
Chapter

Ten
Composition by

Example

Toshiyuki Masui

Sony Computer Science Laboratories, Inc.

TNT Job Number: [002564] • Author: [Lieberman] • Page: 191

S

R

L

V:\002564\002564.VP
Wednesday, December 20, 2000 10:57:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Abstract

Programming by example (PBE) literally means making “programs” from
examples, but PBE techniques are also useful for automating text composi-
tion tasks by creating editing procedures from the history of a user’s editing
operations. Composition by example (CBE) is a practical approach to im-
prove the efficiency of text composition tasks using various simple PBE
techniques. Thousands of people are composing texts daily on handheld
computers and Emacs using CBE tools that I have distributed for years.

10.1 Introduction

Although text composition is a highly creative task, it can be full of repeti-
tive menial subtasks. For example, people sometimes compose letters by
duplicating an old letter whose topic is close to the new one. They repeat
the same search-replace operations or type the same phrases (e.g., their
names and addresses) again and again in different documents. The popu-
larity of small portable text devices is now presenting users with new classes
of repetitive text composition subtasks. On cellular phones, for instance,
the user must type small keys many times when composing messages. If a
system could automatically perform these repetitive tasks based on exam-
ples given implicitly by the user, people could compose texts much more ef-
ficiently.

To automate text composition tasks, many text editors support end-user
programming features so that repetitive tasks can be programmed by users.
For example, on GNU Emacs, users can define and execute arbitrary func-
tions by writing Emacs Lisp codes. Users of Emacs can also define a se-
quence of keystrokes as a macro command and later invoke the sequence
by a single keystroke. With these features, any repetitive task can be defined
as a function or a macro.

However, writing a program or defining a macro is not always a conve-
nient way for performing repetitive tasks, even for trained programmers. If
a user has to enter a symbol at the beginning of 5 consecutive lines of a text
file, he would use a text editor and perform the task manually. If he has to
do the same thing for 10,000 lines, he would write a program. But what if he
has to do it for 100 lines? Is it worthwhile writing a program?

In this chapter, I show that simple example-based techniques can make
various text composition tasks much easier. The first example is the Dy-
namic Macro system (Masui and Nakayama 1994), which enables users of

192 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 192

S

R

L

V:\002564\002564.VP
Wednesday, December 20, 2000 10:58:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

text editors to repeat arbitrary editing operations after executing the same
operations more than once. The second example is the POBox system
(Masui 1999), which enables efficient text input by predicting the next input
word from the context, using a dictionary created by the user’s text input
histories. Using these CBE techniques, users can efficiently create and edit
texts without noticing that they are giving examples and making programs
from them.

Dynamic Macro and POBox are not paper systems but are actually being
used by thousands of people. Dynamic Macro has been very popular in the
Emacs user community for several years. I have been using POBox for all
my Japanese composition on handheld computers and Emacs. The Japa-
nese version of POBox on Palm Pilot has been available on the Web for
more than two years, has been updated many times after receiving sugges-
tions and bug reports from the users, and is currently used by thousands of
people. POBox has been adopted as the official text input method of Sony’s
cellular phones and information appliances, which expect millions of users.

10.2 PBE-Based Text Editing Systems

Many researchers noticed that text-editing tasks involved a lot of menial
routine works and tried to improve the efficiency by various PBE tech-
niques. In Nix’s (1985) Editing by Example system, users can tell the system
to infer the editing procedure by showing the text both before and after
modification. The inferred procedure should be of the “gap programming”
form, which is a subset of string substitutions using regular expressions. Mo
and Witten’s (1992) TELS system generalizes users’ iterative operations and
infers an editing procedure including loops and conditional branches. If the
system’s guess is wrong, users can incrementally correct it until it does the
right thing for them. Since the procedure generated by TELS can include
branches and loops, it can perform complex tasks that cannot be done by
mere string substitutions. GNU Emacs provides the “dabbrev” function,
which expands the substring entered by the user into a full string in the
same document beginning with the same substring.

