
Chapter

Nineteen
Visual Generalization in

Programming by
Example

Robert St. Amant and Luke Zettlemoyer

North Carolina State University

Henry Lieberman,

Massachusetts Institute of Technology

Richard Potter,

Japan Science and Technology Corporation

TNT Job Number: [002564] • Author: [Lieberman] • Page: 371

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:14:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Abstract

In programming by example (PBE; also sometimes called programming by
demonstration) systems, the system records actions performed by a user in
the interface and produces a generalized program that can be used later in
analogous examples. A key issue is how to describe the actions and objects
selected by the user, which determines what kind of generalizations will be
possible. When the user selects a graphical object on the screen, most PBE
systems describe the object using properties of the underlying application
data. For example, if the user selects a link on a Web page, the PBE system
might represent the selection based on the link’s HTML properties.

In this chapter, we explore a different, and radical, approach—using vi-
sual properties of the interaction elements themselves, such as size, shape,
color, and appearance of graphical objects—to describe user intentions.
Only recently has the speed of image processing made feasible real-time
analysis of screen images by a PBE system. We have not yet fully realized the
goal of a complete PBE system using visual generalization, but we feel the
approach is important enough to warrant presenting the idea.

Visual information can supplement information available from other
sources and opens up the possibility of new kinds of generalizations not
possible from the application data alone. In addition, these generalizations
can map more closely to the intentions of users, especially beginning users,
who rely on the same visual information when making selections. Finally,
visual generalization can sometimes remove one of the worst stumbling
blocks preventing the use of PBE with commercial applications—that is, re-
liance on application program interfaces (APIs.). When necessary, PBE sys-
tems can work exclusively from the visual appearance of applications and
do not need explicit cooperation from the API.

19.2 If You Can See It, You Should Be Able to Program It

Every PBE system has what Halbert (1993) calls the “data description prob-
lem”: when users select an object on the screen, what do they mean by it?
Depending on how you describe an object, it could result in very different
effects the next time you run the procedure recorded and generalized by the
system. During a demonstration to a PBE system, if you select an icon for a
file foo.bar in a desktop file system, did you mean (1) just that specific file

372 y Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 372

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:14:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

and no other? (2) Any file whose name is foo.bar? (3) Any icon that hap-
pened to be found at the location where you clicked?

Most systems deal with this issue by mapping the selection onto the ap-
plication’s data model (a set of files, email messages, circles and boxes in a
drawing, etc.). They then permit generalizations on the properties of that
data (file names, message senders, etc.). But sometimes the user’s intuitive
description of an object might depend on the actual visual properties of the
screen elements themselves—regardless of whether these properties are ex-
plicitly represented in the application’s command set. Our proposal is to use
these visual properties to permit PBE systems to do “visual generalization.”

For an example of why visual generalization might prove useful, sup-
pose we want to write a program to save all the links on a Web page that
have not been followed by the user at a certain point in time (Fig. 19.1). If
the Netscape browser happened to have an operation “Move to Next Un-
followed Link” available as a menu option or in its API, we might be able to
automate the activity using a macro recorder such as Quickeys. But, unfor-
tunately, Netscape does not have this operation (nor does it even have a
Move to the Next Link operation). Even if we had access to the HTML source

Chapter Eighteen: Visual Generalization in Programming 373

TNT Job Number: [002564] • Author: [Lieberman] • Page: 373

S

R

L

Figure 19.1

Can we write a program to save all the unfollowed links?

V:\002564\002564.VP
Thursday, December 21, 2000 2:14:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

of the page, we still wouldn’t know which links had been followed by the
user. This is a general problem for PBE systems in interfacing to almost all
applications. Interactive applications make it easy for users to carry out
procedures and do not expect to be treated as a subroutine by an external
system.

