Color profile: Generic CMYK printer profile
Composite Default screen

Twelve

Training Agents to
Recognize Text by
Example

HENRY LIEBERMAN
Media Laboratory, Massachusetts Institute of Technology

BONNIE A. NARDI
AT&T Labs West

DAVID J. WRIGHT

Apple Computer

‘t—' LU ‘m

V:\002564\002564.VP
Wednesday, December 20, 2000 1:27:12 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 227

Color profile: Generic CMYK printer profile

Composite Default screen

228 Your Wish is My Command

Abstract

Introduction

An important function of an agent is to be “on the lookout” for bits of infor-
mation that are interesting to its user, even if these items appear in the
midst of a larger body of unstructured information. But how to tell these
agents which patterns are meaningful and what to do with the result?

Especially when agents are used to recognize text, they are usually
driven by parsers that require input in the form of textual grammar rules.
Editing grammars is difficult and error-prone for end users. Grammex
(Grammars by Example) is the first direct manipulation interface designed
to allow nonexpert users to define grammars interactively. The user pres-
ents concrete examples of text that he or she would like the agent to recog-
nize. Rules are constructed by an iterative process, in which Grammex heu-
ristically parses the example and displays a set of hypotheses, and the user
critiques the system’s suggestions. Actions to take upon recognition are also
demonstrated by example.

Text Recognition Agents

One service that agents can provide for their users is helping them deal with
semistructured information, information that contains nuggets of semanti-
cally meaningful and syntactically recognizable items embedded in a larger
body of unstructured information. Since vast amounts of interesting infor-
mation are already contained in Web pages, application files, and windows,
recognition could prove valuable even if that recognition is only partial
(Bonura and Miller 1998). The agent can automatically recognize and ex-
tract the meaningful information, and take action appropriate to the kind
of information found. Existing agents of this kind are generally prepro-
grammed with a recognition procedure and can only be extended with dif-
ficulty by the end user. The aim of this work is to allow users to teach the
agent interactively how to recognize new patterns of data and take actions.

Our approach is to let users specify what they want by example, since
learning and teaching by example is easier for people than writing in ab-
stract formalisms. The focus in this chapter will be on agents that recog-
nize text in interactive desktop applications, but the general approach is

L

V:\002564\002564.VP

Wednesday, December 20, 2000 1:27:12 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page:228

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Twelve: Training Agents to Recognize Text by Example 229

12.1

fpo

Apple data Detectors.

applicable even where the data concerned is graphical or numerical rather
than text.

The recent advent of the World Wide Web has sparked renewed interest
in text-parsing technology. Parsers are also beginning to be deployed as an
integral part of the text-editing facilities available across all computer appli-
cations. Examples are Apple Data Detectors (Nardi, Miller, and Wright 1998;
see Fig. 12.1) and the Intel Selection Recognition Agent (Pandit and Kalbag
1997). These facilities allow automatic recognition of simple, commonly
occurring text patterns such as email addresses, URLs, or date formats.
Whether they occur in electronic mail, spreadsheets, or Web pages, URLs
can be automatically piped to Web browsers, telephone numbers to contact
managers, or meeting announcements to calendars, without explicit cut-
and-paste operations. LiveDoc and DropZones (Miller and Bonura 1998;
Bonura and Miller 1998) go further, making recognition by the agent more
automatic, highlighting recognized objects in place, permitting drag and
drop of recognized objects, and allowing actions to operate on more than
one object (see Fig. 12.2).

Typically, the set of patterns recognized by the parser is to be pro-
grammed by a highly expert user, a grammar writer skilled in computa-
tional linguistics. The end user is merely expected to invoke the parser and
use its results. However, no set of patterns supplied by experts can be com-
plete. Chemists will want to recognize chemical formulas, stockbrokers will
want to recognize ticker symbols, and librarians will want to recognize ISBN
numbers, even if these abbreviations have little interest to those outside
their own group. Individuals might invent their own idiosyncratic “short-
hand” abbreviations for specific situations. We are interested in enabling
ordinary end users to define their own text patterns.

