
Chapter

Eight
Demonstrating the

Hidden Features That
Make an Application

Work

Richard McDaniel

Siemens Technology-To-Business Center

TNT Job Number: [002564] • Author: [Lieberman] • Page: 163

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 2:47:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Abstract

With programming-by-demonstration (PBD), a user shows examples of
a behavior that the computer is meant to perform instead of writing out
textual instructions. Many PBD systems use machine-learning tech-
niques to convert the user’s examples into executable programs auto-
matically. However, in order to use PBD as a general-purpose program-
ming tool, the user must be able to demonstrate more than just the surface
level interactions of a behavior. By combining PBD with interaction tech-
niques for specifying data that is normally hidden, and by selecting impor-
tant data at key moments, the user is able to give hints to the computer
that clarify the vagaries of using examples alone. This enables PBD to be
used in more situations where previously only textual languages could
be used.

8.1 Introduction

Many programming-by-demonstration (PBD) systems have used machine-
learning techniques to understand a user’s intention. With machine learn-
ing, a PBD system can infer a program automatically without requiring the
user to learn a complicated programming language. Unfortunately, ma-
chine learning can also be temperamental, unreliable, and, to the untrained
user, mysterious. Since machine learning can fail, the system must keep the
user in control and informed. Even simple programs can be too difficult to
infer by examples alone. The user must be allowed to provide information
beyond examples that gives the system information about the program’s in-
ternal workings. The key is to gather this extra information without placing
too many burdens on the user.

In the Gamut project (McDaniel and Myers 1999), I have experi-
mented with techniques for seamlessly gathering the important informa-
tion needed to infer complex behaviors. These include new interaction
techniques that are used to demonstrate the desired behavior as well as
new programming elements that the user includes to provide extra infor-
mation. Many of these techniques were originally developed for other sys-
tems, including some that were not PBD systems. By combining these tech-
niques into a single system, along with appropriate machine learning that
uses these techniques, we can make PBD as practical as programming using

164 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 164

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 2:47:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

a typical language like C++, while at the same time still much easier to
learn for nonprogrammers.

8.2 The Perils of Plain Demonstration

The machine learning in PBD can be seen as a form of inductive learning
in which the computer infers more general properties from a set of specific
examples. The examples thus become the user’s primary means for com-
municating with the system. This method works well in principle because
the user knows the task he or she wants the computer to perform. The user
can provide examples by simply performing the behavior manually while
the system watches. However, the computer cannot read the user’s mind.
When the user demonstrates, there are always variables inside his or her
head. Sometimes the desired behavior depends on these variables, but the
user is often not aware that the variables exist and may assume that their
state is obvious.

Trying to coax the user to reveal hidden state is quite difficult; as a re-
sult, most PBD systems try to work without it. For instance, PBD systems
use two typical interfaces to gather examples that I will call the “passive
watcher” and using “explicit examples.” The main difference between the
techniques is who (or what) is responsible for determining when program-
ming is desired. Using explicit examples, the user is responsible, whereas
with the passive watcher, the computer is responsible.

The most commonly attempted interface is the passive watcher. The
idea is that the computer acts like a helpful assistant who is constantly
watching you as you work. Sometimes the system will recognize what you
are doing, and if it can offer assistance, it will do so. A good example of this
is in Microsoft Word’s auto-correct, auto-indent, dictionary, and other fea-
tures that all occur automatically because the system is passively recogniz-
ing patterns in the user’s document as it is typed.

A passive watcher cannot normally request hidden state information
from the user. The object that the user is creating is usually not a program,
so the state cannot be represented as part of the product. For example, in a
word processor, the product being created is a text document, not a pro-
gram. Any behavior that a PBD system generates would not appear in the
document itself, so the user has no obvious way to manipulate or refine the
inferred behavior without switching to an alternate mode or editor. As a re-
sult, the passive watcher style of PBD operates by inferring as little hidden

Chapter Eight:Demonstrating the Hidden Features 165

TNT Job Number: [002564] • Author: [Lieberman] • Page: 165

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 2:47:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

state as possible. This limits it to expressing behaviors with at most one
state variable, making general-purpose programming practically impossi-
ble. The main advantage of the passive watcher is that its service is not criti-
cal in performing the user’s task. If it cannot infer a behavior for a particular
situation, the user just performs the task manually as though the PBD sys-
tem did not exist.

