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Abstract:

As mathematical ideas from artificial intelligence become more accessible to implement on personal

computers and cloud based services, they enter the arsenal of tools for qualitatively innovative forms of

human expression. In the creative field of music composition, the initial use of artificial intelligence for

imitation will soon give way to new paradigms of companionship where the artificial intelligence systems

inspire and assist in the human creative process. This new era of artificial intelligence-driven musical

instruments is an opportunity for musicians at all levels of skill and technological prowess across

cultures. Accessibility of these early tools however has so far been limited to programmers and very

narrow musical domains with minimal control over personalizing the outputs produced.

This thesis proposes Living, Singing AI : an accessible and bespoke artificial intelligence composition

system that bridges the gap between non-programming musicians and modern generative algorithms. It

provides a framework to iteratively generate and shape sonic material using one’s voice as an input with

the following affordances - a simple non-programming interface, an egalitarian framework of multiple

large-scale music synthesis models for brainstorming, and a focus on each individual’s sonic ideas and

aesthetic preferences to create a personal, intelligent composition model. Using this tool, the composer

is able to use their voice to generate a wide range of novel sonic construction material using open source

music synthesis models with intentionality, and to shape a bespoke intelligent composition system.

Through peer workshops and application scenarios in practice we show the potential of democratizing

artificial intelligent music tools as a brainstorming system to provoke and direct serendipity - an

essential ingredient of creating music.
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Chapter 1

Introduction

“There is an idea, the basis of an internal structure, expanded and split into

different shapes or groups of sound constantly changing in shape,

direction, and speed, attracted and repulsed by various forces.

The form of the work is a consequence of this interaction”

- Edgard Varèse, (1939)

The word ‘Algorithm’ is derived from the concepts of algebra and arithmetic from mathematicians as

early as the 9th century AD from Arabic and Greek to Indian cultures [1]. Algorithmic Music has a

similarly long history in the pre-computing era from the ‘process’ works of George Brecht (Drip Music,

1962) [2], Stockhausen (Setz die Segel zur Sonn, 1970) [3], Xenakis (1971) [4] to the US League of

Automatic Composers (1978) [5], George Lewis (Voyager) [6], etc.

Artificial Intelligence (AI) algorithms are one of the most widely used and powerful technologies of the

twenty-first century so far. Though the exact definition of AI has constantly evolved [7] from the early

1950s of Alan Turing to current intelligent Deep Learning architectures like Alpha Go [8], an increase in

accessibility has led to a faster assimilation of a wide variety of AI algorithms into our culture. In the

creative fields, AI is being used to generate movie scripts (Ross Goodwin’s Spotlight [9]), cooking recipes

(IBM’s Chef Watson), poetry (http://botpoet.com/), visual art (Portrait of Edmond Belamy, that sold for

$432,500 [10]) etc. There is also a wave of mass generation of AI artwork using open access datasets and

open source codebases like the Generative Adversarial Networks (GANs) and their variations [11].

Such AI models for creative endeavors are currently in their infancy and almost exclusively follow the

pattern of imitating the dataset they are trained on. In the field of music-making, such models of

automated music generation are targeted towards mass generation of music content. This has led to a

lot of examples of generative music systems that produce music as a well defined optimization problem.

Bach chorales (Deep Bach [12]), Folk Music Modeling (Folk RNN [13]) etc. are some examples of such

highly constrained models that acquire representations of patterns that they are trained on.

Modeling music is a hard problem because of two main reasons:

(a) Semantic hierarchies are complex, subjective and work over multiple scales of time (in the

order of seconds to several minutes) [14];
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(b) Audio representations at the sampling rates of human hearing make the sequences to be

modelled really long, i.e. a typical 4-minute song at CD quality (44 kHz, 16-bit) has over 10

million timesteps.

A lot of progress has been made in the last five years in modeling music for generative systems in its

symbolic and waveform representations. Google’s Magenta (2016 - 2020), OpenAI’s MuseNet (2019) and

Jukebox (2020), Sony CSL’s Flow Machines (2012), Facebook AI Research’s Universal Music Translator

(2019) and Amazon’s Deep Composer (2019) are some of the efforts from big technology companies

utilizing massive resources such as large servers and big datasets. This year (2021) has also seen the

growth of academic discourse of AI in computational creativity contexts with editions of Machine

Learning for Creativity workshop at NeurIPS [15], the first editions of the Joint Conference in AI Music

Creativity [16] and the VPRO Eurovision Style AI Song Contests. [17]

Though there is a lot of interest among academicians and software developers in creating the next set of

creative tools using AI for music making, this has not been reflected in the assimilation of AI ideas by

musicians of today. Only a handful of musicians, limited to programmers, are using these code based

tools in their creative process, as shown by a report of the participation in the VPRO AI Song Contest

[18]. As a contrast, in the visual arts, RunwayML [19] is a non-programming environment that has

empowered a really large community of AI visual and text-based artists to prototype and realize their

ideas without the need for personal accelerated hardware and programming skills by making the

technology widely accessible.

Another limitation is the inability to steer and tweak the AI models for personalizing the output within

the frameworks available. Current methods are rigid and only allow a single mapping from input

parameters to generated music, with the architecture being fixed at the time of training. One potential

advantage of AI algorithms as against other computational music systems that follow a set of

instructions, is the ability to query higher vs lower probability regions of the representations built. This

allows for paradigms of switching between exploitation and exploration modes, a common problem

posed in reinforcement learning [20]. Steerable models of AI music systems can therefore be used to not

only personalize an interaction but also to explore less likely creative choices by the artists.

“If you have a computer that comes up with random combinations of musical

notes, a human being who has sufficient insight and time could well pick up an

idea or two. A gifted artist, on the other hand, might hear the same random

compilation and come away with a completely novel idea, one that sparks a totally

new form of composition,”

Margaret Boden

(2016, interview with IBM)
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1.1 Objectives

This Living, Singing AI system is designed with the following primary objectives:

● A brainstorming tool for composers to interact and query different kinds of AI models with just

voice.

Centered around an individual’s ideas and aesthetic preferences, the Living, Singing AI

system provides an egalitarian structure to iteratively interact with a collection of modern

AI models simultaneously with just the voice. This allows our system to be used without the

need for programming or accelerated hardware while enabling the individual to construct

novel sonic material generated from a unique vocalized query. This makes it accessible to all

kinds of musicians without limitations as to cultural, musical and technological background.

● A personalized and iteratively proliferating composition object (Organism).

Furthermore, the system allows the individual to shape the generated material creating a

personal, intelligent and evolving model unique to them. The system allows a musician to

create a personalized collection of this AI generated material unique to their vocalized input

with a collection of tools to select, order and reflect on the generated material that

iteratively grows. This bespoke composition object or Organism can consequently be used

to generate intelligent mutable compositions in both an individual and a collaborative

setting.

Figure 1.1: Overview of the Living, Singing AI system.
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1.2 Thesis Structure

This thesis comprises six chapters, including this Introduction.

Chapter 2 brings together the background and precedents for this body of work from generative music

composition to creative machine learning. In this chapter, we discuss the early adoption of modern AI

techniques and softwares in the visual arts and its limitations when applied to music composition. We

also survey modern AI Music generation softwares and publicly available technologies with a discussion

on the AI Song contest motivating the need for personalizable and accessible tools.

In Chapter 3, we describe a collection of early explorations centered around flexible inputs for generative

music systems - specifically voice as the key to making accessible, non-programming AI music

composition tools. We also demonstrate the function of a slow-creator, based on computationally slow

AI techniques for audio generation, as a bespoke brainstorming tool. These initial experiments lead to a

set of design criteria for AI composition systems that motivated the creation of Living, Singing AI.

In Chapter 4, we present the Living, Singing AI system, its philosophy, key design principles, and its

implementation as a brainstorming tool for generating sonic material from one’s voice. We describe the

underlying AI models, our adaptation to interacting with the voice in an egalitarian framework and the

system developed for personalizing the generated sonic material.

In Chapter 5, we discuss a qualitative and quantitative evaluation of the control and range of outputs

offered by our brainstorming composition system supported with audio examples from a series of sound

collection experiments and informal user studies.

This thesis concludes in Chapter 6 with a reflection on the work presented and a discussion of future

directions for developing AI music generation software centered around the creative goals of the

individual composer.
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Chapter 2

Background and Precedents

“With the aid of electronic computers, the composer becomes a sort of pilot:
He presses buttons, introduces coordinates and supervises the controls of a

cosmic vessel sailing in the space of sound, across sonic constellations and galaxies
that he could formerly glimpse only in a distant dream”

- Iannis Xenakis, Formalized Music (1992)

2.1 Algorithms in Music Composition

Ideas about what we now call algorithms - essentially, a finite sequence or structure of instructions -

originated as early as 900 AD [1]. Algorithmic ways of thinking have allowed composers to work with

abstractions of musical concepts in both written and programmed sets of instructions.

At one extreme, algorithms were treated like musical notations to work with and adapt as vehicles for

the composer’s creativity - like works from Wolff, Glass, Stockhausen, Hiller, Ligeti, Xenakis and beyond.

Algorithmic instructions were sequenced and stacked just like musical notations on a composer’s staff.

Process works were constructed from either a precise or vague description both for note-based and

sound-based musics [21]. The term Process Music was coined by composer Steve Reich in his manifesto

entitled “Music as a gradual process” (1968), where he defined it as not the process of composing but

rather as pieces of music that are themselves processes.

Figure 2.1: Score from George Brecht’s process work - ‘Drip Music’ (1962)
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In the early 1960s, Stockhausen created a series of instrumental works as process compositions -

Prozession (1967), Kurzwellen (1968), Spiral (1968) to name a few. While these process compositions

defined sound events that were feasible, performable and had a definite termination, some algorithmic

compositions were unbounded by these constraints. John Cage’s ASLSP (As Slow as Possible) (1985),

originally written for piano and then organ, could theoretically stretch to infinity as the score doesn’t

specify a tempo, and is intended to play as slowly and as softly as possible in a performance as ‘a

correspondence between space and time’ [22]. A current rendition of the piece at St. Burchardi church

in Halberstadt, Germany began in 2001 and is expected to have a duration of 639 years ending in 2640.

[23]. In the late 1940s and 50s a radical departure from traditional acoustical instrumentation paved the

way for Acousmatic Music, a form of electroacoustic music that often existed solely in fixed media audio

recordings rather than in live performances. Xenakis was a central figure in bringing algorithmic

processes to an electro-acoustic sound-based music. He shared his rigorous and metaphoric expositions

in his book Formalized Music (1971) [4]. Adopting the affordances of electronic technologies into music

composition also allowed for pioneers like Daphne Oram [24] to create new instruments and techniques:

Oramics - drawing waveforms on glass slides and film strips - was the forerunner to modern sequencing

and digital audio workstations (Figure 2.2).

Figure 2.2: (a) Daphne Oram’s glass waveform slides (1957), (b) Xenakis’ graphic score for Pithoprakta

(bars 52-60) (1957).

At the other extreme, algorithms have been claimed to be independently intelligent, and in the form of

computational agents deemed to be creative [25]. The US League of Automatic Composers (1978-83)

and its outgrowth, the network ensemble The Hub [26], was an early example of a shared partnership

between agents. Each networked computer shared either sonic material or musical processes interacting

with each other, letting the network play with or without outside human intervention. Trombone

improviser and composer George Lewis’ Voyager (1980s) was an improvisational software acting as a

partner to a human improviser. The Voyager software ‘listens’ via a microphone to Lewis’ trombone

improvisation and generates a complex response with decisions about melody, harmony, rhythm and

silence. [27]

Another example of embodied algorithmic music is Hatsune Miku (2007), the Japanese anthropomorphic

pop star that uses the Vocaloid singing voice synthesis algorithms [28] from Yamaha. In 2020, the giant

talent agency CAA signed Lil Miquela, one of TIME magazine’s 25 most influential people on the internet

as well as being a fictional computer-generated digital musician, not a real person.
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These historic examples show that algorithmic music can perform diverse social functions from a passive

tool for generating, structuring and performing old and new paradigms of music to an active agent as an

instrument, partner or even the main performer.

Algorithms in principle can contribute to all stages of music making, what historically has been a highly

differentiated series of activities: composition, performance, improvisation, spatialization, recording,

editing, mixing and mastering.

2.1.1 Generative Composition Tools

Musikalisches Wurfelspiel [29] (German for dice music) is one of the earliest examples of a tool to aid in

music composition. In the mid 1700s, composers could roll dice to pick bars of music from a table, socket

them into tile-based rows and create complete forms of music.

Figure 2.3: Musikalisches Wurfelspiel (1757) 1st edition proposed

This popular music making game was accessible to amateurs and all results would be permutations of

smaller units of pre-written music. It was an extension of similar composition ideas from C. P. E. Bach's

Einfall, einen doppelten Contrapunct in der Octave von sechs Tacten zu machen, ohne die Regeln davon

zu wissen (German for "A method for making six bars of double counterpoint at the octave without

knowing the rules") (1758). Automated techniques (e.g. through randomness) have been used, for

example, by Mozart in “Dice Music,” by Cage in “Reunion,” and by Messiaen in “Mode de valeurs et

d'intensités.” The created compositions via such algorithms still needed to be performed on an

instrument in order to auralize the music and judge the quality of one’s creations.

Following early digital synthesis techniques, Will Harvey’s Music Construction Set (1983) took the same

ideas of jigsaw-style sequencing to individual notes. This paved the way for a style of music composition

systems that allowed one to sequence individual notes to generate longer pieces. Mario-Paint composer

(1992), Hyperscore (2002; 2021) and Google Song Maker (2018), shown in Figure 2.4, are a collection of

music composition systems demonstrating the popularity and continued relevance of such composition

softwares. This allowed for a wider variety of musical outputs, though still constrained by fixing a
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pre-defined key, tempo or harmonic vocabulary, to keep the outputs within a safe musical space of

possibilities. These were therefore intentionally intended for amateur composers.

Figure 2.4: Music Construction Set, 1984 (top-left), Mario Paint composer (1992), (top-right), Google

Song Maker,  (bottom-left) and Hyperscore, 2002/2021 (bottom-right).

Generative composition systems like these capture representations of music through a rule-based

system. Lejaren Hiller and Leonard Isaacson’s Illiac Suite for String Quartet (1957) [30] is the earliest

example of such a rule based generative system credited as the first work completely written by artificial

intelligence. This system used various stochastic models building markov chains for simple diatonic

melodies and fixed rules to generate four voice harmony on a 1952, ILLIAC-I computer.