This example shows the conceptual gap between a user’s view of an ap-
plication and its underlying programmable functionality. Bridging this gap
can be extremely difficulty for a PBE system—its representation of user ac-
tions may be a complete mismatch for the user’s actual intentions. But per-
haps we are looking at this problem from the wrong perspective. From the
user’s point of view, the functionality of an interactive application is defined
by its user interface. The interface has been carefully developed to cover
specific tasks; to communicate through appropriate abstractions; and to ac-
commodate the user’s cognitive, perceptual, and physical abilities. A PBE
system might gain significant benefits if it could work in the same medium
as a user, if it could process the visual environment with all its information.
This is the key insight we explore in this chapter.

19.3 What Does Visual Generalization Buy Us?

Let’s imagine a PBE system that incorporates techniques to process a visual
interactive environment, to extract information potentially relevant to the
user’s intentions. What does the system gain from these capabilities?

• Integration into existing environments: Historically, most PBE systems
have been built on top of isolated research systems, rather than com-
mercial applications. Some have been promising but have not been
adopted because of the difficulty of integration. A visual PBE system, in-
dependent of source code and API constraints, could potentially reach
an unlimited audience.

• Consistency: Independence of an application’s source code or API also
gives a PBE system flexibility. Similar applications often have similar ap-
pearance and behavior; for example, users switch between Web brows-
ers with little difficulty. A visual PBE system could take advantage of
functional and visual consistency to operate across similar applications
with little or no modification.

• New sources of information: Most important, some kinds of visual infor-
mation may be difficult or impossible to obtain through other means.

374 y Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 374

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:14:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Furthermore, this information is generally closely related to the user’s
understanding of an application.

These are all benefits to the developers of a PBE system, but they apply
equally well to the users of a PBE system. In the Netscape example, a visual
PBE system would be able to run on top of the existing browser, without re-
quiring the use of a substitute research system. Because Netscape has the
convention of displaying the followed links in red and the unfollowed links
in blue, a user might specify the “Save the Next Unfollowed Link” action in
visual terms as “Move to the next line of blue text, then invoke the Save Link
As operation.” This specification exploits a new, visual source of informa-
tion. Finally, the general consistency between browsers should allow the
same system to work with both Netscape and Microsoft Internet Explorer, a
much trickier proposition for API-based systems.

Providing a visual processing capability raises some novel challenges for
a PBE system:

• Image processing: How can a system extract visual information at the im-
age-processing level in practice? This processing must happen in an in-
teractive system, interleaved with user actions and observation of the
system, which raises significant efficiency issues. This an issue of the ba-
sic technical feasibility of a visual approach to PBE. Our experience with
VisMap (described later) shows that real-time analysis of the screen is
feasible on today’s high-end machines.

• Information management: How can a system process low-level visual
data to infer high-level information relevant to user intentions? For ex-
ample, a visual object under the mouse pointer might be represented as
a rectangle, a generic window region, or a window region specialized for
some purpose, such as illustration. A text box with a number in it might
be an element of a fill-in form, a table in a text document, or a cell in a
spreadsheet. This concern is also important for generalization from low-
level events to the abstractions they implement: is the user simply click-
ing on a rectangle or performing a confirmation action?

• Brittleness: How can a system deal gracefully with visual variations that
are beyond the scope of a solution? In the Netscape example of col-
lecting unfollowed links, users may, in fact, change the colors that
Netscape uses to display followed versus unfollowed links, thereby per-
haps obsoleting a previously recorded procedure. A link may in fact ex-
tend over more than a single line of text, so that the mapping between
lines and links is not exact. Similar blue text might appear in a GIF image

Chapter Eighteen: Visual Generalization in Programming 375

TNT Job Number: [002564] • Author: [Lieberman] • Page: 375

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:14:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

and be inadvertently captured by the procedure. And, if the program is
visually parsing the screen, links that do not appear because they are be-
low the current scrolling position will not be included. Out of sight, out
of mind! The latter problem might be cured by programming a loop that
scrolled through the page as the user would. Most of these problems are
put in a novel light if we observe that they can be difficult even for a hu-
man to solve. Almost everyone has been fooled now and then by adver-
tising graphics that camouflage themselves as legitimate interface ob-
jects; without further information (such as might be provided by an API
call), a visual PBE system cannot hope to do better.

