
Chapter

Five
Trainable Information

Agents for the Web

Mathias Bauer

DFKI

Dietmar Dengler

DFKI

Gabriele Paul

DFKI

TNT Job Number: [002564] • Author: [Lieberman] • Page: 87

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 12:41:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Abstract

Software agents are intended to perform certain tasks on behalf of their us-
ers. In many cases, however, the agent’s competence is not sufficient to pro-
duce the desired outcome. This chapter presents an approach to coopera-
tive problem solving in which an information agent and its user try to
support each other in achieving a particular goal. As a side effect the user
can extend the agent’s capabilities in a programming-by-example dialogue,
thus enabling it to perform similar tasks autonomously in the future.

5.1 Introduction

Software agents are intended to perform certain tasks autonomously on
behalf of their users. Examples include interface agents (Kozierok and Maes
1993), Web-browsing assistants (Lieberman 1995), and personal news agents
(Billsus and Pazzani 1999), to name but a few. In many cases, however, the
agent’s competence might not be sufficient to produce the desired out-
come. Instead of simply giving up and leaving the whole task to the user, a
much better alternative is to identify precisely what the cause of the current
problem is, communicate it to another agent who can be expected to be
able (and willing) to help, and use the results to carry on with achieving the
original goal.

An ideal candidate for the role of such a supporting agent is a system
user who can certainly be expected to have some interest in obtaining a
useful response, even at the cost of having to intervene from time to time.
Consequently, it seems rational to ask her for help whenever the system
gets into trouble. Programming by example (PBE) provides a feasible frame-
work for the particular kind of dialogue required in such situations in which
both user and agent use their individual capabilities not only to comple-
ment each other to overcome the current problem but also to extend the
agent’s skills, thus enabling him to deal successfully with a whole class of
problems and avoiding similar difficulties—and thus additional training ef-
fort—in the future.1

Imagine a concrete application scenario in which a Web-based travel
agent uses dynamic information located at various Web sites to configure a
trip satisfying the user’s preferences and constraints. Typical information

88 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 88

S

R

L
1. Throughout the rest of this article, we will refer to the user in the female form and the agent
in the male form.

V:\002564\002564.VP
Monday, December 18, 2000 12:41:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

sources to be used in such a case include the Web sites of airlines, hotels,
possibly weather servers, and so on. Unfortunately, many of these Web sites
tend to change their look and structure quite frequently, thus exasperating
agents who are not flexible enough to deal with this unexpected situation or
at least recognize the fact that a problem exists at all.

Wouldn’t it be good if this agent could tell his user about his problem
and ask her to tell him what to do now and in similar situations occurring in
the future? In the remaining sections, we will elaborate on this scenario and
in particular describe the way the agent can ask for help without asking too
much from the user—after all, the system is intended to provide some ser-
vice to the user, not the other way round. So the role exchange between user
and system (as service provider and consumer) should be as painless as
possible to her. To this end, the agent should not remain passive and have
the trainer do all the work but instead actively participate in the training di-
alogue and guide the teacher to give him just the right lessons to solve his
problem. So, besides a new application for PBE techniques—the generation
of scripts for the extraction of information from Web sites—we also advo-
cate their use for a particular type of collaborative problem solving.

5.2 An Application Scenario

To illustrate both the kind of situation in which the aforementioned train-
ing dialogue takes place and the collaborative nature of such a session,
consider the following instantiation of the trainable information assistant
(TrIA) framework as depicted in Figure 5.1. Assume a user is preparing for a
trip. Using her Web browser, she enters the relevant data, such as cities to
be visited, budget limitations, and time constraints, leaving the rest to a
Web-based travel agent who is expected to fill in all the missing details and
suggest a journey satisfying the user’s preferences. For most of this planning
process, the agent has to make use of information that is not locally avail-
able but must be fetched from the Web at planning time. Examples include
departure times from train or flight schedules, prices for hotel rooms, and
so on.

Using the terminology defined by a domain ontology, the trip-planning
agent formulates corresponding information requests to be answered by an
information broker (called InfoBroker in the TrIA context). The latter has at
his disposal a database of Web site descriptions consisting of

• the respective Web address (the URL);

• one or more query schemes;

Chapter Five: Trainable Information Agents for the Web 89

TNT Job Number: [002564] • Author: [Lieberman] • Page: 89

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 12:41:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

• the principal information categories to be found at that site, expressed
in terms of ontological concepts;

• for each information category, a procedure (a HyQL script; see Section
5.3) implementing its identification and extraction.