We also expect that many text patterns will be programmed by “garden-
ers,” users who have above-average interest and skill in using applications

S

__R
L

V:\002564\002564.VP

Wednesday, December 20, 2000 1:27:16 PM
TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 229

Color profile:
Composite Default screen

Generic CMYK printer profile

230

Your Wish is My Command

12.2

FT=————— test
This is an interesting example which includes an email address
bonura@apple.com is the address of and his phane number is
F74-4538

and his favorite url is http://ohlala.ato.aknle.coms

rionoay, sep 29, 1995

Now what? NASDAQ:AAPL

NASDAD:AAPL

Maybe someone Tike Jim Miller or Laile Disilyestro would be interested? |

<l

NP Please select an action:

K
%‘; Telephony Assistant
ne 3@1

Lr)
w o
i

{Email Assistant
Remore this person from notify st
Notify me wher mail arrives from this person
Notify me wher mail arcives from this address
Send email

Financial Assistant

(concer)

LiveDoc and DropZones.

but are still not full-time computer experts or necessarily even have pro-
gramming skills. Gardeners often serve as informal consultants for a local
group of users (Nardi 1993).

Writing Conventional Grammars as Text

Grammars are the traditional means of expressing a pattern in a stream of
text to be identified by a parser. The usual means of defining grammars is
by a text file containing rules specified in a Backus-Naur Form (BNF) syn-
tax. The parser takes the grammar file and a target text and returns a tree of
symbols used in the grammar and a correspondence between substrings of
the text and each symbol. Grammar files sometimes also serve as input for
grammar compilers, which output a recognizer that can subsequently be
used to parse text with a single grammar.

First, we'll present a very simple example to establish the methodology.
Later, we'll return to questions of complexity and scalability. Let’s consider
trying to teach the computer to understand the format of an electronic mail
address. Examples of electronic mail addresses are

S
__R
_ L

V:\002564\002564.VP
Wednesday, December 20,

2000 1:27:17 PM
TNT Job Number: [002564] e

Author: [Lieberman] ¢ Page: 230

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter Twelve: Training Agents to Recognize Text by Example 231

lieber@media.mit.edu
and
nardi@apple.com.

This pattern is expressed in BNF as a set of context-free rules, each of which
tells the computer how to recognize a certain grammatical category, or
nonterminal, as a sequence of specific strings, lexical categories such as
“Word” or “Number,” or other nonterminals.

Below, £-Mail-Address is expressed in terms of Person and Host.
We assume Word is a primitive token recognized by the parser.

<E-Mail-Address> := <Person> @ <Host>
<Person> := <Word>
<Host> := <Word> | <Word> . <Host>

Grammars are difficult for end users for many reasons. Users do not
want to learn the syntax of BNF itself, and it is very easy to make mistakes.
When the grammar does contain mistakes, parsers generally offer little help
for determining which rule was responsible or what interaction between
rules caused the problem. Grammar categories themselves can seem very
abstract to users, and the effect of a set of grammar rules on concrete exam-
ples is not always clear.

Despite the difficulty of writing and editing grammars in BNF text form,
users may well be comfortable with the idea of a grammar itself. If you
asked a typical user, “What does an email address look like?” you'd likely
get the answer, “An email address is the person’s name followed by an @,
followed by a host.” To the further question “And what does a host look
like?” would come the answer “A host is any number of words, with periods
between the words.” This indicates that it is the grammar format and syntax
itself, and the complexities of applying them in concrete cases, rather than
conceptual difficulties surrounding grammars themselves that are the
problem.

