while (!BART IS READY())
pkt = pkt_next (pkt) ; AWAIT BART() ;
} }
// output a final segment with len = 5, type = EOP, payload = CRC
// as a hex string, and a final terminating null BART CLOCK = 1; // announce the data
*dst++ = _crc(5); RESTART_ HOLDOFF () ; // hold BART CLOCK high for holdoff period
*dst++ = _crc(SEG_TYPE EOP); AWAIT HOLDOFF () ; //
sprintf (dst, "%$04x\0", _crc_state());
BART CLOCK = 0; // finish data transfer
// Now rad buffer() has been loaded up. Send it... RESTART HOLDOFF () ; // hold BART CLOCK low for holdoff period
// rad_xmitBuffer(); // next call to _rad putByte() will complete the holdoff
dst = &sRadBuf [0]; // AWAIT HOLDOFF () ;
} }
// ==s=ss=sssssssss=ssmssses
static void rad xmitBuffer() ({ // switching BART modes
// send the contents of sRadBuf[] to the radio. sRadBuf[] is //
// expected to consist of one or more packets. Each packet starts // In BART RECV_MODE, bart reads serial data from the radio and
// with a byte count, followed by that many bytes of data. The next // writes it to the parallel port. BART READY stays false until
// byte following is the number of bytes in the subsequent packet. // at least one byte is available in the fifo.
// A byte count of zero terminates the chain. The terminating zero //
// is transmitted. // In BART XMIT MODE, bart reads bytes from the parallel port and
unsigned char len; // sends serial data to the radio. BART READY stays true unless
unsigned char STAGING AREA *p = sRadBuf; // the host fills up the fifo.
rad_startTimer() ; // grab TMR1 for radio (no mac tics) static void _rad setBARTXmit () A
gRadIsBusy = 1; // Configure BART to transmit data. (More importantly, set
_rad_setBARTXmit () ; // the BART chip into a well defined state.) Upon exit:
TR1000_CTLO = 0; // configure TR1000 for ASK transmit // - bart parallel port set to receive
TR1000_CTL1 = 1; // . // - bart in transmit mode and ready to receive host data
// If this routine is called while BART is already in transmit
LED_OFF (RED_LED) ; // clear bad pkt indicator // mode, nothing particularly bad happens. Note that this routine
LED_ON (AMBER_LED) ; // indicate transmit mode // doesn't set the radio control lines.
while ((len = *p++) != 0) ﬁ BART CLOCK = 0;
_rad_putByte (len) ; BART MODE = BART MODE_XMIT; // Tell BART to switch to xmit mode
while (len--) _rad putByte (*p++); AWAIT HOLDOFF () ;
} // ### SOME RADIOS SEEM TO GET HUNG HERE AT STARTUP. WHY?
_rad_putByte(0) ; // transmit terminating byte while (!BART_ IS READY()) ﬁ // wait until BART is ready
AWAIT BART() ;

142

}

BART_DATA DIRECTION = XMIT; // set data direction towards BART unsigned char hexToNibble (unsigned char ch)

} if (ch <= '9") {
return ch - '0';
static void _rad finishBARTXmit () { } else if (ch <= 'F') {
// Tell BART to leave transmit mode and wait for any buffered data return ch - 'A' + 10;
// it has in its fifo to transmit before returning. Assumes that } else if (ch <= 'f£') {
// BART has been in transmit mode, that TMR1 is set up as a holdoff return ch - 'a' + 10;
// timer. }
}
if (BART MODE == BART MODE_RECV) *
// quit now if BART is already configured in receive mode,
// else the "while (!BART_IS_READY()) ..." below would hang.
return;

AWAIT HOLDOFF () ;
wwwﬂ\ObOONHom

// BART asserts the BART READY line while the fifo is draining,
// so we must handle the rare case that the fifo is full upon
// entering _rad finishBARTXmit () by letting the fifo get to a
// non-full state before continuing...

while (!BART IS READY()) {
AWAIT_BART() ;
}
BART_DATA DIRECTION = RECV; // set data direction from BART

BART MODE = BART MODE RECV; // tell bart to enter receive mode

// Unconventional: BART will assert BART IS READY() until its fifo

// drains. This is because in the recv mode, the BART_ IS _READY ()

// is asserted when the fifo is EMPTY.

while (BART IS READY()) ﬁ // wait for BART's fifo to drain
os_wait2(K_TMO, 0); // K_SIG won't work here...

}

// BART's transmit fifo is now empty.

// CRC generation and checking
// The CRC polynomial is feeble but simple to compute.

static void _crc_init() {

gCRC = Oxf1f1;
}

static unsigned char _crc(unsigned char c) ﬁ
if (gCRC < 0) {

gCRC = (gCRC << 1) + ¢ + 1;
} else {

gCRC = (gCRC << 1) + c;
}
return c;

/] =====s===========mmmmmmmmmeemmemsmmssssmmssssssmmmmmmmmmmmoees

// auxiliary routines

143

File: screen.h

#ifndef SCREEN_H
#define SCREEN_H

//

-*- Mode: C++ -*-
File: screen.h
Description: diagnostic printout to VT100 compatible screen

Copyright 2001 by the Massachusetts Institute of Technology. All
rights reserved.

This MIT Media Laboratory project was sponsored by the Defense
Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
content of the information does not necessarily reflect the
position or the policy of the Government, and no official
endorsement should be inferred.

For general public use.

This distribution is approved by Walter Bender, Director of the
Media Laboratory, MIT. Permission to use, copy, or modify this
software and its documentation for educational and research
purposes only and without fee is hereby granted, provided that this
copyright notice and the original authors' names appear on all
copies and supporting documentation. If individual files are
separated from this distribution directory structure, this
copyright notice must be included. For any other uses of this
software, in original or modified form, including but not limited
to distribution in whole or in part, specific prior permission must
be obtained from MIT. These programs shall not be used, rewritten,
or adapted as the basis of a commercial software or hardware
product without first obtaining appropriate licenses from MIT. MIT
makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied
warranty.

de-comment the following line to enable the SCREEN_ xxx macros.
Displayed on a HyperTerm or equivalent communications program,
this will display diagnostics: each thread state is printed on
its own line.

#define SCREEN_ENABLE

#ifdef SCREEN ENABLE
#include <stdio.h>

void screen_cleareol (void) ;

void screen_clear (void) ;

void screen_goto(unsigned char row, unsigned char col);
void screen_task_prefix(void) ;

#define SCREEN CLEAR() screen clear()

#define SCREEN_TASK(string) screen_task prefix();

printf string;

screen_cleareol () ;

#define SCREEN (string) \

screen_goto(l, 1); \
printf string

#define PKT_PRINT (pkt) pkt_print (pkt)

#else // SCREEN ENABLE

#define SCREEN CLEAR ()
#define SCREEN_TASK (string)
#define SCREEN (string)
#define PKT_ PRINT (pkt)

#endif

#endif

// SCREEN_ENABLE

// ifdef SCREEN H

File: screen.c

-*- Mode: C++ -*-
File: screen.c
Description: diagnostic printout to VT100 compatible screens

Copyright 2001 by the Massachusetts Institute of Technology. All
rights reserved.

This MIT Media Laboratory project was sponsored by the Defense
Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
content of the information does not necessarily reflect the
position or the policy of the Government, and no official
endorsement should be inferred.

For general public use.

This distribution is approved by Walter Bender, Director of the
Media Laboratory, MIT. Permission to use, copy, or modify this
software and its documentation for educational and research
purposes only and without fee is hereby granted, provided that this
copyright notice and the original authors' names appear on all
copies and supporting documentation. If individual files are
separated from this distribution directory structure, this
copyright notice must be included. For any other uses of this
software, in original or modified form, including but not limited
to distribution in whole or in part, specific prior permission must
be obtained from MIT. These programs shall not be used, rewritten,
or adapted as the basis of a commercial software or hardware
product without first obtaining appropriate licenses from MIT. MIT
makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied
warranty.

#include "screen.h"

#ifdef SCREEN_ENABLE

144

#include <rtx51ltny.h>
#include <stdio.h>

static unsigned char gCount;

void screen cleareol() {
printf ("$bc[0K", 0x1Db);

}

void screen goto(unsigned char r, unsigned char c)
printf ("$bc[%bd; $bdH", 0xlb, r, c);

}

void screen clear() {
printf ("$bc[2J", 0x1b); // erase screen

gCount = 0;

}

void screen task prefix() {
unsigned char id = os_running task id();
screen_goto (id+4, 1);
printf ("$2bd:%3bu: ", id, gCount++) ;

}

#endif // ifdef SCREEN ENABLE

File: serial.h

#ifndef SERIAL_H
#define SERIAL_H
// -*- Mode: C++ -*-

//

// File: serial.h

// Description: header file for serial I/O routines
//

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

// For general public use.

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

void serial init (void);

bit serial_ charIsAvailable();
// returns true if a char has been typed

// bit serial hasInput () ;
// returns true if a line of text has been typed

// char *serial input () ;
// returns the serial input buffer

#endif // ifndef SERIAL H

File: serial.c

// -*- Mode: C++ -*-

145

// // Use TMR2 for baud rate generation

// File: serialc T2CON = BITMASK(0,0,1,1,0,0,0,0); // Rx,Tx BRG, timer, auto-reload
// Description: hardware support for serial I/0O on ADuC824 processor RCAP2H = Oxff;

// RCAP2L = 256-BAUD_38400; // set baud rate

// Copyright 2001 by the Massachusetts Institute of Technology. All

// rights reserved. TR2 = // run the clock

// TI = // ready to send first char
// This MIT Media Laboratory project was sponsored by the Defense }

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The

// content of the information does not necessarily reflect the bit serial charIsAvailable()

// position or the policy of the Government, and no official // return true if a character is in the input buffer

// endorsement should be inferred. return RI;

// }

// For general public use.

//

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

#include "arbor.h"
#include <aduc824.h> // for register definitions

// The processor xtal clock is 12582912. As best as I can measure
// and guess, the input to TH2 is xtal/32 = 393216. Using TH2 in
// auto reload mode, some reasonable for 256-T and the resulting
// baud rates are:

// T actual target Serr
// 10 39321.6 38400 0.024
// 20 19660.8 19200 0.024
// 41 9590.6 9600 -0.001
// 82 4795.3 4800 -0.001
// 164 2397.7 2400 -0.001

#define BAUD 38400 10
#define BAUD_19200 20
#define BAUD 9600 41
#define BAUD 4800 82
#define BAUD_2400 164

void serial init()

PCON |= BITMASK(1,0,0,0,0,0,0,0); // "double" baud rate
SCON = BITMASK(0,1,0,1,0,0,0,0); // mode 1, rcv enable, 8 bit

146

File: stats.h

#i

fndef STATS_H

#define STATS_H

//

#i

-*- Mode: C++ -*-
File: stats.h
Description: gather statistics on packet-level I/O

Copyright 2001 by the Massachusetts Institute of Technology. All
rights reserved.

This MIT Media Laboratory project was sponsored by the Defense
Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
content of the information does not necessarily reflect the
position or the policy of the Government, and no official
endorsement should be inferred.

For general public use.