In the second PBD approach that uses explicit examples, the user is usu-
ally creating an application and has drawn the application’s interface com-
ponents using a graphical editor. The user shows the PBD system before
and after samples of the desired behavior using the interface’s components.
The system then converts these examples into code by noticing which com-
ponents have changed and inferring the constraints between those
changes. Of course, this technique is not restricted to building graphical in-
terfaces. It can be applied to any domain whose essential features can be
treated like objects. For instance, consider a greenhouse application in
which graphical objects are used to represent water hoses, sprinklers, mo-
tors connected to windows, and temperature gauges. Demonstrating be-
haviors with the graphical objects could be used to create programs for wa-
tering the user’s geraniums.

Unlike the passive watcher interface, the products the user creates using
explicit examples are behaviors within an application. As a result, the user
expects the system to create behaviors on demand. The system cannot pas-
sively choose to fail when it cannot recognize what the user is trying to ac-
complish. As a result, inferring behaviors from explicit examples is espe-
cially demanding.

If the goal is to make a general-purpose programming system using
PBD, one must certainly use an explicit example approach. Unfortunately,
many implementations of the explicit example approach still fail to handle
hidden state. Without the ability to represent complex state, a system can-
not infer behaviors any more complicated than those inferred by a passive
watcher and will typically fail.

8.3 Who Is Actually Programming?

A common misconception about PBD is that the computer system per-
forms all the programming work. In truth, the user is performing all the dif-
ficult conceptual work. The computer simply provides a more convenient
method for recording the user’s thoughts. In some senses, a PBD environ-
ment is like an advanced programming editor. However, unlike most

166 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 166

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 2:47:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

editors, the user is not expected to write code textually. Instead, code is con-
structed by demonstrating the key behaviors of the application. This is still
programming. The user must still carefully consider how the application
works and must plan to demonstrate each behavior so that the computer
can record it correctly.

Recognizing that the user is still a programmer eliminates the need for
the system to magically interpret the user’s every whim. Stated simply, if the
user does not know how a behavior works, the system is not going to know,
either. The goal of a PBD system should not be to try to do everything for
the user but, instead, to facilitate the programming to make it easier to
perform.

Since the user is in charge, the system must provide sufficient mecha-
nisms for the user to communicate how a behavior functions. This means
that the user must be able to represent the abstractions on which a behav-
ior depends. Properly representing an abstraction is a generally difficult
problem. More important, different users will represent the same abstrac-
tion differently. Thus, the system must be flexible to allow the user to spec-
ify an abstraction in the way that is the most comfortable for that
individual.

8.4 Giving the System Hints

To demonstrate a complex behavior using explicit examples, the user must
also be able to represent the abstractions that make the behavior work. The
visible components of an application’s interface do not always show all the
aspects of the application’s abstractions. For instance, in a chess game,
there is nothing about the appearance of a bishop that suggests that it can
only move diagonally. The techniques used to communicate information
that is not apparent in the application’s visible interface to address this
problem are typically called hints.Hints provide extra channels for the user
to represent things that the system would find too difficult to infer on its
own.

8.4.1 Creating Special Objects

Many ways to give a system hints are possible including creating special ob-
jects and programming widgets, as well as using selection techniques for
pointing out objects at key times. Most of these techniques come from

Chapter Eight:Demonstrating the Hidden Features 167

TNT Job Number: [002564] • Author: [Lieberman] • Page: 167

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 2:47:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

systems that do not use PBD and do not infer code. In many ways, these
techniques can be applied to any programming system since the need to
represent state is universally applicable.

