
Chapter

Sixteen
Stimulus-Response

PBD: Demonstrating
“When” as Well

as “What”

David W. Wolber and Brad A. Myers

University of San Francisco and Carnegie Mellon University

TNT Job Number: [002564] • Author: [Lieberman] • Page: 321

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:08:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Abtract

Many programming by demonstration (PBD) systems elaborate on the idea
of macro recording, and they allow users to extend existing applications.
Few, however, allow new interfaces to be created from scratch because
they do not provide a means of demonstrating when a recorded macro
should be invoked. This paper discusses stimulus-response systems that al-
low both the when (stimulus/event) and the what (response macro) to be
demonstrated.

16.1 Introduction

When a client hires a programmer, he generally will meet with her to show
how he wants the proposed application to behave. Using a graphics editor,
scratch paper, or even a dinner napkin, the client sketches the proposed in-
terface and then walks the programmer through its behaviors, first playing
the role of the end user and showing what actions he can take, and then
playing the role of the system and showing how it will respond to a particu-
lar stimulus.

The goal of our research has been to automate this process, to build soft-
ware tools that do the job of the human programmer in such a scenario. We
envision a system that watches a client demonstrate behaviors and auto-
matically creates the desired application.

16.1.1 PBD: An Elaboration of Macro Recording

Our research is based on the programming-by-demonstration (PBD) sys-
tems described in Cypher (1993), including Eager (Cypher 1991), SmallStar
(Halbert 1984), Chimera (Kurland and Feiner 1991), Mondrian (Leiberman
1993), and Peridot (Myers 1990). These systems elaborate on a concept fa-
miliar to many computer users—macro recording. With macro recording,
the user tells the system to watch him execute operations so they can be re-
corded and played back later. The goal is to give a name to a sequence of
operations so the user won’t have to repeat those operations again and
again.

PBD elaborates on the concept of macros by generalizing the sequence
of operations demonstrated. For instance, with Lieberman’s (1993)

322 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 322

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:08:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Mondrian system, a user can demonstrate the drawing of three rectangles
around a square. Mondrian records the three DrawRectangle operations but
generalizes them with parameters so that the recorded macro can be used
to draw an arch around any square of any size.

16.1.2 PBD Macro Invocation

Once a macro is created, there must be a way to invoke it. Mondrian creates
a new item in the palette of operations—the user just clicks the item to in-
voke the macro. Other systems just allow the user to execute a previously re-
corded macro by choosing it from a menu or list.

A standard method of invoking previously recorded macros is sufficient
to help a user eliminate repetitive tasks in existing applications. But, as out-
lined in an earlier article (Kosbie and Myers 1993), sometimes a user would
like to create a macro and have it invoked when a particular event occurs.
For instance, a user might want to extend her desktop so that the next day’s
calendar is printed out (the macro) when she logs out (the macro invoca-
tion event).

Eager(Cypher 1991) and its successors (see Chapters 14 and 15) focus
on macro invocation by combining PBD with a predictive interface. They
watch a user work and learn to invoke macros after the user has explicitly
executed its first few operations (i.e., they finish the job for the user).

But whereas the goal of these systems is to extend existing applications,
our goal is to allow users to build complete interfaces starting with a blank
canvas. Thus, we must provide mechanisms so that a designer can explicitly
specify both macros and the events that invoke them.

To facilitate this goal, we have built a number of systems based on a two-
phase process called programming by stimulus-response demonstration
(McDaniel and Myers 1999; Myers, McDaniel, and Kosbie 1993; Wolber and
Fisher 1991; Wolber 1997). With this process, the user first demonstrates the
stimulus (invocation event), then demonstrates the response (macro proce-
dure) that it invokes. The system then infers a behavior so that, at run time,
when the stimulus is executed, it triggers the corresponding response.

The inclusion of macro invocation complicates PBD for both the de-
signer and the underlying system. Macro recording is already difficult
for many users, as it is easy to forget whether the Record button is on.
Adding another mode button for “Record stimulus” complicates matters
even more.

Furthermore, the events that can trigger activity are more often more
complicated than the activity itself. Actions can be triggered by many

Chapter Sixteen: Stimulus-Response PBD 323

TNT Job Number: [002564] • Author: [Lieberman] • Page: 323

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:08:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

different type of events, including low-level actions (e.g., mouse and key-
board actions), high-level operations (e.g., the rotation of an acceleration
gauge can speed up a car), or the interface being in a particular context (a
bullet intersecting a target).

Thus, it is a challenge to provide a simple “syntax” for demonstrating be-
haviors. It is also a challenge to provide a powerful enough generalization
mechanism to infer the response operations and their parameters. General-
ization is complicated because a response can be related to the stimulus
and its parameters. For instance, a car responds (speeds up) an amount
proportional to how much the acceleration gauge is modified.

16.1.3 Augmenting the Capabilities of Traditional Interface Builders

Stimulus-response demonstration can augment the capabilities of interface
builders such as Visual Basic (Microsoft).1 These popular tools significantly
decrease the time and expertise necessary to define the layout of an inter-
face, but the designer must still code its dynamic behavior. For instance, a
Visual Basic designer can easily change the static location of an object in
the interface by dragging it, but specifying that the object should be moved
at run time in response to some stimulus (e.g., a button click) requires
coding.