10.3 Dynamic Macro: A PBE-Based Text Editing System

Dynamic Macro is a simple and powerful tool for automatically creating a
keyboard macro from repetitive user operations in a text editor. In many

Chapter Ten: Composition by Example 193

TNT Job Number: [002564] • Author: [Lieberman] • Page: 193

S

R

L

V:\002564\002564.VP
Wednesday, December 20, 2000 10:58:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

text editors, a keyboard macro is used to substitute a long sequence of oper-
ations by another single operation. It is usually defined through the follow-
ing steps: First, the user tells the editor to start recording a keyboard macro;
second, she types the sequence of commands that she wants to define as a
new macro; and finally, she tells the editor to stop the recording. For exam-
ple, if a user of GNU Emacs wants to define a macro to insert a “%” at the
top of every line, he types “^X (” to start the recording; then he types “^A
% ^N” to insert a “%” at the top of the current line and go to the next line;
then he types “^X)” to finish the recording. After the recording is finished,
he can invoke these operations by typing “^X e”. Although keyboard mac-
ros are general and powerful tools for repetitive editing tasks, they have sev-
eral disadvantages. First, users have to remember three commands to re-
cord and invoke a keyboard macro. Second, it is not possible to define the
command sequence after they are executed: that is, a user should know that
a sequence of commands is used many times, well before actually executing
them. In reality, repetitive tasks are often recognized after execution. Third,
since the procedure of defining a keyboard macro is not simple, it is not
useful for short, small repetitive operations.

Using Dynamic Macro, keyboard macros for repetitive operations are
defined and executed automatically. When a user hits a special “REPEAT”
key after performing repetitive operations, an editing sequence correspond-
ing to one iteration is detected, defined as a macro, and executed at the
same time. Although simple, a wide range of repetitive tasks can be per-
formed just by hitting REPEAT.

Dynamic Macro works as follows: All the recent user operations in a
text editor are logged as a string, and when a special repeat command is is-
sued by hitting REPEAT, the system looks for repetitive operations from the
end of the string. If such operations are found, they are defined as a macro
and executed. If REPEAT is struck again, the macro is executed again. For
example, when a user enters the string abcabc and then hits REPEAT, the
system detects the repetition of abc, defines it as a macro, and executes the
macro, resulting in another abc. When the user hits REPEAT again, one
more abc is inserted.

Similarly, when a user inserts a “%” at the top of two lines by doing the
same operations twice and hits REPEAT, the operations are defined as a
macro and executed. As a result, another “%” is inserted at the top of the
third line.

Dynamic Macro does not suffer from the shortcomings of keyboard
macros. Users should only remember that striking REPEAT makes the sys-
tem do the repetitive task once more, instead of remembering three dif-
ferent operations of a keyboard macro. The macro is defined after doing

194 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 194

S

R

L

V:\002564\002564.VP
Wednesday, December 20, 2000 10:58:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ordinary editing tasks, without telling the editor when to start the recording.
In spite of its simple looking appearance, Dynamic Macro is applicable to
various editing situations.

Figure 10.1 shows how Dynamic Macro works for simple tasks such as
adding comment characters to consecutive lines. Figure 10.1(a) shows the
original text. When a user types “% U ^N ^A % U ^N ^A”, she gets Figure
10.1(b). If she hits REPEAT here, the system detects the repetition of “% U
^N ^A”, defines the sequence as a macro, executes the macro, and gets Fig-
ure 10.1(c). Hitting REPEAT again results in Figure 10.1(d).

Chapter Ten: Composition by Example 195

TNT Job Number: [002564] • Author: [Lieberman] • Page: 195

S

R

L

Adding comment characters at the beginning of each line in Dynamic Macro.

% This is a sample \TeX text file.
% The area from the first line to the end
% of this paragraph should be commented
% out using the comment character “%.”