The query schemes describe which information has to be provided to
query a Web site and what can be extracted from the answer document. For
example, a query to a flight server requires as minimum input the specifica-
tion of departure and destination cities, and the preferred date for the flight.
The returned information includes departure time, price, carrier, and so
forth.

The InfoBroker combines these query schemes using a classical artificial
intelligence (AI) planning approach and thus allows intermediate results
from a variety of Web sites to be combined so as to best answer the original
information request. (For a detailed description of this approach to query
planning and information integration, see Bauer and Dengler 1999a.) If ev-
erything works out just fine (i.e., if all answers to the travel agent’s questions
can be found on the Web), the user is presented the final result in her
browser.

The interesting case occurs whenever a relevant piece of information
cannot be found at a particular Web site although it should have been there.

90 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 90

S

R

L

Figure 5.1
Specifications

Info or scriptInfo requests

Info requestsResults

Browser

PBD dialogue

HyQL script/update

Site info/update

Preferences/

heuristics
Travel Agent

Info

Planning knowledge
User preferences

Domain ontology

annotations
•

WWW sites
•
HyQL scripts

Requests

Training InfoBroker

Info Extraction
Trainer (IET)

A typical instantiation of the TrIAs scenario.

V:\002564\002564.VP
Monday, December 18, 2000 12:42:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The typical reason for such a failure is the modification of the site’s layout or
structure. This often makes useless the information extraction procedure
that was stored in the database characterization for this particular site.

The traditional approach of dealing with this kind of problem has at
least two drawbacks:

• The user will be frustrated because the agent will not produce the
desired outcome but instead an error message, at best (unless alterna-
tive sites that have not changed recently can provide the same
information).

• The expert in charge of maintaining the InfoBroker’s database has to
program yet another procedure for dealing with the new look of this
Web site.

To kill two birds with one stone, why not have the user assume a small
part of the system maintenance (by updating the agent’s knowledge base in
an appropriate way) in exchange for a good answer (a suggestion for a trip),
knowing—or at least hoping—that other users are doing the same, thus im-
proving the overall system performance?

To be concrete, the problematic HTML document is handed over to the
information extraction trainer (IET) along with the current information re-
quest (the agent’s question whose answer was expected to be in this docu-
ment but could not be found). After some preprocessing that remains hid-
den to the user, the document is opened in the user’s browser. Some extra
frames are used to guide the training dialogue in which the user initially
simply marks the relevant portion to be extracted and possibly gives the
system some hints on how to facilitate the identification of this particular
piece of information. In the end, a new information extraction procedure is
synthesized and inserted into the database for future use. To avoid frequent
training sessions, the Web query language HyQL (Bauer and Dengler 1999b)
is used as the target language. The next section will briefly describe HyQL
and its use for information extraction before Section 5.4 gives a more de-
tailed account of the actual training dialogue.

5.3 The HyQL Query Language

Our approach of a Web query language called HyQL is an SQL-like language
that supports flexible selection of document parts as well as navigation
through the Web. HyQL combines but also extends features found in related

Chapter Five: Trainable Information Agents for the Web 91

TNT Job Number: [002564] • Author: [Lieberman] • Page: 91

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 12:42:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

language designs with the aim to handle navigation as well as document
processing on the level of both structure and content. The main purpose of
HyQL is the operationalization of basic information-gathering processes in
the sense of document and information selection using guided search and
filtering based on content and structure. Elaborating XML’s flexible linking
and referencing concept, we integrated features to be able to specify robust
queries.

HyQL considers the Web as a computable dynamic graph structure
where the nodes are static or dynamically generated documents and the
edges are the links between them. Navigation and search in the graph struc-
ture are specified by constraints on this structure and the contents of the
nodes. Searching in the graph is supported by the specification of regular
path expressions that, for example, allow specifying that only links on the
originating Web site are followed until a depth of 3 is reached.

A sample task of navigation is filling a form on a Web page, submitting it,
and reaching the result page. This process involves constraints between
two document nodes named by their URLs, U1 and U2, respectively. The
document of U1 contains the HTML form that partially specifies U2 (by
the attribute-value pairs and action contained in the form). The pattern of
U2 is completed by an external interaction (by a user filling the form in
her Web browser window or by a script setting the respective attrib-
utes). Now, establishing the edge between U1 and U2—that is, accessing the
document of U2—corresponds to submitting the form successfully in the
browser.

The documents themselves are represented as parse tree structures in a
canonical form, which means that some obvious faults in documents are re-
paired, optional start or end tags are added, and additional annotations
such as word or number are integrated.