19.4 Low-Level Visual Generalization

Potter’s work on pixel-based data access pioneered the approach of treating
the screen image as the source for generating descriptions for generaliza-
tion. The TRIGGERS system (Potter 1993) performs exact pattern match-
ing on screen pixels to infer information that is otherwise unavailable to
an external system. A “trigger” is a condition-action pair. For example, trig-
gers are defined for such tasks as surrounding a text field with a rounded
rectangle in a drawing program, shortening lines so that they intersect an
arbitrary shape, and converting text to a bold typeface. The user defines
a trigger by stepping through a sequence of actions in an application, add-
ing annotations for the TRIGGERS system when appropriate. Once a set
of triggers have been defined, the user can activate them, iteratively and
exhaustively, to carry out their actions.

Several strategies can be used to process visual pixel information so that
it can be used to generalize computer programs. The strategy used by TRIG-
GERS is to compute locations of exact patterns within the screen image. For
example, suppose a user records a mouse macro that modifies a URL to dis-
play the next higher directory in a Web browser (Figure 19.2). Running the
macro can automate this process, but only for the one specific URL because
the mouse locations are recorded with fixed coordinates. However, this
macro can be generalized by using pixel pattern matching on the screen im-
age. The pattern to use is what a user would look for if doing the task manu-
ally: the pixel pattern of a slash character. Finding the second to the last oc-
currence of this pattern gives a location from which the macro can begin
the macro’s mouse drag, which generalizes the macro so that it will work
with most URLs.

376 y Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 376

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:14:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Even though this macro program affects data such as characters, strings,
URLs, and Web pages, the program’s internal data is only low-level pixel
patterns and screen coordinates. It is the use within the rich GUI context
that gives higher-level meaning to the low-level data. The fact that a low-
level program can map so simply to a much higher-level meaning attests to
how conveniently the visual information of a GUI is organized for produc-
tive work. Potter (1993) gives more examples.

Chapter Eighteen: Visual Generalization in Programming 377

TNT Job Number: [002564] • Author: [Lieberman] • Page: 377

S

R

L

Figure 19.2
1. Select URL text field.

2. Start mouse drag.

3. Finish mouse drag.

4. Delete selection.

The generalizing pixel pattern:

Steps in a mouse macro to move a browser up one directory, and selecting a pixel
pattern that can generalize the macro.

V:\002564\002564.VP
Thursday, December 21, 2000 2:14:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The advantage of this strategy is that the low-level data and operators of
the programming system can map to many high-level meanings, even ones
not originally envisioned by the programming system developer. The disad-
vantage is that high-level internal processing of the information is difficult,
since the outside context is required for most interpretation.

Another system that performs data access at the pixel level is
Yamamoto’s (1998) AutoMouse, which can search the screen for rectangular
pixel patterns and click anywhere within the pattern. Copies of the patterns
can be arranged on a document and connected to form simple visual pro-
grams. Each pattern can have different mouse and keyboard actions associ-
ated with it.

19.5 High-Level Visual Generalization

Zettlemoyer and St. Amant’s (1999) VisMap is in some ways a conceptual
successor to TRIGGERS. VisMap is a programmable set of sensors, effectors,
and skeleton controllers for visual interaction with off-the-shelf applica-
tions. Sensor modules take pixel-level input from the display, run the data
through image-processing algorithms, and build a structured representa-
tion of visible interface objects. Effector modules generate mouse and key-
board gestures to manipulate these objects. VisMap is designed as a pro-
grammable user model, an artificial user with which developers can explore
the characteristics of a user interface.