A common strategy is to give the user a secondary area to draw objects
that do not appear in the application’s interface. This area acts like the mar-
gins in a book where the user can write down notes without writing over the
main body of text. In the main application window of my own system,
Gamut, which is a PBD programming language for building video games, a
window frame encloses the graphics that will become the application’s visi-
ble area (see Fig. 8.1). The rest of the area is all margin space for the user’s
off-screen objects. Gamut’s margins are essentially the same technique as
the “offstage area” in Gould and Finzer’s (1984) Rehearsal World, which was
an application builder that used a stage-acting metaphor. The offstage area
was a separate window where the user could place unseen objects.

Objects for representing state can also be intermingled with visible ob-
jects on the screen. Several systems use techniques for drawing lines to rep-
resent geometric constraints. In Fischer, Busse, and Wolber’s (1992) DEMO
II, which was a PBD system for inferring small graphical behaviors, these
were called “guidewires.” In other systems, such as Jackiw and Finzer’s

168 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 168

S

R

L

Figure 8.1

blue turn

Tic-Tac-Toe

Reset

A window frame surrounding a visible game area,
with other objects stored along the margins to
represent invisible state.

V:\002564\002564.VP
Monday, December 18, 2000 2:47:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

(1992) Geometer’s Sketchpad, which was a tool for experimenting with geo-
metric constraints, these objects were not even given special names. Figure
8.2 shows a scene in Gamut where an arrow is used to show an object’s di-
rection of motion in a video game. The user created the arrow to show the
spaceship’s speed and direction, which is not apparent from the ship’s im-
age. During demonstration, the user moves the ship and arrow combina-
tion to the arrow’s end point and highlights the arrow’s original position to
tell Gamut that it is important.

Besides representing state, objects can also be used to represent com-
mon behaviors. Widgets are objects such as buttons and sliders that have
not only graphical properties but also intrinsic behavior. For example, but-
tons can be pushed, and sliders can be adjusted to different values. These
behaviors can be incorporated into an application without having to dem-
onstrate the intrinsic behavior of the widget. Widgets can also be used to
specify more complex behaviors. When the behavior of a widget becomes
similar to operations that one performs in a programming language, it be-
comes a “programming widget.” Timers are a common kind of program-
ming widget. For example, the timer in Figure 8.3 causes the ball to move
down the pyramid. The game randomly selects between two colors each
time the timer ticks and moves the ball along the arrow with the matching
color.

Though programming widgets can be powerful, the PBD system de-
signer must be careful not to rely on them too heavily. For instance, in Re-
hearsal World, widgets were used to represent if-then conditions and for-
loops. The user would draw these widgets in a window and then fill in their
parameters with short segments of code. Widgets, when used in excess, be-
come a programming language on their own. One of the goals of using PBD
is to lessen the need for the user to program the structure of the applica-
tion’s code. If widgets are used too heavily, they can cause the same prob-
lems as writing code textually.

Chapter Eight:Demonstrating the Hidden Features 169

TNT Job Number: [002564] • Author: [Lieberman] • Page: 169

S

R

L

Figure 8.2

Using an arrow line to indicate an object’s
speed and direction.

V:\002564\002564.VP
Monday, December 18, 2000 2:47:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

8.4.2 Selecting the Right Behaviors

As important as representing state is, it is equally important that the PBD
system applies that state in the right way. Like many artificial intelligence
(AI) problems, inferring code in PBD can be seen as a searching task. The
system must find the appropriate expressions and constraints for repre-
senting the behavior the user is demonstrating. Many different behaviors
can always be produced from a given set of examples.

Two basic methods are used for bounding the number of choices the
system can make when creating a behavior. In the first, the system writes
out a list of possibilities and the user picks the most appropriate one. This is
the technique that Kurlander and Feiner’s (1988) Chimera uses, for exam-
ple. Chimera was a tool for performing operations such as search and re-
place on complicated graphical drawings. When the different behavioral
choices can be articulated in a few terse phrases, this technique works fairly
well. However, for more complicated decisions such as when the choice
concerns an expression that is nested several layers deep within the code,
the user cannot always pick the right choice reliably. In these cases, the sys-
tem can reduce its search space by having the user select the objects that
the behavior uses. This technique is sometimes called giving the system a
focus hint.