Experiments in Musical Intelligence (EMI) in 1980 by David Cope also used the strategy of recombining

instructions captured as a representation of classical style composers like Bach, Beethoven, Chopin etc.

David Cope described his initial experiments as uninteresting and unsatisfying but he recognized and

demonstrated the potential of algorithms as tools to realize very human ideas.
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“The works have delighted, angered, provoked, and terrified those who have

heard them. I do not believe that the composers and audiences of the future

will have the same reactions. Ultimately, the computer is just a tool with

which we extend our minds. The music our algorithms compose are just as

much ours as the music created by the greatest of our personal human

inspirations”  - David Cope on EMI [31]

It builds a simple grammar where repeated musical patterns observed in an input dataset are stored in a

dictionary, followed by recombinations producing variations [32]. David Cope’s work can be considered a

kind of algorithmic pastiche - an imitation of a certain style or period.

The newer sounds of electronic music, both hardware (modular synthesizers) and new synthesis

techniques (FM synthesis, 1974, Granular synthesis, 1971) did not have a precedent of a past canon of

styles to imitate. It allowed for extended experimentation of the affordances of such Generative Systems.

The word ‘generative music’ was popularized by electronic musician Brian Eno through his experiments

of infinitely running, non-repeating ambient work. By repeating tape loop cycles of different lengths,

Brian Eno created his long form generative systems like Ambient 1: Music for Airports (1978).

“From now on there are three alternatives: live music, recorded music and

generative music. Generative music enjoys some of the benefits of both its

ancestors. Like live music, it is always different. Like recorded music, it is free

of time-and-place limitations — you can hear it when you want and where

you want.” — From “Generative Music” in A Year With Swollen Appendices by

Brian Eno (1996)

Newer representations of music built through Variational Autoencoders (VAE), Recurrent Neural

Networks (RNN) and also Transformer models (Introduced in detail in Section 2.3) have now been used

to demonstrate the same kinds of early generative music systems - (a) imitating a specific domain style

and (b) infinitely permuting on a fixed musical vocabulary. These also suffer from similar limitations of

producing a narrow range of similar sounding outputs and giving minimal control for personalization.

These are therefore best used as short musical games for amateurs.
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Figure 2.5: Neural Drum Machine - DrumsRNN (top left), Sornting - Music VAE-based web game

(bottom-left), Tenori-Off - ImprovRNN sequencer (right) - implemented as browser applications.

There are now many programming languages and environments designed specifically for the expression

of algorithmic music, with the classic Music-N (CSound), Lisp (SuperCollider) and Patcher languages

(Max/MSP, PureData) joined by Gibber, Sonic Pi, Tidal Cycles, ORCA and many more. Though limited to

composers with programming skills and a hacking aesthetic, a culture of composing and even performing

live with algorithms has emerged centered around creators. Some of these communities like TOPLAP,

Live Algorithms in Music Group and NowNetArts are paving the way for a new generation of algorithmic

composers across the world.

Figure 2.6: Alex Mclean, creator of the programming language Tidal Cycles performing at an Algorave

10



A general approach for such algorithmic composers involves presenting the algorithm as an instrument

with a focus on performance. Performers write sequential lines of code in an esoteric programming

language that generates music in real-time. The coding performance is projected onto a larger screen for

the audience as a way to share the intent of the performer [33].

2.1.2 Interactive Compositions

Algorithms in music compositions can also be used to create a reactive composition, which responds to

environmental input or an interactive composition, which listeners interact with directly to influence the

music. Many forms of procedural music have been widely used in video game music [34], which is

influenced indirectly by a state of the gameplay and actions of the player.

Björk’s 2011 album Biophilia [35] explored the concept of a mutable composition for intentional

participation by the listener in the form of mini-game applications. Each song was accompanied by a

mobile app that allowed interactions with the main melodies, song sections etc., changing the

composition into a few pre-determined forms.

Figure 2.7: Biophilia 2011 - Björk’s album accompanied by a suite of mobile apps for interacting with

each song.

More recently in 2021, Google released a viral interactive four voice composition system called the Blob

Opera. Dragging the blobs up and down changes the pitch of one of the voices while the others

harmonize using a Convolution Neural Network (CNN) to generate the voice waveforms. It allows you to

step through an existing classical opera composition. Though it doesn’t allow you to make your own

compositions, a simple control resulting in a complicated human singing voice aided its popularity. In the

past most generative games used really simple sound sources like MIDI piano.
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Figure 2.8: Google’s Blob Opera, Screenshot from the browser application.

(https://gacembed.withgoogle.com/blob-opera#/)

The Magenta project by Google, started in 2016 as an open-source development of machine learning as

a tool in the creative process. An example, created by Magenta, of an AI composition being generated on

the fly with inputs from listeners was the Lo-Fi player (Sept 2020) which used their open sourced

MusicVAE and MelodyRNN models, both lightweight generative models that generate multi track MIDI

sequences. One could interact with a live streaming version of the system by entering commands in the

chat like ‘change the melody’ or ‘change instrument’. This implements a very simple resampling of a new

random melody from the model. Similar to Blob Opera, this system does not allow an individual to

personalize the output but provides a small sense of control.

Figure 2.9: Lo-Fi Player from Magenta implemented as a Youtube livestream taking inputs from live chat.

These examples, though limited, show the potential affordances for AI music compositions as morphable

and interactive both from the perspective of the composer’s choices and the active listener’s

preferences.
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2.2 Creative Machine Learning

The ability of Generative Artificial Intelligence algorithms to capture a latent representation of the

dataset that it is trained on has enabled a few new paradigms for what it means to be an AI artist. This

can be observed in the creative machine learning community especially in text and visual arts that have

been early adopters of this technology.

2.2.1 Latent Space Explorer Artist

Ian Goodfellow in 2014 created the Generative Adversarial Network (GAN) [36] architecture that

generates synthetic data from a latent representation of a training dataset using two competing neural

networks models - a discriminator and a generator in a zero sum game. Though the architecture and its

many variants can be trained on any customized dataset, models trained on standard large image

datasets (example ImageNET) have become popular. Since training such models on completely new

dataset requires a lot of GPU computational resources, artists have been exploring the freely available

pre-trained models. Artist Mario Klingemann demonstrates a novel approach to exploring these latent

spaces like a cartographer, creating journeys through the latent space as a new form of exploratory art.

Figure 2.10: AI Artist Mario Klingemann’s twitter (dated 15th Nov 2018). Describes latent space

exploration as map making.

2.2.2 Prompt Creator Artist

Models that connect text prompts as a way of querying the latent representations like the transformer

models in the case of GPT-3 (a language transformer model), CLIP, DALL-E (OpenAI’s text to image

representations), all demonstrate a new skill of designing the perfect queries. This has resulted in an

opportunity to be creative with text prompts. The text prompt is converted into a sequence of tokens
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that uniquely sample a point in the underlying representations, thereby acting as a hook into the latent

space.

Here is an example of a wide range of creative prompts and results from the CLIP + VQVAE models

connecting text and images, proposed in Jan 2021. [37].

Figure 2.11: Abraham-AI a visual arts generating Decentralized Autonomous Organization (DAO) with

examples produced by creative human prompts. ​​https://abraham.ai/create (accessed Aug 10, 2021)

The limitation of being able to interact with a generative model only through such prompt queries has

been found to reveal biases in the models [38]. OpenAI’s DALL-E model revealed that adding “...unreal

engine” at the end of a prompt resulted in more polished 3D render style results since the examples in

the training set had a strong correlation with those labels. Unreal Engine is a game development engine

which renders high quality images. This effect of engineering the prompt for better outputs is also

popularly being referred to as the “unreal engine trick.”

2.2.3 Curating Dataset Artist:

Another new form of AI art aesthetic is when an artist uses commonly available AI models but trains it

on personal and thematically curated datasets. The artist collects a dataset of images or text examples
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from a narrow theme such that patterns in the data are consistent and therefore easy to capture as

latent representations. Here we show examples of - Harshit Agarwal (2018) (Figure 2.12), who uses a

curated dataset of images of human surgical dissections to create novel machine generated dissection

images and Memo Akten, who uses a self collected dataset of cloud photographs.

Figure 2.12: (top) Harshit Agarwal’s The Anatomy Lesson of Dr. Algorithm (2018), generative art from a

curated dataset of 60,000 images of human surgical dissections. (bottom) Memo Akten’s Learning to See:

Gloomy Day (2017), generative art from a dataset of clouds.

2.2.4 Accessibility of AI Creative Tools

This early adoption and experimentation of AI ideas in the visual media can be attributed to several

reasons, an important one being accessibility to the tools.

Apart from open-source code shared through Github, pre-trained models have been made available

through ventures like Hugging Face that host massive transformer models. (Examples include DALL-E

mini, GPT etc.). Browser-based and standalone software tools for interacting with the models without

the need to write code allows non-programming visual artists to quickly engage with newly released AI

models.

RunwayML is one such platform created in 2018 to democratize and share models amongst the AI artist

community without the barrier of programming skills. Simple drag-and-drop interfaces enable quick
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prototyping. It also takes advantage of cloud based GPU services that do not require expensive

computational hardware requirements from the users.

An ecosystem of accessible software, shareable models, online MOOCs [39] on creative machine

learning, and a growing marketplace through dedicated AI art galleries [40], museums and Non-fungible

token (NFT) platforms [41] suggests the undeniable growing impact of an evolving AI art community in

the current decade.

“Because these systems are so complex, you cannot really say, ‘Okay, I

change this number and that thing will work. It’s really turning knobs

here and turning knobs there — maybe like with analog synthesizers or

cooking. You learn by experience that it probably goes in this direction

but then there could always be something really strange happening

around the corner. And of course that’s what you’re hoping for … that

you end up in a space that you didn’t even know was there.”

Mario Klingemann, AI Artist [42]

Mario Klingemann’s quoted experience and excitement of exploring this new form of AI art directly

reflects Xenakis’ comments, quoted at the beginning of the chapter, about being an explorer pilot of a

cosmic vessel pressing buttons and turning knobs.

So far we have seen examples of these buttons and knobs, or more generally, inputs to AI Music

generation systems situating at two extremes:

(a) Very High level - Limited input control - choosing a mood, genre, key, tempo, etc.

(b) Very Low level - Software frameworks that have to be programmed / hacked by the artist

themselves from the ground up.

2.3 Artificial Intelligence in Music: Overview

2.3.1 Timeline of AI Music Entities

In the last few years, development of synthesis techniques for audio and modeling music have led to a

surge of interest and activity from small start ups, individual technology-artists and also bigger

technology companies like Google, OpenAI and Facebook. Some of these key events in the timeline have

been summarized in Figure 2.13.
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Figure 2.13: AI Music industry timeline, (blue marks businesses, red marks artists)

This timeline was compiled from multiple reports by music:)ally a global music technology consulting

group [43] that produces editorial insights and market research reports covering the changing music

industry. We can observe that most startups like Amper, Melodrive etc. have focussed on targeting AI

music making towards brands, enterprises and video game industry for quick scalability rather than for

individual creators. We also notice a few companies collaborating with artists but most notable artists

18



have worked independently programming their own AI music models and systems. While artists like

Taryn Southern, YACHT, Flaming Lips have collaborated with companies to adapt an existing AI software

for a minimal role in the composition process; more interesting aesthetic results were obtained when

artists curated their own datasets and built their own models.

Artist collective Dadabots went with the approach that the ‘AI algorithm is the composition’ [44] by

training a Sample RNN model on death metal music generating a non-stop stream directly to YouTube.

Artist Holly Herndon on the other hand, trained voice models on a vocal ensemble and her own voice for

her album PROTO. Her voice clone model called SPAWN was considered an equal partner in the album

creation process and the generated sonic material was carefully curated and produced for each song by

the human partners to create the finished album. The model is a variation of the SampleRNN

architecture similar to Dadabots, but is trained on studio sessions of Holly’s voice samples recorded to

create a novel dataset. Holly has also been experimenting with creating a decentralized autonomous

organization (DAO) for her voice clone model (Holly+) that can be used by other creators to create music

with and further sell. [45]

It is clear from these examples that AI algorithms for music generation can push the culture of music

composition, ownership and consumption but only when accessible to a diverse group of individual

music makers. Each individual brings a unique set of creative perspectives and aesthetic preferences

informed by their cultural background. Without this diversity, AI music would be boxed into narrow

definitions of style, genre and function defined by the select few who have access to it.

“When the computer is doing lot of the heavy lifting for us, it’s really

allowing us to be more human together”

- Holly Herndon

AI music artist [46],

(2019) interview for New York magazine’s Future issue

2.3.2 Timeline of Generative AI Music Software

A. Early Methods:

Historically, music has been considered at a symbolic level, where symbolic information like pitch,

duration, loudness levels and MIDI specifications are the result of choices made by a composer. This

originates from a formalism of music as a system of sounds, intervals and rhythms that dates back to

Pythagoras, Ptolemy and Plato, who considered music as inseparable from numbers. Automated

composition systems naturally modeled music as such discrete symbols but were also capable of

modelling analog and discretely sampled representations of continuous sound.

Computer-generated automated compositions can be categorized into four main methods:
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Stochastic Methods:

This describes systems which use sequences of jointly distributed random variables to

control specific decisions. Markov chains were a very popular method in the early years

of algorithmic composition [47] because of their low complexity. Though such Markov

chains were limited in capturing just local statistical similarities, it is still widely used for

specialized tasks like jazz chord progressions [48], musical transitions between melodic

sequences [49] and even by Pachet, et al [50] for their real-time melody generation and

the Continuator (2002) [51], a machine listening interactive system.

Rule based Methods:

This comprises systems which use a strict grammar and a set of rules to control

decisions. One of the earliest automated compositions, Illiac Suite (1958) [30] was

generated using such rule systems. In broad terms, a grammar in this context may be

defined as a set of rules to expand high-level symbols into a more detailed sequence of

symbols representing elements of formal languages [52]. David Cope’s “Experiments in

Musical Intelligence” system [53] is also an example which learns the style of a composer

given a certain number of pieces by storing repeated patterns in a dictionary and

building a grammar with rules on re-combining the stored patterns. Rule-based systems

like learning decision trees are also easier to interpret semantically meaningful.

Evolutionary Methods:

Evolutionary methods are population based meta heuristic optimization algorithms, so

in the case of music a population of musical fragments are computationally selected,

recombined and mutated with a fitness function. This set of algorithms was also

popularly used for generative music systems like Al Biles’ GenJam system for jazz solos

(1993) [54], Rodney Waschka II Gen Dash [55], Horowitz [56] on genetic algorithms for

rhythm and also the EuroGP Song Contest in 2004 [57]. Santos et al. [58] provides a

survey of popular trends in evolutionary methods for computer-generated music

systems.