Programming Grammars by Example for More
Accessibility

Though abstraction is a source of power for grammars, abstraction is also
what makes grammars difficult for end users. Because people have limited

S

__R
L

V:\002564\002564.VP
Wednesday, December 20

2000 1:27:17 PM
TNT Job Number: [002564] e Author: [Lieberman] ¢ Page:231

Color profile: Generic CMYK printer profile

Composite Default screen

232 Your Wish is My Command

short-term memory, they find it difficult to keep track of how abstract con-
cepts map to specific instances when systems grow large. People are simply
much better about thinking about concrete examples than they are about
abstractions such as grammar rules.

Our solution for dealing with the complexity of grammar definition is to
define grammars by example. The need for a new text pattern will often be-
come apparent to the user when he or she is examining some text that al-
ready contains one or several examples of the pattern. Our approach is to
let the user use an example that arises naturally in their work as a basis for
defining a grammar rule. Abstraction is introduced incrementally, as the
user interacts with the system to provide a description of each example.

The idea for the interface is to have the user interact with a display that
shows both the text example and the system’s interpretation of that exam-
ple (either simultaneously or at most one mouse click away). At any time,
the user can direct the system to make a new interpretation of an exam-
ple, or to apply the interpretations it has already learned, and display the re-
sult. By keeping a close association between the grammar categories and
their effects in concrete examples, the user can always see what the effect of
the current grammar is and what the effect of incremental modifications
will be.

Grammex: A Demonstrational Interface for Grammar
Definition

Grammex is the interface we have developed for defining grammars from
examples. It consists of a set of Grammex rule windows, each containing a
single text string example to be used as the definition of a single grammar
rule. Text may be cut and pasted from any application. The user’s task is to
create a description of that example in terms of a grammar rule.

Grammex parses the text string according to the current grammar and
makes mouse-sensitive the substrings of the example that correspond to
grammar symbols in its interpretation. Clicking on one of the mouse-sensi-
tive substrings brings up a list of heuristically computed guesses of possible
interpretations of that substring. The user can select sets of adjacent sub-
strings to indicate the scope of the substring to be parsed. At any time, a
substring can be designated as a new example, spawning a new Grammex
rule window, supporting a top-down grammar definition strategy.

There is also an overview window, containing an editable list of the ex-
amples and rules defined so far. The overall structure of the interface was
inspired by the Tinker programming-by-example system (Lieberman 1993).

S

R

L

V:\002564\002564.VP

Wednesday, December 20, 2000 1:27:18 PM

TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page: 232

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Twelve: Training Agents to Recognize Text by Example 233

An Example: Defining a Grammar for Email Addresses

We start defining the pattern for E-Mail-Address by beginning with a new
example that we would like to teach the system to handle. We get a new
Grammex rule window and type in the name for our grammar, E-Mail-
Grammar; the name of the definition, E-Mail-Address; and the example text
lieber@media.mit.edu (Fig. 11.4).

The Grammex window has two modes: Edit and Parse. In Edit mode, the
bottom view functions as an ordinary text editor; the user can type in it or
cut and paste text from other windows as the source of the example.

In Parse mode, Grammex tries to interpret the text in the example view,
and the user can interactively edit the interpretation. Grammex makes
pieces of the text mouse-sensitive. Initially, lieber, @, media, ., mit, ., and edu
are identified as separate pieces of text, using the parser’s lexical analysis.
Each displays a box around it. Clicking on a piece of text brings up a pop-up
menu with Grammex’s interpretations of that piece of text. In Figure 12.5,
the user clicks on mit.

Grammex displays several interpretations of the chosen text, “mit”. In
the context of an email address, “mit” could be described as being exactly
the string “m”, followed by “i”, then “t”, or as an example of any word (string
of alphanumeric characters), or as anything, meaning that any string could
take the place of “mit”. The default interpretation for a string depends first
of all on its lexical category. In Figure 12.5, the string mit is a sequence of al-
phabetic characters, so the default interpretation is a Word. For the punctu-
ation character @, the default interpretation is exactly that string. The user
may also select a preexisting grammar to use for the default interpretation.
The Other option leads to a dialogue box that allows options specific to the

12.3

EI=——————— Grfammei =——————— 1=
Grammar Mame: |E-Mail-Grammar @ Edit [ok |
Definition: E-Mail-Address) Parse

lieber @media.mit.edu

“lieber@media.mit.edu is an example email address.