% %^N ^N^A ^A

This is a sample \TeX text file.
The area from the first line to the end
of this paragraph should be commented
out using the comment character “%.”

% This is a sample \TeX text file.
% The area from the first line to the end
of this paragraph should be commented
out using the comment character “%.”

% This is a sample \TeX text file.
% The area from the first line to the end
% of this paragraph should be commented
out using the comment character “%.”

()% ^N ^AREPEAT

()% ^N ^AREPEAT

Figure 10.1

V:\002564\002564.VP
Wednesday, December 20, 2000 10:58:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Figure 10.2 shows a more complicated example. The job here is to add
several comment lines above every function definition of Figure 10.2(a).
This is done by long steps of operations, but striking REPEAT after doing the
first part of the second iteration results in Figure 10.2(b). More hits will add
similar comment lines to the following function definitions. In this case,
since no sequence of operations is executed twice before REPEAT, the sys-
tem searches the pattern XYX and defines XY as the macro.

The advantages of Dynamic Macro are as follows. First, it is simple to
use. Users only have to remember that they can hit REPEAT to make the sys-
tem do their repetitive chore. They can strike REPEAT at any moment dur-
ing the repetitive operations, and they do not have to tell the system to start

196 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 196

S

R

L

(define (factorial n)
(if (n 1) 1 (* n (factorial (n 1)))))< = −

(define (halts f)
(....))

(search “(define”)
(save the string from there to EOL into temporary buffer)

(insert “;*** --- ...;***”)
search “(define”)

(insert “;*** ” above)
(insert the contents of temporary buffer)

REPEAT

;*** (factorial n)
;*** --
;***<perspicuous description here>
;***
(define (factorial n)
(if (n 1) 1 (* n (factorial (n 1)))))

;***(halts f)
;*** --
;***<perspicuous description here>
;***
(define (halts f)
(....))

< = −

Figure 10.2

Adding comment lines before each function definition.

V:\002564\002564.VP
Wednesday, December 20, 2000 10:58:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

or stop recordings. Second, it is powerful. Dynamic macro works well for a
variety of simple to complex repetitive tasks where once only keyboard
macros were applicable. Third, it is easily implemented. The system just
keeps a log of recent user actions for the implementation of Dynamic
Macro. Fourth, it does not interfere with users in any sense. Logging user ac-
tions is an easy task for most systems, and it does not slow down the appli-
cation. Nothing happens unless users touch REPEAT. Finally, it is general in
that any system with a keyboard interface can adopt this technique.

10.4 POBox: A PBE-Based Text Input System

Although millions of handheld computers and mobile phones are used to-
day, and email and short messages are exchanged throughout the world,
handheld and wearable computing have not really taken off, partly because
of the lack of efficient text input methods. POBox is an example-based text
input method especially effective for handheld and wearable computers
where a full-size keyboard cannot be used and fast text input is difficult.

10.4.1 Various Text Input Techniques

Traditionally, on pen-based handheld computers, handwriting recognition
techniques and the soft keyboard (i.e., the virtual keyboard displayed on the
tablet of a pen computer) used to be the main techniques for entering text,
along with others. However, using any of these techniques takes much
longer to enter text than with a standard keyboard.

The situation is worse for East Asian languages such as Chinese and Jap-
anese. Unlike European languages, these have thousands of character faces.
Even with a keyboard, it is not easy to enter a character. A variety of tech-
niques for entering text into computer have been investigated. The most
widely used Japanese input technique is Roman-Kanji conversion (RKC), in
which a user specifies the pronunciation of a word with an ASCII keyboard,
and the system shows the user a word with the specified pronunciation. If
the word was not the one that the user intended to use, the user hits a
“next-candidate key” until the correct word appears as the candidate.