Artificial Intelligence Methods:

This is the category of systems that capture their own rules in supervised, unsupervised

or reinforced methods in essence to “learn.” A few early examples are Ebcioglu (1988)

CHORAL [59], a backtracking expert system for the harmonization of chorales in the style

of J.S.Bach, Todd’s (1989) [60] feed-forward neural network for melody generation and

Toiviainen’s (1995) [61] neural network for Jazz improvisation. Toiviainen [62] identified

the limitation of those simple neural network models that failed at capturing high level

features of music related to phrasing or tonal functions.
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This is the approach most significant to our work and some of the more modern

approaches are described in greater detail here.

B. Data driven methods:

As opposed to hand-crafted methods like the rule-based and grammar-based techniques mentioned

earlier, machine learning and specifically deep learning (DL) methods that involve a training step on

datasets have a form of generality. The method itself is agnostic to the corpus of data used to train the

models and could theoretically be used on any collection (style / genre) of music. As stated in Fiebrink

and Caramiaux [63] some benefits of such data driven models are:

(i) they can make creation feasible when the desired application is too complex to be described

by analytical formulations or manual brute force design; and

(ii) learning algorithms are often less brittle than manually designed rule sets and learned rules

are more likely to generalize accurately to new contexts in which inputs may change.

For such data-driven methods that rely on large collections of music data, an important problem is

curation of the datasets. Since music is often a commodity unlike texts and images which are available

under free licenses to be scraped from the web, collecting such datasets is an important challenge.

C. Datasets (openly available):

One way this challenge has been tackled in academic contexts is by creating a shareable form of

metadata for the musical information rather than audio content itself. This metadata represents

extracted signal characteristics from which the audio signal cannot be reconstructed. Million Song

Dataset [64] and AcousticBrainz [65] are such metadata collections of extracted audio content features

from music. Free Music Archive [66] and Freesound [67] are examples of royalty free crowd contributed

audio collections.

While it is important for the academic community to build better models by cross validation over

commonly shared music datasets, the goals from a creative motivation are different. Often composers

wish to curate their own sound collections and create models that are not built on a past canon of work

directly when not creating pastiche art. This further motivates the need for making models that are

personalizable.
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D. Popular Open-Sourced Models:

Here is a timeline of open-sourced methods, models and a few softwares APIs that are available in the

public domain (2016 onwards):

Figure 2.14: Open source AI Music Software timeline.
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Since most deployed AI music services are built for enterprises with the goal of fast and frequent music

generation, the focus is not on the interests of individual composers. The tools are often very limited in

the ways they can be customized. This limitation was highlighted in the first ever AI Song Contest [17]

and its accompanying Joint conference in AI Music Creativity [16]. The AI Song Contest was the first time

a panel with a common evaluation strategy was used to invite artists and engineers to create AI Music

with the focus on the music rather than the technology. The context for the competition was limited to

Eurovision-style pop music with a provided dataset of past Eurovision winning songs. In the next section

we point out a quick summary of the events in its last two editions and the observed limitations of

current AI Music tools found in practice.

2.4 AI Song Contest

In 2020, the first ever AI Song contest was organized by Dutch public broadcaster VPRO with 13

participants. Its limitation of participation from only Eurovision countries was dropped in the next

edition in 2021, which had 38 participating teams spread across the world including from the U.S., Nepal,

South Korea, etc.

The competition loosely defined what role AI had to play in the process of the song intentionally

encouraging multiple paradigms of partnership, authorship and musicianship that are challenged and

extended in the context of AI. Here is a description of the paradigms and AI technologies used by the

teams reported in Huang, et al [68].

Figure 2.15: Team numbers of each of the 13 participating teams and the AI-human partnership

paradigm used for each independent component of the song indicated. Figure referenced from [68].
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We observe that text-based AI for generating lyrics was the easiest to implement and consequently most

common across all participating teams. Symbolic music modeling for generating melodic, bassline and

drum sequences was the next most popular. Google’s Magenta in 2019 had provided some of their RNN

models, such as Electron and MAX MSP Plugins, which greatly impacted their popularity in this contest.

This ease of use and familiarity of plugin environments in Ableton was observed by its popularity as an

accessible technology amongst participating teams.

2.4.1 Common Strategies for the AI Song Contest

● Generate and Select: A common approach was to use models to generate a large volume of

samples and sequences to choose from. This would be followed by a human curation step for

handpicking the most appealing.

● Generate Vocabulary not Structure: Most models had the capability to generate short segments

of samples and sequences rather than long-term hierarchies. Longer structural ideas like song

structure, themes etc. were performed without the aid of AI tools.

● Active co-creation: Though less common, some teams co-created with the AI models, where the

model outputs influenced human composing followed by a second stage of model generation

with more refined parameters. Models were not inherently designed to incorporate iterative

exploration. Such a strategy seemed natural to the way human musicians would collaborate with

each other.

● Inspiration: Generated material from the AI models worked very well as inspiration for

identifying themes and motifs by human musicians. An example of this methodology was one

approach where Sample RNN was used to generate babbling human singing voice samples as a

first step. This was followed by a singer identifying sections and phrases of their liking and then

re-recording human singing renditions of the same.

2.4.2 Limitations

Unlike in previous cases where musicians built their own models and worked with AI architectures from

the ground up with a creative goal in mind, this year’s competition saw composers trying to be creative

with existing techniques and tools. Some of the limitations of the existing models when approached

from the perspective of the composer were apparent, such as:

● Low aesthetic quality:

Many models simplify the audio data stream by downsampling the standard 44KHz/44.1KHz to

8KHz/16KHz as a pre-processing step. This is done to help the model capture longer time

representations. Other models that work as filters on spectrograms also disregard the phase

information and use a downsampled magnitude spectrum. These methods help make the

computations practical but sacrifice the quality of audio produced. Downsampling artifacts,
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phase coherence artifacts, in addition to lack of longer time consistencies produce outputs that

are generally lower in quality than regular digital synthesis methods. This results in a low

aesthetic quality of sounds created by AI algorithms.

● Not directly steerable:

While some models work with a priming MIDI sequence to create harmony, continuations and

extrapolations for, most models give very few controls to steer the model. The architecture is

designed in a traditional Machine Learning method of passing parameters to obtain an output.

Iterating requires restarting the algorithm with different parameters. While some popular AI

tools like AIVA, offer even fewer parameters to control, like a fixed key, tempo, mood and genre.

Trading control for powerful generalized mapping is not ideal in the creative task of composition.

The provided controls are very limiting and do now allow for personalizable outputs.

● No contextual and structural knowledge:

Unlike human collaborators, AI algorithms do not have a context of the instrumentation, cultural

background and even larger goals of the human composer. Each generated material from these

algorithms is isolated and out of context. Of course this leaves the task of creating context with

the human, but the lack of constraining the system by context creates a needle-in-the-haystack

problem.

● Training data bias:

If the datasets of the models are trained on music of a certain style, aesthetic or musical domain,

the model assumes all inputs to fall in that category. This fails when the domain constraints don’t

match that of the input.

● Evaluation limitations:

While the AI song contest used a two part expert panel and audience voting to select a winner,

evaluating the role of AI as a successful tool for the composer was not evaluated. Comparing

multiple AI algorithms and methodologies in the workflow of a composer is lacking.

● Plagiarism:

A few teams created plagiarism checks to identify if material produced from the AI models was

plagiarised from the training set. This is a broader copyright issue, highlighted in Section 6 of this

thesis. AI algorithms might even be helpful in identifying certain kinds of plagiarism in the future.

Rebecca Fiebrink et al [69] produced a collaborative study interviewing 7 composers who were invited to

use Wekinator [70], a real time interactive Machine Learning tool for creating mapped interfaces, and

found the principles that composers valued. Here is a selection of the principles reported by composers

from the study that are reflective in the context of the AI Song contest.
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“Providing access to surprise and discovery.”

“Balancing discovery with control and constraint”

“An invitation to play”

“Attention to accessibility in a creative paradigm”

While there were many limitations faced by composers in trying to use existing AI technology, it also

provided many opportunities challenging humans in the loop to be creative in directions they ordinarily

wouldn’t have. Certain samples originating from the AI models became the main themes which were

expanded upon by human performances and re-interpretations in the submissions. Bill Buxton [71]

describes a “flare and focus” cycle of ideating, exploring those ideas, selecting ideas and iterating as the

central aspect of a creative process. Different stages of the creative process involve a balance between

exploration and exploitation strategies. The AI models offered more as undirected exploration tools than

as exploitation tools in their current state.

Model tuning as Performance:

Traditional generative AI models capture representations from the training data into a latent space which

can be sampled randomly. The latent space might be discrete (like autoencoders) or continuous (like

variational autoencoders). Sampling from such latent spaces is often similar to looking up in a dictionary

of possibilities. A more flexible way of querying the model and sampling would allow an individual to

take up a more performative role. This would be more akin to treating the algorithm as an instrument.

Even when algorithms are slow to sample and therefore cannot be treated as a classical realtime

instrument, they would allow a form of slow creation akin to early music creation by Max Matthews [72]

using punch cards on an IBM mainframe.

2.5 Voice as Input

Using our voice and language through speech is a common way we interact with technology today. Early

voice-to-text systems were only available as a dictation tool (Dragon Dictate 1990 [73]) but are now

ubiquitous in the age of the Internet Of Things (IoT). In her panel talk at CHI 2017 [74], Pattie Maes

observes that human computer interactions have a trend towards shifting from being more mechanical

interactions like punch cards etc. to more human interactions like language, voice, touch etc. Our devices

become a more seamless extension of ourselves that augment and assist in our intended activities. This

could also be reflected in the way we interface with our AI Music Algorithms through sound, music and

voice rather than lines of programming and creating machine readable prompts.

In our system, voice is used as an input to generate sonic material which is acoustically related to the

input. In other words the input is treated as non-verbal sound with acoustic properties like loudness,

pitch, harmonic, percussive information, transient onsets etc.
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2.5.1 Query by Humming:

Using the voice as a way to extract pitch information was first introduced as a type of Music Information

Retrieval question. In its very first version [75], a vocalized query of a hummed melody was used to

retrieve a matching song from a library. This medium of interacting with technology using our voice was

intuitive and quickly became a standardized annual challenge at the Music Information Retrieval

Exchange (MIREX) from 2006 onwards with a large body of research. Query by humming techniques have

since been implemented in audio search on mobile devices by Soundhound and Midomi (2005) and

more recently on Google Search (launched in 2020) as “hum to search”.

Query by Vocalization (QBV) systems use vocal mimicry, typically non-speech utterances intended as a

direct acoustic representation of a melodic contour. Such non-speech vocalizations also span a wide

range of intent. Cowen et. al [76] show the capacity of short vocalized bursts visualized by their acoustic

representations covering a range of 24 emotional intents. In musical contexts, non-verbal vocal mimicry

is an ancient art form used in theater and foleying. “Imitation of Birds” is one of the earliest known

physical recordings of vocal mimicry from Chennai, India in the early 1900s [77] where a vocal mimicry

artist dramatizes a scene from the city - birds chirping, imitation of a passing train.

Figure 2.16: Cowen et. al. [76] demonstrate 24 emotions mapped from short Vocalized queries (QBV)

The voice and vocalized non verbal utterances have been used as control inputs by a few different kinds

of interfaces for musical expression like music therapy [78], Vocal Tangible Interfaces [79] and interactive

tactile vibrations through Vocal Vibrations [80]. HumTap [81] - a popular mobile-based composition

game, allows amateurs to hum melodies that are converted into preset musical structures. Vochlea [82]

on the other hand is a hardware interface that acts as a voice to MIDI controller in a microphone form.

The demonstrated range of non-verbal vocalized utterances and the power of ‘voice’ as a form of input

control in different contexts motivates a similar way of flexibly interacting with modern generative AI

algorithms.
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Chapter 3

Initial Explorations

“It’s possible that our grandchildren will look at us in wonder and say, ‘You
mean you used to listen to exactly the same thing over and over again?’”

- Brain Eno
(Notes on Generative Music, 1997)

In this section we explore a selection of previous projects that helped to motivate the broad design goals

of the Living, Singing AI system and also develop specific techniques and methodologies for the

proposed AI musical composition system. For each project, we first describe the concept followed by the

implementation of the system. Finally we provide an analysis of the challenges, learnings and targeted

directions we incorporated into the design of our system. At the end we summarize the key learnings

and ways in which they connect to the primary work.

3.1 Flexible Inputs Experiment:

Listen to the Listener:

In the previous Section we have seen examples of generative music systems that are both - a static

sequence of pre-determined instructions (Brian Eno’s Ambient Music) and also interactive algorithms,

responsive to inputs from the human performer or collaborator (Bjork’s Biophillia mobile game version).

Our analysis of the AI Music startups from the recent past shows a trend towards enterprise services that

provide generated algorithmic music as a passive background activity for relaxation, games or

advertising. On the other hand, generative musical games like those from Brian Eno and Peter Chilvers

[83] do allow a listener to actively interact with the composition but through very limited button presses

or simple in-game-actions.

In this experiment, we were interested in exploring a dynamic generative music system that can be

controlled by an extremely flexible input stream - movement. The micro and macro movements of a
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listener as they listened to a generative music system were measured and the frequency and intensity of

these movements were used to trigger and control different sections of the composition.

Micro-movement refers to gentle and small ranges of motions occurring for short periods of time.

Macro-movements refers to the larger ranges of motion that in the context of music listening were often

periodic indicating - head nodding, head bopping, swinging, singing along and even in some cases

dancing.

Figure 3.1: Listen to the Listener: Attentive Generative music system that responds to listener movement

Implementation:

A browser based application was created with the front end developed using P5js and a generative

composition system in ToneJS. Different sections of the composition could be procedurally triggered and

controlled based on the macro and micro movement measurements from the video stream. The camera

input was used to detect macro and micro-movements as continuously monitored variables. Periodicity

detected in the micro and macro-movements would trigger section changes in the composition.

A study was conducted with 15 participants listening to both a static version of the music and our

reactive generative music system as alternating control and test groups. A self-reported survey helped

identify the moments when the participants were attentive to a change in the music and their

corresponding movements indicating attention.

Analysis:

Camera input and the derived movement is a flexible form of input analogous to microphone input and

voice, described as an input method in the previous section. Such streams of input data as a

multi-dimensional continuous variable may contain information, both expected and unexpected by the
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system. In the context of this experiment and the accompanying participant study, we identified the

different types of micro and macro movements to indicate musical engagement.