V:\002564\002564.VP

Wednesday, December 20, 2000 1:27:18 PM
TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page: 233

Color profile: Generic CMYK printer profile
Composite Default screen

234 Your Wish is My Command

12.4

EO=—————————— Grammei =—————————— A=
Grammar Mame: |E-Mail-Grammar O Edit [ok |
Definition: E-Mail-Address @ Parse

Anything
Other...
. a Word

Interpretations of the string mit.

12.5

Grammex
Grammar Name: |E-Mail-Grammar | crit (Cok]
Definition: E-Mail-Address } @ Parse
ibor 2RI o — 1
= Grammey ————[§]-
Grarmar Marme: |E-MRAIL-GRAMMAR @ Edit [o]
Definition: Person| | O Parse
lieber
K I

lieber as an example of a Person.

kind of object recognized (e.g., for numbers one can specify a range, for
strings a length, etc.).

Top-Down Definition

We start explaining to Grammex the structure of an email address by ex-
plaining the meaning of the string “lieber,” which represents the Person part
of an email address (Fig. 12.6). We shift-select the string lieber, which high-___$

lights it, then select the New button, which spawns a new window ___R
L

V:\002564\002564.VP
Wednesday, December 20, 2000 1:27:18 PM

TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page:234

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Twelve: Training Agents to Recognize Text by Example 235

12.6

SN=———————— Gramme =——————— A=
Grarnmar Marme: |E-MRIL-GRAMMAR OEdit [__0K_]
Definition: Person @ Parse

A Person as a Word.

12.7

EO=———— Grammes =————— 1=
Grammar Narme: | E-Mail-Grammar | C Edit [ok |
Definition: E-Mail-Rddress @ Parse

Anything

Verifying that lieber is recognized.

containing just the string “lieber” and the name of our grammar, E-Mail-
Grammar. We type in the name of the new definition, Person.

For Person, we accept the default interpretation of a Word (Fig. 12.7).
This tells the system that any word can be interpreted as being a Person.
This illustrates a top-down style of grammar definition. Underneath the
general goal of explaining to the system how to understand the text
“lieber@media.mit.edu,” we establish the subgoals of explaining “lieber” as
a Person and, later, “media.mit.edu” as a Host. Alternatively, we could also
adopt a bottom-up style of definition, starting with Person and Host, and
only then passing to the full email address.

Now, when we return to defining an email address, “lieber” has an addi- _S

tional possible interpretation, that of a Person (Fig. 12.8).

V:\002564\002564.VP

Wednesday, December 20, 2000 1:27:19 PM
TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page: 235

Color profile: Generic CMYK printer profile
Composite Default screen

236 Your Wish is My Command

Rule Definitions from Multiple Examples

The concept of a Host is more complex than that of a person, because we
can have hosts that are simply names, such as the machine named “media”,
or we can have hosts that consist of a path of domains, separated by peri-
ods, such as “media.mit.edu”. Thus, the definition for Host requires two ex-
amples: one of each important case.

We describe “media” as being an example of a Host being a single word,
in the same way we did for “lieber” as a Person. Note in Figure 12.9 that
when we choose the word “media,” the possible interpretation (plausible,
but wrong) of “media” being a Person crops up.

Note that if we wanted to describe a domain as an enumerated type

» o«

(“edu”, “com”, “mil”, “org”, etc.), we could type in each of these as examples

”»

and choose the Exactly option for each one, such as “Exactly “edu’.