Figures 10.3 shows an overview of various existing text input systems.
Arrow A shows how an English text is composed using a standard key-
board. Roman character codes are directly generated by the keyboard and
concatenated to generate a text. Arrow B shows how a Japanese text is

Chapter Ten: Composition by Example 197

TNT Job Number: [002564] • Author: [Lieberman] • Page: 197

S

R

L

V:\002564\002564.VP
Wednesday, December 20, 2000 10:58:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

198 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 198

S

R

L

In
p
ut
sy
m
b
ol Ta
b
le
1

Ta
b
le
2

K
an
a
te
xt

K
an
ji
te
xt

K
an
a
-K
an
ji

co
nv
er
te
r

K
an
ji

ch
ar
ac
te
r

K
an
a

ch
ar
ac
te
r

D
ic
ti
on
ar
y

Ta
b
le
3

Ta
b
le
4

B
A

Jo
g

d
ia
l

H
an
d
w
ri
ti
ng

re
co
g
ni
ze
r

H
an
d
w
ri
ti
ng

re
co
g
ni
ze
r

H
an
d
w
ri
ti
ng

re
co
g
ni
ze
r

Ro
m
an

ch
ar
ac
te
r

Ro
m
an
te
xt

En
g
lis
h
te
xt

Ja
p
an
es
e
te
xt

1 4 7

2 5 8

3 6 9

‘in
p
ut
’

‘te
xt
’

Ke
yb
oa
rd

‘1
’,

‘0
3

×
‘A
’, ‘
p’

F
ig

u
r
e
10
.3

St
ru

ct
u
re

of
va

ri
ou

s
te

xt
in

p
u
t
m

et
h
od

s.

V:\002564\002564.VP
Wednesday, December 20, 2000 10:58:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

composed using a standard keyboard. Roman character strings are first
converted to Kana texts that represent the pronunciation of Japanese
words, and then they are converted to Kanji characters by a Kana-Kanji con-
verter. Since multiple Kanji characters often have the same pronunciation,
the user must choose the correct one with the selector.

Text input on handheld computers is very slow for many reasons. First,
typing a key or writing a character is much slower than using a standard
keyboard. Second, users have to type keys more times than when using
standard keyboards, since small input devices often have fewer keys (e.g.,
cellular phones usually have only 20 keys). These keys can generate only a
small number of input symbols, and combinations of the keypress must be
converted to Roman characters using a mapping table. In this way, input
symbols must be converted more than once until the final text is composed.

Entering Japanese text on a cellular phone is also very slow. The input
symbols must first be converted to Kana characters using Table 3 in Figure
10.3, and then a Kana character string is converted to a Kanji character us-
ing the Kana-Kanji converter. A proper Kanji must then be selected using
the selector.

Several techniques for fast text input on handheld machines have been
proposed. One approach is to make the speed of using a software keyboard
faster. The QWERTY layout is often used for the software keyboard, but
QWERTY is not the best layout for a pen-based software keyboard, since fre-
quently used key combinations are sometimes laid out far apart and users
must move the pen for a long distance to enter a text. The Fitaly keyboard1

is a layout for minimizing the pen movement on software keyboards. Since
“e” and “n” often appear next to each other in many English words, they are
put in an adjacent position on the Fitaly keyboard. Other layouts have also
been proposed to improve the input speed on software keyboards (see
Hashimoto and Togashi 1995; MacKenzie and Zhang 1999).

Another approach is to use fast handwriting recognition systems.
Unistroke (Goldberg and Richardson 1993) was one of the first approaches
in this direction, and similar techniques such as Graffiti have become very
popular on recent handheld computers including Palm Pilot. More sophis-
ticated gesture-based techniques such as T-Cube (Venolia and Neiberg
1994), Quikwriting (Perlin 1998), and Cirrin (Mankoff and Abowd 1998) have
also been proposed.