The generative music system was unable to handle certain unexpected behavior in the camera input, for

example - sudden adjustment of sitting posture, or walking out of the frame. These limitations of the

systems were great insights into the capacity of flexible input methods to capture surprising behavior.

This experiment was an example of a Generative music system that procedurally composed music with

movement as an input to the system.

3.2 Slow Creator Experiment

Artificial FM

One of the main limitations of AI music software, discussed in the previous section, is their severely

limited high level controls and inability to produce a wide range of outputs. Most AI music softwares like

- JukeDeck, AIVA and Amper Music [41] produce symbolic musical sequences in very few styles

(cinematic, folk, pop) with a selection of the key, tempo and length of the music as the only controls.

Jukebox [84] by OpenAI provided a large VQ-VAE (vector quantized variational autoencoder), a

generative deep neural network trained on 1.2 million songs crawled from the web (600,000 of which

are English). This category of VQ-VAE models have recently (Jan 2021) been used to great success in

image generation as well with DALL-E [37]. A unique ability of this model is to generate novel musical

continuations from a priming segment of audio. The authors demonstrate examples of popular music

being used as a prime to generate novel continuations.

Implementation:

In our experiment Artificial.fm (July 2021), we created an experimental radio-like platform for generating

AI music using the Jukebox model. We collaborated with a few local musicians to submit priming

segments to generate new music. (The model and the priming method is described in greater detail in

Section 4.4.1). The Jukebox model takes about 9 hours to generate 1 minute of audio at 44.1 KHz

sampling rates. This is a kind of slow creator model which is not ideal for real-time music generation

applications.

Analysis:

This was a first experiment into generating AI music primed on pre-existing music through a deep

learning architecture. Through our experiment we provide a case study for the different stakeholders of

this new form of music composition paradigm - the creator of the system and model architectures, the

musician whose music was used to prime Artificial.FM streams and the musicians whose music was used

in the training datasets used to create the Jukebox model.
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In our primary work, we incorporate this idea of a slow creator within the context of a brainstorming tool

rather than for real-time AI music generation. This experiment showed the limitations of the model to

generate long forms of music that are coherently connected with the input audio priming. Instead of

using the AI techniques to generate complete pieces of music, we focus on generating short segments of

sonic construction material that are strongly connected to the input priming audio. We identify the

potential of such a brainstorming tool to provoke serendipity in the composer’s ideation stage as a

primary design choice in this thesis.

3.3 Visual Design experiment

Voice controlled Blob Party

In this experiment, we built a server-client architecture for controlling blobs with one’s voice through a

browser application.

Figure 3.2: Design Experiment: Blobs controlled by voice

With the motivation of using Voice as a flexible input medium to interact with AI technologies, we

experimented with visual representations of this control. A blob-shaped representation that

demonstrated interactive visual behavior to real-time vocal inputs was built.

Implementation:
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This experiment was done in the pandemic of 2020, as a way to feel connected with a group of peers. A

server-client setup built on Javascript was created as a browser application. All participating users would

see a central blob shape that they could control surrounded by other blobs of their peers who were

active on their respective local computers. The shape and position of the blob would be controlled by

the vocal input from the microphone recorded in real time. This was a simple control system that

mapped volume and pitch of the vocal input to the blob’s visual appearance in the browser. Each blob’s

shape and movement would be reflected on every user connected to the application. The volume

controlled the height of the blob while the pitch controlled the amount of pulsation in its convex-hull

representation.

A generative music system built in Javascript played the background music encouraging people to

interact with their respective blobs and making them dance in relation to the music. This experiment

helped test the design choices of the server-client architecture and the voice as an input mechanism

represented through the visual language of the blob.

3.4 Learnings from Experiments

In this Section, we looked at a selection of initial experiments towards our goal of making an accessible

non-programming AI Music composition system using Voice as the input medium.

Our experiments with flexible input methods to control generative composition systems and moldable

visual representations motivated key design choices of our Living, Singing AI system. The slow creator

experiments helped identify various AI algorithms that can be modified to accept voice as an input

medium. It also motivated our goal of making accessible entry points to engaging in generative AI music

technologies. In the previous section we identified the many limitations of current AI tools in a creative

practice, the main ones being - lack of control, accessibility and personalization. Through our initial

experiments we identify a methodology of using a non-programming interface for active and reflective

engagement with generated AI sonic material from a range of models using voice.
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Chapter 4

Living, Singing AI

“I imagine that as contemporary music goes on changing in the way that I'm
changing it what will be done is to more and more completely liberate sounds

from abstract ideas about them and more and more exactly to let them be
physically uniquely themselves.”

- John Cage
(Classic Essays on Twentieth-Century Music, 1952)

4.1 Living, Singing AI - Philosophy

The Living, Singing AI system provides an intelligent, evolving, scalable, bespoke composition framework

which can be used with just one’s voice.

As the newer mathematical ideas of AI allow for innovative paradigms of composing and being creative,

an accessible ecosystem is paramount to accelerating it's assimilation into society. We have shown that

AI music continues to be deployed in the limited context of a passive music-as-a-service industry without

an emphasis on the individual communicating unique ideas and story-telling - one of the primary

functions of music in society.

Living, Singing AI challenges this trend by focusing on the unique human composer. It makes multiple

modern AI architectures and open-sourced models easy to access, interact with and reflect upon. This

ensures that direct engagement with AI music models is not restricted to a niche of composers with

programming skills. It opens up interaction with the models to a wide range of amateur and skilled

creatives from musical cultures around the world.

4.1.1 Primary Function
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What does it do?

Living, Singing AI is a composition system that allows a composer to use their voice as an input to

directly generate a wide range of sonic material. This material is generated by querying three

different modern AI music models with vocalized input from the composer. (DDSP, Jukebox and

Music Transformer: architectures and relation to input explained in detail in Section 4.5).

The composer is then free to score and rank the generated sonic material based on personal

reflection and aesthetic preferences. These choices are used to guide an iterative generation of

further sonic material. This acts as a brainstorming tool for provoking serendipity in a directed

way. All the generated material can then be exported as waveform / MIDI audio files for use in

other composition workflows.

Additionally, the system can be used to perform short (30-40 second) compositions from this

collection of uniquely personal ideas. These compositions are not meant to be complete musical

pieces but rather shorter versions that demonstrate how AI generated sonic material can be

incorporated within a context. The goal is to add contextuality to the generated sonic material

leaving room for re-interpretation.

Who is it for?

This system uses the voice as a means of interaction in a non-programming environment

deployed as a browser application. Any kind of amateur or skilled composer regardless of musical

culture or technical background can use the system. The system makes interacting with AI music

models accessible and personalizable to non-programming composers.

4.1.2 Design Choices

Communicate with Voice:

Using voice as the medium for communication with the system, ensures an inviting and

flexible design space. The input methodology of a tool is the main interface between a

user and their desired goal. Common AI and computer music tools require a familiarity of

the input types and limits from the user. Exceeding the limits or violating the rules of the

input is usually accompanied by an error message. In AI music systems, as an extension of

traditional machine learning methods, it is expected to prepare the correct dimensions,

data-types and size limitations of tokenized inputs. Our system eliminates this limitation by

inviting the user to make any kind of vocalized sound to begin their interaction.

The voice is also a very flexible form of input with no restrictions on the information it may

contain - from speech and singing to non-vocalized utterances, vocal mimicry, noise etc.
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The vocal timbre is also unique to each individual and one of the most common

instruments amongst humans.

Focus on Reflection:

Our system follows an iterative design paradigm with the focus on the unique reflections of

the user. After generating new sonic material, the user is invited to score and reflect on

each generated sound. These parameters are stored and incorporated into generating

further customized material from the AI models. Current AI music softwares act as a single

pass from input parameters to generated output and do not support an iterative, reflective

composition strategy. This iterative and reflective method was found to support the explore

and exploit framework of human-AI collaboration as seen in the examples from the AI Song

Contest.

Living Representation of ideas:

A blob shaped abstraction is chosen as the form to represent a user’s personalized

collection of ideas. This form is chosen as the simplest geometric embodiment of the

growing, evolving and moldable nature of the intelligent system.

While some AI systems (Auxuman [85]) embrace the uncanny valley of humanoid

representations, we choose to focus on the human composer as the source of creativity and

the one being assisted by an intelligent system. The moving and pulsing blob representation

of the system is useful to represent the different active and passive behaviors of the system

and also invites the user to curiously interact with immediate visual feedback.

Egalitarian System:

Our system allows the user to interact with and generate sonic material from three

different AI models with the same vocalized inputs. It allows the user to reflect on the sonic

material produced and its relation to their creative goals without focussing on the method

that produced it. Such a system could act as a great framework for an equitable evaluation

of different AI models and architectures focussed on the composer’s goals.

4.1.3 Dimensions of Novelty

In Section 2, we observed the potential of AI as a creative tool through several exemplar paradigms for

the AI visual arts ecosystem. We also identified the key limitations of AI music technologies that have so

far prevented its assimilation into the wider music making community.

Here, we identify some of the key dimensions of novelty that our system brings to the field of AI musical

systems:
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Flexible Input: In order to allow for surprising uses (and misuses) of the AI models, we propose

to incorporate flexible input methods in our systems. We use the voice as an accessible and

flexible form of input to the system. This allows a wide range of input possibilities - speech,

singing, noises, vocal mimicry, non-vocalized utterances etc. This sometimes leads to surprising

and creative results not intended by the AI models. For example: starting with silence as an

input to generate material.

Slow Creator: While some algorithms generate sonic material in the order of seconds, others

take several hours. We allow for both kinds of models in a slow creator paradigm [86]. Some of

the slow generated sonic materials are added to the system as they become available and can

be evaluated with equal value as those generated from faster algorithms.

Adapts to User: We present a bespoke system where all sonic material generated is centered

around the unique vocalized queries of the individual user. Additionally, the user can shape the

system by their preferences over time with a method of selecting and scoring the generated

content. AI Musical instruments present this unique ability to adapt and evolve their

functionality and form with each individual user.

Composer Focussed Evaluation: Our system focuses on the sonic material generated and allows

composers to evaluate their aesthetic and creative goals regardless of the techniques they are

generated from. We demonstrate this with a selection of three AI models but this could be

extended to incorporate newer AI music models as they are deployed. This will allow creators of

new AI music models to evaluate their methods in comparison with existing models, with a

focus on the composers and how they use the tool for their personal creative goals.

4.2 Definitions

In this section we describe the key definitions of concepts in our system followed by a detailed

description of each sub system.

Intelligent:

Our system not only uses multiple artificial intelligence models to generate

derivative sonic material from initial vocalized ideas by the human user, it also

allows the individual to shape the generated material by a method of scoring

and selecting. This allows for a context aware generative system that iteratively

grows in accordance with the user’s choices. Different behavior modes can be

set to make the outputs produced less or more exploratory. The classic

textbook Artificial intelligence: a modern approach [87] defines intelligent

agents (IA) as “anything that can be viewed as perceiving its environment

through sensors and acting upon that environment“
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Evolving:

Our system can be uniquely shaped and grafted by the user. These unique

preferences are used to iteratively generate further sonic material. This

demonstrates an evolving characteristic of the system.

Bespoke

The system is designed to be generative with the individual user at its center. It

begins with a real-time capture of vocalized ideas from the microphone that are

unique to the individual at the time they were produced and allows further

shaping of the outputs. This creates a bespoke system that is uniquely

personalized for each user.

Scalable

Living, Singing AI runs in a client-server design where the client is a browser

application consisting of the user interface. The server is a web application that

wraps the underlying software packages providing an API for its functionality.

This presents an ecosystem which can be expanded to multiple users with access

to a browser and the internet.

Figure 4.1 : Overview of the Living, Singing AI system

Seed idea: The vocalized query recorded using the microphone from the user is called the Seed

idea. This idea is used as the starting point for all the AI models and is therefore identified as the

Seed of the system.
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Sprout idea: The Seed idea is then used as an input in multiple generative AI models to create a

collection of derivative sounds. Each unit of generated sound, sample and MIDI sequence from

these models is called a Sprout idea.

Organism: This collection of Sprout ideas is called an Organism. The Organism is personal to

each individual because it is generated from their unique Seed ideas and its generated Sprout

ideas. The Organism can also be shaped by other inputs from the user that personalize the

Organism.

Vocabulary: The Organism’s vocabulary is the current list of Sprout ideas stored in the database

for the unique Organism.

Behavior: The Organism has different behavior modes that can also be controlled as inputs

from the user

Grafting: The Organism’s individual Sprout ideas can be individually deleted, annotated, scored

and ever used as further Seed ideas for the Organism. The act of interacting with the Organism

via these controls is called Grafting.

4.3 System Overview

Living, Singing AI enables a user to interact with a browser application to record and send audio or a

‘Seed Idea’ that gets sent to a database. This audio is then used as an input to three different generative

artificial intelligence model APIs (DDSP, Jukebox, Music Transformer, explained in Section 4.5). This

produces multiple audio files or Sprout ideas that are sent back to the browser application. Once the

Sprout ideas have been generated, the user can interact with the generated results in two different

modes - a Grafting Control and a Behavior Control. This results in personalizing the system of Sprout and

Seed ideas, collectively your Organism.

The following section describes the implementation of each part of the system architecture followed by

a walkthrough of the interactions in a sequential manner through the three sections - “Create your

Organism”, “Perform with your Organism'' and ``Proliferation of  your Organism”.
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Figure 4.2 : Visual representation of an example ‘Organism’. White circle represents - ‘Seed idea’, green

and yellow circles represent different kinds of ‘Sprout ideas’ from the different generative models. This

Organism has a shape and collection of generated sounds unique to the user that created it.

4.3.1  Web Application

The Living, Singing AI system is implemented in Python3 and Javascript. The front end is written in

Javascript using ReactJS and the user interface was prototyped on a local server using P5js. The human

user interacts with this front end through which they can record and send their vocalized queries and

interact with the system. The backend is written as a Flask server that provides a REST API to the

functionality. It implements a number of API endpoints to send and receive metadata in the form of a

json query. This overall structure is described in Figure 4.3.

Figure 4.3: Web application client - server model
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A. Client:

Figure 4.4: Client side system flow diagram

The client web application handles the following different components. Each of the input interactions are

explained in detail in Section 4.3.3: User Interface.

Organism View: Handles the visual representation of the Organism including its internal

Seed and Sprout ideas. Clicking on any of the Seeds or Sprouts plays back the audio

corresponding to it.

Grafting Control View: Handles the controls for shaping and grafting the Sprout ideas for

your Organism. It shows the different options for shaping your Organism that the user can

interact with.