Definition of Recursive Grammar Rules

The second example for a Host describes the case where there is more than
one component to the host name—for example, “media.mit”. We select the
substring “media.mit” from our original example, “lieber@media.mit.edu”,
and invoke New.

12.8

Grammex
Grammar Name: |E-Mail-Grammar) Edit [ok |
Definition: E-Mail-Address @ Parse
VRIS 2ol o 1l — —
ENl=—————— Grammesx EEE
Grammar Name: |E-MAIL-GRAMMAR O Edit [0k |
Definti] Anything @ Parse
Other...
PERSON

.a Word

“media” as a Host.

V:\002564\002564.VP
Wednesday, December 20, 2000 1:27:19 PM

TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page:236

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter Twelve: Training Agents to Recognize Text by Example 237

12.9

GrammeX
Grarimar Narme: |E-Mail-Grammar O Edit [ok ||
Definition: E-Mail-Address @ Parse
leber] 1 [
Em] Grammes CE
= MMAR i
Grarnmar Nal Anything I) Edit
Definition: Other... @ Parse
D

Faediali] PERSON

a Word
Exactly "mit"

L

Recursively defining a Host.

The default interpretation of “media.mit” would be as a Word, followed
by a period, followed by another Word. However, while this is a possible in-
terpretation, it does not describe the general case in such a way as could ac-
commodate any number of host components. For that, we need to express
the idea that following a period we could then have another sequence of a
word, then another period, then a word; that is, we could have another Host.
In our example, then, we need to change the interpretation of “mit” to be a
Host rather than a word, so that we could have not just “media.mit” but also
“media.mit.edu”, “media.mit.cambridge.ma.us”, and so forth. This is done
by simply selecting “mit” and choosing the interpretation Host from the
pop-up menu (Fig. 12.10).

The result is now that if we ask what the interpretation of “media.mit” is,
we get a Word, then “.”, then a Host (Fig. 12.11). This is an important and
subtle idea, the concept of defining a recursive grammar definition through
multiple examples. One might question whether this idea might not be dif-
ficult for “ordinary end users” to grasp.

While it is unlikely that the concept of defining recursive grammars
might occur spontaneously to an untrained user, we believe that Grammex
offers users a gentle introduction to the concept of recursion. Initially, a
user might have to be shown an example, such as defining the host as in

our example. Grounding the definition process in concrete examples gives

the user a way to motivate the concept and check his or her understand- _$
ing at each step. Then, the user should be able to easily acquire the skill for __R
L

V:\002564\002564.VP
Wednesday, December 20, 2000 1:27:20 PM

TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page: 237

Color profile: Generic CMYK printer profile

Composite Default screen

238

Your Wish is My Command

12.10

ENf Grammes ——————FI=
Grammar Name: |E-MAIL-GRAMMAR O Edit [ok]
Definition: Hos{ @pParse [_New |

Anything I—
=0 Other... P
min . @ Word, ".", HOST =
a Word, ".", a Word e
Exactly "media.mit"
2]
ﬁﬂﬂj o Eﬂ

Verifying the interpretation of media.mit.

defining similarly recursive definitions such as URLs and Unix file paths.
Experience with the Logo programming language has shown that even
young children can grasp the idea of recursion without difficulty if it is in-
troduced properly.

We also intend to provide a shortcut, the two choices Optional and Re-
peating, which will cover the two most common cases where recursive
definitions are needed. With this shortcut, one could proceed directly to the
example “media.mit” and mark “.” and “mit” as Repeating. This will gener-
ate two definitions automatically, one for “media” and one for “media.mit”,
with the same effect as the steps presented earlier.

Finally, note that no great harm is done even if the user simply accepts
the initial interpretation of “media.mit” as a Word, “.”, then a Word. That
definition will only be good for two-component Host names. Then “me-
dia.mit.edu” could be presented as a separate example for three-compo-
nent names. Two-, three- and four-component names probably constitute
95 percent of host names, which might be good enough for most users that
the general case might not be worth bothering about.