Our strategy is to provide the designer with a complete set of widget,
text, and graphics operations, along with the capability of using them for
both drawing the interface and demonstrating its dynamic behavior. With
such a capability, the designer is not restricted to wiring together standard
widgets such as menus, list boxes, and buttons but can instead draw arbi-
trary graphics and demonstrate how they respond to stimuli (we call these
application-specific behaviors). Such capabilities allow nonprogrammers to
create animated and graphical applications and not be limited to standard
business-type applications.

16.1.4 A Quick Example

Consider how stimulus-response demonstration is used to create a Celsius-
Fahrenheit converter in the Pavlov system (Wolber 1997, 1998). The de-
signer first draws two thermometers, as shown in Figure 16.1. Note that the
thermometers in Figure 16.1 consist of raw graphics—they are not widgets
with predefined behavior. After drawing the thermometers, the designer

324 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 324

S

R

L1. msdn.microsoft.com/vbasic.

V:\002564\002564.VP
Thursday, December 21, 2000 2:08:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

uses the same drawing operations to demonstrate the interface’s behavior.
He first tells the system he is demonstrating a stimulus—he selects “Stimu-
lus” mode in the control panel—then drags (resizes) the Celsius indicator
ten pixels up. Then, in “Response” mode, he demonstrates how the sys-
tem should respond to the stimulus: he stretches the Fahrenheit indicator
eighteen pixels along the y-axis (he might also modify the text box below
the Celsius thermometer if he hasn’t already demonstrated this behavior
previously).

From the demonstrations, the system infers a generalized behavior. In
this case it infers that any time the Celsius bar is moved, the Fahrenheit bar
should be moved 9/5 (1.8) as much. When the interface is executed and the

Chapter Sixteen: Stimulus-Response PBD 325

TNT Job Number: [002564] • Author: [Lieberman] • Page: 325

S

R

L

Figure 16.1

Pavlov development of a Celsius-Fahrenheit converter, with the control panel (upper
right) as a video-recorder-like mode palette that allows the designer to draw, record
stimuli, record responses, or “play” interfaces. The Stimulus-Response Score (lower
right) displays a high-level representation of the behaviors that have already been
demonstrated.

V:\002564\002564.VP
Thursday, December 21, 2000 2:08:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

end user moves the Celsius bar, the Fahrenheit bar is moved the propor-
tional amount.

16.1.5 Wait a Second!

An example like the Celsius-Fahrenheit converter inspires more questions
than it answers. How does the system know to infer the 9/5 proportion? Can
the end user move the Celsius indicator outside its enclosing box? How
would such a restriction be demonstrated? If the designer doesn’t like what
the system infers, can she change it? Can animated behaviors and timing be
specified? Can more complex stimuli be demonstrated, such as the behav-
iors of a PacMan character?

Trying to answer such questions is the challenge of our research. This
chapter introduces what we have learned over the last decade in building
our early systems (DEMO [Wolber and Fisher 1991] and Marquise [Myers et
al. 1993]) and their successors (Pavlov [Wolber 1997] and Gamut [McDaniel
and Myers 1999], respectively). Our goal is a system that allows the behav-
ior of any interface to be defined without coding. There has been some
significant progress: stimulus-response demonstration can be used to cre-
ate such complex interfaces as diagram editors, driving simulators, shoot-
ing arcades, board games, and even PacMan. However, few of these ideas
have appeared in commercial interface builders, and much research is still
needed to reach the ultimate goal.

In this chapter, we’ll view stimulus-response as a kind of programming
language, in which the language consists of behavior demonstrations in-
stead of code. Thus, we’ll provide an overview of alternatives for both the
syntax and the semantics of stimulus-response languages. We’ll also discuss
various alternatives for providing feedback to designers so that they can
view and edit a high-level representation of the behaviors that have already
been specified.

16.2 The Syntax of Stimulus-Response

The syntax of a stimulus-response system is the mechanism by which a user
presents the “example” behaviors to the system. Providing a usable syntax is
a challenge because the system is providing the end user with much more
power than most software—it is allowing him to create software, not just
use it. The key difficulty is that a user must perform the same actions both

326 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 326

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:08:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

to use the system and to demonstrate the behavior of the target software
being created.

Perhaps the most straightforward syntax is to provide a video-recorder-
like mode palette as shown in Figure 16.1 and used in DEMO, Pavlov, and
Marquise. The designer uses “Initial View” mode to draw the initial inter-
face. The system keeps a record of the initial state of each graphic, so that it
can snap back to it after the designer demonstrates stimuli and responses.
Pavlov reverts to this initial state whenever Initial View or “Play” mode is
selected.

In Stimulus mode, the designer plays the role of end user and demon-
strates an event. This event can be as simple as a button click or key press,
or it can be one of the drawing operations (e.g., “Move,” “Rotate”). It can
also be contextualized; that is, the designer can demonstrate a graphical
condition that must be true before a response is triggered.

Often the stimulus is something the end user initiates directly at run
time, but not always. For instance, one stimulus might trigger the execution
of a series of response operations, and one of those operations in turn
might trigger some other response. Thus, the designer would demonstrate
two behaviors, the first with an “end-user” stimulus, the second with a “sys-
tem” stimulus. The different types of stimuli are discussed in detail later in
this section.