Behavior Control View: Handles the controls for the behavior of the Organism. Interacting

with this view allows you to perform with your generated sounds.

Performance Sub-System: Handles the creation of short generative compositions depending

on the selected behavior controls. Each composition is about 30-40 seconds long.
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B. Server:

Figure 4.5: Server side system flow diagram

The server is implemented as a Flask application and interfaces with the three generative AI algorithms -

Jukebox, DDSP and Music Transformer. The underlying AI Models are explained in detail in Section 4.4:

Underlying Models. The Audio Feature Extraction sub-system iteratively updates the Sprout data and is

explained in detail in Section 4.7: Proliferation of your Organism.

4.3.2 Data Model

The Organism collectively represents all the ideas generated by the human composer and the generative

AI algorithms. This information is represented and stored in a Data Model which consists of four parts -

The User Data - which uniquely identifies a particular user, The Seed Data - the unique vocalized queries

from the user, The Sprout Data - the generated sonic material from the underlying AI models and The

Performance Data - the unique grafting and behavior controls for each Organism.

User data: {id and password} -  Uniquely identifying each individual user

Seed data: {id, waveform and duration} - Each Seed shares the user id uniquely identifying it.

It also stores the sound file and length of the file.
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Sprout data : {Seed_id, Sprout_id, type, waveform, weight_value, freq_value,

similarity_score} -

Seed_id, Sprout_id: Uniquely identifying Sprout_id for each

Sprout and the parent Seed id.

type: Represents the type of algorithm that produces the Sprout

idea - (1) Jukebox, (2) DDSP or (3) Transformer.

waveform: Represents the audio file corresponding to the

generated Sprout idea.

weight_value, freq_value: These values are assigned to each

Sprout idea by the user through the grafting controls and

represent how interesting the user finds the particular Sprout.

similarity_score: This is calculated as the audio feature similarity

between that particular Sprout and the highest weighted Sprout

at the audio feature extraction sub-system. Sprouts with the

lowest similarity score are iteratively deleted.

Performance data : {behavior, envelope} - These values are assigned to the

Organism by the behavior controls. They represent the behavior state (0-shy to

5-excited state)  and envelope shape (rising, falling or random).

4.3.3  User Interface

The front-end presents the three views to the user to interact with their generated Organism.

This User Interface is chosen to be intuitive and visual to the non-programming musician.

Clicking on the “Grafting Control” button on the top-left and the “Behavior Control” button on

the bottom-right reveals the corresponding panels seen in Figure 4.6.
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Figure 4.6: User interface view showing Organism View, Grafting Control View and

Behavior Control View.

A. Organism View:

The Organism view is in the center and shows a pulsating and moving blob representation. Clicking on

the Organism shows its internal structure of Seed and Sprout ideas. The central white circle represents

the Seed idea. The other surrounding circles represent the Sprout ideas. Clicking on each Seed or Sprout

plays back the corresponding audio.

Blob Representation:

This abstraction of a blob shape was chosen to represent one’s Organism and the collection of a user’s

personalized ideas. This simple geometric shape constantly pulses and changes in shape indicating a

sense of an organic living form. The simplest living forms in nature - whether single celled like bacteria or

multicellular like amoebas are composed of a cell wall that contains, within it, all the parts that

constitute it. Our Organism and its constituent Seed and Sprouts are also similarly contained within the

blob shape. This blob abstraction suggests the basic characteristics of our system - Intelligent, Evolving,

Growing and Moldable.

43



The blob shape also conveys the different behavior modes that are used in performing with the

Organism. A simpler shape approaching a circular convex hull indicates a less active “Shy” mode and a

more complicated concave shape as shown in Figure indicates a more active “Excited” mode.

Figure 4.7: Blob shape representing Shy to Excited scale of behavior modes

Internal Structure Representation:

The line and circle - tree-like internal structure representation appears when you click on the Organism.

This representation was chosen to indicate the Sprouts and Seed relation where the Sprouts are directly

related to the Seed that generated them. The Sprouts, regardless of which generative algorithm

produced them, appear equally distributed in the internal structure representation.

All the Sprouts begin at an equal distance from the Seed in the center and are then given different radii

and brightness, to represent the ways they are Grafted by the user. This Grafting Control is visually

represented through its proximity to the central Seed. A Sprout that is farther away from the Seed has

been judged to be less interesting by the user and a Sprout and a Sprout that is nearer is judged to be

more interesting.

B. Grafting Control View:

The Grafting Control view is on the left side panel. It contains the different grafting options in a vertical

menu format and allows you to interact and mold your Organism. Each of these controls is explained

below in Section 4.5.2: Grafting Controls.

C. Behavior Control View:

The Behavior Control view is on the bottom panel. It has a horizontal view representing the Behavior

controls - a slider for the behavior mode and an option to choose an Envelope style. Each of these

controls is explained below in Section 4.6.2: Behavior Controls.

4.4 Underlying Models
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4.4.1 AI Models for Generation

Modeling sequences is an important sub-problem of Artificial Intelligence under which music as a

sequence of symbols / samples presents unique challenges. This is because of the following two reasons:

(a) The semantic hierarchies of musical information are complex, subjective and work over multiple

scales of time (in the order of millisecond timings to several minutes for a motif or phrase);

(b) Audio representations at the sampling rates of human hearing make the sequences to be

modelled really long, i.e. a typical 4-minute song at CD quality (44 kHz, 16-bit) has over 10

million timesteps.

Transformer models [88] introduced in 2017, outperformed (in the context of natural language

modeling) the previously popular sequence modeling methods of Long Short Term Memory (LSTM)

neural networks (an improvement on the basic Recurrent Neural Networks (RNN)) by introducing a novel

architecture of just attention models. This attention mechanism looks at an input sequence and decides

which other parts of the sequence are important. Prior to this, many RNN models had been applied to

music like ImprovRNN, melodyRNN [89] etc. These modelled a MIDI sequence as a language with limited

success. Over the next few years, the success of transformer models became apparent when really large

language models (GPT-3 with 175 billion parameters introduced in 2020), demonstrated exceptional

generative abilities [90].

Jukebox from OpenAI, April 2020 [84] and Music Transformer from Google, Dec 2018 [91] are the two

largest Transformer based models for music currently available. While Jukebox generates raw audio,

Music Transformer generates symbolic piano performances as MIDI sequences.

In addition to these, Differential Digital Signal Processing (DDSP) [92] architectures were introduced by

Google Magenta in Jan 2020, with a unique approach to modeling musical neural networks. Unlike

typical blackbox end to end deep learning, DDSP breaks down the modeling of music into traditional

signal processing blocks. Training individual models for each block, allows for a modular and

interpretable architecture.

These landmark models were chosen as the three generative AI models that we include in our system to

generate Sprout ideas from a Seed vocal query by the user.

Jukebox Model:

The Jukebox Model from OpenAI [84] is trained on 1.2 million songs conditioned on lyrics,

genre and artist names. This database of songs has been scraped from the web and includes

600,000 English songs.
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It captures raw audio waveforms at three different hierarchical levels of downsampled

resolutions in the form of VQ-VAE codebooks (vector quantized variational autoencoders).

It is also able to generate audio conditioned on a ‘priming sample’ by continuing the

sequence of codebook vectors at each hierarchical level. It first generates the VQ-VAE codes

for the priming audio and then uses a conditioning on the codes to generate future samples

from the coarse downsampled top level to the fine upsampled bottom level.

Figure 4.8 shows this hierarchical windowed sampling, indicating the three levels of the

codebook encoding. At the top level the audio data is compressed by 128 times and divided

into longer segments where the codebook captures coarse representations of audio, but

with long term dependencies ~ 20 seconds. At the bottom level the audio data is

compressed by 8 times and the corresponding codebooks capture finer details ~ 1.5 seconds.

Through this hierarchical nature combined with vector quantized codebooks, the model is

able to capture really long term dependencies previously not possible.

This primed sampling is the technique we use in our system with our Seed audio as the

prime. Since this is a non-deterministic method, we generate, in parallel, multiple versions of

the continuation simultaneously. This enables us to create a collection of Sprout ideas from a

single Seed idea. Each output from the same primed audio can be widely different while still

capturing audio information (timbre, rhythm, melody) from the primed samples. This is a

difficult model to control because of the very limited input parameters; it is also extremely

slow to run.  (9 hours to fully render 1 minute of upsampled audio).

Figure 4.8: OpenAI Jukebox hierarchical VQ-VAE structure.

Here we show an example from our system to elucidate:

46



====> [Sample 1 Sprout Idea generated by Jukebox]

[Sample Seed Idea]

====> [Sample 2 Sprout Idea generated by Jukebox]

Despite its limitations, Sprout ideas generated from this method were found to be the most

surprising, interesting and varied. Since the vector codebook look up step is non

deterministic, multiple runs of the same priming Seed audio generate a slightly different

sequence of codebook vectors. Every windowed set of codebooks is conditioned on the

previous vectors and so over a few time steps it generates a completely different codebook

vector sequence which in turn results in completely different audio. The generated audio

continues to maintain coherence through each hierarchical step.

DDSP Model:

The Differential Digital Signal Processing model [92] is trained on 10 minute audio recordings

of monophonic instruments - Violin, Flute, Saxophone and Trumpet. It is a modular system of

autoencoders for each component of a sinusoidal modeling process. Typical sinusoidal

modeling involves modeling audio as having a sinusoidal component and a stochastic noise

component, which in this case is modeled as separate autoencoders.

The harmonic audio, filtered noise and reverb modules conditioned with fundamental pitch

(F0) are individually trained for each instrument dataset. This allows for any new audio to be

fitted with the harmonic and noise component of a different instrument’s pre-trained

autoencoders.

Figure 4.9: Google Magenta’s Differential Digital Signal Processing architecture [92]
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In our system we use the Seed audio as an input and run it through the Violin, Flute,

Saxophone and Trumpet timbre models that have been openly made available. This creates

Sprout ideas that follow the fundamental pitch of the Seed audio but have the

characteristics of another instrument. Since it is a waveform based method, the noise and

reverb components of the DDSP are able to capture unique properties (like breathing noise

for Flute playing) of the instruments that previous models haven’t been able to capture.

Here we show an example of the same Seed idea converted into different DDSP Sprout ideas.

====> [Sample 1 Sprout Idea generated by DDSP]

[Sample Seed Idea]

====> [Sample 2 Sprout Idea generated by DDSP]

Music Transformer:

The Music Transformer [91] is an attention based neural network that captures long term

coherence from symbolic piano playing performances. It is trained on the datasets - JSB

Chorales (382 Chorales from J.S.Bach) and Piano-e-Competition datasets of ~ 200 hours of

human piano performances. It is able to produce continuations and melody conditioned

accompaniments of a given motif while maintaining a limited degree of temporal coherence.

In our system we convert our Seed audio into MIDI using Google Magenta’s Onsets and

Frames model [93] and then pass it as a priming sequence to the Music Transformer model.

The generated MIDI continuations and accompaniments are returned as the Sprout ideas.

Here we show an example of a MIDI piano generated from the same Seed idea using Music

Transformer.

[Sample Seed Idea]   ===> [Sample 1 Sprout idea generated by Music Transformer]

4.4.2 Generation Method

Everytime a Seed idea is created and submitted to the server, the three generative AI algorithms

are run creating a collection of Sprouts. Jukebox generates multiple continuations in parallel, so we

generate 6 Sprouts at a time and for the remaining two algorithms DDSP and Music Transformer,

we generate 2 Sprouts by calling the APIs twice. This results in 10 Sprouts generated at a time.
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Further Sprouts can be generated by the user through the grafting controls explained in the next

section.

Figure 4.10: Generation Schematic from Seed to Sprouts

4.5 Creating your Organism

On starting the system, the user interface prompts you with a record button to create a vocalized query

at the browser via the microphone. This creates your Seed idea that gets submitted to the server. The

server returns the results from the different AI models (Figure 4.10) for generation in the form of your

Organism.
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Figure 4.11 Schematic Diagram of Creating your Organism by input Seed idea and Grafting controls.

Figure 4.11 describes the schematic of the Organism structure at creation. S0 is the Seed idea submitted

by the user. S1 is generated from the DDSP model, S2 is generated from the Music Transformer model

and S3 is generated from the Jukebox model. S4 is an example of a selected Sprout for which we have the

grafting controls - C1 through C5.

4.5.1 Vocalized Control

The direct way to interact with the system is by submitting a vocalized query. This is stored as the

Seed idea. All generated Sprout ideas are directly related to the uniquely submitted Seed. It is the

first form of interaction with the system. It allows the user to query the three underlying AI models

directly with just the voice as a control.
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4.5.2 Grafting Control

The next way to interact with the system is through the Grafting Controls. Once a collection of

Sprout ideas are returned in response to the original Seed idea, the user can reflect on the outputs

generated. This is done by allowing the user the following controls for each selected Sprout:

Figure 4.12: A selected Sprout and its accompanying Grafting Controls (C1 and C2).

C1 - How interesting is this (0-5) ?

This lets the user reflect on the generated Sprout and give a score to the Organism. A higher

score is represented with the Sprout appearing closer to the center Seed, and a lower score

pushes it farther away. This score is stored in the Data Model as {weight_value} of the Sprout.

This is used in the Proliferation of the Organism as new material is generated.

C2 - How frequent should this idea be in your Organism’s vocabulary (0-5) ?

This lets the user decide if the generated Sprout should be rare or frequent when the Organism

is in performance mode generating short compositions. This is stored in the Data Model as

{freq_value}. It is possible that a very interesting Sprout is chosen to be frequent while another

interesting Sprout is chosen to be rare.
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This allows the selected Sprout to be submitted to the server as a new Seed idea as a source

input to generate further Sprout ideas from. This creates an iteratively growing collection of

sounds.

This allows the selected Sprout idea to be deleted from the Organism.

This allows the user to give a name to the selected Sprout idea.

This allows you to export all the generated Sprout ideas as wave and MIDI files respectively to

save to a local drive

This allows you to listen to short generated compositions (30-40 secs) using the generated

Sprout ideas and the Behavior controls set for your Organism, described further in Section 4.6.

4.6 Performing with your Organism

4.6.1 Objective

After creating and grafting your Organism, the Organism can be given certain behavior properties to

generate short mutable compositions using the Sprouts. Incorporating the generated sonic material into

short compositions is intended to add contextuality for provocation. The individual Sprout ideas are

provided further context when played back in these compositions leaving room for re-interpretation by
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the composer. This also adds a performability to the generated Organism which can be controlled by the

Behavior control inputs.