This distribution is approved by Walter Bender, Director of the
Media Laboratory, MIT. Permission to use, copy, or modify this
software and its documentation for educational and research
purposes only and without fee is hereby granted, provided that this
copyright notice and the original authors' names appear on all
copies and supporting documentation. If individual files are
separated from this distribution directory structure, this
copyright notice must be included. For any other uses of this
software, in original or modified form, including but not limited
to distribution in whole or in part, specific prior permission must
be obtained from MIT. These programs shall not be used, rewritten,
or adapted as the basis of a commercial software or hardware
product without first obtaining appropriate licenses from MIT. MIT
makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied
warranty.

nclude "pkt.h"

typedef struct _statsPayload {

}

vo

//

vo

//

unsigned int fGoodRecv; // # of good packets received
unsigned int fBadRecv; // # of bad packets received
unsigned int fOrig; // # of packets originated
unsigned int fRelay; // # of packets relayed
unsigned int fFlood; // # of discovery packets
unsigned int £ARQs; // # of acks requested
unsigned int fACKs; // # of acks received
unsigned char fMaxBackoff; // max backoff generated
statsPayload;

id stats_reset();

reset the statistics counters

id stats_goodRecvPkt () ;
note a valid packet received by the radio

void stats_badRecvPkt () ;
// note a packet with bad CRC received by the radio

void stats_origPkt () ;
// note the origination of a packet by GRAD

void stats_relayPkt () ;
// note the relaying of a packet by GRAD

void stats_floodPkt () ;
// note the origination of a discovery packet by GRAD

void stats_arqg();
// note the sending of an ARQ

void stats_ack() ;
// note the reception of an ACK

void stats_backoff (unsigned char backoff) ;
// note the highest backoff seen

pkt_t xdata *stats_report (pkt_t xdata *next);
// create stat report packet

#endif

File: stats.c

// -*- Mode: C++ -*-

// File: stats.c
// Description: gather and report statistics on packet level I/O

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The

// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.

// For general public use.
// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this

// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited

// to distribution in whole or in part, specific prior permission must
These programs shall not be used, rewritten,

// be obtained from MIT.

147

// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

#include <stdio.h>
#include <string.h>
#include "pkt.h"
#include "stats.h"

static statsPayload sStats;
#define MAX INT ((l<<(sizeof (int)*8))-1)

mnmnwolwzolome@Aan<v*
if (v == MAX INT) ({
return v;
} else {
return v+1;
}
}

#define INCREMENT (i) i = _inc_clamp (i)

void stats reset()
// reset the statistics counters
memset (&sStats, 0, sizeof (statsPayload)) ;

void stats_goodRecvPkt () {
// note a valid packet received at the radio level
INCREMENT (sStats.fGoodRecvV) ;

void stats badRecvPkt () {
// note a packet at the radio level with bad CRC
INCREMENT (sStats.fBadRecvVv) ;

void stats origPkt () {
// note the origination of a packet by GRAD
INCREMENT (sStats. fOrig) ;

}

void stats_relayPkt () {
// note the relaying of a packet by GRAD
INCREMENT (sStats.fRelay) ;

}

void stats_arqg() {
// note the sending of an ARQ
INCREMENT (sStats.fARQs) ;

void stats_ack() {
// note the reception of an ACK
INCREMENT (sStats.fARQs) ;

void stats floodPkt () {
// note the origination of a discovery packet by GRAD
INCREMENT (sStats.fFlood) ;

void stats_backoff (unsigned char backoff) {
// note increased backoff, track highest seen
if (backoff > sStats.fMaxBackoff) sStats.fMaxBackoff = backoff;

pkt_t xdata *stats_report (pkt_t xdata *next) {
// create stat report packet
pkt_t xdata *pkt = pkt_alloc();

pkt_type (pkt) = SEG_TYPE_STATS;
pkt_size(pkt) = sizeof (statsPayload) ;
pkt_next (pkt) = next;

memcpy (pkt_payload (pkt), &sStats, sizeof (statsPayload));
return pkt;

148

File: sync.h

// -*- Mode: C++ -*-

// File: sync.h
// Description: support for decentralized synchronization

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

// For general public use.

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

#ifndef SYNC_H
#define SYNC_H

#include "pkt.h"

// support for the real time clock and synchronization among nodes.
// a virtual day for the system is defined as one minute,

// measured in 128ths of a second. Time is taken modulo

// 7680.

#define VIRTUAL DAY (60 * 128)
#define VIRTUAL_NOON (30 * 128)

typedef unsigned int vtime_t;

// A packet flagged SEG _TYPE PING carries synchronization info.
// The fTimeX field is filled in (at the MAC level) just before
// the packet is transmitted. The fTimeR field is filled in

// with the ping that the packet started arriving.

typedef struct _pingPayload {
unsigned char fNodeID;
vtime_t fTimeX;
vtime_t fTimeR;

} pingPayload;

// sending node id
// sender's time
// receiver's time

// A packet flagged SEG TYPE TIME carries information on the
// real time clock and timing of the node relative to other
// nodes.
typedef struct timePayload {
vtime_ t fLocalTime;
vtime_t fMaxErr;
int fSyncSent;
int fSyncRcvd;
} timePayload;

// this node's time

// maximum error seen recently
// # of sync packets sent

// # of sync packets received

void sync_reset();
// reset the sync statistics counters

void sync_setPingInterval (unsigned char tenths);
// set the ping interval.

vtime_t sync_getLocalTime () ;
// return the current real time for this node.

void sync_serviceSeg(pkt_t xdata *pingSeg) ;
// called when a segment arrives. Computes the error between the
// xmit ping and the recv ping and adjusts the clock accordingly.

// void sync_task(void) _task_ SYNC_TASK;
// Periodically transmits a ping packet to node within range.

pkt_t xdata *sync_report (pkt_t xdata *next);
// Return a SEG_TYPE TIME segment containing timing info for this
// node.

#endif

File: sync.c

// -*- Mode: C++ -*-

// File: sync.c
// Description: support for decentralized synchronization

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

149

// For general public use.

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

#include "arbor.h"
#include "constell.h"
#include "mac.h"
#include "sync.h"
#include "pkt.h"
#include "screen.h"

#include <aduc824.h> // for register definitions
#include <limits.h> // for UCHAR MAX

#include <rtx5ltny.h> // for os_wait()...
#include <stdlib.h> // rand()

#include <string.hs> // memset ()

*

Ruminations on timing:

Time is measured by reading the internal real time clock and adding an
offset to it to form "local time." Adjustments to the clock are made
by modifying the offset, not by resetting the real time clock.

Local time has a resolution of 1/128 seconds (determined by the real
time clock hardware), and rolls over once every 60 seconds, or 7680
tics (where 1 tic = 1/128 second). Thus a "VIRTUAL DAY" is defined as
7860 tics.

When a ping packet is received from a neighbor, the remote time is
compared against the local time. If the remote time is "greater than"
the local time, then the local clock is advanced. Similarly, if the

remote time is "less than" the local time, the local clock is retarded.

Since time rolls over once every VIRTUAL DAY, the meaning of "greater
than" and "less than" must be considered carefully. In particular,
define:

err = MOD (remote-local, VIRTUAL_DAY) .

If err is less than VIRTUAL DAY/2, then the remote time is ahead of
the local time by err units. If err is greater than VIRTUAL DAY/2,
then local time is ahead by (VIRTUAL DAY-err) units. Note that if
err exactly equals VIRTUAL_DAY/2, then it's undefined as to which is

ahead.

The algorithm here is designed to set local time to an equally
weighted average between remote time and local time, so if err is
less than VIRTUAL DAY/2, local time is advanced by err/2. If err
is greater than VIRTUAL DAY/2, then local time will be retarded by
(VIRTUAL_DAY-err) /2. Note that the division by two introduces a
roundoff error in the integer arithmetic used here; the low-order
"half bit" is simulated by a random dither.

*/
#define MAX(a, b) (((a)>(b))?(a): (b))
#define IS_ODD(a) (((a)&l) != 0)

// send ping once every four seconds (on average)
#define SYNC_PING INTERVAL (OS_TICS_PER_SECOND * 5)

static vtime t sVTOffset;
// The offset added to the real time clock to form the local time

static timePayload sTimeStats;
// place to log statistics of the sync mechanism.

void sync_reset () {
memset (&sTimeStats, 0, sizeof (timePayload)) ;

}
// ==s=ss=sssmmsees

// real time clock manipulation

vtime_t sync _getLocalTime() {
// fetch the current time from the RTC (plus offset)
unsigned char sec, hthsec;
vtime t vt;

do {
sec = SEC;
hthsec = HTHSEC;
} while (sec != SEC);
vt = sec;
vt *= 128;

vt += hthsec + sVTOffset;

o

return vt % VIRTUAL_DAY;

mnmnwo<OHQHnolmQ<mbomA<nHBmlnCzwnmvﬁ
sVTOffset += units;
sVTOffset %= VIRTUAL DAY;

static void rtc_retard(vtime t units) {
sVTOffset -= units;
sVTOffset %= VIRTUAL DAY;

150

//

sync_serviceSeg (pkt_t xdata *seg) {

Call sync_serviceSeg() when a SEG_TYPE_PING packet is received
from a neighbor. The packet has already been time stamped at the
mac layer with the time of arrival.

pingPayload xdata *pp = pkt_payload(seg) ;

vt
bi

!/
sT

if

!/
//
//
//
sT
sT

if

}

ime_t err;
t advance;

note another ping packet received
imeStats.fSyncRcvd++;

Careful handling of unsigned numbers, mod VIRTUAL_ DAY
Pretend VIRTUAL DAY is 60 seconds (one minute):

case A: x=15 r=05, e=10 => advance by e/2

case B: x=55 r=05, e=50 => retard by (60-e)/2

case C: x=05 r=15, e=10 => retard by e/2

case D: x=05 r=55, e=50 => advance by (60-e)/2

(pp->fTimeX > pp->fTimeR) {
err = pp->fTimeX - pp->fTimeR;
advance = 1; // assume case A

else if (pp->fTimeX < pp->fTimeR) {
err = pp->fTimeR - pp->fTimeX;

advance = 0; // assume case C

(err > VIRTUAL_DAY/2) {
err = VIRTUAL DAY - err;
advance = !advance;

sTimeStats.fMaxErr is a "leaky peak detector"

Note that with this code, fMaxErr will "stick" at (2%2)-1, or 3.
I could use fixpoint arithmetic to make it better, but it's not
crucial.

imeStats.fMaxErr -=
imeStats.fMaxErr = MAX (sTimeStats.fMaxErr,

(sTimeStats.fMaxErr >> 2); // slow decay...
err); // fast rise

(err '= 0) {
if (IS_ODD(err))
err = err/2;

err += rand() & 1; // dither before divide by 2

// divide by 2

if (advance) {
SCREEN_TASK (("tx=%4u tr=%4u er=+%u, mx=%u",
pp->fTimeX, pp->fTimeR, err, sTimeStats.fMaxErr));
rtc_advance (err) ;
} else {
SCREEN_TASK(("tx=%4u tr=%4u er=-%u, mx=%u",
pp->fTimeX, pp->fTimeR, err, sTimeStats.fMaxErr));
rtc_retard(err) ;
}
else {
SCREEN_TASK (("tx=%4u tr=%4u er=0, mx=%u",

//

pp->fTimeX, pp->fTimeR, sTimeStats.fMaxErr)) ;

// Sync thread.
// Send a periodic PING message to immediate neighbors
// once every PING_SECONDS seconds.

static void _bide (unsigned int tics) {

}

// wait for the given number of tics to elapse.

Each tic is

// approx 9.6 mSec, or 106 tics per second.
// SCREEN TASK((" bide(1) %x", tics));

while

}

(tics != 0) {

unsigned char t;

t = (tics > UCHAR_MAX) ?UCHAR_MAX:tics;
os_wait2 (K TMO, t);

tics -= t;

void sync_task(void) _task_ SYNC_TASK {

}

// one-time initialization
sVTOffset = 0;
sync_reset () ;

while (1) {

}

// initiate a ping packet to advertize this node's local time
pkt_t xdata *pkt = pkt_alloc();

pkt_type (pkt) = SEG_TYPE_PING;

pkt_size(pkt) = sizeof (pingPayload) ;

SCREEN_TASK (("sync_task (1) %x", sync_getLocalTime()));

// BIG NOTE: Since the packet may spend an unknown amount of time
// in the MAC queue, the pingPayload->fTimeX field is filled in by
// rad.c just prior to transmission. This reduces timing errors.