After a stimulus is recorded, the system automatically changes the mode
to Response mode. In this mode, the designer plays the role of the system
by executing the operations that should occur in response to the stimulus.
To end the response sequence, the designer changes to any other mode.
Play mode allows the interface to be executed. In some systems, the devel-
opment menus and palettes disappear in Play mode, leaving only the target
interface.

16.2.1 Eliminating Modes

Conventional interface builders such as Visual Basic have two modes:
“build” and “test.” Environments like the one described earlier add at least
two more to the mix: “record stimulus” and “record response.” We have
found that users have significant difficulty keeping track of the current
mode when these additional modes are added.

Some systems provide alternative syntax that eliminate one or more of
the modes. Chimera (Kurlander and Feiner 1991) effectively eliminates re-
sponse mode by recording all actions in a history list and requiring the de-
signer, after the fact, to signify which actions in the list should be part of a

Chapter Sixteen: Stimulus-Response PBD 327

TNT Job Number: [002564] • Author: [Lieberman] • Page: 327

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:08:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

macro. Such a scheme could be applied to a stimulus-response system by
requiring the designer also to signify an operation in the history list as the
stimulus.

Peridot (Myers 1990) provides an onscreen virtual mouse that eliminates
some of the need for a stimulus mode. Instead of choosing stimulus mode
and using the physical mouse to demonstrate what the end user might
do, the Peridot designer drags the logical mouse to the object and manipu-
lates it.

Gamut (McDaniel and Myers 1999) eliminates stimulus mode by replac-
ing the four-mode palette with two buttons: “Do Something” and “Stop
That” (see Fig. 16.2). When the user performs an action that is supposed
to do something and it doesn’t, she hits the Do Something button. The
event just prior to pushing the button is assumed to be the stimulus. The
system is then in Response mode until the user hits “Done” (the Done but-
ton appears when the system is in Response mode). Stop That is used to
give negative examples when the system does something wrong; it also
puts the system in response mode, and it tells the system to eliminate the
response(s) that were previously recorded. Besides eliminating stimulus
mode, the Gamut scheme also eliminates the distinction between build and
test mode by having the system always be in test mode (i.e., any previously
defined behaviors are always active, even when the designer is editing).

16.2.2 Demonstrating Stimuli

Various systems have allowed any of the following stimuli to trigger a re-
sponse in an interface:

• an end user manipulating the mouse or keyboard (physical operations),

• the execution of some drawing editor operation, such as Move or Rotate
(logical operations),

• objects in the interface exhibiting some state or context,

• the passage of time, or

• the execution of some application event.

The syntax for demonstrating each of these stimuli are discussed in the fol-
lowing sections.

328 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 328

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:08:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Physical and Logical Operations

One key aspect of PBD interface builders, as opposed to PBD macro sys-
tems that extend existing applications, is that the base system (e.g., the
drawing palette) menu, and other mechanisms do not appear at run time.
Thus, unless the designer explicitly demonstrates that end users can per-
form an operation in the target interface, they won’t be able to.

For example, during development, the designer can rotate any object
by choosing Rotate in the drawing mode palette. But if the designer
wants the end user to be able to rotate that object, she must demon-
strate a stimulus-response behavior that maps a mouse drag to a rotate
operation.

Chapter Sixteen: Stimulus-Response PBD 329

TNT Job Number: [002564] • Author: [Lieberman] • Page: 329

S

R

L

Figure 16.2
Gamut Main Window [C:\amulet\samples\gamut\p1.gam]

Move

shuffle

File

Behavior Control

Do Something!

Stop that!

Edit Arrange Behavior View Help

A Gamut screen creating a board game. The graphics, text, and widget operations are
accessed in the menus (top and left); the behavior control panel (lower right) pro-
vides “Do Something” and “Stop That” buttons that both initiate response demon-
strations.

V:\002564\002564.VP
Thursday, December 21, 2000 2:08:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Some systems require this physical (mouse drag) to logical (Rotate)
mapping to be explicitly demonstrated. In DEMO (Wolber and Fisher 1991),
when the designer clicks on an object in stimulus mode, she is prompted to
choose between the mouse operations up, down, drag, enter, and exit. The
designer selects one and then demonstrates the response that should be
linked to the chosen stimulus.

Gamut provides special mouse operation icons that can be dragged onto
an object to demonstrate the physical operation. (These are visible at the
left of Figure 16.2, below the drawing palette). Since there is an icon for each
type of operation, no choice dialogue is necessary.

If the physical → logical mapping is explicit, the designer needs two
demonstrations for behaviors such as the Celsius-Fahrenheit program: one
to specify the physical mapping:

LeftMouseDrag → CelsiusBar.Move

and one for the logical mapping:

CelsiusBar.Move → FahrenheitBar.Move.

Pavlov eliminates the need for two demonstrations in such cases. When
the designer moves an object in stimulus mode, the system implicitly in-
fers the drag → Move mapping, and also records that the Move should be
mapped to the upcoming response operation(s). The disadvantage of in-
ferring the physical-logical mapping is that sometimes the designer only
wants to map a logical stimulus to logical response(s) and doesn’t want the
physical-logical mapping. For instance, in a shooting arcade game, the de-
signer demonstrates that moving a bullet (and hitting a target) should cause
a response of deleting the target. In Pavlov, when the bullet.Move stimulus
is demonstrated, the system infers a physical-logical mapping (i.e., that the
end user can move the bullet). To restrict the end user from doing this, the
designer must use the editor to delete the mapping.