170 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 170

S

R

L

Figure 8.3

Moving Ball

G-bert

shuffle

Timer WidgetBall Movement

A timer widget used to cause a ball to bounce downward randomly in a game.

V:\002564\002564.VP
Monday, December 18, 2000 2:47:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Examples of focus hints are shown in Figure 8.2 and 8.3. In both cases, a
user is demonstrating to Gamut that a character in a game is following a
path. To tell the system that the path is important, the user highlights it.
This allows the system to focus on the path object and only generate con-
straints between the path and the moving object. Maulsby’s (1994) Cima,
which could recognize textual patterns using examples, also allowed the
user to give focus hints. In addition, Cima allowed the user to provide nega-
tive focus hints, where marking an object indicated to the system that the
object should not be used in the current behavior.

8.5 The Programming Environment Matters

With the ability to specify and point out all the state variables in an applica-
tion, a PBD language can theoretically be as powerful as any textual lan-
guage. In fact, Gamut has been shown to be Turing-complete (i.e., it can
be used to create any Turing machine, making it computationally equiva-
lent to any another programming language). However, anyone who has
ever tried to program a Turing machine knows that theoretical equivalence
makes no guarantee that a language is practical. The environment and feel
that a PBD system provides are major factors in whether a user would want
to use it.

Having a PBD language that is computationally equivalent to textual
languages is only one step. People always ask, “Can your system do X?”
Where X is some behavior that they think a PBD system could never possi-
bly infer. The answer is invariably no. The fact is that a complete language
definition is not sufficient to actually build applications. If one were to take
an ordinary programming language like C and ask, “Can I use C to print
‘hello world’ to the screen?” the answer would also be no if it were not for
the presence of the stdio.h library that provides the printf procedure. The
power of a language is not entirely in its definition but also in the libraries
that allow the language to make interfaces with the world. PBD languages
are still immature in that none have any library capabilities. No language
can provide comprehensive support for every possible application. At some
point, the language has to be extended using a library interface.

Another important aspect of the environment is the manner in which
the user fixes bugs. It is essentially impossible in any programming lan-
guage to produce bug-free code, and this is still true in PBD languages.
While it is generally not possible for the system to know whether the user’s

Chapter Eight:Demonstrating the Hidden Features 171

TNT Job Number: [002564] • Author: [Lieberman] • Page: 171

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 2:47:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

application has a bug, the system can facilitate how easily the user can find
problems and fix them once they are discovered.

The first requirement is that it should be possible to test any change the
user makes immediately. If the user is forced to make several changes be-
fore the application can be tested and the application still does not work, it
is very hard to discern the effects of the changes. It should be possible for
the user to correct a problem as soon as it is discovered and see immedi-
ately whether the problem has been fixed. In Gamut, the system’s inferences
are represented as interpretable code. When the user adds a new example,
the code is immediately modified to reflect the change, and it can be run as
soon as desired.

The second requirement is that the user needs feedback to understand
what the system is creating. For example, the system can use visualization
techniques to show the user pictorial representations of the code, as in Chi-
mera. One might also draw a dependency network to show which objects
have behaviors and which objects those behaviors will affect.

The most explicit kind of feedback the system can provide for a behavior
is to show its code. In fact, in some systems, the user might only demon-
strate one example, after which the user is required to edit the code in order
to fix all the errors the inference system made. This is essentially how a
macro recorder works. The user records a single example using the macro
recorder and then edits the code the recorder produces to add parameters,
loops, and conditional expressions. Though this method works in principle,
nonprogrammers generally find it difficult to write code even in small
doses. So, although it is probably a good idea to make the inferred code
available, forcing the user to write code is generally not good for a PBD
system.