The behavior controls affect two different properties of your Organism - the choice of Sprouts for the

generated compositions and the sequence of the chosen Sprouts. When the Organism is in its

performance mode, accessed by pressing either the ‘Listen’ button or when the ‘Behavior Control’ panel

is visible, it produces short phrases of generative compositions by stitching together the Sprout ideas.

These compositions are shaped by the following behavior controls:

Figure 4.13: Schematic Diagram of Performing with your Organism with Behavior Controls

4.6.2 Behavior Controls

B1 - Constrain Behavior

This is a value (0-5) that is a slider where 0 represents ‘Shy’ behavior and 5 - ‘Excited’

behavior. In the shy mode, the Organism produces sounds from the Sprout ideas, but

chooses only the higher weighted (higher rated on the interesting scale) sounds. It also

generates sparse compositions with more silences.

B1 - Envelope Behavior
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This is a selection between three kinds of envelope shapes - (a) Rising, (b) Falling or (c)

Random. This determines the shape of the generated composition.

A sequence of Sprout ideas are chosen with increasing, decreasing or randomly ordered

complexity depending on the chosen Envelope style. For each Sprout idea its complexity is

calculated by the Performance sub-system.

Figure 4.14: User Interface view showing Behavior Controls in Performance mode.

4.6.3 Performance Sub-System

The Performance sub-system determines the ways in which short compositions are generated on

the fly using the Behavior controls and the Sprout ideas.

A selection of Sprout ideas are chosen from the vocabulary of your Organism (total collection of

available Sprout ideas). This selection is made based on the Shy to Excited mode and the

‘interesting score’ or weight of each Sprout idea. In complete ‘Shy’ mode, the Sprout ideas with

the highest interesting score are chosen along with phrases of silence. These chosen Sprout

ideas are then arranged in a sequence of increasing / decreasing or randomized harmonic

complexity depending on the chosen envelope style.

Harmonic Complexity is chosen as the variance across the twelve pitch classes in a Chromagram

or the Harmonic Pitch Class Profile calculated using the Essentia Library [94]. The Harmonic Pitch

Class Profile (HPCP) is computed as a 12-dimensional vector which represents the intensities of
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the twelve semitone pitch classes (corresponding to the notes from A to G#) across the

spectrum.

Figure 4.15: Chromagrams for two different Sprout ideas (S0 - top and S1 - bottom)

corresponding to the same Seed idea. S1 has greater harmonic complexity than S0.

Finally the chosen sequence of Sprout ideas is stitched together with a one second fade in and

fade out at the beginning and end for each sample, resulting in a short 30-40 second generative

composition. These compositions keep changing as the Behavior controls are altered and also as

the Vocabulary of Sprouts keeps changing over time with Proliferation.

Here is an example of two distinct performances generated from the same user-submitted Seed

idea by selecting different envelope styles for each:

[Performance 1] - Rising Envelope

[Seed idea] ⇒

[Performance 2] - Falling Envelope

This system has been illustrated further here:
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Figure 4.16: System diagram of performance sub-system

4.7 Proliferation of your Organism

Once the Organism has been created, shaped and stored in the database. It proliferates overtime by

iteratively generating more Sprout ideas. These newly generated Sprout ideas are ranked according to

their similarity to the set of previous Sprout ideas with the highest “Interesting score”.

We wish to capture the preferences marked by the user while shaping their Organism, to inform the

newly generated Sprout ideas. Sprouts that are least similar to the old Sprouts are deleted automatically.

In this way, we create a local knowledge representation of the aesthetic preferences of the user.

Similarity is measured by using acoustic features of the audio, described in the section below. Since

“interesting score” is a very subjective decision, this is not an exact means of capturing a user’s

preferences. But it still proves to be useful to act as a suggestion for new “interesting scores” that can be

overridden by the user’s explicit choices as they use the Grafting controls on the newly generated Sprout

ideas.

4.7.1 Iterating using Audio Similarity
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Audio Feature Extraction sub-system:

A collection of audio features describing frequency domain properties, loudness properties,

rhythmic properties etc. are extracted from each Sprout idea using the Essentia Library [94].

This high-dimensional feature space is then used to calculate similarity between two Sprouts

using a simple euclidean L2 norm.

Here is a list of the acoustic features used to create the high dimensional feature space.

Pitch (YIN) YIN24 algorithm, with bounds at 200Hz and 1200Hz (and the
estimation’s confidence).

Pitch (Melodia) MELODIA74 algorithm, with bounds at 200Hz and 1200Hz (and
the estimation’s confidence). This is computed as an alternative
to YIN that focuses on predominant melody extraction

MFCC 13 coefficients. Essentia’s default parameters correspond to the
popular MFCC-FB4031 implementation.

Harmonic Pitch Class
Profile (or Chroma)

The spectral intensities of
each of the 12 pitch classes in twelve-tone equal temperament.

Spectral Centroid Centroid of the magnitude spectrum, scaled to SampleRate/2

Pitch Salience Feature indicating ”pitchness” of the signal (from 200Hz to
1200Hz), based on autocorrelation function

Spectral Flux Euclidean distance between consecutive frames of magnitude
spectrum.

Spectral Rolloff 85th percentile frequency of the energy in the magnitude
spectrum (i.e. above which 15 percent of the spectrum’s energy
is)

Spectral Entropy Shannon entropy of the magnitude spectrum (lower entropy
indicates more ”peakiness” in the distribution).

Spectral Spread,
Skewness, Kurtosis

These measures characterize the
shape of the spectral energy distribution, all computed with
Essentia’s DistributionShape algorithm.

Spectral Contrast Measure of contrast in each of six sub-bands, by characterizing
the distribution shape in each one.

Inharmonicity The divergence of the peaks in the spectrum from the nearest
integer multiples of the estimated fundamental frequency
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4.8 Key Contributions

● A brainstorming tool for composers to interact with and query a wide range of AI models with

just one’s voice.

We present a brainstorming tool, accessible to different kinds of musicians

regardless of musical culture or technical and programming background. A

collection of different AI models irrespective of data representation (symbolic or

waveform) or computational speed are made interactive in an egalitarian

framework that can be queried using one’s voice. This enables a composer to

generate a collection of sonic material using their voice.

● A personalized and iteratively proliferating composition object or “Organism”.

Our system focuses on the unique vocalized Seeds and choices made by the user

in shaping their Organism’s vocabulary and behavior to generate short

compositions using the generated material. This provides a personalized

composition object that produces contextuality for the AI generated sonic

material, leaving room for re-interpretation and provoking serendipity.
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Chapter 5

Evaluation and Discussion

“As notions about the nature and function of music become embedded in the structure of software-based

musical systems and compositions, interactions with these systems tend to reveal characteristics of the

community of thought and culture that produced them.”

- George Lewis (2000)

Too Many Notes: Computers Complexity and Culture in Voyager

This thesis has presented the design and development of Living, Singing AI in the form of an accessible,

interactive composition tool through a browser application. In this Section we provide a functional

qualitative and quantitative analysis of our tool, study the range of generated outputs and describe

various usage experiences through the conducted informal peer studies. Our proposed evaluation

methods give an insight into the project’s goals and possibility spaces within the context of a selection of

application scenarios.

5.1 Evaluation Model

Even with the growing research interest in generative systems, the assessment and evaluation of systems

that model a space of creativity, remain challenging. [95] and [96] describe an evaluation strategy

derived from the design ontology of the system. Based on a function - behavior - structure ontology, we

evaluate the actual behavior of a system compared to its expected behavior. As the ultimate judge of

creative output is the human (composer or listener), subjective evaluations are preferred in this class of

generative modeling systems [97].

In the Image generation research community, pattern recognition models to assess and score a

generated sample like the inception score [98], have been successfully utilised for objective measures of

human-like classification abilities [99]. However, the assumed correlation to human judgement still

needs further scientific examination, it provides a strong foundation that has been widely adapted. As a

contrast, generative music systems offer a much harder problem. The sequential, highly structural,

abstract nature of meaning and emotional intent in music [100] make a standardised semantic
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description of music extremely hard. [101], [102] demonstrate why music assessment has not been

successfully automated by computational models until now.

Our system’s design ontology focussed on the control and range of outputs and its relations to the

composer’s inputs and expectations provides the necessary constraint for a qualitative and a quantitative

functional evaluation.

5.1.1 Quantitative

We built a quantitative pipeline for visualizing the Seed and Sprout ideas generated by each unique user

in relation to each other. The field of Music Information Retrieval (MIR) relies on a similar digital signal

processing approach to extract information from audio content described as audio features. The Essentia

library [94] provides a tool for extracting a collection of audio features both time based and frequency

based. This set of audio features have been extensively used as a means of an audio fingerprint to

visualize and compare audio content similarities in literature from EchoNest [103], AcousticBrainz [65]

etc.

Here is a schematic of our Quantitative analysis pipeline, wherein Seed and Sprout ideas from each

individual User are passed onto the Audio Feature extraction sub-system. (Described in Section 4.7.1),

followed by a t-SNE dimensionality reduction step.

Figure 5.1: Quantitative Evaluation schematic
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t-SNE - visualization [104] is a commonly used statistical method that constructs a probability

distribution over pairs of high-dimensional data (in our case the feature sets from two segments of

audio), and defines a similar probability distribution in a lower dimensional space by minimizing the

KL-divergence between the two distributions.

Figure 5.2: Visual representation of dimension reduction through t-SNE

With this pipeline we can visualize the high dimensional representations of our audio examples in a two

dimensional semantic space where sampled points that are closer are similar and sampled points that

are distanced are dissimilar.

5.1.2 Qualitative

We also ran informal peer workshops allowing users to generate Sprouts iteratively with our system and

reflecting on the range of outputs produced, expectedness and unexpectedness of the results and

report some of the key insights discovered below. We demonstrate the ability of our system to generate

a rich and diverse set of outputs that are strongly connected to the individual’s control inputs.

We collected ‘vocalized queries’ from 8 musician and 2 non-musician peers to generate and Graft a set of

Sprouts from each collected Seed, in an informal sound collection study. We use examples from these

experiments to functionally analyze our system in the proposed quantitative and qualitative framework.

Further long term qualitative studies focussed on a well defined iterative composition task over time

with a diverse group of composers will help support the functional goals of our system. We propose

Application scenarios for conducting these tests in a goal-oriented creative scaffolding.
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5.2 Possibility Spaces

5.2.1 Sonic Possibility Spaces

Here we describe an example of a sample user generated Seed and a collection of its generated Sprout

ideas from the three generative algorithms (Jukebox, DDSP and Music Transformer) for the reader.

A. User 1 - a collection of Sprouts generated in a 1st iteration from the Initial Seed idea of a user

[Initial Seed idea]

[Sprout 1]    [Sprout 2]   [Sprout 3]    [Sprout 4] [Sprout 5]   [Sprout 6]   [Sprout 7]  [Sprout 8] [Sprout 9]

[Sprout 10]  [Sprout 11]

[Sprout 12]  [Sprout 13]  [Sprout 14]   [Sprout 15] [Sprout 16]    [Sprout 17]   [Sprout 18]

B. User 2 - Sprouts arranged in the order Grafted by the user with their personal aesthetic

preferences

[Initial Seed Idea]

[Sprout 1]  >     [Sprout 2] >    [Sprout 3]  > [Sprout 4]  >   [Sprout 5]  >   [Sprout 6]  >   [Sprout 7]

[Sprout 8]   >  [Sprout 9]

We describe a detailed analysis of the collected Seed ideas and generated Sprout ideas in our Sound

Collection Experiment description below. Here we investigate the possibility spaces for each of the three

generative models used in our system.
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A. Jukebox

In our quantitative evaluation pipeline, we are able to visualize the diversity of a collection of audio files

in a 2-dimensional t-SNE graph. OpenAI provides a t-SNE map of the VQ-VAE codebook vectors learnt

from each artist in their training set to demonstrate that similar genres are clustered together.

While this is not directly relevant to our context of generating completely novel sonic material from user

defined vocalized queries, it demonstrates the use of t-SNE to quantitatively measure the range of

possibilities.

Figure 5.3: t-SNE visualization of Jukebox samples from the training set across genres [84]

In order to perform a similar t-SNE visualization on generated audio content from the Jukebox algorithm

we scrape the Jukebox soundcloud [105] (only available dataset of official Jukebox examples) to obtain
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102 audio continuation samples generated from samples of songs from the training set for example - (

Celine Dion, 2Pac, Ella Fitzgerald etc.)

We further collect all the Sprouts generated from our user collected vocalized Seed ideas and extract

their audio feature sets to map to the same t-SNE probability distribution and obtain the range of

outputs produced by our system. This is represented in Figure 5.4.

Figure  5.4: t-SNE visualizations of the Jukebox possibility space.
(Blue) - indicates the audio continuations scraped from official Jukebox examples and

(Red) - indicates the generated Sprouts from user submitted Seeds using Jukebox. The size of the red
Sprouts indicate the interesting scores assigned to the respective Sprout.

We find (Figure 5.4) that our Sprout Possibility Space, denoted by the red spheres, is as diverse in the

t-SNE representation, as the music-primed examples generated by Jukebox, denoted in blue crosses. This

indicates that using voice as an input query for priming does not limit the possibility space of outputs

that can be generated.
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In fact, we observe that some of the Sprouts generated by our system (red outliers circled - at the top

and also to the right extremes of Figure 5.4) demonstrate outputs that are uniquely novel when

compared to the musical continuations (blue) suggesting an even larger diversity of outputs.

Here are examples demonstrating the range of possibilities from the Jukebox system through generated

Sprouts from user submitted Seeds.

A. User submitted Seed containing a vocalized singing example:

[Jukebox Sprout idea 1]

[Seed idea] ⇒

[Jukebox Sprout idea 2]

These generated Sprouts demonstrate a close relation to the timbres present in the original Seed. Both

the timbre of the unique singing voice and the lower quality of the microphone at the time of recording

are reflected in the generated outputs. In addition to that they demonstrate uniquely new melodic

variations realized in the same singing voice.

Figure 5.5: Spectrogram representations of (top) Original Seed idea and (bottom) Jukebox generated

Sprout idea. Shows shared timbral characteristics including broad spectrum noise under 3kHz. (Audio

examples above)
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B. User submitted Seed containing a low singing voice that glissandos through an octave and vowel

shapes.

[Jukebox Sprout idea 1]

[Seed idea] ⇒

[Jukebox Sprout idea 2]

[Jukebox Sprout idea 3]

In this example we see a really diverse range of Sprouts generated.

Sprout idea 1 maintains a similar timbre and voice quality as the original Seed while following

a completely novel melodic contour.