Yet another approach is to give up entering characters one by one and to
use a word dictionary for composing a text. Textware’s InstantText system

Chapter Ten: Composition by Example 199

TNT Job Number: [002564] • Author: [Lieberman] • Page: 199

S

R

L

1. Textware Solutions, 83 Cambridge St., Burlington, Mass., 01803. www.twsolutions.com/fitaly/
fitaly.htm.

V:\002564\002564.VP
Wednesday, December 20, 2000 10:58:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

(see footnote 1) allows users to use an abbreviated notation of a sentence to
reduce the number of input. For example, users can type oot to enter “one
of the” or type chrtcs to enter “characteristics”. These abbreviations are
dynamically created, and they do not have to be predefined.

Tegic’s T9 system2 takes a different approach. T9 was originally devel-
oped for composing texts using only nine keys on a standard telephone. On
T9, instead of typing keys more than once to select an input character, users
assign more than one character to the digit keys of a telephone so that they
do not have to be concerned about the differences. Figure 10.14 on page
XXX shows a typical key assignment on a telephone keypad. When a user
wants to enter is, he pushes the 4 key first, where G, H, and I are printed,
and then pushes the 7 key where P, Q, R, and S are printed. Using the com-
bination of 4 and 7 corresponds to various two-character combinations, in-
cluding hr, gs, and so on, but is appears most frequently in English texts,
and the system guesses that is is the intended word in this case.

On almost all the pen-based computers available in Japan, either RKC or
handwriting recognition is supported. Text input is slow and tiring using
either of the techniques for the following reasons. Specifying the pronunci-
ation of every input word using a soft keyboard takes a lot of time, and
the user must convert the pronunciation to the desired Kanji strings with
extra keystrokes. Handwriting recognition has more problems. First, the
recognizer has to distinguish between thousands of characters, often mak-
ing errors. Many of the characters in the character sets have similar shapes,
so it is inherently difficult to make recognition reliable. Second, in many
cases, users do not remember the shape or the stroke order of Kanji charac-
ters, even when they have no problem reading them. Finally, writing many
characters with many strokes on a tablet is very tiring. With these dif-
ficulties, it is believed to be difficult to enter Japanese text faster than thirty
characters per minute on pen-based computers, which is several times
slower than using keyboards.

10.4.2 POBox Architecture

Since people usually compose texts that are in some way close to old texts,
an example-based approach can be applied to solve this problem. Using
POBox, text is not composed by entering characters one by one, but by se-
lecting words or phrases from a menu of candidates created by filtering
the dictionary and predicting from context. Word dictionary and phrase
dictionary are first created from existing corpus, and updated by examples

200 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 200

S

R

L2. Tegic Communications, 2001 Western Ave., Suite 250, Seattle, Wash. 98121. www.t9.com.

V:\002564\002564.VP
Wednesday, December 20, 2000 10:58:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

given by the user. With this example-based approach, users can enter text
much faster than recognition-based and other existing text input methods.
Figure 10.4 shows the architecture of POBox. A text composition task with
POBox consists of repetitions of the following two steps.

1. Filtering step: First, a user provides prediction keys for a word she wants
to enter. Prediction keys can be the spelling, pronunciation, or shape of
a character. As soon as she enters prediction keys, the system dynami-
cally uses the keys to look for the word in the dictionary and shows can-
didate words to the user for selection.

2. Selection step: Next, the user selects a word from the candidate list, and
the word is placed in the composed text. The selected word and the cur-
rent context are saved in the dictionary as a new example and used in
the future filtering step, so that the word is properly picked up as a can-
didate in the same context next time.

In most existing text input systems, users must provide all the informa-
tion for the input text, either by specifying input characters or by showing
the complete shape of characters by giving handwritten strokes. In POBox,
users do not have to give all of them to the system; they only have to give in-
formation to the system that is enough for the prediction. Users also do not
have to specify all the characters or stroke elements that constitute a word;
they only have to specify part of the input word and select it from the candi-
date list. This greatly reduces the amount of operations and time for com-
posing a text, especially when selecting input characters is very slow or

Chapter Ten: Composition by Example 201

TNT Job Number: [002564] • Author: [Lieberman] • Page: 201

S

R

L

Word
filter

Word dictionary Composed text

Word
selector

Selected wordKeyboard
‘text’

1
4
7

2
5

8

3
6
9

Figure 10.4

A POBox architecture.