// Lesser note: If a node packet decides to relay a ping packet

// rather than originate it, it would be a problem if the packet
// went out with the orinator's nodeID. Consequently, the £NodeID
// field is filled in at the same time as the fTimeX field to

// prevent this possibility.

mac_xmitPkt (pkt) ;

// note another ping transmitted
sTimeStats.fSyncSent++;

// sleep for SYNC PING INTERVAL +/- 50%
_bide ((SYNC_PING INTERVAL/2) + (rand() % SYNC PING_ INTERVAL)) ;

pkt_t xdata *sync_report (pkt_ t xdata *next) {
// create a packet that reports the current time statistics for this

// node.

Copy the payload from the local sTimeStats.

pkt_t xdata *pkt = pkt_alloc();
timePayload xdata *tp = pkt_payload (pkt) ;

151

pkt_type (pkt) = SEG_TYPE TIME;

pkt_size(pkt) = sizeof (timePayload) ;

pkt_next (pkt) = next;

sTimeStats.fLocalTime = sync_getLocalTime () ;

memcpy (pkt_payload(pkt), &sTimeStats, sizeof (timePayload)) ;
return pkt;

File: vector.h

#i

fndef VECTOR_H

#define VECTOR_H

//

//

-*- Mode: C++ -*-
File: vector.h
Description: manage a fixed sized array of pointer-sized objects

Copyright 2001 by the Massachusetts Institute of Technology. All
rights reserved.

This MIT Media Laboratory project was sponsored by the Defense
Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
content of the information does not necessarily reflect the
position or the policy of the Government, and no official
endorsement should be inferred.

For general public use.

This distribution is approved by Walter Bender, Director of the
Media Laboratory, MIT. Permission to use, copy, or modify this
software and its documentation for educational and research
purposes only and without fee is hereby granted, provided that this
copyright notice and the original authors' names appear on all
copies and supporting documentation. If individual files are
separated from this distribution directory structure, this
copyright notice must be included. For any other uses of this
software, in original or modified form, including but not limited
to distribution in whole or in part, specific prior permission must
be obtained from MIT. These programs shall not be used, rewritten,
or adapted as the basis of a commercial software or hardware
product without first obtaining appropriate licenses from MIT. MIT
makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied
warranty.

A vector is a sequence of pointer-sized elements, densely packed
starting at index 0. The objects referred to by the vector

are always in OBJECT_SPACE, which you can redefine

according to taste.

#define OBJECT_SPACE xdata

//

obj_t is a general pointer into OBJECT SPACE

typedef void OBJECT_SPACE * obj_t;

typedef struct vector t {

//

unsigned char fCount; // number of elements in the array
unsigned char fCapacity; // size of the array
obj_t fElements[1]; // a dense array of objects
vector_t;
create static storage for a vector, masquerading as an array of char

#define DEFINE_VECTOR (name, capacity) \

char name[sizeof (vector_t) + ((capacity - 1) * sizeof (obj_t))]

152

// turn a static char reference into a vector pointer.
#define VECTOR (v) ((vector_t *)&v)

// initialize a vector. Must call this before first use
// void vector_init (vector_ t *v, unsigned char capacity)
#define vector_ init (v, capacity) \

(v) ->fCount = 0; (v)->fCapacity = (capacity)

void vector print (vector t *v);

vector_t *vector_ insert(vector_t *v, obj_t elem, unsigned char index);
// insert element into the vector. return v if inserted, or null if
// the vector was full prior to the call or if index is out of range.

obj_t vector_ remove (vector t *v, unsigned char index);
// remove and return the element at the given index, or return
// null if index is out of range.

vector t *vector_ swap(vector_t *v, unsigned char il, unsigned char i2);
// swap two elements in the vector. return null if il or i2 are out
// of range.

obj_t vector_shove (vector_t *v, obj_t element) ;

// Like vector push(), inserts element at the high end of the
// array. Unlike vector_push(), removes the first element and
// returns it to make room for the new element as needed.

unsigned char vector index of (vector_t *v, obj_t element);
// return the index of the element in the vector, or -1 if not found

obj_t vector_ref (vector t *v, unsigned char index);
// return the indexth entry of the table, or null if index out of range

vector_t *vector_set(vector_t *v, obj_t element, unsigned char index);

// set the indexth entry of the table to element. Returns v on
// success, null if index is out of range.

/] ==ss=s=ss=sssmmses

// Everything else are macro definitions...

// vector_t *vector_clear (vector_ t *v);
#define vector_clear(v) ((v)->fCount) = 0, (v)

// unsigned char vector_count (vector_t *v);
#define vector_ count (v) ((v)->fCount)

// unsigned char vector_ capacity(vector t *v);
#define vector_ capacity(v) ((v)->fCapacity)

// obj_t *vector_ elements (vector_ t *v);
#define vector_elements(v) ((v)->fElements)

// vector_t *vector_push(vector_t *v, obj_t element);
#define vector push(v, e) vector_insert((v), (e), (v)->fCount)

// obj_t vector_pop (vector_t *v);

#define vector_pop(v) vector_remove ((v), ((v)->fCount)-1)

// vector t vector enqueue (vector t *v, obj t element);
#define vector_enqueue(v, e) vector_ insert((v), (e), (v)->fCount)

// obj_t vector dequeue (vector_t *v);
#define vector_dequeue(v) vector_remove((v), 0)

// boolean vector is empty(vector t *v);
#define vector_is_empty(v) ((v)->fCount == 0)

// boolean vector is full(vector_t *v);
#define vector_is_full(v) ((v)->fCount == (v)->fCapacity)

// ================mmmmmmmmmmmmmmmssssssssssssssss=mmmmmmmmmmmmmmmes

// fast versions - call only when you know arguments to be safe!
void fast vector_insert (vector_ t *v, obj_t element, unsigned char index);
obj_t fast_vector_ remove (vector_t *v, unsigned char index);

void fast_vector_swap(vector_t *v, unsigned char indexl, unsigned char
index2) ;

// obj_t fast_vector_ref (vector_t *v, unsigned char index);
#define fast_vector_ref (v, i) ((v)->fElements[(i)]

// void fast_vector_set (vector_t *v, obj_t element, unsigned char index) ;

#define fast vector_set(v, e, i) ((v)->fElements[(i)]) = e

#define fast_vector push(v, e) fast_vector insert((v), (e), (v)->fCount)
#define fast_vector pop(v) vector remove((v), ((v)->fCount)-1)

#define fast_ vector_ enqueue (v, e) fast_ vector insert((v), (e), (v)->fCount)
#define fast_vector_ dequeue(v) fast_vector_ remove((v), 0)

#endif

File: vector.c

// -*- Mode: C++ -*-

// File: vector.c
// Description: manage fixed size arrays of pointer sized objects

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

153

// endorsement should be inferred. }

// *e0 = elem;
// For general public use. }
//
// This distribution is approved by Walter Bender, Director of the obj_t vector_remove (vector_t *v, unsigned char index) {
// Media Laboratory, MIT. Permission to use, copy, or modify this if ((index < 0) __ (index >= v->fCount)) ﬁ
// software and its documentation for educational and research return NULL;
// purposes only and without fee is hereby granted, provided that this }
// copyright notice and the original authors' names appear on all return fast_ vector_ remove (v, index);
// copies and supporting documentation. If individual files are }
// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this obj_t fast vector remove (vector t *v, unsigned char index) {
// software, in original or modified form, including but not limited obj_t *el, *e2, elem;
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten, el = &(v->fElements [index]) ;
// or adapted as the basis of a commercial software or hardware e2 = el+l;
// product without first obtaining appropriate licenses from MIT. MIT elem = *el;
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied // close the slot at index by rippling elements down (towards [0]
// warranty. // by one.
v->fCount--;
#include "vector.h" while (index++ < v->fCount) {
#include <stdio.h> *el++ = *e++;
}
#ifndef NULL return elem;
#define NULL (void *)O0 }
#endif
obj_t vector_shove (vector_t *v, obj_t element) {
#ifdef UNCALLED SEGMENT // Like vector push(), but removes (and returns) the first element
void vector print (vector t *v) { // 1f the vector was full, making room for the new element. Good
unsigned char i; // for LRU structures.
printf ("\r\nv<%p>, cap=%bd, count=%bd ", v, v->fCapacity, v->fCount) ; obj_t shoved = NULL;
for (i=0; i<v->fCount; i++)
printf (" [%d] $p%s", i, (v->fElements) [i], (i==v->fCount-1)?"":", ; if (vector_is_full(v)) ({
} shoved = fast_vector_remove(v, 0);
} }
#endif fast_vector_insert (v, element, v->fCount);
return shoved;
#ifdef UNCALLED SEGMENT }
vector_t *vector_insert(vector_t *v, obj_t elem, unsigned char index) {
if ((index < 0) || (index > v->fCount) || (v->fCount >= v->fCapacity)) {
return NULL; #ifdef UNCALLED SEGMENT
} vector_t *vector_swap (vector_t *v, unsigned char il, unsigned char i2) {
fast_vector_ insert (v, elem, index); obj_t tmp, *elems;
return v; if ((i1 < 0) || (i1 >= v->fCount) ||
} (i2 < 0) || (i2 >= v->fCount)) {
#endif return NULL;
}
void fast_vector_insert(vector_t *v, obj_t elem, unsigned char index) { elems = v->fElements;
obj_t *e0, *el, *e2; tmp = elems[il];
elems([il] = elems[i2];
// Open a slot for an element at index by rippling all higher elems[i2] = tmp;
// elements up by one. return v;
e0 = &(v->fElements [index]) ; }
e2 = &(v->fElements[v->fCount++]) ; #endif
el =e2 - 1;
while (e2 > e0) { #ifdef UNCALLED SEGMENT
*e2-- = *el--; void fast_vector_swap (vector_t *v, unsigned char il, unsigned char i2) {

154

obj_t *elems, temp;

elems = v->fElements;
temp = elems[il];

elems[il] = elems[i2];
elems [i2] = temp;

}

#endif

#ifdef UNCALLED_ SEGMENT

unsigned char vector index of (vector t *v, obj t elem) {
// return the index of the element in the vector, or -1 if not found
obj_t *elems = v->fElements;
unsigned char i = v->fCount;

while (--i > 0) {
if (elems[i] ==

}

return -1;

elem) return i;

}

#endif

#ifdef UNCALLED SEGMENT
obj t vector ref (vector t *v, unsigned char index) {
if ((index < 0) || (index >= v->fCount)) ({
return NULL;
} else {
return fast_vector ref (v, index);
}
}
#endif

#ifdef UNCALLED SEGMENT
vector_t *vector_set (vector_t *v, obj_t elem, unsigned char index) {
if ((index < 0) || (index >= v->fCount)) ({
return NULL;
}
fast_vector_set (v, elem, index);
return v;

}

#endif

// test suite for vector code
// #define TEST VECTOR
#ifdef TEST VECTOR

#include "arbor.h"
#include <stdio.h>

#define true (1==1)
#define false (1==0)

void print vector (vector t *v) {
unsigned char i;
printf ("v<%p>, count=%d, ", v, v->fCount) ;

for (i=0; i<v->fCount; i++)
printf (" [%d] $p%s", i, (v->fElements) [i],
(i==v->fCount-1)?"\n":", ");

void test (obj_t got, obj_t expected, char *msg) {

if (got != expected) ({
printf ("$s: got %p, expected %$p\n", msg, got, expected);
} else {

printf ("%s: okay\n", msg);
}
}

#define TEST(got, exp, s) test(((obj_t) (got)), ((obj_t) (exp)), s)
#define CAPACITY 6