8.6 Conclusion

Programming by demonstration can be a powerful method for building ap-
plications, but it still the user’s responsibility to know how the behaviors in
the application work. By using the proper objects and techniques, a user
can create practically any behavior, but the user must still learn how to use
those objects and techniques. The user must still convert the abstract con-
cepts that the behaviors use into representations that the computer can un-
derstand. While PBD can help make this process easier, it cannot eliminate
the creative process the user must perform to turn an idea into code.

172 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 172

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 2:47:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To represent the state, the user must be able to create objects that are
not visible in the application interface. These objects might be placed in
the margins of a window or in separate regions entirely. The user should
also be allowed to draw special-purpose objects in the visible regions of
the application to show the invisible graphical constraints that the applica-
tion uses.

For a behavior to use hidden state, the user should be able to point out
appropriate objects at key moments during demonstration. This can be ac-
complished by selecting objects or by selecting which code the system cre-
ates. Generally, techniques that do not rely on using code are more appro-
priate for nonprogrammers, but in some circumstances, selecting from a
list of choices is fairly easy. Selecting objects, though, can apply to situa-
tions where the system cannot present a terse description.

Finally, the programming environment that the system presents is as
important as the PBD language itself. The environment plays a key role in
making an application easy to debug and to understand. Program visualiza-
tion and other feedback are important in keeping the user informed. Fur-
thermore, being able to test behaviors immediately allows the user to know
quickly whether a change has been effective and allows the user to be con-
fident that a behavior works.

One might ask that if PBD is not the panacea that lets every user pro-
gram regardless of what they know, why bother in the first place? Why
not encourage users to learn to program using standard techniques? The
answer is simply that expressing a program using examples is tremen-
dously easier and faster than writing a program textually. Any mental gym-
nastics that the user must make to represent hidden data in a PBD inter-
face pales in comparison to the representational nightmares that the user
might undergo to represent an equivalent structure in a programming lan-
guage. Seasoned programmers can sometimes forget the years of train-
ing and effort required to learn a textual language. On the other hand,
I have seen novices learn to construct complex data structures graphi-
cally in Gamut in hours. Granted, using PBD is not free from mental com-
mitment. It only seems that way when compared to textual programming
languages.

Though it has strong potential, PBD has not had much commercial suc-
cess, but PBD research has only recently moved out of the laboratory and
into real products. PBD seems to be following the path that AI software
has blazed. The initial systems showed promise but fell short of expecta-
tions and languished in the backlash. But slowly, the concepts worked their
way into common systems with new names such as fuzzy logic and search

Chapter Eight:Demonstrating the Hidden Features 173

TNT Job Number: [002564] • Author: [Lieberman] • Page: 173

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 2:47:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

engines. PBD will also work its way into the mainstream. However, it is still
unclear what it will be called.

References

G. L. Fischer, D. E. Busse, and D. A. Wolber, 1992. Adding rule-based reasoning to a

demonstrational interface builder. Paper presented at ACM Symposium on User

Interface Software and Technology, UIST’92, Monterey, Calif., November. New

York, NY: ACM.

L. Gould and W. Finzer. 1984. Programming by rehearsal. Palo Alto, Calif.: Palo Alto

Research Center, Xerox Corporation.

R. Jackiw. 1992. The geometer’s sketchpad. Berkeley, Calif.: Key Curriculum.

D. Kurlander and S. Feiner. 1988. Editable graphical histories. Paper presented at

IEEE Workshop on Visual Languages, Pittsburgh, Penn., October. New York, NY:

Computer Society.

D. Mauslby. 1994. Instructible Agents. Ph.D. diss. University of Calgary, Calgary,

Alberta.

R. G. McDaniel and B. A. Myers. 1999. Getting more out of programming-by-demon-

stration. Paper presented at ACM CHI’99Human Factors in Computing systems,

Pittsburgh, Penn., May. New York, NY: ACM.

174 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 174

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 2:47:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