Context-Triggered Behaviors

Sometimes the activity in an interface should be executed in response not
to an operation but to the interface reaching a particular context or state.
For instance, in the shooting arcade game, a target should be deleted only
when a bullet intersects the target, as shown in Figure 16.3.

Such context-based stimuli are the focus of graphical rewrite systems
such as Creator, which can be considered as a type of stimulus-response

330 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 330

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:08:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

system. Demonstrations in these systems consist of selecting a portion of
the interface (a set of cells in the grid) that make up a “before state” and
then manipulating the objects residing in the selected portion of the grid to
show an “after state.”

In terms of stimulus-response, the stimulus is the before picture instead
of an operation. At run time, the system continually tests to see whether the
demonstrated “before picture” occurs. When it identifies such a state, it ex-
ecutes the operations required to put the interface in the demonstrated “af-
ter state.”

Like Creator, Pavlov allows context to be demonstrated, but it does not
provide a special “demonstrate before-state stimulus” mode. Instead, it in-
tegrates context directly into its stimulus-response model. The rationale is
that an interface does not magically enter a particular state but will only do
so as a result of some operation. Thus, the designer always demonstrates a
triggering stimulus operation, but during or prior to this demonstration,

Chapter Sixteen: Stimulus-Response PBD 331

TNT Job Number: [002564] • Author: [Lieberman] • Page: 331

S

R

L

Figure 16.3
Vpavlov Windows Application - shoot.pav

File Edit View Variables Java Window HelpDrawObject Conditions

Conditional

shoot.pav

Stimulus-Response Score

Execute Response only when:

Conditions found in interface

Bullet Intersects Target

Bullet Attributes

Edit n-BetweenI

Stimulus Object: Mouse Drag Maps:

Selected Response

Stimulus:

When Bullet is moved...

Periodic:

Ready

Response Object 0 1 2 3 4 5 6 7 8 9 10 11

Width

Height

Color

Conditions to check prior to execution

Use->

Use->

Add/Edit Condition

Add/Edit Condition

Delete Mapping

Use->

Use->

Negate->

Don’t Use-<

Pavlov development of an arcade game. The condition dialogue (upper right) ap-
pears when the system identifies a condition during a stimulus demonstration.

V:\002564\002564.VP
Thursday, December 21, 2000 2:08:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

she puts the system in the state that must be true for the stimulus to trigger
its response.

Consider again the shooting arcade game in Figure 16.3. In Pavlov, the
designer demonstrates a move of a bullet as the stimulus but completes
the move (releases the mouse) so that the bullet intersects a target (see
Fig. 16.3). The system records the move stimulus and identifies conditions,
such as “intersect,” relating the objects in the interface. Textual descriptions
of these conditions are listed so the designer can choose which should be
used as part of the stimulus. In this case, the designer selects Bullet.Inter-
sects(Target) and then demonstrates the deletion of the target as the re-
sponse. At run time, every time a bullet moves, the system checks the inter-
sect condition and executes the response only if the condition is true.

Since all conditions are subordinate to a stimulus operation, there is a
run-time efficiency gain compared to traditional rewrite schemes, because
the system need only check a particular condition when the stimulus is exe-
cuted, instead of after every time stamp. There is a syntactical disadvantage,
however. If different stimuli can cause the same result (e.g., there are two
objects, and movement of either might lead to a situation where they inter-
sect), then the designer must demonstrate two separate behaviors.

Both Creator’s graphical rewrite rule scheme and Pavlov’s stimulus-re-
sponse scheme have limitations in terms of the kinds of context that can
be demonstrated. Creator restricts context specification (and object move-
ment) to discrete grid coordinates (e.g.,the target game behavior might be
described as “trigger the response when the bullet is one square below the
target”). This grid restriction simplifies the syntax, but it also limits the con-
ditions and behaviors that can be specified.

Though Pavlov’s scheme isn’t restricted by a grid basis, it is limited by
the set of conditions or object relationships (e.g., intersect, encloses, etc.)
for which it searches. It also requires the designer to specify and, or, and not
relations in a dialogue when a condition is complex; in a system using
graphical rewrite rules, the designer can specify such complex conditions
with a single picture.

Gamut, like Pavlov, bases its context identification on object attributes
and relationships and not on grid-based relationships. A general goal of
Gamut is to eliminate the need for the designer to choose the correct gen-
eralization (e.g., condition), as is done in Pavlov. The reasoning is that the
representation of context, whether textual or graphical, is inherently com-
plex, so choosing can be difficult. Gamut’s philosophy, similar to that of
InferenceBear (Frank and Foley 1995), is to allow the designer to perform
multiple demonstrations of the same context. The system then uses

332 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 332

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:08:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

artificial intelligence (AI) techniques to infer the intended context from the
samples. Gamut also asks the designer to provide hints by selecting objects
that are relevant to the context. The hints allow more complex conditions to
be inferred than are possible in other systems (see Chapter 8).

It should be noted that the idea of demonstrating context is also impor-
tant in Web information extraction systems. These systems allow designers
to build new pages that are composites of information extracted from vari-
ous other Web pages. Because Web pages change so rapidly, the difficulty
lies in describing the information to be extracted so that even if the Web
page changes, the description is still valid. Chapters 4 and 5 in this book
explore techniques for automatically generating such descriptions from a
user’s demonstrations.