DEFINE_VECTOR (v, CAPACITY) ;

void init() _task MAIN TASK {

PLLCON = 0x00; // 12 MHz
LED_INIT() ;

LED_ON (AMBER_LED) ;
//ALL_LEDS_ON() ;
serial init(); // set up baud rate
os_wait2 (K _TMO, 4);

puts ("\r\n\r\nvector test\r\n");

vector_init (VECTOR(v), CAPACITY) ;

TEST (vector_dequeue ((vector_t *)&v), NULL, "getting from new vector");
TEST (vector_enqueue (VECTOR (v) , (obj_t)0x1l), VECTOR(v), "vector_enqueue
returns vector") ;
vector_enqueue (VECTOR (V) ,
vector_enqueue (VECTOR (v) ,
vector_enqueue (VECTOR (v) ,
TEST (vector_count (VECTOR (v

(obj_t)ox2) ;
(o
(obj
))
TEST (vector_dequeue (VECTOR (v
(v
(v
(v
(v

Gu t)0ox3);

_t)0ox4);

4, "vector size mismatch");
0x1l, "getting from vector");
0x2, "getting from vector");

v

))
TEST (vector_dequeue (VECTOR (V)),
)), 0x3, "getting from vector"
))
))

(

((
TEST (vector_dequeue (VECTOR
TEST (vector_dequeue (VECTOR
TEST (vector_dequeue (VECTOR

0x4, "getting from vector");
NULL, "getting from empty vector");

TEST (vector_is_empty (VECTOR(v)), true, "vector is empty");

// TEST (vector is full (VECTOR(v)), false, "vector is not full");
vector_enqueue (VECTOR (v) (obj_t)0x22) ;

vector_enqueue (VECTOR (v) (obj_t)0x33);

vector_enqueue (VECTOR (v) , (obj_t) 0x44);

vector_enqueue (VECTOR (v) (obj_t)0x55) ;

vector_enqueue (VECTOR (v) (obj_t)0x66) ;

vector_enqueue (VECTOR (v) , (obj_t)0x77);

TEST (vector_is_empty (VECTOR(v)), false, "vector is not empty");
TEST (vector_is_ full (VECTOR(v)), true, "vector is full");

TEST (vector_enqueue (VECTOR (v) , (obj_t)0x88), NULL, "putting to full

155

vector") ;
TEST (vector_count (VECTOR (v)),

TEST (vector_remove (VECTOR (v) ,
0x55,
"remove from middle") ;
TEST (vector_count (VECTOR (V)) ,

TEST (vector_remove (VECTOR (v) ,
(obj_t) "bogus")) ,
NULL,
"remove bogus") ;
TEST (vector_count (VECTOR (V)),

TEST (vector_dequeue (VECTOR
TEST (vector_dequeue (VECTOR

TEST (vector_dequeue (VECTOR
TEST (vector_dequeue (VECTOR

(((v))
(((v))
TEST (vector_dequeue (VECTOR (V)) ,
(((v))
(((v))

TEST (vector_count (VECTOR (V)),

TEST (vector_clear (VECTOR (v
vector_ enqueue (VECTOR (V) ,

),

vector enqueue (VECTOR (V) ,
print_vector (VECTOR (V)) ;
TEST (vector_insert (VECTOR (v) ,

“_.__v .
print_vector (VECTOR (V)) ;
TEST (vector_dequeue (VECTOR (v)) ,
TEST (vector_dequeue (VECTOR (V)) ,
TEST (vector_dequeue (VECTOR (V)) ,
TEST (vector_dequeue (VECTOR (v)) ,
TEST (vector_dequeue (VECTOR (V))

TEST (vector_insert (VECTOR (v) ,
end") ;

TEST (vector_insert (VECTOR (v) ,
o) ;

print_vector (VECTOR (V)) ;

TEST (vector_insert (VECTOR (v) ,
i) ;

print_vector (VECTOR (V)) ;

TEST (vector_insert (VECTOR (v) ,
o) ;

print_vector (VECTOR (V)) ;

TEST (vector_insert (VECTOR (v) ,
end") ;

// v = 0x999 0x1ll 0x222 0x888

TEST (vector_ref (VECTOR (v) , 4),

TEST (vector_ref (VECTOR(v), -1),
TEST (vector_ref (VECTOR (v), 2),

TEST (vector_set (VECTOR (v)

TEST (vector_set (VECTOR (v)

TEST (vector_ref (VECTOR(v), 2),

V))

(obj_t)0x111)
vector_enqueue (VECTOR (v), (obj_t)0x333);

(obj_t)0x444)

, (obj t)0x333, 4), NULL,
, (obj_t)0x333, 2), VECTOR(v),

CAPACITY,

vector_index_of (VECTOR (v),

5, "count after remove");

vector index of (VECTOR(v),

5, "count after remove bogus") ;

0x22, "getting from vector"
0x33, "getting from vector"
0x44, "getting from vector"
0x66, "getting from vector"
0x77, "getting from vector"
0, "count = 0");
VECTOR (v), "clear vector");

i
i

(obj_t)o0x222, 1), VECTOR(V),

0x111, "getting from vector"
0x222, "getting from vector"
0x333, "getting from vector"
0x444, "getting from <monow=vm
, NULL, "getting from empty vector");

(obj_t)ox111, 1), NULL,

(obj_t)0x111, 0), VECTOR(v),

(obj_t)0x222, 1), VECTOR(v),

(obj_t)0x999, 0), VECTOR(v),

(obj_t)ox888, 3), VECTOR(V),

NULL, "ref beyond end") ;
NULL, "ref before beginning");
0x222, "ref 2");

0x333, "ref 2 redux");

"full count = capacity");

(obj_t)0x55)),

i

i

i

i

"insert at

"insert beyond

"insert at

"insert at

"insert at

"insert at

"set beyond end") ;
"set 2");

TEST (vector_swap (VECTOR (v) , 1
TEST (vector_ref (VECTOR (v), 2),
TEST (vector_swap (VECTOR(v) , 1
TEST (vector_ref (VECTOR (v) , 2)
// v = 0x999 0x11ll 0x333 0x888
TEST (vector_remove (VECTOR (v) ,

((
TEST (vector_remove (VECTOR (v) ,
TEST (vector_remove (VECTOR (v) ,
TEST (vector_remove (VECTOR (v) ,
TEST (vector_remove (VECTOR (v) ,
}
#endif

156

O O N

2),
0x111,
2),
0x333,

VECTOR (V) ,
"ref 2 post swap");
VECTOR (v) ,
"ref 2 post swap");

NULL,

0x333,
0x999,
0x888,
0x111,

"swap") ;

"swap") ;

"remove beyond end") ;
"remove middle") ;

"remove first");

"remove last");

"remove first and last");

APPENDIX C \AN\.@QN\.ZQN "BART" QQQNN N\a&:@@

Following is the ArborNet C source code that is executed by the PIC16F84
"BART" radio processor on the Constellation board. More information on the

ArborNet system can be found in Chapter 7.

File: bart.h

#ifdef BART H

#nolist

#else

#define _BART H

// -*- Mode: C++ -*-

!/

// File: bart.h

// Description: general system definitions for BART radio chip

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

// For general public use.

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for

// any purpose. It is provided "as is" without express or implied
// warranty.

A ——
// 1I/0 pin definitions

struct PORT_A MAP {
int HDATA LO:4;
boolean RADIO_RCV;
boolean unused_a5;
boolean unused_aé6;
boolean unused_a7;

} PORT A;

#byte PORT A = 5

// A0:3 low nibble of host data
// A4 serial data (from radio)

struct PORT_B_MAP {

int HDATA HI:4; // B0:3 high nibble of host data
boolean RADIO_ XMT; // B4 serial data (to radio)
boolean BART_READY; // B5 handshake (to host)
boolean RCV_MODE; // B6 recv/xmit control (from host)
boolean HOST CLK; // B7 handshake (from host)

} PORT_B;

#byte PORT B = 6

// TRIS bits for transmit mode (from host to PIC to radio)
struct PORT A MAP const PORT A XMT = {0xf, 1, 0, 0, 0};
struct PORT B _MAP const PORT B XMT = {0xf, 0, 0, 1, 1};

// TRIS bits for receive mode (from radio to PIC to host)
struct PORT A MAP const PORT A RCV = {0x0, 1, 0, 0, 0};
struct PORT_B_MAP const PORT B RCV = {0x0, 0, 0, 1, 1};

2
// BART READY is a low true signal

#define ASSERT READY (b)
#define READY IS ASSERTED()

PORT B.BART READY = ! (b)
(1PORT_B.BART READY)

// Timing definitions

// The bit period for serial (radio) data, measured in TMRO tics
// With a 20 MHz crystal, one tic is .2 uSec, so the bit period
// is 8.8 uSec, or 113.63 KBaud

#define BIT PERIOD 44

157

#endif
#list

File: bart.c

// -*- Mode: C++ -*-

//

// File: bart.c

// Description: initialization and main loop

//

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

//

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

//

// For general public use.

//

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

#case

#include <16F84.H>

//

run with watchdog timer ON so PIC will restart if it gets hung.

#fuses HS,WDT,NOPROTECT, PUT

//
//

All timing is done with TMRO, so software delays aren't needed.
#use DELAY (clock=20000000)

#use fast_io(A)
#use fast_io(B)

typedef short int boolean;

//
//

if defined, put state vars on parallel port
#define BLAT_STATE

#include "procregs.h"
#include "utils.h"
#include "bart.h"

#include "codec.h"
#include "fifo.h"
#include "host.h"
#include "radio.h"
#include "sync.h"

// gXmtActive is true as long as we're in transmit mode (RCV_MODE=0)
// and there are more bits to be sent in the fifo. It will be set
// to false after the last bit has ben transmitted.

short int gXmtActive;

// keep track of how many times reset has been called. Assumes
// memory is not zeroed at reset.
//

int gResetCount;

S —
// included files

//

// Defines encode_nibble() and decode_nibble ()

// conversion between 4 bit decoded and 6 bit dc-balanced encoded
#include "codec.c"

// a simple FIFO for buffering data between host and radio
#include "fifo.c"

// managing parallel I/O with the host
#include "host.c"

// managing serial I/O with the radio
#include "radio.c"

// establishing sync between transmitters and receivers
#include "sync.c"

// =================mmmmmmmmmmmmmssssssmssssssssss=mmmmmmmmmmmmmmmes

// initialization and main code

// set up for transmit mode
#inline
void setup transmit () {
set_tris_a (PORT_A XMT) ;
set_tris_b (PORT_B_XMT) ;
HOST SETUP_TX () ;
RADIO SETUP_TX() ;
FIFO RESET() ;

// set up for receive mode

158

#inline

void setup receive() {
set_tris_a (PORT_A_RCV) ;
set_tris_b(PORT_B_RCV) ;
HOST_ SETUP RX() ;
RADIO_SETUP RX();
FIFO RESET() ;

/] ==============ss=sssmmmmmcssssssssssssmmmmmmmmmmmsssssssssses

// blat_state() - put state vars on parallel port for debugging
#ifndef BLAT_STATE

#define blat_ state() /* nop */

#else

#inline

void blat_state() ({
output_high(PIN_B3) ;

#asm
// radio state on low nibble
movE gRState, w
xorwf PORT A, w
andlw 0xO0f
xorwf PORT A, £

// host state on high nibble
movf gHState, w

xorwf PORT_B, w

andlw 0x07

xorwf PORT B, £

#endasm
output_low (PIN_B3) ;
}

#endif

void main() {
int 1i;

set_tris_a (PORT_A_XMT) ;
set_tris_b (PORT_B_XMT) ;

// this loop makes it obvious to a 'scope that we've reset.

i = 30;

do {
ASSERT_READY
delay cycles
ASSERT_READY
delay_cycles

1);
43);
0)
43

)

} while (--1i);
gResetCount++;

setup_counters (RTCC_INTERNAL, WDT_18MS) ;
while (1) {

// enter transmit mode, stay there until the host asserts RCV_MODE
// and fifo has finished transmitting its contents
setup_transmit () ;
gXmtActive = 1;
do {
service_radio_xmt () ; // send serial bits to radio
restart_wdt () ;
} while (gXmtActive);

// enter receive mode, stay there until the host drops RCV_MODE
setup_receive () ;
do {
service radio_rcv(); // receive serial bits from radio
restart_wdt () ;
} while (PORT_B.RCV_MODE) ;

159

File: codec.h

#ifdef _CODEC_H
#nolist

#else

#define _CODEC_H

// -*- Mode: C++ -*-

// File: codec.h
// Description: header file for encoding / decoding DC balanced nibbles

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

// For general public use.