V:\002564\002564.VP
Wednesday, December 20, 2000 10:58:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

difficult. This architecture can be applied to a variety of nonkeyboard de-
vices, including pen tablets, one-hand keyboards, and jog-based phones.

10.4.3 POBox for Pen-Based Computers

Figure 10.5(a) shows the startup display of POBox running on Windows95.
When the user pushes the F key, the display changes to Figure 10.5(b),
showing the frequently used words that start with F in a candidate word list.
Since the word first is a frequently used word and is found in the candi-
date list, the user can tap the word first so that it is put into the text area.

202 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 202

S

R

L

(a)

(c)

(b)

(d)

Figure 10.5

POBox running on Windows95: (a) POBox’s startup display; (b) frequently used words starting with f;
(c) words that often follow first; and (d) user-chosen word order of first we.

V:\002564\002564.VP
Wednesday, December 20, 2000 10:58:26 AM

Color profile: Generic CMYK printer profile
Composite Default screen

After first has been selected, the display changes to Figure 10.5(c). In the
menu at the bottom, the words that often come after first are listed in or-
der of frequency.

The next word, we, often comes after first, and this word is again in the
predicted list of candidate words. The user can directly select we by touch-
ing it in the menu. After we has been selected, the display changes to Figure
10.5(d). In this way, users can repeatedly specify the prediction key and se-
lect a candidate word to compose a text.

In the Japanese input mode of POBox, a Hiragana character table is dis-
played for entering pronunciations, instead of the Roman alphabet in Eng-
lish mode. The pronunciation of the first word [is hi-jou-ni, and the
user can select the word by choosing word (hi) and word (shi) from
the Hiragana keyboard, just like in the English example (Fig. 10.6[a]).

When the user selects word , the display changes to Figure 10.6(b),
and the next word word is displayed as candidate in the candidate
word list at the bottom. In this way, the user can enter Japanese text by
specifying the pronunciation of the first portion of the word and then se-
lecting the desired word from the menu, just like specifying the spelling for
English words.

Figure 10.7(a) shows the display of POBox on Palm Pilot after the user
hits the ma key on the software keyboard. The words listed are candidate
words beginning with the pronunciation ma. When the user moves the
pen after touching the tablet instead of tapping the software keyboard,
the system starts handwriting recognition and interprets the strokes in-
crementally, showing candidate words that begin with the strokes. Figure

Chapter Ten: Composition by Example 203

TNT Job Number: [002564] • Author: [Lieberman] • Page: 203

S

R

L

(a) (b)

Figure 10.6

Japanese input mode of POBox: (a) a Hiragana character table and (b) a user-selected word from
Hiragana display.

V:\002564\002564.VP
Wednesday, December 20, 2000 10:58:31 AM

Color profile: Generic CMYK printer profile
Composite Default screen

10.7(b) shows the display after the user has drawn a line from the center of
the software keyboard to the lower-left corner. This is the first stroke of the
Kanji character “nyuu”, and those words that begin with the character are
shown as candidates. Unlike existing handwriting recognition systems that
recognize characters only after all penstrokes that constitute the character
have been written, incremental recognition can greatly reduce the number
of penstrokes that users have to draw. In this way, software keyboards and
handwriting recognition are seamlessly integrated in POBox for pen-based
computers.

10.4.4 Using POBox on a Cellular Phone

POBox can be used for handheld devices that do not have pen tablets. In-
stead of using a software keyboard or pen operations on a cellular phone,
digit keys and a jog dial can be used for the filtering and the selection steps.