Time as a Stimulus

Sometimes activity should occur at a certain time, rather than in response
to an external event. Gamut allows the designer to drag a special clock wid-
get into the background window and then demonstrate a tick as a stimulus.
Pavlov provides a special stimulus called “beginning of execution” that a de-
signer can specify as the current stimulus. He can then select a time frame
and demonstrate responses that, at run time, are executed at a particular
time.

Structured Text as a Stimulus

Sometimes activity should be triggered when the user types in a piece of
structured information. For instance, when a user enters a street address,
an interface might automatically open a map with the address as the desti-
nation. The work described in chapter 2 allows a designer to demonstrate
example instances of structured types and then automatically build a gram-
mar that can recognize new instances.

System Events as Stimuli

An earlier article (Kosbie and Myers 1993) proposed a generalized event-
based invocation scheme for stimulus specification. In this scheme, the sys-
tem would register events for both low-level user actions (e.g., mouse and
keyboard clicks) and the high-level interpretations (e.g., menu item Delete
selected, or object A moved), and macros created by demonstration could
be invoked when these events occur. This would allow such behaviors as

Chapter Sixteen: Stimulus-Response PBD 333

TNT Job Number: [002564] • Author: [Lieberman] • Page: 333

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:08:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

creating a macro that copies files to a backup area that is invoked before a
delete operation or printing out tomorrow’s calendar before logging out.

16.2.3 Demonstrating Responses

A response is any action that creates, transforms, or deletes an object in an
interface. Though most PBD research systems are based on fairly rudimen-
tary graphics editors, the idea is that a commercial system would provide a
full range of graphic and text-editing capabilities, and even access to a data-
base and its operations.

Pavlov combines PBD with some animation mechanisms that allow tim-
ing to be specified on behaviors. Using Pavlov’s time line, the designer can
specify a time stamp, relative to the stimulus, for a demonstrated response.
Pavlov also provides a special mode, similar to one in Macromedia’s Direc-
tor (version 7.0) called Real Time Response mode. When this mode is cho-
sen, the system records a sequence of time-stamped operations (an anima-
tion path) as the designer demonstrates an operation. The designer can also
specify animation by stipulating that a response be executed periodically at
run time.

Pavlov also allows a designer to specify the direction (nose) of an ob-
ject using a guide object. Consider, for instance, the development of a driv-
ing simulator (Fig. 16.4). After drawing the car, accelerator slider bar, and
steering wheel, the designer specifies the “nose” of the car by manipulating
a special guide object representing its direction. She then demonstrates a
stimulus of moving the accelerator slider bar, and a response of moving the
car, and marks the response as periodic. Because the car has a notion of di-
rection, its movement is restricted—the designer can only demonstrate that
it moves forward or backward relative to the direction vector. In Pavlov, the
response is recorded not as a Move(x,y) but as a (periodic) MoveForward
operation. At run time, the car goes faster or slower as the accelerator is
manipulated.

16.2.4 Demonstration Aids: Guide Objects and Ghost Marks

A guide object is one the designer uses during development but doesn’t
want to appear at run time (Fisher, Busse, and Wolber 1992). For instance,
the designer might use a directed line to show how a game piece can move
around the board. In Gamut, the designer simply sets an object property to
specify that it is a guide object. It then appears in pastel colors during

334 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 334

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:08:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

development and disappears at run time. In Figure 16.2, the yellow arrow
lines in the center of the boxes are guide objects to help show where the
pieces can move. When the designer drags a game piece along a yellow line,
the system can infer that he is demonstrating a move from one end point of
the line to the other (instead of a move by some offset). Thus, behaviors
such as moving one (or more) squares in a game can be demonstrated.

Gamut also provides a backstage area in which all objects are guide ob-
jects. The objects in this area generally store “computational” information
in the form of text boxes or other widgets. For example, a widget might store
whose turn it is or the number of lives left. By replacing information tradi-
tionally stored in program variables, the need to connect an interface to ap-
plication code is reduced or eliminated.

Marquise introduced the idea of leaving trails, or ghost marks, of the
mouse cursor as it is moved, so the designer can hook responses to points
on its path. Gamut extended the idea so that the previous state of an object
also appears after it is transformed. Thus, a designer can specify an opera-
tion dependent on that previous state (e.g., that Object A is moved to the
previous location of Object B after Object B is moved).

Chapter Sixteen: Stimulus-Response PBD 335

TNT Job Number: [002564] • Author: [Lieberman] • Page: 335

S

R

L

simulator.pav

Control Panel

Initial View

Play

Stimulus Response Real-time Response

Stimulus-Response Score

Edit n-BetweenI

Stimulus Object: Mouse Drag Maps:

Selected Response distance

Stimulus:

When Accelerator is moved, Car is moved forward every 1 frames

Periodic: Every:

Response Object
0 1 2 3 4 5 6 7 8 9 10

Add/Edit Condition

Add/Edit Condition

Delete Mapping

MF

Figure 16.4

V:\002564\002564.VP
Thursday, December 21, 2000 2:08:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

16.3 The Semantics of Stimulus-Response

The generalization or inference machine of a stimulus-response system in-
terprets the meaning of the examples a designer provides during the dem-
onstration. It takes the demonstrated stimulus-response examples as input
and output behaviors that, if represented as code, would appear something
like this:

On StimulusObject.Stimulus(<formal parameters>)
{
if (checkcontext)

Operation(<ResponseObject>,<other response parame-
ters>)

. . .
}

Some major challenges in interpreting the examples are as follows:

• Which object(s) is the designer signifying with her demonstrations?