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

// two special values returned by codec_decode ()

#define DECODE_ILLEGAL 0x80
#define DECODE_SYNCH Oxff

// Convert binary nibble (in low order 4 bits of nibble) into 6 bit,
// DC balanced values. Values may be received using the W _RECV ()

// macro, as follows:

// codec_encode (nibble) ;

// W_RECV (result) ;

//

int codec_encode (int nibble) ;

// Convert DC balanced "hexlet" (in low order 6 bits of hexlet) into
// four bit value (returned in W register). Returns DECODE_ILLEGAL
// for illegal 6 bit patterns, returns DECODE SYNCH if a sync header
// pattern is given.

//
// Values may be fetched using the W_RECV() macro, as in:
// codec_decode (hexlet) ;

// W_RECV (result) ;

// if (result == DECODE_ILLEGAL) error();
//

int codec_decode (int hexlet) ;

#endif

#list

File: codec.c

// -*- Mode: C++ -*-

// File: codec.c
// Description: Convert between 4 bit and 6 bit DC-balanced values

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

// For general public use.

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

#include "utils.h"

// TWO BIG WARNINGS:
// [1] Make sure neither dispatch table crosses a page boundary -

// if so, you must use DISPATCH() rather than SHORT_DISPATCH() .

// [2] Make sure that codec {de en}code is called AS A SUBROUTINE, via
// CALL rather than GOTO. (The CCS compiler will use CALL whenever
// there are two or more subroutine calls in the program.)

160

Encode 4 bit nibble as a 6 bit DC-balanced value. Upon return, the
encoded 6 bits are "left justified" in the W register and must be
stored somewhere via the W_RECV() macro (see utils.h).
encode_nibble (decoded) ;
W_RECV (result) ;
The reason for left justification is that we will be shifting out
the bits MSB first. '"prejustifying" them saves an extra shift
operation.

int codec_encode (int nibble) *

nibble &= 0x0f; // mask to 4 bits
#asm
SHORT _DISPATCH (nibble)
retlw 0b01010100 // 0000
retlw 0b11000100 // 0001
retlw 0b11001000 // 0010
retlw 0b10001100 // 0011
retlw 0b11010000 // 0100
retlw 0b10010100 // 0101
retlw 0b10011000 // 0110
retlw 0b01011000 // 0111
retlw 0b01101000 // 1000
retlw 0b10100100 // 1001
retlw 0b10101000 // 1010
retlw 0b00101100 // 1011
retlw 0b10110000 // 1100
retlw 0b00110100 // 1101
retlw 0b00111000 // 1110
retlw 0b01110000 // 1111
#endasm
}
// Convert DC balanced "hexlet" (in low order 6 bits of hexlet) into
// four bit value (returned in W register). Returns DECODE ILLEGAL
// for illegal 6 bit patterns, returns DECODE SYNCH if a sync header
// pattern is given.
//
// Values may be fetched using the W_RECV() macro, as in:
// codec_decode (hexlet) ;
// W_RECV (result) ;
// if (result == DECODE_ILLEGAL) error();
//
int codec_decode (int hexlet) *
hexlet &= 0x3f; // mask to 6 bits
#asm
SHORT _DISPATCH (hexlet)
retlw DECODE_ ILLEGAL // 000000 not used
retlw DECODE_ILLEGAL // 000001 not used
retlw DECODE_ ILLEGAL // 000010 not used
retlw DECODE_ ILLEGAL // 000011 not used
retlw DECODE_ILLEGAL // 000100 not used
retlw DECODE_ ILLEGAL // 000101 not used
retlw DECODE_ ILLEGAL // 000110 not used
retlw DECODE_ILLEGAL // 000111 "anti synch header"
retlw DECODE_ ILLEGAL // 001000 not used
retlw DECODE_ ILLEGAL // 001001 not used
retlw DECODE_ILLEGAL // 001010 not used

Example call:

retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
#endasm

0b00001011
DECODE_ILLEGAL
0b00001101
0b00001110
DECODE_ILLEGAL
DECODE_ILLEGAL
DECODE_ILLEGAL
DECODE_ILLEGAL
DECODE_ILLEGAL
DECODE_ILLEGAL
0b00000000
0b00000111
DECODE_ILLEGAL
DECODE_ILLEGAL
DECODE_ILLEGAL
0b00001000
DECODE_ILLEGAL
0b00001111
DECODE_ILLEGAL
DECODE_ILLEGAL
DECODE_ILLEGAL
DECODE_ILLEGAL
DECODE_ILLEGAL
DECODE_ILLEGAL
0b00000011
DECODE_ILLEGAL
0b00000101
0b00000110
DECODE_ILLEGAL
DECODE_ILLEGAL
0b00001001
0b00001010
DECODE_ILLEGAL
0b00001100
DECODE_ILLEGAL
DECODE_ILLEGAL
DECODE_ILLEGAL
DECODE_ILLEGAL
0b00000001
0b00000010
DECODE_ILLEGAL
0b00000100
DECODE_ILLEGAL
DECODE_ILLEGAL
DECODE_ILLEGAL
DECODE_SYNCH
DECODE_ILLEGAL
DECODE_ILLEGAL
DECODE_ILLEGAL
DECODE_ILLEGAL
DECODE_ILLEGAL
DECODE_ILLEGAL
DECODE_ILLEGAL

161

001011
001100
001101
001110
001111
010000
010001
010010
010011
010100
010101
010110
010111
011000
011001
011010
011011
011100
011101
011110
011111
100000
100001
100010
100011
100100
100101
100110
100111
101000
101001
101010
101011
101100
101101
101110
101111
110000
110001
110010
110011
110100
110101
110110
110111
111000
111001
111010
111011
111100
111101
111110
111111

not used
not used
not used
not used
not used
not used
not used
not used
not used
not used
not used
not used
not used
not used
not used
not used
not used
not used
not used
not used
not used
not used
not used
not used
not used
not used
not used
not used
not used
synch pattern
not used
not used
not used
not used
not used
not used
not used

// and must be fetched as in W_RECV(val);

File: fifo.h "o
#inline
void fifo get();

#ifdef _FIFO H
#nolist

#else

#define _FIFO_H

// -*- Mode: C++ -*-

#endif
#list

// File: fifo.h File: fifo.c

// Description: header file for fifo routines

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// -*- Mode: C++ -*-

// //

. . . File: fifo.
// This MIT Media Laboratory project was sponsored by the Defense ““ UMmMHH tion: <MHO Mmmwowmdn and dangerous fifo routines
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The /7 p : Y g

// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

““ For general public use // This MIT Media Laboratory project was sponsored by the Defense
// 9 P ’ // Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The

// content of the information does not necessarily reflect the
// position or the policy of the Government, and no official
// endorsement should be inferred.

// This distribution is approved by Walter Bender, Director of the
// Media Laboratory, MIT. Permission to use, copy, or modify this
// software and its documentation for educational and research

. X ; : //
// purposes only and without fee is hereby granted, provided that this .
// copyright notice and the original authors' names appear on all ““ For general public use.

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for

// fifo capacity must be a power of 2!!
#define FIFO_CAPACITY 32

#define FIFO_MASK (FIFO_CAPACITY-1) // any purpose. It is provided "as is" without express or implied
#define FIFO IS _EMPTY() (fifoLen == 0) MMdmwwwwzmmeo .
#define FIFO_ IS FULL() (fifoLen == FIFO CAPACITY) . §
- - - #include "procregs.h"
#define FIFO RESET () fifoPut=0; fifoGet=0; fifoLen=0

- int fifoPut;

) . A int fifoGet;
// Store a byte in the fifo. Assumes that the caller has previously . Trore

) int fifoLen; // # of byte stored in fifo
!
““ checked for overflow, as in !FIFO IS FULL() . int £ifo[FIFO CAPACITY];
#inline
2

void fifo_put (int &b); // FIFO code

// Fetch a byte from the fifo. Assumes that the caller has previously

// checked for underflow, as in !FIFO_IS EMPTY(). Returns value in W, // store a byte in fifo. Assumes caller has checked for overflow

162

#inline
void fifo_put (int &b) {
// if (fifolLen == FIFO_CAPACITY) return; // overflow, sorry.

fifoLen++;
#ifdef DONT_BUM_CYCLES
fifo[fifoPut++] = b;
#else
#asm

movE fifoPut,W
incf fifoPut,F
addlw fifo
movwf FSR
movE b, W
movwf INDF
#endasm
#endif
fifoPut &= FIFO_MASK;

}

// fetch a byte from fifo. Assumes caller has checked for underflow.

// Returns value in W register.
#inline
void fifo get() {
fifoLen--;
#asm
movE fifoGet, W
incf fifoGet,F

addlw fifo
movwf FSR // p = &fifo[fifoGet++]
movlw FIFO_MASK // fifoGet &= FIFO_MASK
andwf fifoGet,F // .
movE INDF, W // w = *p

#endasm

#endif

}

File: host.h

#ifdef _HOST H
#nolist

#else

#define _HOST H

// -*- Mode: C++ -*-

//

// File: host.h

// Description: service host parallel port
//

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

// For general public use.

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

// warm reset code

#define HOST_SETUP_TX () \
gHState = SHX A; \
ASSERT_READY (0)

#define HOST_SETUP_ RX ()
gHState = SHR_A;
ASSERT READY (0)

—

#inline
void service_host_rcv () ;

void service_host_xmt () ;

#endif
#list

163

File: host.c

-*- Mode: C++ -*-
File: host.c
Description: manage communication between BART and host processor

Copyright 2001 by the Massachusetts Institute of Technology. All
rights reserved.

This MIT Media Laboratory project was sponsored by the Defense
Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
content of the information does not necessarily reflect the
position or the policy of the Government, and no official
endorsement should be inferred.

For general public use.

This distribution is approved by Walter Bender, Director of the
Media Laboratory, MIT. Permission to use, copy, or modify this
software and its documentation for educational and research
purposes only and without fee is hereby granted, provided that this
copyright notice and the original authors' names appear on all
copies and supporting documentation. If individual files are
separated from this distribution directory structure, this
copyright notice must be included. For any other uses of this
software, in original or modified form, including but not limited
to distribution in whole or in part, specific prior permission must
be obtained from MIT. These programs shall not be used, rewritten,
or adapted as the basis of a commercial software or hardware
product without first obtaining appropriate licenses from MIT. MIT
makes no representations about the suitability of this software for

any purpose. It is provided "as is" without express or implied
warranty.
This file implements the following:

void service_host_rcv();

In receive mode (reading data from radio), monitor the software
FIFO for bytes and send them to the host via the parallel port
as they become available.

void service_host_xmt () ;

In transmit mode (sending data to radio), monitor the parallel
port for data transfers from the host and store incoming bytes
in the software fifo as they are sent.