Sprout idea 2 on the other hand has musically the same key and singing quality but includes a

guitar and hi-hat sound mixed together in an almost convincing live performance rendition.

This sound is also completely novel and generated at sample level. The voiced lyrics are

non-syllables that cycle through different vowel shapes.

Sprout idea 3 begins with a similar voice quality but quickly spirals out melodically and

timbrally, ending with a crescendo of voices and crowd noise.

While the Sprouts are diverse they have an internal consistency without any recognizable breaks or

auditory glitche effects. All the generated Sprouts are also related to the original Seed idea in a quality of

coarse long range melodic shapes or fine short range timbre details shown in the different examples

above.

B. DDSP

The pre-trained DDSP models that have been made openly available by Google Magenta include the

autoencoders trained on individual musical instruments namely - Violin, Trumpet, Tenor Saxophone and

Flute.
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Figure 5.6: Spectrogram representations of (top) Original singing Seed and (bottom) audio generated

from DDSP (violin) model as Sprout

While the timbre possibility space is limited to the individual instrument autoencoder models, the pitch

contours are strongly conditioned on the pitch contours in the original vocalized query. In our

experiments we apply the DDSP instrument filters to some of the Jukebox and Music Transformer

generated Sprouts to iteratively generate new Sprouts. This enables a possibility space that is just as

wide as the Jukebox possibility space for each of the instrument autoencoder models available.

Here are some of the wide range of results obtained:

[Original Seed idea]    ⇒     [DDSP Sprout idea]

[Jukebox Sprout idea]     ⇒   [deeper DDSP Sprout 1]

[deeper DDSP Sprout 2]

[deeper DDSP Sprout 3]

C. Music Transformer

The Music Transformer model acts in the MIDI representation of music and is specifically trained for

modeling long term dependencies in piano performances. This does not translate directly to our usage of

the tool to generate continuations and accompaniment for vocalized queries. Regardless we explore this

language model to create Sprouts from the MIDI representations of our widely diverse range of Seeds.
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Vocal Seeds transcribed as piano MIDI are often chopped into smaller note events, jump between

octaves and are forcefully quantized to the 12 notes in an octave. This contrived MIDI leads to

non-traditional Music Transformer continuations and accompaniments.

Figure 5.7: Music Transformer generated Sprouts in their MIDI representations, (top) - original Seed,

(middle and bottom) - generated Music Transformer Sprouts
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Here are some Music Transformer generated Sprouts from user submitted Seed ideas.

[Music Transformer Sprout 1]

[Seed idea 1] ⇒

[Music Transformer Sprout 2]

[Music Transformer Sprout 1]

[Seed idea 2] ⇒

[Music Transformer Sprout 2]

5.2.2 AI Software Possibility Spaces

Because of the different downstream application goals of individual generative AI software, it is not

surprising that a lot of heterogeneity exists in the way the models are formulated, trained and the user

interfaces that enable interactions. No standardized methodology exists for evaluating such

computational creativity systems.

Exploration refers to the discovery of new resources, knowledge and opportunities and is associated

with learning through experimentation. Exploitation on the other hand, refers to the refinement of

existing resources and knowledge through explicit control [106]. The degrees of freedom offered by the

input method of a given software is directly related to the amount of control it offers to the human user.

This capacity of the input to a system can be classified as the dimension of exploitation offered. On the

other hand, the range of possible outputs from a generative system, in our case - musical outputs,

determines its exploration capacity.

Here we make a functional comparison [95] with the other popularly available AI Music Softwares by

identifying the types of input control available and their respective range of output possibilities. It is

important to identify that the range of outputs possible are sometimes limited when the software is

designed for a very specific application or context - for example video game music or meditative music.

This allows us to qualitatively map the AI Software Space in the chosen exploration and exploitation

dimensions. (A complete list of all available AI Software (as on Sept 2021), commercially or privately

announced, active or inactive as an exhaustive list in Appendix B.)

A. Limited Exploration and Limited Exploitation:
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AIVA, Jukedeck and Amper:

Jukedeck is one of the oldest commercially available generative music making AI Software

tools ideated at the Le Web Conference Paris in 2014. AIVA was founded in Luxembourg in

2016 and Amper Music founded in 2014. While Amper Music has since shifted from

supporting individual music makers to launching enterprise products, Jukedeck and AIVA

continue to target a broad group of individual composers.

All three of them offer a pre-selection of key, tempo, style and duration of requested music

generation. About 10 different styles are offered from rock, pop, electronic, cinematic,

modern folk etc. Amper music was specifically designed for adding music to existing videos so

it offers a timeline view for creating multiple musical segments. AIVA has the ability to view

the generated music in a piano roll form. The instrumentation offered on all three of these

systems is a 4-5 track MIDI that can be exported. This very limited means of pre-selecting

basic musical structure parameters means the more detailed musical information like melody,

rhythm and structure are completely out of control. Also the limited style and

instrumentations produce similar sounding outputs on repeated generation.

We categorize these systems as having limited exploration and exploitation possibilities in the

class of generative AI music systems.

B. Limited Exploration but More Exploitation:

Humtap, Magenta Studio Plugins:

Humtap was founded in 2013 and many variants like HumOn and HumBeatz have since been

available as mobile applications. This system allowed a user to hum a melody and tap a

rhythm that was transcribed into symbolic representations. Then the music was generated

within a fixed 4-5 track style. This gives greater control over the melodic structure of the

music generated but the limitation of style allows only 4-5 timbres. It also does not allow the

produced music to be exported as individual MIDI tracks for changing the instrumentation.

Magenta released four of their symbolic recurrent neural network models as Ableton plugins.

This was one of the most popular tools amongst the participants of the AI Song Contest

(2021). It enables existing MIDI tracks to be imported into the system and then allows for

automated drum MIDI to be generated, or creates interpolated new MIDI tracks. This offers

both exploration and exploitation strategies. But since all the Magenta plugins are limited to

symbolic MIDI domains, they can only be used to generate music symbolically. This does not

give access to exploration of novel musical ideas in the waveform domain.

The Magenta plugins however, are a good model for future AI Music tools to be packaged and

deployed within existing workflows of musicians.
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C. Slow Exploitation and Directed Exploration: (Our System)

Our system is not intended to produce complete pieces of music like the other softwares

enlisted here, with the exception of the Magenta plugins, which also generate short segments

of musical phrases.

Slow Exploitation:

Our system allows the musician to use their voice as an input. The vocalized query is used in

its waveform representation and the extracted symbolic MIDI representations to generate

novel sonic material. Further exploitation is offered through the Grafting and Behavior

controls. The AI music outputs are iteratively generated and ranked according to the user’s

aesthetic preferences. This allows for a slow form of exploitation of the mode. The DDSP

Sprouts offer complete melodic control to generate new timbres while preserving the pitch

information.

Directed Exploration:

Using voice as a Seed over multiple generative AI models, produces a diverse range of outputs

as has been qualitatively described in the previous section. This allows a directed form of

exploration through our brainstorming tool. The Jukebox Sprouts and Music Transformer

Sprouts both offer great exploration capacity in the waveform and symbolic representation

space.

Figure 5.8: Visual representation of the AI Software possibility space on an Exploration - Exploitation axes

5.3 Sound Collection Experiments
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Initial experiments for the Living, Singing AI system were done using multiple sound collection stages to

explore the range of input interactions and output possibilities of our system.

Chennai Samples:

In Jan 2020, our team collected sounds in Chennai, India which ranged from children singing,

people talking on the streets, Carnatic music instrumental, Carnatic music vocals etc. These

pre-recorded sounds were used as a test bed for an early evaluation of our system’s generative

space.

Informal Collection from peers:

A set of ‘vocalized queries’ were collected each, from 8 musicians and 2 non-musician peers

which consisted of - (a) spoken utterances, (b) sung melodic phrases, (c) vocalized rhythmic

phrases (d) vocal effects and other non-verbal utterances.

5.3.1 Musical vs Non-Musical

Here are some examples of Seeds and generated Sprouts from our experiments with musical and

non-musical audio queries before collecting vocalized queries from the browser application.

audio5.1:

[non-music Seed idea] ⇒ [Sprout idea]

audio5.2:

[Sprout idea 1]

[non-music voice Seed idea] ⇒

[Sprout idea 2]

In audio examples 5.1 and 5.2 we show a field recording of the sounds of vehicles in the city

traffic of chennai, and a voice making short bursts of onsets. Both these Seed ideas share the

common properties of being without the intention of generating music. In 5.1 our system

generates a percussive Sprout with a kind of synthetic drum sound following the rhythmic ideas in

the original Seed. In 5.2, Sprout idea 1 demonstrates a timbrally consistent Sprout following a

similar rhythmic characteristic as the voice in the Seed. Sprout idea 2, on the other hand, takes

the same Seed idea and generates a big acoustic percussion sound following the rhythms of the

Seed.
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https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Chennai_traffic/original.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Chennai_traffic/rhythmic_sprout.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/User_H/3.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/User_H/main.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/User_H/4.wav


audio5.3:

[Sprout idea 1]

[musical Seed idea] ⇒

[Sprout idea 2]

audio5.4:

[singing Seed idea] ⇒ [Sprout idea 1]

In audio examples 5.3 and 5.4, we show musical Seeds and their generated Sprouts. In 5.3, we

have a solo Cello playing that is continued in Sprout idea 1 and generates a small segment of a

larger orchestration sound in Sprout idea 2. In 5.4, a singing voice with a unique timbre is

replicated with novel melodic structure.

5.3.2 Non-Western Music

Here we demonstrate the boundaries of our system and the underlying AI models by querying

them with non-western musical sources, specifically indian classical music. The training data for

our underlying models doesn’t include sources of Indian classical music which results in

interesting results. We show some of the Seeds and Sprouts to explain our findings.

In audio example 5.5, the Seed contains the rhythmic ideas of a kannokol bol, which is a form of

rhythmic solfege. We also hear a drone instrument in the background. In all the generated

Sprouts we find that the drone is recreated, demonstrating the ability of capturing long term

coarse structure. The vocal performance is generated in a unique non-syllabic phrasing that

replicates the style of the original Seed. In Sprout idea 3, we demonstrate the underlying MIDI

methods’ ability to generate a piano performance unlike human piano playing but capturing the

audio content of the Seed.

audio5.5:

[Sprout idea 1]

[rhythmic Seed idea] ⇒

[Sprout idea 2]

[Sprout idea 3]

audio5.6:
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https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/music_cello/consistent.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/music_cello/original.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/music_cello/short.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Surprising/original.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Surprising/1.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/indian2/1sprout1.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/indian2/original1.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/indian2/1sprout2.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/indian2/1sprout3.wav


[Sprout idea 1]

[melodic Seed idea] ⇒

[Sprout idea 2]

In audio example 5.6, we have three elements, a drone instrument in the background, a

percussive accompaniment and the main vocal performance of Indian classical music. Since the

underlying models have not been trained on Indian classical music, they capture more

fundamental musical properties like rhythm and pitch realized in different instrumentations.

These are shown in the respective Sprout ideas generated.

5.3.3 Non-Verbal Utterances

Here we demonstrate a collection of non-verbal Seeds. Audio example 5.7 has a whispering

sound that is reflected in its Sprout idea 1. While Sprout idea 2, transforms the whispering sound

into a drum break. Audio example 5.8 has a simple beat-boxing utterance that is transformed

into a generated instrumental Sprout. Audio example 5.9 has a wah-pedal-like vocal effect of

changing vowel shapes that is also replicated in the generated Sprout with a unique melodic

contour. Sprout idea 2 demonstrates a change in the timbre maintaining the melodic contours of

the original Seed.

audio5.7:

[Sprout idea 1]

[Seed idea 1] ⇒

[Sprout idea 2]

audio5.8:

[Seed idea 2] ⇒ [Sprout idea]

audio5.9:

[Sprout idea 1]
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https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/indian2/2sprout1.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/indian2/original2.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/indian2/2sprout2.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/breath_sound/consistent.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/breath_sound/original.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/breath_sound/expands.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/beatBox/original.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/beatBox/expand.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/User_K/3.wav


[Seed idea 3] ⇒

[Sprout idea 2]

5.3.4 Seed to Composition

We also present a collection of the Seed and generated Sprouts arranged into the

computationally generated compositions. These compositions contain various Sprouts generated

from each Seed that have been shaped by the Grafting and Behavior controls by the unique

composer that created the Seed ideas. This demonstrates a range of output Sprouts with added

contextuality demonstrating our system’s ability to be used as a brainstorming instrument.

audio5.10:

[Seed idea 1] ⇒ [Composition]

audio5.11:

[Seed idea 2] ⇒ [Composition]

audio5.12:

[Seed idea 3] ⇒ [Composition]

Audio5.13:

[Seed idea 4] ⇒ [Composition]

5.4.5 Summary

In this section, we presented an evaluation model for quantitatively measuring the possibility space of AI

generated Sprouts from our system and qualitatively analyzing the functional goals of our system and the

underlying generative AI models. We also presented a discussion on commercially available AI music

software systems and situated our proposed system on the axes of exploration (range of generated

outputs) and exploitation (flexibility of inputs).

Our sound collection study demonstrated that vocalized queries can be used as a flexible form of input

that allows a range of musical ideas - sung melodies, rhythmic phrases, non-verbal utterances,
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https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/User_K/main.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/User_K/7.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Performances/rhythm1.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Performances/rhythm1_Performance1.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Performances/melody2.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Performances/melody2_Performance2.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Performances/User_h.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Performances/User_h_Performance1.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Performances/User_k.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Performances/User_k_Performance1.wav


beat-boxing, breathy stochastic noise and miscellaneous vocal effects. The generated Sprouts had the

ability to create timbrally consistent material with novel melodic and rhythmic content as well as new

timbres maintaining the melodic and rhythmic information of the Seed. We demonstrated these

characteristics of our system with a collection of user submitted Seed examples and their respective

generated Sprouts through our browser application.

Further experiments with a larger diversity of composer generated vocalized queries can help identify

the limitations and boundaries of each of the underlying AI model possibility spaces. We presented an

audio-content-based t-SNE visualization for this objective. Alternate forms of visualizing the high

dimensional latent representations will help us compare the underlying model possibility spaces in more

rigorous ways. We also observe that composer focused evaluation and scoring of generated material

regardless of AI model, allowed for an egalitarian brainstorming tool. Our study proposes an evaluation

framework that can be extended to longer time scales, where participating composers can use the

system for specific composition tasks with iterative reflection over the generated material. The ease of

running browser-based experiments, observed in our early surveys, also demonstrates the accessible

nature of our system towards non-programming composers.