• What should the parameters of the response operation(s) be?

• How should context modify the inferred behavior?

There are two main methods of generalization, based on whether the
system allows more than one example of a behavior to be demonstrated.
Pavlov generalizes from a single example, in the tradition of early PBD sys-
tems such as SmallStar (Halbert 19XX) and Chimera (Lieberman 1993). In AI
terms, such single example systems are known as explanation-based learn-
ing systems.

The philosophy behind using single examples is to keep the inference
machine simple so the designer can understand it and then provide a sec-
ond-level editor that allows the designer to modify generalizations easily.
Single-example systems use as much domain knowledge as they can so that
the single “guess” is as accurate as possible.

In contrast, Gamut generalizes from multiple examples. In AI terms,
multiple-example systems are known as empirical learning systems. Be-
cause more information is provided with multiple examples, these systems
can infer more complex behaviors and need not rely as much on domain
knowledge. However, it is more difficult for the designer to understand
what the system is doing, and the syntax is also complicated because a

336 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 336

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:08:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

demonstration can conceivably be performed to edit, refine, or append
(add another response) to a particular behavior.

Chapter 3 discusses generalization for PBD systems in general, focusing
on the question of how much intelligence should be incorporated. This sec-
tion explores generalization in the context of stimulus-response systems
specifically.

16.3.1 Object Descriptor Problem

Perhaps the most important problem in generalizing from examples is the
object descriptor problem (Halbert 1984)—determining the object or ob-
jects that the designer intends to signify when she demonstrates an ac-
tion on an example object. In terms of the generated code template shown
at the top of this section, the problem consists of how to describe the
“StimulusObject” and “ResponseObject” of the code.

Sometimes no generalization need occur, as there is a one-to-one corre-
spondence between the demonstrated object and the intended run-time ob-
ject. For example, in the Celsius-Fahrenheit example, FahrenheitBar is the
demonstrated response object, and it is the intended run-time object as
well. FahrenheitBar is an example of a constant object descriptor.

In some cases, however, the designer intends the demonstration object
to be representative of some set of objects or some single object that cannot
be described with a constant. When the demonstration object is a dynami-
cally allocated object, the object can’t be described with a constant. Con-
sider, for instance, the dynamically created bullets in an arcade game. A
particular development-time bullet won’t appear at run time, because no
bullets appear until a stimulus occurs. When an action is demonstrated on
a bullet (e.g., movement), a nonconstant descriptor must be inferred for it.

There are also cases when a nonconstant descriptor is appropriate even
though the demonstration objects itself is statically created. For example,
consider a board game that has a group of pieces that are statically created.
When the designer demonstrates moving a piece, he may be signifying that
the piece to move at run time is the one for the player whose turn it is, and
he is using the particular piece as a representative of that concept.

Pavlov is a single-example system, so it only infers nonconstant
descriptors for demonstrations on dynamic objects, since those must be
generalized into nonconstants. Pavlov includes a number of heuristics to
guide its generalization of dynamic objects. The most simple inference is
that the dynamic demonstration object represents all instances, at run time,
that have been created by the same stimulus. For example, suppose that the

Chapter Sixteen: Stimulus-Response PBD 337

TNT Job Number: [002564] • Author: [Lieberman] • Page: 337

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:08:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

bullets in an arcade game are created by pressing the up-arrow key. If the
designer demonstrates a stimulus of clicking a button, and a response of
changing a particular bullet’s color to blue, Pavlov infers that at run time,
clicking the button changes the color of all bullets (created by an up arrow).

Pavlov does identify special cases that use more distinguishing
descriptors. For instance, if a transformation is demonstrated in the same
response sequence as a creation (e.g., a bullet is created then moved), then
the object descriptor will be “the same instance as the one just created.” If a
response is demonstrated on the same object as the stimulus, the inferred
descriptor is “the same instance as the stimulus.” And, as mentioned in
Section 16.2.2.2, Pavlov identifies existing conditions that exist when the ex-
ample is demonstrated, so the designer can add if-then complexity to a
descriptor if desired. In practice, Pavlov’s special rules and condition iden-
tifier cover a wide range of behaviors. But no matter how many heuristics
are used, the system will sometimes guess wrong using only a single exam-
ple. In these cases, second-level editing or coding is necessary.

Because Gamut uses multiple examples, it can infer nonconstant
descriptors for static and dynamic objects. After the first example, a con-
stant descriptor is generally inferred, but as more examples are provided,
the system analyzes the properties of the example objects to infer more
complex descriptors.

Gamut also reduces the number of required examples by asking users to
give hints about which of the many interface objects are important. With
hints, the system can infer object descriptors that depend on objects that
are not directly modified by the example action itself. Consider, for exam-
ple, a two-player board game that has a red piece, a blue piece, and a toggle
specifying whose turn it is. To specify the behavior, the designer first sets
the toggle to true and demonstrates moving the red piece. He then sets the
toggle to false and demonstrates moving the blue piece. At this point the
system knows a nonconstant descriptor is needed to describe the piece that
should be moved, but it doesn’t know where to start. Thus, it asks the de-
signer to select what auxiliary objects, besides the piece, the behavior de-
pends on. When the designer selects the toggle, the system infers an object
descriptor such as “the red piece if the toggle is true, the blue piece if the
toggle is false.”