Timing requirements:

Both service host_rcv() and service host_xmt () share processor
cycles with the software UART defined in radio.c. Consequently,
these routines must execute and return very quickly so as not to
perturb the serial timing. As a rule of thumb, these functions
should consume only a small fraction of BIT_PERIOD tics.

// Edit History:

// 08 Oct 2000: remedia.mit.edu
// service host_xmt () was getting stuck in stateD. fixed typo

// End of Edit History

#include "bart.h"
#include "procregs.h"
#include "utils.h"
#include "host.h"

// Variables can be safely shared between service host_rcv() and
// service host xmt () since the system can't be receiving and
// transmitting at the same time.

int gHState;
int gHByteBuf;

// service host_rcv()

// Called regularly when the radio is in receive mode, this routine

// transfers data from the FIFO to the parallel port. The caller

// requires 25 cycles, leaving 44-25 = 19 cycles for this routine.

// The odd ordering of the clauses (putting shr B first after the

// dispatch) shaves off two critical cycles.

//

#inline

void service host rcv() {

#asm

SHORT DISPATCH (gHState)

#define SHR_C 0
goto shr_C

#define SHR A 1
goto shr A
// goto shr B // wait for HOST CLOCK, pull data from FIFO
// v === fall through === v

#endasm

// post data to port, await !HOST CLOCK

shr B:
// Await HOST CLOCK, then fetch a byte from the fifo
if (PORT_B.HOST_CLK) {
fifo_get();
W_RECV (gHByteBuf) ;
gHState = SHR_C;
}

return;

// fifo get returns value in W
// gHState was 2(B), now 0(C)

shr A:
// Wait for a byte to become available in the fifo.
// Announce readiness in BART READY.
if (FIFO_IS EMPTY()) {
ASSERT_READY (0) ;
} else {

164

// bart_ready <= fifo_state, advance if avail

ASSERT_READY (1) ;

gHState++; // gHState was 1(A), now 2(B)
}
return;
shr C: // gHState = 0

// Output the byte to the host port, await !HOST_CLK
#ifdef DONT_BUM_CYCLES
PORT_A.HDATA LO = gHByteBuf;
swap (gHByteBuf) ;
PORT_B.HDATA HI = gHByteBuf;
#else
#ifndef BLAT STATE
#asm
// This code requires that HDATA LO and HDATA HI appear at the
// low four bits of PORT_A and PORT_B respectively.
// movf gHByteBuf, w
// xorwf PORT A, w
// andlw 0x0f
// xorwf PORT A, f
// super big cheeze hack: lsnibble of PORT A is where we put
// the bits. hsnibble of PORT_A is either inputs (A4) or
// unused. cycle shaving to the max...
movi gHByteBuf, w
movwf PORT_A

swapf gHByteBuf, w
xorwf PORT B, w
andlw 0xO0f
// andlw 0x07
xorwf PORT B, f
#endasm
#endif // ifndef BLAT STATE

// ### leave B3 for debugging

#endif // ifdef DONT BUM CYCLES

if (!PORT_B.HOST CLK) {
gHState++; // gHState was 0(C), now 1(A)

}

return;

// service host_xmt ()

// Handle the host port in transmit mode. Loop as follows:

// Inform host if there's room in the FIFO by raising BART_ RDY
// Await HOST CLOCK, latch data on parallel port

// Store data in fifo, await !HOST_CLOCK

void service host xmt () {
#asm

SHORT_DISPATCH (gHState)
#define SHX A 0

goto shx A // if room in fifo, assert ready

goto shx B // await host clock, latch data

goto shx C // store in fifo, await !host clock
#endasm

shx A:
if (IFIFO_IS FULL()) {
ASSERT_READY (1) ;
gHState++;
} else {
ASSERT_READY (0) ;

}

return;

shx B:
// wait for host clock to go true before latching data
// on parallel port
if (PORT_B.HOST_CLK) {
#ifdef DONT BUM CYCLES
gHByteBuf = PORT_B.HDATA HI;
swap (gHByteBuf) ;
gHByteBuf |= PORT A.HDATA LO;
#else
// This code requires that HDATA LO and HDATA HI appear at the
// low four bits of PORT A and PORT_B respectively.

gHByteBuf = (int *)PORT_B & 0xO0f;
swap (gHByteBuf) ;
gHByteBuf |= (int *)PORT A & OxO0f;
#endif
gHState++;
}
return;
shx C:

// store the byte fetched in the previous state, wait for
// host clock to drop before going to next state.
if (!PORT B.HOST CLK) {
fifo_put (gHByteBuf) ;
gHState = SHX A;
}

return;

165

short int IRP;

File: procregs.h } STATUS;
#byte STATUS = 0x03
#byte FSR = 0x04
i #byte PORTA = 0x05
Mwwwwmnlmmooxmmmlm #byte PORTB = 0x06
#else #byte PCLATH = O0xO0A
struct {

WWmmwwmzmwmwnmwmmwm- short int RBIF;

// short int INTF;
short int TOIF;

// File: procregs.h short int RBIE.
““ Description: C definitions of selected PIC processor registers chort int HZHmm

. . hort int TOIE;
// Copyright 2001 by the Massachusetts Institute of Technology. All sport in !

short int PEIE;

// rights reserved. short int GIE;

// This MIT Media Laboratory project was sponsored by the Defense WUHMMOOZWZHOOZ _ 0x0B
// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The 4 -

// content of the information does not necessarily reflect the dif

// position or the policy of the Government, and no official Mwwmw

// endorsement should be inferred.
// For general public use.

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

// PCM-C readable register definitions for

// general PICs. This version is tailored
// only for the PIC16F84 and for the 12C672.
//

#byte INDF = 0x00

#byte TMRO = 0x01

#byte PCL = 0x02

struct {

short int C;
short int DC;
short int Z;
short int PD_L;
short int TO_L;
short int RPO;
short int RP1;

166

File: radio.h

#ifdef _RADIO_H
#nolist

#else

#define _RADIO_H

// -*- Mode: C++ -*-

// File: radio.h
// Description: serial interface to TR1000 radio chip

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

// For general public use.

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

// warm reset code

#define RADIO_SETUP_TX () \
gRState = 0

#define RADIO_SETUP_RX () \
gRState = SRR_SYNC; \
PORT B.RADIO XMT = 0

// number of bit periods to try for a sync header before
// timing out. each sync header is 6 bits long; try for
// 10 periods.

#define SYNC TIMEOUT 60

// number of 6 bit sync chars to send when transmitting a
// header.

#define SYNC_HDR_LENGTH 6 // in 6-bit "hexlets"

// in receive mode, monitor RADIO RCV line, read encoded serial
// data, decode, store in FIFO.

#inline

void service_radio_rcv();

// in transmit mode, fetch bytes from FIFO, encode and send as
// serial data on RADIO XMT line

#inline

void service_radio_xmt () ;

#endif
#list

File: radio.c

// -*- Mode: C++ -*-

// File: radio.c
// Description: manage exchange of serial data with TR1000 radio

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

// For general public use.

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

// NOTE: send/receive MSB first

// The servicing of the host parallel port happens only in those bit
// periods where service_radio_rcv() doesn't have other time consuming

167

// operations, such as transfers to the fifo or encoding and decoding
// six bit values. 1In short, timing is critical!

// 06 Nov 2000 r@media.mit.edu

// In our noisy environment, BART detects many false sync headers.
// Upon transmission, BART generates a leader char at the start of
// each packet. Upon reception, if the first non-sync char isn't a
// leader char, BART reverts to searching for sync without troubling
// the host. This should cut down on the number of spurious packets
// handled by the host.

#include "radio.h"
#include "procregs.h"
#include "utils.h"
#include "sync.h"
#include "fifo.h"

// Variables can be safely shared between service radio_rcv() and
// service_radio_xmt () since the system can't be receiving and
// transmitting at the same time.

int gRState;
int gRSerBuf;
int gRBytBuf;

// six bit serial shift register
// holding register for decoded byte

// Every packet has leader char immediately following the synch header
#define LEADER_CHAR 'A' // got any better ideas?
short int gIsPacketStart; // true when seeking leader char

#inline
void _get_radio bit();

#inline
void _put_radio bit();

B
// service_radio_rcv() - in receive mode, monitor RADIO_RCV line,
// read encoded serial data, decode and store in FIFO.

//

// In the initial state, it will search for a sync pattern on the

// radio's receive line. Once it establishes sync, it will read

// serial bits, decode their 6 bit form into a 4 bit nibble, assemble
// pairs of nibbles into bytes, and store the bytes in the FIFO.

// This routine essentially implements a software UART. In all but
// the initial state, fewer than BIT_PERIOD cycles may elapse between

// calls to service radio _rcv(), or data will be lost.
//

#inline

void service radio rcv() {

#asm

SHORT DISPATCH (gRState)
#define SRR SYNC 0

goto srr_sync // establish sync, sample bll (msb)

#define SRR_B11_INITIAL 1
goto srr bll_initial // bll & service host port
#define SRR_B10_ INITIAL 2

goto srr bl0_initial // bl0 & service host port

#define SRR_B09 3
goto srr_bo09 // b09 & service host port
goto srr_b08 // b08 & service host port
goto srr_b07 // b07 & service host port
goto srr_bo06 // b06 & store high nibble
goto srr_b05 // b05 & service host port
goto srr_bo04 // b04 & service host port
goto srr_bo03 // b03 & service host port
goto srr_b02 // b02 & service host port
goto srr_bo0l // b0l & service host port
goto srr_b00 // b00 & store low nibble
goto srr_bll_store // bll & service host port
goto srr_bl0_store // bl0, accumulated byte to fifo

#endasm

srr_sync:

// Here to establish initial sync. Note that unlike other
// routines in service_radio_rcv() which all complete in
// less than 44 tics, this one might take a relatively long
// time to complete. During this time, host transfers are
// deferred.
gIsPacketStart = 1;
if (!find sync (SYNC_TIMEOUT)) ({
// didn't find sync. Try again at next call to service radio_rcv()
gRState = SRR_SYNC;
return;
}
// found sync.
// midpoint of each received bit.
// first) before returning.
gRState = SRR _B11l INITIAL; // next: srr blo
// --v-- fall through... --v--

From here on, TMRO rolling over (TOIF) marks the
Fetch the first bit (bll, MSB

srr_bll initial:
srr_bl0_initial:
srr_b09:
srr_bo08:
srr_b07:
// b06 below
srr_bo05:
srr_bo04:
srr_bo03:
srr_b02:
srr_bo0l:
// b00 below
srr_bll store:
// sample a bit and service the parallel port
_get_radio_bit();
service host_rcv () ;
gRState++;
return;

srr_b06:

// sample bit 6 of input stream. Having accumulated the first

168

// 6 bit packet, decode into 4 bit and store in accum byte.
_get_radio bit();

codec_decode (gRSerBuf) ;

// Following the call to codec_decode(), the decoded 4 bit nibble
// is in the W register. Do the equivalent to:

// gRBytBuf = codec_decode (gRSerBuf) ;

W_RECV (gRBytBuf) ;

if (gRBytBuf == DECODE_SYNCH) {
gRState = SRR _B1l1l INITIAL; // strip sync bytes
} else {
gRState++;
}
return;
srr_b00:

// sample bit 00 (LSB), decode accumulated 6 bits to 4 bit,

// merge with gRBytBuf.