Returning to our original example, we can now express the description
of “lieber@media.mit.edu”, verifying that it has been successfully recog-
nized by Grammex as a Person@Host email address (Fig. 12.12).

Managing Sets of Rule Definitions

Grammex’s Grammar Window holds a list of definitions for the current
grammar. Each definition defines a grammar category and has an example
of the category. Figure 12.13 presents a grammar window for the email
grammar.

S
__R
_ L

V:\002564\002564.VP
Wednesday, December 20

2000 1:27:20 PM
TNT Job Number: [002564] e

Author: [Lieberman] ¢ Page: 238

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Twelve: Training Agents to Recognize Text by Example 239

12.11

EO=————— Grammesx

Grammar Name: |E-Mail-Grammar 1 Edit (TSN
Drefiniticn: E-Mail-Address @ Parse New
Anything

Other...

PERSD 1

a Word, "@", a Word, ".", a Word, ".", a Word
Exactly "lieber@media.mit.edu”

<

Verifying lieber@media.mit.edu.

12.12

El—————— ffanmar————
Grarmirmar Marme: |E-Mai|—l3rammar | ® Examples
{0 Categories
E-MAIL-ADDRESE: licher@media mit.edu || Delete
HOST: mitedu k
HOST: mit

PERSON: lisher

&l

Email grammar, Examples view.

In the Categories view, each definition is represented by its sequence of
categories, rather than by its example (Fig. 12.14). Seeing both views shows
the relationship between the example and its description. In either view,
double-clicking on an entry results in editing that entry.

Complexity and Scalability

Although the email address example presented is very simple, the method-
ology itself is very general and can define grammars of arbitrary complex-
ity. The grammar formalism used by Grammex is equivalent to context-
free grammars, which are quite general and can be used to describe a wide

S

__R
L

V:\002564\002564.VP
Wednesday, December 20, 2

000 1:27:20 PM
TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page: 239

Color profile: Generic CMYK printer profile

Composite Default screen

240 Your Wish is My Command

12.13

p=——— frammar—"———1
Gramrmar Narne: |E—Mai|—l3rammar |) Eramples
@ Categories
E-MAIL-ADDRESS: PERSON, "@", HOST | Delete
HOST: & Wend, ".", HOST
HOST: & Word

PERSON: & Word

<

Email grammar, Categories view.

variety of text patterns. However, released versions of Apple Data Detectors
and Intel’s Selection Recognition Agent currently use regular expression
recognizers that do not have the full generality of context-free grammars,
and some patterns require context-sensitive grammars. Defining grammars
is sometimes tricky, and finding exactly the right way to describe examples
to cover minor variations in formats sometimes requires some subtlety.
Grammex’s incremental and iterative approach means that complex gram-
mars can be built up little by little. When an example is found that doesn’t
yield the desired result, that example can always be fed as input to define or
modify a rule.

Defining Actions by Example

To make the paradigm of training agents by example complete, we would
also like to define by example the actions to be taken upon recognition of a
certain pattern. Previous recognition agents such as Data Detectors and Se-
lection Recognition Agent only allow choosing from a fixed set of actions,
provided in advance by someone with expertise in programming. In the
case of Data Detectors, actions are programmed in the scripting language
AppleScript. LiveDoc’s DropZones provides for more sophisticated compu-
tation in action selection, but actions still must be programmed in advance.
We would like to define the actions just at the time when the user demon-
strates examples of the text to be recognized.

Our approach is to use ScriptAgent (Lieberman 1998), a programming-
by-example system for the scripting language AppleScript. When the user

S

R

L

V:\002564\002564.VP

Wednesday, December 20, 2000 1:27:21 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 240

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Twelve: Training Agents to Recognize Text by Example 241

demonstrates an example to be recognized, the system goes into a “record-
ing” mode in which the user can demonstrate actions using other appli-
cations. For example, after we show how to recognize the email address
lieber@media.mit.edu, the system pushes the recognized text onto the sys-
tem’s clipboard, and we can then demonstrate what to do with it. For exam-
ple, we can enter the email program, select the send message operation, and
paste lieber@media.mit.edu into the To: field of the message window. The
system generates an AppleScript program to represent the action, general-
ized so it can work on any example, not just the one presented.