VisMap is not, by itself, a PBE system. But it does demonstrate that
visual generalization is practical in an interface, and we hope to apply its
approach in a full PBE system. VisMap translates the pixel information
to data types that have more meaning outside the GUI context. For exam-
ple, building on VisMap we have developed VisSolitaire, a simple visual ap-
plication that plays Microsoft Windows Solitaire. VisMap translates the
pixel information to data types that represent the state of a generic game
of Solitaire. This state provides input to an AI planning system that plays
a reasonable game of solitaire, from the starting deal to a win or loss. It
does not use an API or otherwise have any cooperation from Microsoft
Solitaire.

VisSolitaire’s control cycle alternates between screen parsing and gener-
alized action. VisSolitaire processes the screen image to identify cards and
their positions. When the cards are located, a visual grammar characterizes
them based on relative location and visual properties. In this way the sys-
tem can identify the stacks of cards that form the stock, tableau, and

378 y Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 378

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:14:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

foundation, as well as classify each card based on visual identification of its
suit and rank, as shown below in Figure 19.3.

A bottom-up pattern recognition process is interleaved with a top-down
interpretation of the visual patterns. Key to the effectiveness of the system is
the loose coupling between these two components. The strategic, game-

Chapter Eighteen: Visual Generalization in Programming 379

TNT Job Number: [002564] • Author: [Lieberman] • Page: 379

S

R

L

Figure 19.3

Stock:

Visual Processing Results

(:BACK)
)(7:CLUBS

(0 :BEHIND)(4 :DIAMONDS)
(1 :BEHIND)(9 :CLUBS)
(0 :BEHIND)(3 :HEARTS)
(4 :BEHIND)(:JACK :DIAMONDS)
(5 :BEHIND)(3 :SPADES)
(0 :BEHIND)(9 :CLUBS)(5 :DIAMONDS)

(:BLANK)
(:ACE :SPADES)
(:BLANK)
(:BLANK)

Tableau: Foundation:

VisSolitaire source data and visual processing results.

V:\002564\002564.VP
Thursday, December 21, 2000 2:14:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

playing module represents its actions in general terms, such as “Move any
ace that is on top of a tableau pile to an empty foundation slot.” The visual
processing component maps this command to the specific state of the Soli-
taire application: “Move the ace of spades to the second foundation slot.”
VisSolitaire, like a human solitaire player, relies on the layout of the cards to
guide its actions, rather than the visual representations of the cards alone.
VisMap’s recognition of cards is one illustration of an application-specific
visual recognition procedure that can be used in visual generalization.

To make a visual recognition approach work for PBE in general, we may
have to define visual grammars that describe the meaning of particular in-
terface elements or the visual language of particular applications. For ex-
ample, if we understand that the format of a monthly calendar is a grid of
boxes, each box representing the date and lines within the boxes represent-
ing particular appointments, we can infer the properties of a Now Up-to-
Date Appointment object.

It is also possible that other properties of the appointment object (e.g.,
the duration of the appointment) are not represented in the visual display,
so we may not be able to infer them from the screen representation alone.
Developing the application display format grammars is time-consuming
work for expert developers, not for end users. However, the effort for a par-
ticular application can be amortized over all the uses of that application.
The model of the application need not be complete; it may only capture
those aspects of the application data of current interest.

One way to utilize the results of this kind of processing in a PBE system
is to adopt a similar approach to Tatlin (Leiberman 1998), which infers user
actions by polling applications for their state periodically and compares
successive states to determine user actions. Tatlin used the examinability of
the application data models for the spreadsheet Excel and calendar pro-
gram Now Up-to-Date via the Applescript interprocess communication lan-
guage. In the scenario in Figure 19.4, a user copies information from a cal-
endar and pastes it into a spreadsheet. Tatlin “sees” that the data pasted
into the spreadsheet are the same as were selected in the calendar and in-
fers the transfer operation.
If we developed descriptions of the visual interface of the calendar and the
spreadsheet, we could do the same simply by analyzing the screen image,
even without access to the underlying application data.