16.3.2 Response Parameter Descriptors

In addition to the object parameter, PBD systems must infer the other
parameters of an operation (see the “<other response parameters> in

338 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 338

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:08:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the code at the start of this section). For example, a move operation has
both the object to be moved (as discussed earlier) and the position to
which it moves. Again, the simplest inference is that the parameter is con-
stant, but even this situation presents ambiguity: did the designer intend
the destination demonstrated or the offset demonstrated (i.e., move to this
location, or move by this amount)? Single-example systems must guess in
this situation. Multiple-example systems can usually distinguish after two
examples.

Inferring constant parameters is hardly the most challenging issue. For
instance, the position to which a board game piece should be moved in Fig-
ure 16.2 might be described as “take the number on the dice and move that
number of spaces clockwise around the board from where the piece used to
be.” Such a parameter can be inferred by Gamut but not by other systems.
The following sections discuss various techniques that can be used for gen-
eralizing nonconstant parameters.

16.3.3 Linear Proportions

Pavlov takes advantage of the observation that many interface behaviors
have response parameters that are proportional to the corresponding stim-
ulus parameters. The Celsius-Fahrenheit converter is one example: when
one gauge is transformed, the other one should be transformed 5/9 (9/5)
as much. Another examples is a diagram editor in which moving a node
should cause the ends of all lines connected to it to be moved by the same
amount.

Pavlov uses the heuristic that when a stimulus and response are both
transformations (e.g., Moves), each response parameter is inferred to be
proportional to the corresponding stimulus parameter. As with object
descriptors, Pavlov also watches for special cases. For instance, if the de-
signer demonstrated a Move(20,0) as a stimulus, and a Move(0,40) as a re-
sponse, it maps the nonzero second parameter of the response to the non-
zero first parameter of the stimulus.

InferenceBear (Frank and Foley 1994) infers other linear combinations
of parameter values from multiple examples of the desired behavior. This
feature eliminates the need for hard-wired special cases but requires the
user to choose the examples carefully. Furthermore, InferenceBear can take
into account properties of the object that do not participate in the action
(Pavlov only analyzes the demonstrated stimulus and response objects). For
instance, in the shooting arcade game, Inference Bear can infer after mul-
tiple examples that the parameters of the bullet creation depends on

Chapter Sixteen: Stimulus-Response PBD 339

TNT Job Number: [002564] • Author: [Lieberman] • Page: 339

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:08:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the location of the gun, though the gun is not part of the stimulus or
response.

16.3.4 Complex Parameters

Gamut adds even more inferencing power by using decision trees and other
AI algorithms and by allowing the designer to provide hints to help the sys-
tem generalize the parameters. For instance, after the first example of a bul-
let creation was provided, Gamut would ask the designer to point out ob-
jects that are important. The designer would select the gun, and Gamut
would use this to infer the correct create response parameters (i.e., that the
bullet should be created directly above the gun). In this way, hints can allow
the system to “guess” the correct behavior more quickly than in systems
that don’t ask the designer for extra help.

Gamut can also compute the parameters using values from many ob-
jects. Examples include setting the color of an object based on the color of a
palette or computing the position of the board game piece using the dice as
mentioned earlier. As a result, Gamut can be used to create complete appli-
cations such as a Turing machine, tic-tac-toe, or a PacMan game.

16.4 Feedback and Editing

When a PBD system infers a program from a designer’s demonstration, it
doesn’t always infer the program that the designer intended. One solution is
to allow the designer to demonstrate more examples until, hopefully, the
system infers the intended program. But with such a scheme, the designer
can never be sure what program the system has inferred and can feel lost
not knowing what to do next. Another approach is to ask the designer ques-
tions that will hopefully disambiguate the examples. However, our experi-
ence with such systems suggest that users have great difficulty answering
such questions and generally choose “yes” if given a choice, assuming the
computer that is right, even when it isn’t.

It is clear from our experience that the designer really needs to see some
representation of the inferred program and be able to edit it. Here lies the
dilemma, called the PBD representation problem: since the goal of PBD is to
allow people that aren’t programmers to create programs, the system prob-
ably shouldn’t represent a program as conventional computer code (C++,

340 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 340

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:08:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Java, etc.). Even special-purpose scripting languages, such as those gener-
ated by DEMO and InferenceBear, are difficult for end users.

16.4.1 Storyboards

One solution is to present a graphical, storyboard representation of the in-
ferred programs (Kurlander and Feiner 1991; Leiberman 1993; Modugno,
Corbett, and Myers 1997). Figure 16.5 shows one from Pursuit (Modugno et
al. 1997) that represents copying all the files edited today in the papers
folder that end in “.tex”.

Storyboards allow a designer to see what the system has recorded and
what generalizations it has made. These “programs” can also be edited by
moving tiles around, deleting them, or selecting them and redemonstrating
the particular operation.