The clipboard interface, while convenient for actions that simply use
the entire recognized text, does not allow direct access to the recognized
subcomponents (e.g., user name and host name). We are experimenting
with ways of allowing this, but the problem is to find one that integrates
well with current Macintosh interface conventions.

The biggest problem with recording actions by example is that it de-
pends on the aspect of applications being “recordable” (reporting user ac-
tions to the agent), and to date, very few Macintosh applications are fully
recordable.

An end run around the recordability problem is to use the technique of
examinability (Lieberman 1998), in which the agent polls the state of the
applications and uses similarity-based learning to infer user actions. In
Lieberman (1998), we discuss an application that achieves recordability of
several specific applications (a calendar program and a spreadsheet pro-
gram) by polling the states of each application (current calendar displayed
and current spreadsheet displayed, respectively) and comparing states to
induce the operations performed.

Future Work: Using Grammar Induction to Speed Up the
Definition Process

Automatic induction of grammar rules from examples has been a well-stud-
ied topic in machine learning (see Langley 1987 for a survey and tech-
niques). Natural language researchers study the topic to try to come to an
understanding of how children learn the grammar of English by only hear-
ing examples of adult speech and only occasionally hearing negative exam-
ples or receiving explicit instruction in grammar. What is amazing is both
the difficulty of the problem and the success rate achieved!

Grammar induction is also studied in finite-state automata, data com-

pression, and data mining applications. Typically, though, the algorithms
assume that the examples are processed in a “batch” mode, rather than

S
R

L

V:\002564\002564.VP

Wednesday, December 20, 2000 1:27:21 PM
TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 241

Color profile: Generic CMYK printer profile

Composite Default screen

242 Your Wish is My Command

considering how a user might want to interact with the grammar definition
process on the fly.

We have initially been quite conservative in our use of inference tech-
niques, but using Grammex as a “front end” for some of these induction
techniques holds promise for speeding up the grammar definition process.
Essentially, a grammar induction algorithm could be used to generate and
narrow down more intelligently the choices presented in Grammex’s pop-
up menus. The user need present fewer examples, and the system could
even generate examples for the user’s approval. Cima, discussed in the next
section, represents a step in this direction.

Related Work

To our knowledge, Grammex is the first direct-manipulation interface to ad-
dress the question of interactive definition and editing of grammars for end
users. The closest work to this is David Maulsby’s Cima (Maulsby 1994;
Maulsby and Witten 1995), whose goal was also to generate grammatical
patterns from presentation of concrete textual examples. Maulsby’s work
concentrated on developing a more sophisticated inference procedure for
determining which features of the text are relevant. However, the proposed
user interface for Cima consisted of simply presenting a sequence of exam-
ples, and it did not allow the interactive generalizing and specializing of
parts of the rules and substrings, as does Grammex. Cima’s inference tech-
niques could also profitably be applied within Grammex’s user interface
framework. Tourmaline (Myers 1993) induced stylistic patterns of text for-
matting (e.g., fonts, sizes) rather than grammar rules, from examples.

Grammex’s approach is strongly related to a similar approach for gener-
ating procedures in a programming language, called programming by ex-
ample or programming by demonstration (Cypher 1993). In programming
by example, the user demonstrates a sequence of operations in an interac-
tive interface, and the system records these steps and the objects they
were performed on. Machine learning techniques are used to generalize the
program so that it works on examples analogous to the ones originally
presented.