Our discussion, supported with chosen examples from our system, help demonstrate: the range of

generated outputs (exploration) and flexibility of inputs (exploitation) - axes of our proposed

brainstorming composition system.
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Chapter 6

Conclusion

”New means change the methods, new methods change the experience,

and new experiences change the man.”

- Karlheinz Stockhausen

(1977, lecture on electronic music)

This thesis has presented the design and development of an interactive non-programming environment

for accessible interaction and personalization of modern AI music generation models with just one’s

voice. As part of our work, we examined the rich source of algorithmic music composition and new

paradigms of AI tools in creativity. We analysed the space of presently available generative music making

tools and their limitations in practice motivating the key principles of accessibility and personalization

that guided our work. We further qualitatively and quantitatively identified the possibilities and

limitations of a functional approach to our proposed system.

6.1 Contributions

The formulation of the Living, Singing AI system and the accompanying discussion presented in this

document offer the following contributions:

● A novel Voice-based interaction methodology for the design of flexible and accessible AI Music

Softwares.

This form of input medium for interaction enables a flexible stream of querying the system that

can be used to exploit the representations learnt and explore its intended and unintended

boundaries. Systems intended for assisting a creative goal benefit from allowing their misuse.

We also demonstrate that voice as an input, makes computational methods for creativity

accessible to a wide range of non-programming musicians.
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● An egalitarian framework for multiple generative AI Music models to be evaluated at the level of

the composer. This enables the same input queries to be tested across multiple generative

models with a focus on the sounds generated rather than the methods that produced them.

● An adaptable generative music instrument scheme that encourages reflection at each step of

interaction resulting in a bespoke system. Our system presents an example of the unique ability

of AI musical instruments to learn from the aesthetic preferences of a unique individual. We

propose a system centered around the individual composer that can be intentionally directed.

● A brainstorming tool to provoke and direct serendipity and short compositions that add

contextuality for provocation leaving room for re-interpretation.

6.2 Future Work

A. Long-Form Composer Study:

In this work, we have presented initial studies inviting composers to interact and reflect using our system

without the specific goals of intentional composing. As an immediate next step we propose a long-form

study with a collection of diverse composers that use the system over a period of time to accomplish a

predefined musical goal.

We can adapt this system to a city-wide symphony composition like those proposed by Tod Machover

[107],[108]. This model would invite music-makers from diverse musical cultures at different

technological and musical skill levels to use our system over multiple time scales. This will enable us to

test the directed brainstorming goals and the aesthetic limitations of its use over time. Our system is not

intended to be a replacement for usual composition and music-making workflows but rather to perform

a specific goal of generating personalized sonic material. A long form composer study would validate its

use within the existing workflows of musicians.

B. Community Spaces:

Our system allows for a composer to export their generated sonic material into a local copy of audio and

MIDI files that can be used in other audio workstations. An immediate goal would be to extend this

export functionality of the system by creation of a share-able community space where composers can

export / share / release their AI music Organisms. Allowing for remixing and iterating in community

spaces would enable a richer interaction with our system and with individual sonic ideas. Allowing
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vocalized queries that are currently personal to be shared amongst a community would enable new

research directions of data collectives or audio sample collectives.

C. Method Deployment:

We have demonstrated the use of an egalitarian system with three chosen generative AI music methods.

A long term goal would be to enable deployment of new generative music models into the existing

Living, Singing AI system. A community of creators familiar with our system would be able to

immediately access newer models. Academics creating new models for music could also test and

validate their model with an existing network of creators.

D. New Music:

The early adaptation of AI tools in the visual arts and the rapidly growing ecosystem of creators, novel

methods of distribution and consumption are indicators of the exciting future of AI Music. Artistic forms

and narratives that accompany the affordances of AI as a creative tool unlock new paradigms of who is a

composer and what constitutes a composition.

In this thesis we have shown examples of mutable generative compositions created completely from the

chosen generative models starting with a single Seed of a personal vocalized query. A long term-goal

would be to drive forward the research into new forms of AI music in the following dimensions:

Form Factors:

Just as the browser based, non-programming interface gave rise to certain

directions for the presented accessible system, newer form factors of deploying

AI models would explore new aesthetics of control and performance. A hardware

implementation with buttons, knobs and patch cables would fit into an extensive

ecosystem of hardware and modular synthesizers. Newer tangible and moldable

material forms would provoke newer interpretations of querying and interacting

with AI models as musical instruments.

Democratized and Decentralized Music:

AI powered and assisted musical instruments have the potential of defining a new

music aesthetic, which needs to be observed as they get assimilated into society.

As these tools are deployed, the levels of democratization of music datasets and

methods will determine the directions these assimilations might take. New forms

of licensing for share-able data collectives and AI generated content will also
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determine the state of this new music. Our system proposes an experiment in

technologically democratizing access to already publicly available generative

methods but further work needs to be done on firmly grounding ownership and

credit assignment through standardized methods. A decentralized version of a

DAO producing generated music with shared data and music ownership is one

such system.

By proposing a new system for deploying, accessing and interacting with AI music methods,

this thesis hopes to explore new directions of AI Music that are centered around inspiring and

assisting the goals of the individual human composers that use them.

Our work in developing human-centered AI musical tools imagines a future where the

mathematical ideas of AI serve to inspire and assist in newer paradigms of the human creative

process. Early use of AI for imitating styles and patterns from musical datasets and canons will

soon be replaced by the more intimate human functions of music - for communicating,

story-telling and reflection. These future AI musical instruments, in the creative hands of a

unique individual, could act as portals, liberating sonic worlds across time and cultures, in

newer paradigms of authorship.

While AI ideas have the ability to capture a representation of a piece of reality through the

datasets that they are trained on, AI tools like the proposed future musical instruments, allow

an individual to react and reflect on this reality. To be human is to be a human with a unique

set of experiences and opinions. We look towards a future where AI musical instruments can

be molded and shaped in the hands and ideas of an individual - be it a composer, a folk

story-teller or a mother singing a lullaby.
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Appendix A

Sound examples generated from the Living, Singing AI system:

Organisms (generated by participating users and field Sound Collections):

Here is an Interactive Browser version of this Appendix A, to explore a gallery of Organisms generated

from our Living, Singing AI system.

https://web.media.mit.edu/~manaswim/Thesis_Media/Demos/organismGallery/

81

https://web.media.mit.edu/~manaswim/Thesis_Media/Demos/organismGallery/


1. User 1: Singing Melody

[Seed idea]

[Sprout 1] [Sprout 2] [Sprout 3] [Sprout 4] [Sprout 5] [Sprout 6]

[Sprout 7] [Sprout 8] [Sprout 9] [Sprout 10] [Sprout 11]

2. User 2: Humming

[Seed idea]

[Sprout 1] [Sprout 2] [Sprout 3] [Sprout 4] [Sprout 5] [Sprout 6]

[Sprout 7] [Sprout 8] [Sprout 9] [Sprout 10] [Sprout 11]

3. User 3: Rhythmic Voice

[Seed idea]

[Sprout 1] [Sprout 2] [Sprout 3] [Sprout 4] [Sprout 5] [Sprout 6]

[Sprout 7] [Sprout 8] [Sprout 9] [Sprout 10] [Sprout 11] [Sprout 12]

4. User 4: Rhythmic Pops

[Seed idea]

[Sprout 1] [Sprout 2] [Sprout 3] [Sprout 4] [Sprout 5] [Sprout 6]

[Sprout 7] [Sprout 8] [Sprout 9] [Sprout 10] [Sprout 11]
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https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_M1/main.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_M1/1.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_M1/2.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_M1/3.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_M1/4.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_M1/5.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_M1/6.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_M1/7.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_M1/8.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_M1/9.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_M1/10.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_M1/11.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_M2/main.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_M2/1.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_M2/2.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_M2/3.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_M2/4.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_M2/5.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_M2/6.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_M2/7.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_M2/8.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_M2/9.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_M2/10.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_M2/11.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_A/main.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_A/1.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_A/2.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_A/3.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_A/4.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_A/5.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_A/6.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_A/7.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_A/8.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_A/9.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_A/10.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_A/11.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_A/12.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_H/main.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_H/1.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_H/2.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_H/3.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_H/4.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_H/5.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_H/6.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_H/7.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_H/8.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_H/9.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_H/10.wav
https://web.media.mit.edu/~manaswim/Thesis_Media/Sounds/Organisms/User_H/11.wav


5. User 5: Vocal Effect

[Seed idea]

[Sprout 1] [Sprout 2] [Sprout 3] [Sprout 4] [Sprout 5] [Sprout 6]

[Sprout 7]

6. User 6: Indian Music

[Seed idea]

[Sprout 1] [Sprout 2] [Sprout 3] [Sprout 4] [Sprout 5] [Sprout 6]

[Sprout 7] [Sprout 8] [Sprout 9] [Sprout 10]

7. User 7: Beat-box

[Seed idea]

[Sprout 1] [Sprout 2] [Sprout 3] [Sprout 4] [Sprout 5] [Sprout 6]

[Sprout 7] [Sprout 8] [Sprout 9] [Sprout 10]

8. User 8: Nasal Singing

[Seed idea]

[Sprout 1] [Sprout 2] [Sprout 3] [Sprout 4] [Sprout 5] [Sprout 6]

[Sprout 7] [Sprout 8] [Sprout 9] [Sprout 10]
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9. User 9: High Voice Melody

[Seed idea]

[Sprout 1] [Sprout 2] [Sprout 3] [Sprout 4] [Sprout 5] [Sprout 6]

[Sprout 7] [Sprout 8] [Sprout 9] [Sprout 10] [Sprout 11] [Sprout 12]

10. User 10: Singing Melody 2

[Seed idea]

[Sprout 1] [Sprout 2] [Sprout 3] [Sprout 4] [Sprout 5] [Sprout 6]

[Sprout 7] [Sprout 8] [Sprout 9] [Sprout 10] [Sprout 11]

11. User 11: Rhythmic Melody

[Seed idea]

[Sprout 1] [Sprout 2] [Sprout 3] [Sprout 4] [Sprout 5] [Sprout 6]

[Sprout 7] [Sprout 8]
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List of AI Music Software:

Company / Tool
Name

Corporation /
Startup / Research

Location Description

MAIA Suggest Research startup Davis, California, U.S. Drop-down menu for style,
tempo.
https://maia-suggest.glitch.
me/

AIVA startup Luxembourg video game, movie and
commercial music
generation
https://www.aiva.ai/

Magenta Studio Corporation (Google) S.F./Bay area, U.S. Collection of ableton live
plugins
https://magenta.tensorflow.
org/studio/

Magenta
PerformanceRNN

Corporation (Google) S.F./Bay area, U.S. Symbolic piano performance
modeling - velocity and
timing
https://magenta.tensorflow.
org/performance-rnn

Magenta MusicVAE Corporation (Google) S.F./Bay area, U.S. Symbolic variational
autoencoder (4 tracks)
https://magenta.tensorflow.
org/music-vae

Magenta Onsets and
Frames

Corporation (Google) S.F./Bay area, U.S. Waveform to MIDI trained
on piano performances
https://magenta.tensorflow.
org/onsets-frames

Magenta Coconet Corporation (Google) S.F./Bay area, U.S. BACH 4 part harmony
generation.
https://github.com/magenta
/magenta/tree/main/magen
ta/models/coconet

Magenta Music
Transformer

Corporation (Google) S.F./Bay area, U.S. Transformer Model for
piano.
https://magenta.tensorflow.
org/piano-transformer

Magenta DDSP Corporation (Google) S.F./Bay area, U.S. Differentiable Digital signal
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processing - modular
autoencoders in a sinusoidal
modeling framework.
https://sites.research.google
/tonetransfer

OpenAI Musenet Research org S.F./Bay area, U.S. Symbolic deep neural
network generating 4 min
compositions with 10
instruments with style
conditioning.
https://openai.com/blog/m
usenet/

OpentAI Jukebox Research org S.F./Bay area, U.S. Sample based sparse
transformer from
hierarchical VQ-VAE trained
on 1.2million songs
(undisclosed dataset
scraped from web)

PopGun Artists Australia Pick Genre, mood, duration -
trained on collection of
electronic samples.

Amper
(bought by
Shutterstock -
11/11/2020)

startup New York, U.S. Cloud based music
generation from style, mood
and duration. Paid service.

Alysia (WAVEAI) startup S.F./Bay area, U.S. Singing AI mobile
application, Karaoke.

AUDOIR SAM startup S.F./Bay area, U.S. SAM - a suite of songwriting
tools to write melodies,
chords, lyrics.
https://www.audoir.com/ho
w-to-build-a-songwriting-ai

LALA.AI Commercial service Source Separation/ Extracts
vocal and instrumental
tracks from audio (browser
service)

Humtap startup Palo Alto, U.S. Voice based AI-Music
mobile application

LANDR startup Montreal, Canada Cloud based mastering
services
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Flow Machines Corporation (SONY) Paris, France Markov Chain models for
generating melodies.
Daddy’s Car - in the style of
the Beatles.

Melodrive startup Bay area, U.S. Generates video game music
in real-time for endless
soundtracks.

Jukedeck (bought by
TikTok 2018)

Corporation (TikTok) London, U.K. Generates symbolic music
melody and harmony - from
selection of style, mood,
duration.

IBM Watson Beat Corporation (IBM) New York, U.S. Cloud based app for
symbolic music generation
from mood and primed
MIDI sequences.

Endel Startup Berlin, Germany Generates personalized
soundscapes for
mindfulness

Dadabots
(SampleRNN)

Artists U.S. / Berlin SampleRNN model adapted
to death metal, free jazz.
https://github.com/dada-bo
ts

MorpheuS Research group U.S. Hybrid Machine Learning
models to generate
structured music.

Ross Goodwin /
YACHT

Artist U.S. Lyric generation algorithm
https://rossgoodwin.com/

Magenta NSynth
Super

Corporation (Google) S.F./Bay area, U.S. Sample based timbre
generation, 16 dimensional
latent space. Hardware
instrument

Sony CSL Corporation (SONY) Paris, France / Japan DeepBach, RNN and
variation networks for style
imitation

Amazon AWS Deep
Composer

Corporation
(Amazon)

U.S. Hardware implementation
synthesizer. Supports
training custom GAN
models.

Voyager Artist / Research U.S. Improvisation through
machine listening for free
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jazz improvisation.

David Cope Artist / Research UC Santa Cruz, U.S. EMI - rule based pattern
grammar built for specific
composers -

Brian Eno ‘Koan’
program

Artist / Research U.K. Generative music systems
from SSEYO as standalone
players and browser plugins.
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