16.4.2 The Stimulus-Response Score

Unlike Pursuit, stimulus-response systems must provide a representation
that includes the triggering stimulus. In Pavlov, a dialogue is provided that
allows the designer to select an object and a current stimulus (Fig. 16.6).
When the stimulus is changed, either with the dialogue or by a stimulus
demonstration, the corresponding time line (middle of Fig. 16.6) shows only
the responses corresponding to that stimulus. The designer can edit the pa-
rameters of each response (x and y in Figure 16.6) and can click “Add/Edit
Condition” to view and edit a graphical condition on the stimulus.

Chapter Sixteen: Stimulus-Response PBD 341

TNT Job Number: [002564] • Author: [Lieberman] • Page: 341

S

R

L

Figure 16.5
copy

< >n1 .tex < >n1 .tex < >n1 .tex < >n1 .tex
copy-of-
n1 .tex< >

papers

IS

papers papers

date - TODAY

A Pursuit storyboard showing a file manipulation program created by demonstra-
tion in Pursuit.

V:\002564\002564.VP
Thursday, December 21, 2000 2:08:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Because there is a time line for each stimulus, and because operations,
not object states, are recorded, the designer can specify interfaces in which
objects behave asynchronously. Chapter 17 of this book provides more
details.

It should be noted that Pavlov’s stimulus-response score not only is used
to view and edit behaviors after the fact but is integrated into the demon-
stration environment. For instance, the designer can choose a current stim-
ulus in the score, instead of demonstrating it, if she knows its name and
doesn’t need to specify parameters for it graphically. As mentioned earlier,
she can also use the time line in the score to specify time stamps prior to
demonstrating responses.

16.5 Conclusion

Many people use software, but few can create it. One of the only areas of
creation open to most people is to build static web pages with one type of
stimulus: the button click on a link. Stimulus-response systems can open

342 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 342

S

R

L

Figure 16.6

The Pavlov Editor showing an animation path triggered by a button click. In this ex-
ample, the current stimulus is a LEFTCLICK on Rect0. The displayed response is an
animation path (a series of moves) involving Ellipse0.

V:\002564\002564.VP
Thursday, December 21, 2000 2:08:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

up creativity by allowing people to build applications that come alive, both
for the Web and for the desktop.

Our research has introduced some of the alternatives of stimulus-re-
sponse system design, in terms of syntax, semantics, and feedback. The
next step, we believe, is detailed empirical testing between alternatives, ei-
ther through research or the widespread use that would occur if stimulus-
response technology were added to a popular interface builder.

References

Cypher, A. 1991. Eager: Programming repetitive tasks by example. In Proceedings of

CHI ’91, (New Orleans, May).

Cypher, A.,Halbert,D., Kurlander,D., Lieberman, H., Maulsby, D., Myers, B.

Turransky, A., eds. Watch what I do: Programming by demonstration. Cambridge,

Mass.: MIT Press.

Halbert, D. 1984. Programming by example. Ph.D. diss., University of California,

Berkeley.

Frank, M. R., and J. D. Foley. 1994. A pure reasoning engine for programming by

demonstration. In Proceedings UIST’94: ACM SIGGRAPH symposium on user in-

terface software and technology. (Marina del Rey, Calif.).

Fisher, G. L, D. E. Busse, and D. Wolber. 1992. Adding rule-based reasoning to a

demonstrational interface builder. In Proceeding of UIST’92.

Kosbie, D. S., and B. A. Myers. 1993. PBD invocation techniques: A review and pro-

posal. In Watch what I do: Programming by demonstration, ed. A. Cypher. Cam-

bridge, Mass.: MIT Press.

Kurlander, D., and S. Feiner. 1991. Inferring constraints from multiple snapshots.

ACM Transcations on Graphics (May).

Lieberman, H. 1993. Mondrian: A teachable graphical editor.” In Watch what I do:

Programming by demonstration, ed. Allen Cypher. Cambridge, Mass.: MIT Press.

McDaniel, R., and B. Myers. 1999. Getting more out of programming-by-demonstra-

tion. In Proceedings CHI’99: Human Factors in Computing Systems. (Pittsburgh,

Pa. May 15–20).

Modugno, F., A. T. Corbett, and B. A. Myers. 1997. Graphical representation of pro-

grams in a demonstrational visual shell—An empirical evaluation. ACM Transac-

tions on Computer-Human Interaction 4, no. 3: 276–308.

Myers, B. A. 1990. Creating user interfaces using programming-by-example, visual

programming, and constraints. ACM Transactions on Programming Languages

and Systems, 12, no. 2: 143–177.

Chapter Sixteen: Stimulus-Response PBD 343

TNT Job Number: [002564] • Author: [Lieberman] • Page: 343

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:08:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Myers, B., R. McDaniel, and D. Kosbie. 1993. Marquise: Creating complete user in-

terfaces by demonstration. In Proceedings of INTERCHI ’93 (Amsterdam, April).

Smith, D. C., and A. Cypher. 1995. KidSim: End-user programming of simulations. In

Proceedings of CHI ’95 (May).

Wolber, David. 1997. “An interface builder for designing animated interfaces. Trans-

actions on Computer-Human Interface (TOCHI) (December).

———. 1998. A multiple timeline editor for designing multi-threaded applications.

In Proceedings of the User Interface and Software Technology (UIST) conference

(San Francisco).

Wolber, D., and Gene Fisher. 1991. A demonstrational technique for developing

interfaces with dynamically created objects. In Proceedings of UIST ’91

(November).

344 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 344

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:08:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