In our approach, the examples are sample text strings, and the programs
are grammar rules. Many programming-by-example systems use some
form of heuristic inference to infer generalized descriptions of the opera-
tions used to compute the examples. Unlike programming systems, though,
grammar rules themselves can be thought of as generalized descriptions of

S
__R
_ L

V:\002564\002564.VP

Wednesday, December 20, 2000 1:27:21 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 242

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Twelve: Training Agents to Recognize Text by Example 243

the examples. We solve the inference problem by heuristically “running the
grammar backward” to suggest possible generalizations of a given example.
The user chooses from a set of plausible generalizations or proposes his or
her own generalizations.

Conclusion

This chapter has presented Grammex, a demonstrational interface for de-
fining rules for simple context-free grammars from concrete examples. A
new rule is defined by directing the system to guess an interpretation of an
example string, based on the current grammar, and then modifying this
guess using operations that generalize or specialize parts of the rule. By
keeping a close association between the grammar rules and their conse-
quences in specific examples of interest to the user, we can give the user the
power of grammar and parsing formalisms, without the abstraction and
syntactic complications that prevent them from being easy to use.

Acknowledgments

Bonnie Nardi was at Apple Computer at the time of this project, and Henry
Lieberman was a consultant to Apple. Jim Miller deserves thanks for provid-
ing support for the work on this project. Tom Bonura provided valuable in-
sights and contributed code for the editor. Bob Strong contributed the code
for the parser. Lieberman’s research was sponsored in part by Apple Com-
puter, British Telecom, IBM, Exol spA, the European Community, the Na-
tional Science Foundation, the Digital Life Consortium, the News in the Fu-
ture Consortium, and other sponsors of the MIT Media Laboratory.

References

Bonura, T., and J. Miller. 1998. Drop Zones: An extension to LiveDoc. SigCHI Bulletin
30, no. 2 (April): 59-64.

Cowie, J. and W. Lehnert. 1996. Information extraction. Communications of the ACM
39, no. 1 (January).

S
R

L

V:\002564\002564.VP

Wednesday, December 20, 2000 1:27:22 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 243

Color profile: Generic CMYK printer profile
Composite Default screen

244 Your Wish is My Command

Cypher, A., ed. 1993. Watch what I do: Programming by demonstration. Cambridge,
Mass.: MIT Press.

Langley, P. 1987. Machine learning and grammar induction. Machine Learning Jour-
nal, 2: 5-8.

Lieberman, H. 1993. Tinker: A programming by demonstration system for begin-
ning programmers. In Watch what I do: Programming by Demonstration, ed. A.
Cypher. Cambridge, Mass.: MIT Press.

. 1998. Integrating user interface agents with conventional applications. In
ACM conference on intelligent user interfaces (San Francisco, January).

Maulsby, David. 1994. Instructible agents. Ph.D. diss. University of Calgary, Calgary,
Alberta Canada.

Maulsby, David, and Ian H. Witten. 1995. Learning to describe data in actions. In
Proceedings of the Programming by Demonstration Workshop, Twelfth Interna-
tional Conference on Machine Learning (Tahoe City, Calif,, July).

Miller, J., and Bonura, T. 1998. From documents to objects: An overview of LiveDoc.
SigCHI Bulletin 30, no. 2 (April): 53-59.

Myers, B. Tourmaline: Text formatting by demonstration. In Watch what I do: Pro-
gramming by Demonstration, ed. A. Cypher. Cambridge, Mass.: MIT Press.

Nardi, B. 1993. A small matter of programming perspectives on end user computing.
Cambridge, Mass.: MIT Press.

Nardi, B., J. Miller, and D. Wright. 1998. Collaborative, programmable intelligent
agents. Communications of the ACM (March).

Pandit, M., and Kalbag, S. 1997. The selection recognition agent: Instant access to
relevant information and operations. In Proceedings of Intelligent User Interfaces
'97. New York: ACM Press.

V:\002564\002564.VP
Wednesday, December 20, 2000 1:27:22 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page:244