// ## Note that we don't check for sync or illegal bit patterns
// ## here - if we get either, gRBytBuf is blithely clobbered.
// ## On the other hand, the sending code will only generate

// ## sync filler for the first nibble, so we don't expect to
// ## get sync filler here.
_get_radio_bit();

swap (gRBytBuf) ;
codec_decode (gRSerBuf) ;

// After the call to codec_decode(), the decoded 4 bit nibble is
// in the W register. The following IORWF is equivalent to:

// make room in lsnibble

// gRBytBuf |= codec_decode (gRSerBuf) ;
#asm

iorwf gRBytBuf, f
#endasm

if (gIsPacketStart) {
// in srr b06, sync "nibbles" were stripped out. Arrive here
// after finding the first non-sync character. If it was a
// bona-fide leader char, accept it and start reading the rest
// of the packet. If not, start all over again looking for
// sync.
if (gRBytBuf == LEADER CHAR)
gRState = SRR _B1ll INITIAL;
gIsPacketStart = 0;
return;
} else {
// wasn't
gRState = SRR_SYNC;
return;

// strip sync bytes

}
}
gRState++;
return;

// sample bll and store...

srr blO_store:
// sample bit 10, store byte previously accumulated (gRBytBuf) in
// the fifo. We wait until bit 10 (rather than bit 11) so that the
// service host rcv() is called every other tic.
_get_radio bit();
fifo_put (gRBytBuf) ;
gRState = SRR_B09;
return;

//
//
//
//
#i
el

Wait for TMRO to roll over, shift the radio serial port into
the LSB of the serial buffer. Update TMRO before returning.
nline
id _get_radio bit () {
AWAIT TMRO () ;

SHIFT BIT LEFT (gRSerBuf, PORT_A.RADIO_RCV) ;
// output_high (PIN B3); // ## debug - wiggle b3 when sampling serial
UPDATE_TMRO (BIT_PERIOD) ;

// output_low (PIN B3); // ## debug

2
// Serial Transmit (from FIFO to Radio)

//

// Initially, wait for a byte to appear in the fifo (await_start).

// Send a stream of sync chars (sync_b05-b00). Thereafter, start

// sending bits from the fifo (send bl1-b00), MSB first. If the fifo
// ever runs dry, send sync chars until more data is available.

// SYNC CHAR defines the six bit sync header char, left justified in
// an 8 bit byte

#define SYNC_CHAR 0b11100000

#inline

void service radio xmt () {

#asm

SHORT DISPATCH (gRState)

#define AWAIT START 0

goto await_start // s=00 loop until at least one byte in fifo

#define SYNC BO5 1

goto sync_b05 // s=01 send sync bit 5, service host port
goto sync_b04 // s=02 send sync bit 4

#define SYNC BO3 3

goto sync_b03 // s=03 send sync bit 3, service host port
goto sync_b02 // s=04 send sync bit 2, service host port

#define SYNC BO1 5

goto sync_b01 // s=05 send sync bit 1, service host port
goto sync_b00 // s=06 send sync bit 0

#define SEND B11 7

goto send bll // s=07 send bit 11 (msb), service host port

goto send _bl0 // s=08 send bit 10, service host port
goto send b09 // s=09 send bit 09, service host port
goto send bo08 // s=10 send bit 08, service host port
goto send b07 // s=11 send bit 07, service host port
goto send b06 // s=12 send bit 06, encode low nibble
goto send bo05 // s=13 send bit 05, service host port

goto send bo04 // s=14 send bit 04, service host port

#define SEND B0O3 15

goto send bo03 // s=15 send bit 03, service host port

goto send _b02 // s=16 send bit 02, fetch byte from fifo
goto send b0l // s=17 send bit 01, service host port

goto send b00 // s=18 send bit 00 (lsb), encode high nibble

#endasm

169

await_start:
// wait for first byte to appear in the fifo.
gIsPacketStart = 1;
service_host_xmt () ;
if (PORT_B.RCV_MODE) ({
// host is requesting receive mode. Quit now.
gXmtActive = 0;
return;
}
if (!FIFO_IS_EMPTY()) {
gRBytBuf = SYNC HDR LENGTH; // # of sync nibbles to send
gRSerBuf = SYNC_CHAR; // set up char to be sent
SET_TMRO (BIT_PERIOD) ;

// service parallel port

// from here on, TMRO marks onset of each bit period, honored by

// _put_radio_bit ()
gRState++; // send sync 05

}

return;

sync_bo05:
sync_bo03:
sync_b02:
sync_b01l:
send_bll:
send_bl0:
send_b09:
send_bo08:
send_b07:
send_bo05:
send_bo04:
send_b03:
send_bo01l:
_put_radio bit();
service_host_xmt () ;
gRState++;
return;

// put next msbit of gRSerBuf
// service parallel port

sync_b04:
// send sync bit 04 and use gRBytBuf to decide whether to keep
// sending synch chars (sync_b03) or to switch to the mainstream
// code (send b03). By switching to mainstream code, the final
// 3 bits of the synch char will be sent, but the next byte
// will be fetched from the FIFO, encoded and sent.
_put_radio _bit();

#ifdef DONT_BUM_CYCLES

if (--gRBytBuf) {
gRState = SYNC_BO03;
} else {
gRState = SEND_BO03;
}
#else
#asm

movlw SEND_BO3

decfsz gRBytBuf, f

movlw SYNC_BO3

movwf gRState
#endasm

#endif

return;

sync_b00:

// put the last bit of gRSerBuf set state to send b05 to send another

// sync char
_put_radio_bit();
if (PORT B.RCV_MODE && FIFO_IS EMPTY()) {
// host is requesting receive mode and the fifo has drained.
// game over.
gXmtActive = 0;
return;
}

gRSerBuf = SYNC_CHAR;
gRState = SYNC_BO05;
return;

// recharge gRSerBuf with sync char

send_b06:
// send bit 06 and decode the low nibble of gRBytBuf
_put_radio bit();

swap (gRBytBuf) ; // encode low nibble of gRBytBuf
codec_encode (gRBytBuf) ; // into 6 bit value

W_RECV (gRSerBuf) ;

gRState++; // next state = send b05

return;

send_b02:

// send bit 02 and fetch the next byte from the fifo. If the fifo
// is empty, send a synch char after sending bit 0
_put_radio bit();
if (FIFO_IS_EMPTY()) {
gRBytBuf = 1;
gRState = SYNC_BO01;
return;
}

if (gIsPacketStart) {
// the very first char in the packet is the leader char
gRBytBuf = LEADER CHAR;
gIsPacketStart = 0;
} else {
fifo_get();
W_RECV (gRBytBuf) ; // fifo _get() returns val in W
}
gRState++; // next state = send b0l
return;

send_b00:

// send bit 00 and encode the high nibble of the next byte
_put_radio_bit();

swap (gRBytBuf) ; // encode high nibble of gRBytBuf
codec_encode (gRBytBuf) ; // into 6 bit value

W_RECV (gRSerBuf) ;

gRState = SEND_Bl11;

return;

// Wait for TMRO to roll over, shift out the MSB of the serial buffer
// (gRSerBuf) and write it to the radio port. Update TMRO before
// returning. Note that gRSerBuf is not only shifted, but in the #asm
// code, may accumulate garbage in its right half.
//
#inline
void put_radio bit() {
AWAIT_TMRO () ;
#ifdef DONT_BUM_CYCLES
output_bit (shift left (&gRSerBuf, 1, 0));
#else
#asm
rlf gRSerBuf, f
btfss STATUS.C
bcf PORT B.RADIO XMT
btfsc STATUS.C
bsf PORT B.RADIO_ XMT
#endasm
#endif
UPDATE_TMRO (BIT_PERIOD) ;

}

File: sync.h

#ifdef _SYNC_H
#nolist

#else

#define _SYNC H

// -*- Mode: C++ -*-

// File: sync.h
// Description: establish byte and bit level synch with radio

// Copyright 2001 by the Massachusetts Institute of Technology. All
// rights reserved.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred.

// For general public use.

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT. Permission to use, copy, or modify this

// software and its documentation for educational and research

// purposes only and without fee is hereby granted, provided that this
// copyright notice and the original authors' names appear on all

// copies and supporting documentation. If individual files are

// separated from this distribution directory structure, this

// copyright notice must be included. For any other uses of this

// software, in original or modified form, including but not limited
// to distribution in whole or in part, specific prior permission must
// be obtained from MIT. These programs shall not be used, rewritten,
// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

void send_sync(int n);
void puthexlet (int hexlet) ;
void putnibble (int nibble) ;

// Try for n bit periods to find a sync header. If found, try to

// establish bit level sync. Returns 1 with TMRO primed to roll over
// in the middle of the first bit period, returns 0 otherwise.

//

int find_sync(int n);

#endif
#list

171

File: sync.c

-*- Mode: C++ -*-
File: sync.c
Description: generate and detect radio packet sync

Copyright 2001 by the Massachusetts Institute of Technology. All
rights reserved.

This MIT Media Laboratory project was sponsored by the Defense
Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
content of the information does not necessarily reflect the
position or the policy of the Government, and no official
endorsement should be inferred.

For general public use.

This distribution is approved by Walter Bender, Director of the
Media Laboratory, MIT. Permission to use, copy, or modify this
software and its documentation for educational and research
purposes only and without fee is hereby granted, provided that this
copyright notice and the original authors' names appear on all
copies and supporting documentation. If individual files are
separated from this distribution directory structure, this
copyright notice must be included. For any other uses of this
software, in original or modified form, including but not limited
to distribution in whole or in part, specific prior permission must
be obtained from MIT. These programs shall not be used, rewritten,
or adapted as the basis of a commercial software or hardware
product without first obtaining appropriate licenses from MIT. MIT
makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied
warranty.

Generating and detecting sync.

Each transmitted packet starts with a sync header, which is
a string of sync header characters. Each sync header char
is 111000, that is, three bit periods on and three off.

The advantage of this particular pattern is that it features
a 50% DC balance and a single low-to-high transition in the
middle of the pattern.

receiving sync

Try to establish sync. If no SYNC HEADER pattern is discovered
within N bit periods, the routine returns 0 to indicate failure.
If a sync header is found, the routine has established byte level
synch, but not fine-grained bit level sync. It then spends a
deterministic amount of time (to be documented :) adjusting the

//

bit level sync.

Upon success, find sync() will return 1 and TMRO will be set up
to roll over in the middle of the first bit period of the next

"hexlet" (a six bit nibble).
Theory:
The SYNC_HEADER is a rectangular wave, three bit periods

high followed by three bit periods low, or 0x0f when read
from LSB first. One bit period is 44 clock tics long.

find sync() samples once every 44 tics, shifting received bits into
a register. When the bit pattern 00011100 is detected, then the
header is assumed to fall as follows:

v_ _A 44 tics

0 0 0 1 1 1 0 0
B7 B6 B5 B4 B3 B2 Bl BO
(msb)

This is the 8 bit pattern that will be accumulated in tmp
when timing is between BIT_PERIOD and 2*BIT_PERIOD tics
from the onset of the next SYNC_HEADER.