Figure 10.8(a) shows the implementation of POBox on a CDMA (code-
division multiple access) cellular phone. The phone has about twenty keys
on the surface and a jog dial at the left side of the LCD display. Three or
four alphabetical characters are assigned to each digit key (Figure 10.8[b])
like standard push phones in North America. Hiragana characters are also

204 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 204

S

R

L

Figure 10.7

(a) (b)

The display of POBox on Palm Pilot (a) after the user hits the ma key and (b) after the user has drawn
a line from the center of the keyboard to the lower-left corner.

V:\002564\002564.VP
Wednesday, December 20, 2000 10:58:35 AM

Color profile: Generic CMYK printer profile
Composite Default screen

assigned to those keys to specify the pronunciation when used for Japanese
text input.

Figure 10.9(a) shows the initial display of the phone. Frequently used
words are listed as candidates at the bottom of the display. When a user
pushes one of the digit keys, the character printed on the key is shown at
the cursor position, and candidate words starting with the character are
shown at the bottom of the display (Figure. 10.9[b]). When the user pushes
the key again, the next character printed on the keytop is shown, and corre-
sponding candidate words are displayed (Figure. 10.9[c]). A user can rotate
the jog dial clockwise at any time to select a candidate word. If user is the
desired word, the user can rotate the jog dial and display user at the top of
the display. As the user changes the selection, more candidate words appear
at the bottom of the screen for selection (Figure. 10.9[d]).

The user can then push the jog dial to make the selection final. At this
moment, the next word is predicted just like in pen-based POBox, and next
candidate words are displayed at the bottom. The user can again rotate the
jog dial to select a candidate from the list (Figure. 10.9[e]). In Figure 10.9(c),
if the user pushes the 7 key, p is selected as the next character for the input
word (Figure. 10.9[f]). When a user begins rotating the jog dial counter-
clockwise, she can select input characters by the jog rotation. Input charac-
ters are sorted in frequency order; e, a, i, and so forth appear as the candi-
date input character as the user rotates the jog dial. Figure 10.9(g) shows the
display after the user rotated the dial three steps.

Chapter Ten: Composition by Example 205

TNT Job Number: [002564] • Author: [Lieberman] • Page: 205

S

R

L

Figure 10.8

(a) (b)

(a) The implementation of POBox on a CDMA cellular phone and (b) a display of the digit key con-
taining alphabetical characters.

V:\002564\002564.VP
Wednesday, December 20, 2000 10:58:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

When the user pushes the jog dial, the search character becomes fixed,
and words that begin with the pattern are displayed as candidates (Figure.
10.9[h]). The user can then rotate the jog dial clockwise to select the candi-
date input word (e.g., information). Although using a jog dial for charac-
ter input takes more time than using digit keys, using a jog dial has an ad-
vantage; users do not have to touch the digit key at all, so composing text
using only one hand is possible.

10.4.5 POBox Server on the Internet

If POBox can be implemented as a server, various client computers can
connect to it and ask the server to do the prediction. In this case, users can
use the same system from any terminal, and all the example words and

206 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 206

S

R

L

Figure 10.9

(a)

the the

up

in
i

of to to

upon

is

that

upper

it

thi

u

inform

and a

user users

interface
user

[u] user

[t]

[up]

users used

to

i
a e

used use

in

(c)

(e)

(g)

(b)

(d)

(f)

(h)

Text input steps on a CDMA phone: (a) initial display; (b) after pushing the 8 key; (c)
pushing the 8 key again; (d) rotating the jog dial clockwise; (e) pushing the jog; (f)
pushing the 7 key after (c); rotating the jog dial counterclockwise; and (h) pushing
the jog.

V:\002564\002564.VP
Wednesday, December 20, 2000 10:58:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

phrases are saved in the server for later prediction. For example, when a
user enters a proper noun on a handheld computer, the name can be used
for prediction on a desktop computer. If everyone has his or her personal
POBox server on the Internet, people would no longer have to enter difficult
spelling more than once.