Research by others gives further evidence of the potential of visual gen-
eralization. Lakin (1987) built several programming environments around
an object-oriented graphical editor, Vmacs. He used a recognition pro-
cedure on the visual relations between objects to attach semantics to
sketched objects, which implemented a kind of visual generalization.

380 y Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 380

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:14:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Notably, the grammars used to drive the recognition procedure were them-
selves represented visually in Vmacs itself. Kurlander (1988) used a kind of
visual generalization to automate search-and-replace procedures. But while
Lakin and Kurlander were able to access the visual properties of objects di-
rectly in their own purpose-built graphical editors, we are proposing to ex-
tract the same kind of visual properties directly from pixel-level analysis of
the screen.

19.6 Introducing Novel Generalizations: Generalizing On Grids

Visual generalization opens us the possibility of having different kinds
of generalizations than are possible by generalizing from the properties
of the underlying application data. As an example of a kind of useful

Chapter Eighteen: Visual Generalization in Programming 381

TNT Job Number: [002564] • Author: [Lieberman] • Page: 381

S

R

L

Figure 19.4

Tatlin inferring copying data from a calendar to a spreadsheet.

V:\002564\002564.VP
Thursday, December 21, 2000 2:14:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

generalization not possible with data-based approaches, consider that it
might be possible to convey the general notion of a grid, so that procedures
might be iterated throughout the elements of a grid (Figure 19.5).

The idea of a grid can be expressed purely with visual relations: “You
start at one object, then move right until you find the next, and so on, until
there are no more objects to the right. Then return to the object in the be-
ginning of the row, move down one object, then start moving to the right
again. Keep doing each row until you can’t move down anymore.”

Once you have the “idea” of a grid, you can apply it in a wide variety of
applications. The same program could work whether operating on daily
schedules in a calendar, program, icons in a folder window, or tables in
Netscape, among other things.

382 y Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 382

S

R

L

Figure 19.5

9:30a Bushko’s
Med conf.,
Bartos

ESG

5:00p Pierre
Arrives...

Mindfest?...
Camden conf.
[Shyduroff]?

ESG 30th [1-3]...
12:30p ESG Lunch
1:15p Merrill

Suzanne back from
Hospital

10:00a Push
2:00p Warren

Sack

9:15a Kawasaki1:45p USA-Italy
CogSci,
Bartos

11:30a Liz
Rosenzwei
g

2:30p E-Markets
3:00p Irene

2:00p Shyduroff’s
friend?

CHI Reviews
11:00a Liz

10:00a Motorola
11:30a Ericsson

(Sybil)

10:00a ESG

Letter for Luke Z
12:00p Renata’s

colleagues

26 27 28

12 13 14

29 30 1

87654

11

3

10 15

2

9

5

2

9

6

16

23

30

Examples of grids in (a) a Calendar, (b) the Finder, and (c) Netscape.

V:\002564\002564.VP
Thursday, December 21, 2000 2:14:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

For this to work, the definition of “move to the next object to the left”
and “move to the next object down” may need to be redefined for each ap-
plication. But given the ability to do so, we can make real the user’s percep-
tion that all grids are basically the same, despite the artificial barriers that
separately programmed applications place against this generalization.

19.7 Conclusion

We can ask several questions when exploring a new perspective such as that
offered by a visual generalization approach. For example, how can it con-
tribute in a way that other existing perspectives are unable to? Existing
techniques such as Apple Events and OLE Automation can sometimes pro-
vide powerful perspectives from which to build programs. Adding a new
perspective to a system can increase the user interface complexity sig-
nificantly. If there is a large overlap in the range of information, then the
new form of the information must provide some advantage—as can be
demonstrated with Triggers and VisMap.