#define PRE_SYNC 0b00011100

int find sync(int n) {

int tmp, 1i;
SET_TMRO (BIT_ PERIOD) ;

// phase 1: Establish byte level synchronization by shifting in bits
// until SYNCH HEADER is detected (or until we exceed our alloted
// number of bit cell times).

tmp = 0;
// output_high (PIN_B3) ;
do {
restart_wdt () ;
AWAIT TMRO () ;
SHIFT BIT LEFT (tmp, PORT A.RADIO RCV);
UPDATE_TMRO (BIT_PERIOD) ;
if (!--n) return 0;
} while (tmp != PRE_SYNC) ;
\\oznwzﬁ\HOSAmHZ\wuvm

// ## debugging

// timed out

// At this point, the picture looks like this. BO may have been
// sampled as early as 2*BIT PERIOD before the onset of the next
// SYNC_HEADER frame:

/7 e e !

A e P
/] _ | _ _ _ _
// 0 0 0 1 1 1 0 0
// B7 B6 B5 B4 B3 B2 Bl BO

_ A

onset

or as late as 1*BIT_PERIOD tics before the onset:

0 0
B7 B6

0 1

B5 B4

B3

_ _ _ "

1 0 0 onset
B2 Bl BO

At this point, DLY cycles have elapsed since sampling BO. So

if BO was sampled early,
be in 2 * BIT_PERIOD - DLY sample hence.
the onset of the next frame will be BIT_ PERIOD - DLY cycles from

now.

the onset of the next synch frame will
If BO was sampled late,

All that's left to do is to look for the low-to-high transition

that marks the next sync frame,

At 44 cycles per bit period,
minimum of 44-DLY cycles and a maximum of 88-DLY.

DLY measured to be 25,

so min

The following code is written

counts.

btfsc PORT_A.
goto early
btfsc PORT_A.
goto early
btfsc PORT_A.
goto early
btfsc PORT _A.
goto early
btfsc PORT _A.
goto early
btfsc PORT_A.
goto early
btfsc PORT _A.
goto early
btfsc PORT_A.
goto early
btfsc PORT_A.
goto early
btfsc PORT_A.
goto early
btfsc PORT _A.
goto found
btfsc PORT_A.
goto found
btfsc PORT _A.
goto found
btfsc PORT _A.
goto found
btfsc PORT_A.
goto found
btfsc PORT_A.
goto found

RADIO RCV
RADIO RCV
RADIO_RCV
RADIO RCV
RADIO RCV
RADIO_RCV
RADIO RCV
RADIO RCV
RADIO_RCV
RADIO RCV
RADIO RCV
RADIO_RCV
RADIO RCV
RADIO RCV
RADIO_RCV

RADIO_RCV

we expect the signal to remain low a

= 19, max = 63.
in assembly to guarantee the cycle

which is expected no sooner than
BIT_PERIOD-DLY and no later than 2*BIT_ PERIOD-DLY cycles from now.

btfsc PORT A.RADIO RCV // 32
goto found // 33
btfsc PORT_A.RADIO_RCV // 34
goto found // 35
btfsc PORT A.RADIO RCV // 36
goto found // 37
btfsc PORT A.RADIO RCV // 38
goto found // 39
btfsc PORT_A.RADIO_RCV // 40
goto found // 41
btfsc PORT_A.RADIO_RCV // 42
goto found // 43
btfsc PORT A.RADIO RCV // 44
goto found // 45
btfsc PORT_A.RADIO_RCV // 46
goto found // 47
btfsc PORT_A.RADIO_RCV // 48
goto found // 49
btfsc PORT A.RADIO RCV // 50
goto found // 51
btfsc PORT_A.RADIO_RCV // 52
goto found // 53
btfsc PORT_A.RADIO_RCV // 54
goto found // 55
btfsc PORT A.RADIO RCV // 56
goto found // 57
btfsc PORT_A.RADIO_RCV // 58
goto found // 59
btfsc PORT_A.RADIO_RCV // 60
goto found // 61
btfsc PORT A.RADIO RCV // 62
goto found // 63
goto late // expected a transition bit by now

#endasm

early:

late:
return O;

found:

// Arrive here within 5 (min) to 7 (max) cycles of RADIO_RCV going
// true. Assume it was 6, set TMRO to roll over (BIT PERIOD/2)-6
// cycles from now

// ## NB: If this doesn't leave enough time in the caller's code to

// ## prepare for the bit, this routine could be modified to detect

// ## the middle of the SYNC HEADER rather than the end (the falling
// ## edge rather than the rising edge), and set TMRO to fire in

// ## (3.5 * BIT PERIOD - 6) rather than (0.5 * BIT_PERIOD - 6)

// output_high (PIN B3); /] ###
SET_TMRO ((BIT_PERIOD/2)-6) ;

// output low (PIN B3); [/ #it#
return 1;

173

jmptbl:

File: utils.h

// Shorter DISPATCH(), but valid iff table falls within current page
// (doesn't increment PCLATH). Takes 7 cycles (including goto ...)
#ifdef UTILS H // must be inside #asm context
Cae - //
Mwwwwma #define SHORT DISPATCH (offset) \

movphw jmptbl

#define _UTILS_H movwf PCLATH

// -*- Mode: C++ -*-

/7 movf offset, w

/7 File: utils.h addwf PCL, f /* pcl += offset */

// Description: generally useful code hacks for the PIC Jmptbl:

1/ 2 A —

// Copyright 2001 by the Massachusetts Institute of Technology. All

// rights reserved // Working with Timer 0 (aka RTCC)

// Primarily intended for critical timing loops, these macros
// assume that the TMRO prescaler is set to "DIV_1" and counts
// once every instruction cycle.

// This MIT Media Laboratory project was sponsored by the Defense

// Advanced Research Projects Agency, Grant No. MOA972-99-1-0012. The
// content of the information does not necessarily reflect the

// position or the policy of the Government, and no official

// endorsement should be inferred // Set TMRO to roll over after a given number of tics. The

/) // +2 term accounts for a two cycle inhbit when TMRO is set.
) //
// For general public use. #define SET TMRO (tics) TMRO = (256+2- (tics)); INTCON.TOIF=0

// This distribution is approved by Walter Bender, Director of the

// Media Laboratory, MIT Permission to use, copy, or modify this // Set TMRO to roll over tics counts AFTER the previous roll over.

. . . Aft initial 11 to SET TMRO UPDATE TMRO
// software and its documentation for educational and research ““ to mMmMMdMSWOMWECMMnHD OnHEHm mHmwwm<OE can use — 0
// purposes only and without fee is hereby granted, provided that this X P . 9 9 . X
// copyright notice and the original authors' names appear on all #define UPDATE_TMRO(tics) TMRO += (256+2-(tics)); INTCON.TOIF=0
i d ti d tati . If individual fil .
// copies and supporting documentation individual ti.es are // Busy wait for the Timer 0 Interrupt Flag (TOIF). Assumes TMRO has

// separated from this distribution directory structure, this
// copyright notice must be included. For any other uses of this
// software, in original or modified form, including but not limited

// been set and that TOIF has been cleared by means of a previous call
// to SET TMRO () or UPDATE_TMRO () .

. ! . - . o - s //
// to distribution in whole or in part, specific prior permission must . .
. . def AWAIT TMRO hil !INTCON.TOIF
// be obtained from MIT. These programs shall not be used, rewritten, w\m 1ne - 0 while ()

// or adapted as the basis of a commercial software or hardware

// product without first obtaining appropriate licenses from MIT. MIT
// makes no representations about the suitability of this software for
// any purpose. It is provided "as is" without express or implied

// warranty.

// Bug catching version. It takes a few extra precious cycles, but
// jumps to damn() with the caller's PC if INTCON.TOIF was set when
// AWAIT TMRO () was first called.

// #define AWAIT TMRO() if (INTCON.TOIF) damn(); while (!INTCON.TOIF)
// int gloss;

1 " n
#include "procregs.h // void damn() { gLoss++; }

/] ==ss=s=ss=ssmses

// DISPATCH // make TMRO roll over delta tics sooner than scheduled

#define ADVANCE_TMRO (delta) TMRO += ((delta)+2)

// Efficient dispatch table. Takes 11 cycles (including goto...).

// Offset is clobbered Must be inside #asm context // make TMRO roll over delta tics later than scheduled

77 #define RETARD_TMRO (delta) TMRO -= ((delta)-2)
#define DISPATCH (offset) \
movplw jmptbl /* offset += low byte of jmptbl addr */ \ /) e em o mm—mm—mm——m——mm—mmm—m——mmm—mmmoe
addwf offset, f /* carry set if crossing page bounds */ \ \“ m%ﬁmwwmmwmw%mmemem \\
movphw jmptbl /* w = high byte of jmptbl addr */ \
btfsc STATUS.C /* if (carry was set in addwf) */ \ // shift srcBit into the LSB of dstByte
Eowmwwwowwdm “H wowmnﬂ Mlsp H“ N // equivalent to shift left (&dstByte, 1, srcBit)
#define SHIFT BIT LEFT(dstByte, srcBit) \
movE offset, w /* w = offset */ \ STATUS.C = SroBit: \
movwf PCL /* pcl = w */ \ . !

174

—

#asm

#e

RLF dstByte, F
ndasm

{3

— -

// shift srcbit into the MSB of dstByte

// equivalent to shift right (&dstByte, 1, srcBit

#define SHIFT BIT RIGHT (dstByte,

STATUS.C = srcBit;

#asm
RRF dstByte, F
#endasm
{1

//
// Using W for passing arguments
// direct access to W register,
// args to functions. eg:
// void wputc() {
// int ch;
// W_RECV (ch)
//
// }
//
//
// W_CALL_LIT (wputc, 'a')
#define W_PASS (arg)
#asm

movi arg, w
#endasm
#define W_PASSL (arg)
#asm

movlw arg
#endasm
#define W_RECV (arg)
#asm

movwf arg
#endasm
#define W_CALL (func, arg)
#asm

movEi arg,w
#endasm

func ()
#define W_CALL_LIT (func, arg)

#a

sm

movlw arg

#endasm

func ()

#endif

#1

ist

srcBit)

e —

useful for passing single

i

P —

P

175

	Abstract
	Contents
	List of Figures
	CHAPTER 1 A Network on Every Chip
	An unfulfilled promise
	Networking: the missing link
	Embedded Networking
	The domain of Embedded Networking
	Constraints imposed by the host
	Constraints imposed by the application
	Contributions of this thesis
	The promise, revisited
	What will happen?

	CHAPTER 2 Precedents in Wireless Networks
	Legacy systems
	Local Area Networks
	Wide Area Networks
	Other multi-hop protocols
	What’s missing?

	CHAPTER 3 Multi-hop Communications
	The virtues of whispering
	Single-hop and multi-hop: an idealized comparison
	Power savings
	Effects of non-uniform spacing
	Summary

	CHAPTER 4 GRAd: Gradient Routing for Ad Hoc Networks
	The challenge
	The GRAd algorithm
	Simulation and results of GRAd
	Proposed extensions to GRAd
	Summary

	CHAPTER 5 Distributed Synchronization
	Running the algorithm
	An example: synchronization for spread spectrum
	Summary

	CHAPTER 6 Statistical Medium Access
	Channel sharing
	Medium Access and Collision Avoidance
	A statistical approach
	Choosing p
	Likelihood of successful transmission
	Statistical Medium Access in multi-hop networks
	Misjudging N
	Summary

	CHAPTER 7 ArborNet: A Proof of Concept
	Motivation
	Hardware system
	Software system
	The ArborNet packet mechanism
	Data flow in ArborNet
	ARQ processing
	Timing services
	Field tests and results
	Topology tests
	Received packet error rates
	Goodput tests
	Distributed temperature sensing
	Battery power: trends and outliers
	Synchronization

	CHAPTER 8 Conclusions & Future Work
	Some lessons learned
	Unturned Stones
	Acknowledgements

	APPENDIX A References
	APPENDIX B ArborNet Host Code Listing
	APPENDIX C ArborNet "BART" Code Listing