10.4 Conclusion

This chapter introduced two very practical PBE-based tools for text compo-
sition. Some people argue that PBE is sometimes not as effective as it is ex-
pected to be. However, text composition is one of the areas where PBE-
based technique is truly effective. I use Dynamic Macro almost every day
and POBox for all the Japanese documents on Emacs and my Palm Pilot,
getting rid of all other Japanese text input methods. POBox for Palm Pilot
has been on the Web for more than two years, and tens of thousands of peo-
ple have downloaded it, since it is the fastest Japanese text input method on
handheld computers.

I believe that PBE techniques are most effective in the following
two cases: when very simple prediction is enough for the task, such as
the case of Dynamic Macro and POBox, and when the task is very com-
plicated and even human programmers cannot easily create programs to
solve the problem. In this case, stocastic methods for creating pro-
grams from examples are effective. Graph layout tasks and other aesthetic
tasks are in this category. In short, PBE is effective for a variety of composi-
tion tasks that entail both highly creative aspects and routine work. I hope
that more PBE-based techniques are investigated for various composition
tasks.

References

Goldberg, D., and C. Richardson. 1993. Touch-typing with a stylus. In Proceedings of

ACM INTERCHI ’93 Conference on Human Factors in Computing Systems (CHI

’93), April 1993. Reading, Mass.: Addison-Wesley.

Hashimoto, M., and M. Togasi. 1995. A virtual oval keyboard and a vector input

method for pen-based character input. In CHI ’95 Conference Companion, May

1995. Reading, Mass.: Addison-Wesley.

Chapter Ten: Composition by Example 207

TNT Job Number: [002564] • Author: [Lieberman] • Page: 207

S

R

L

V:\002564\002564.VP
Wednesday, December 20, 2000 10:58:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

MacKenzie, I. S., and S.-Z. Zhang. 1999. The design and evaluation of a high perfor-

mance soft keyboard. In Proceedings of the ACM Conference on Human Factors in

Computing Systems (CHI ’99), May 1999. Reading, Mass.: Addison-Wesley.

Mankoff, J., and G. D. Abowd. 1998. A word-level unistroke keyboard for pen input.

In Proceedings of the ACM Symposium on User Interface Software and Technol-

ogy (UIST ’98), November 1998. ACM Press: http://mrl.nyu.edu/perlin/demos/

quikwriting.html.

Masui, Toshiyuki. 1999. POBox: An efficient text input method for handheld and

ubiquitous computers. In Proceedings of the International Symposium on Hand-

held and Ubiquitous Computing (HUC ’99), September 1999.

Masui, Toshiyuki, and Ken Nakayama. 1994. Repeat and predict—Two keys to ef-

ficient text editing. In Proceedings of the ACM Conference on Human Factors in

Computing Systems (CHI ’94), April 1994. Reading, Mass.: Addison-Wesley.

Mo, D. H., and I. H. Witten. 1992. Learning text editing tasks from examples: A pro-

cedural approach. Behaviour & Information Technology 11, no. 1: 32–45.

Nix, R. P. 1985. Editing by example. ACM Transactions on Programming Languages

and Systems 7, no. 4 (October): 600–621.

Perlin, K. 1998. Quikwriting: Continuous stylus-based text entry. In Proceedings of

the ACM Symposium on User Interface Software and Technology (UIST ’98), No-

vember 1998. ACM Press: http://mrl.nyu.edu/perlin/demos/quikwriting.html.

Venolia, D., and F. Neiberg. 1994. A fast, self-disclosing pen-based alphabet. In Pro-

ceedings of the ACM Conference on Human Factors in Computing Systems (CHI

’94), April 1994. Reading, Mass.: Addison-Wesley.

208 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 208

S

R

L

V:\002564\002564.VP
Wednesday, December 20, 2000 10:58:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