What new challenges are raised by the new perspective, and what tools
can address the challenges? Triggers has the challenge of accurately specify-
ing pixel patterns and distances that are cryptic when viewed out of con-
text. It addresses this challenge using the Desktop Blanket, a technique for
allowing direct manipulation widgets to float above the screen pixels of the
display. VisMap has the challenge of inferring high-level features from low-
level pixel data. It addresses this challenge using a two-stage translation
process. The first stage works bottom-up and identifies low-level features.
The second stage works top down and infers high-level features from the
low-level features.

Can complete solutions be built within the perspective? Such solutions
may indicate the potential for an elegant special purpose system. Working
from one perspective, it has potential to have a simple elegant interface.
Triggers show a small set of functionality that can automate nontrivial tasks.
More work has to be done, however, to show that a significant user group
can make use of this functionality.

How can we integrate the perspective with other perspectives? The Trig-
gers-IV system described in Potter (1999) addresses these issues by showing
how the Desktop Blanket can be added to a conventional programming lan-
guage. VisMap already has a textual interface that can easily be integrated
with textual programming languages that use other techniques.

Chapter Eighteen: Visual Generalization in Programming 383

TNT Job Number: [002564] • Author: [Lieberman] • Page: 383

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:14:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Our current intuitions about the design of a visual generalization system
for PBE lean toward a broad-based approach that applies pixel-level opera-
tors, as in TRIGGERS, where appropriate, but also generates higher-level in-
formation inferred from the pixel data, as in VisMap. If the user knows what
a particular piece of information looks like on the screen but does not know
how to describe it, then a low-level pixel based approach may be the best
choice. If displayed information needed by a program is not provided by
formal techniques and its visual appearance is complicated, then a high-
level pixel-based approach may be the best solution. If the program needs
efficient access to large data structures in an application, then the user can
choose a technique such as OLE Automation or Apple Events, provided the
application provides the necessary support.

Other issues for complete integration in applications include the granu-
larity of event protocols, styles of interaction with the user, and parallelism
considerations (Leiberman 1998). Event granularity determines the level of
abstraction at which a visual system interacts with an interface. For exam-
ple, should mouse movements be included in the information exchanged?
If not all mouse movements, then which ones are important? Issues of par-
allelism can enter the picture when the system and the user both try to ma-
nipulate the same interface object.

We believe that the opportunities and challenges of visual generalization
will be a fruitful new direction for PBE in the future. It might turn out that
when it comes to graphical interfaces, beauty may indeed be only skin
deep.

References

Halbert, Dan. 1993. Programming by demonstration in the desktop metaphor. In

Watch what I do: Programming by demonstration, ed. Allen Cypher. Cambridge,

Mass.: MIT Press.

Kurlander, D., and E. Bier. 1988. Graphical search and replace. In Proceedings of ACM

SIGGRAPH ’88.

Lakin, Fred. 1987. Visual grammars for visual languages. In AAAI-87: The Conference

of the American Assocation for Artificial Intelligence (Seattle, Wash., July 12–17).

Lieberman, Henry. 1998. Integrating user interface agents with conventional appli-

cations. Knowledge-Based Systems 11, no. 1 (September): 15–24.

Potter, R. 1993. Triggers: Guiding automation with pixels to achieve data access. In

Watch what I do: Programming by demonstration, ed. Allen Cypher. Cambridge,

Mass.: MIT Press.

384 y Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 384

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:14:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

———. 1999. Pixel data access: Interprocess communication in the user interface for

end-user programming and graphical macros. Ph.D. diss. University of Maryland.

Yamamoto, K. 1998. A programming method of using GUI as API. Transactions of In-

formation Processing Society of Japan (December): 26–33 (in Japanese).

Zettlemoyer, L., and R. St. Amant. 1999. A visual medium for programmatic control

of interactive applications. In Proceedings of ACM CHI’99 Human Factors in

Computing Systems.

Chapter Eighteen: Visual Generalization in Programming 385

TNT Job Number: [002564] • Author: [Lieberman] • Page: 385

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:14:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