The expressiveness of HyQL allows document portions to be addressed
in a variety of ways. The position of specific elements E in a document tree
can be characterized by specifying constraints on the paths from the root to
the relevant subtrees, constraints on properties of E, specifying a context of
E and E’s relative position to it, and so forth. Collections play a key role in
the specification of a position. A collection is an ordered set of related ele-
ments that results from a complete search over a subtree considering spe-
cific constraints on the search method used and the nodes to be considered
according to their type and attributes. For example, the collection of all ta-
bles reached by traversing a document tree in a depth-first, left-to-right
manner can be specified. All collections can be accessed as a complete list
or indexed forward or backward. In addition to the single element and all
collections, selections of intervals are also possible by specifying two single

92 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 92

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 12:42:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

border elements (which may belong to unrelated collections) and implicitly
all elements between them.

In the following, a sample HyQL script is presented that could be used,
for example, as the program code of an appropriate CGI-Web access (the
line numbers are not part of the script). It selects the pure table with the
current weather forecast for the city of Berlin from the Yahoo! weather site.

1. select info T := root,descendant(1,table)
2. from document d1 such that
3. document d in http://weather.yahoo.com/Germany.html
4. document d ? document d1
5. d1.url = select root,descendant(1) href
6. from {select info A := root,descendant(1,a)
7. from document d
8. where A match “Berlin”}
9. where root,child(1,tr)(1,td)descendant(1,b) applies to T
10. matches “Today*”

Lines 1, 2, 9, and 10 specify an operation in the SQL style of selecting
some part from a specific resource where some qualification conditions
must be satisfied. These parts of the script specify that the first table from
the collection of all tables (line 1) to be reached by a depth-first, left-to-right
search (the keyword descendant) should be selected from the content of
document d1 (line 2) that contains a bold-typed part in the first cell of its
first row2 whose content has the string today as a prefix (lines 9 and 10).
Lines 3 to 8 contain constraints of how to access the content of document
d1. Line 4 specifies that document d1 can be accessed by following a local
link (remaining on the same Web site) originating in document d, whose
URL is fixed in line 3 (i.e., the host part of the URL of d1 has been fixed). The
URL of d1 (line 5) is further constrained by the fact that its document part
is given by the href attribute of an anchor in document d whose representa-
tion matches with the word Berlin. In fact, document d contains links to
a lot of German cities in order to access individual local weather forecasts.

Usually, a HyQL script is specified by a set of queries where let queries
providing intermediate results precede the output-producing select que-
ries. This supports the refinement process of information extraction on the
syntactic level of the script by avoiding, for example, deeply nested select
queries and allows a component-based configuration of scripts.

Chapter Five: Trainable Information Agents for the Web 93

TNT Job Number: [002564] • Author: [Lieberman] • Page: 93

S

R

L

2. Consider the correspondences: cell - td, row - tr, bold-typed - b.

V:\002564\002564.VP
Monday, December 18, 2000 12:42:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5.3.7 The Construction of Wrappers

The TrIAs context requires the wrappers used for information extraction to
be as robust as possible in the sense that they tolerate minor changes of the
structure and layout of the documents they work on. As a consequence, it is
necessary for the script not simply to implement a simple search, following
strict paths in the documents’ tree structures, but to exploit the document
structure on a more abstract level.

The categories considered to be relevant with regard to the items to be
selected are context, landmark, and characterization. A context is a part of a
document covering and surrounding the selection that can be easily char-
acterized and located (e.g., the only table contained in a document that has
at least five columns and more than three rows). A landmark is a prominent
feature of the document that is in close relation to the selection and works
as a navigational hint (e.g., a particular image just before the text to be se-
lected). A characterization of a selection deals with the specific format and
style of the selected items. HyQL scripts can be constructed in such a way as
to mirror the use of the structural criteria just mentioned. The following
skeleton of a script explains the idea.

{ let info CONTEXT := . . .
from document d such that . . . }
{ let info LANDMARK := . . .
from CONTEXT
where . . . applicable to LANDMARK }
{ select here,following(1,font,{size = “+1”})
from LANDMARK in context CONTEXT }

The first part of the script assigns the variable CONTEXT to some specific
part of the document named d (i.e., the result of some selection operation is
now internally available for further processing). The second part of the
script tries to find a specific landmark in the document portion assigned to
CONTEXT. If it can be located, then it is assigned to the variable LANDMARK
and again is internally available. Now, the last part of the script specifies
that we start a search from the LANDMARK location in the document to find
a font tag with a specific size attribute, but the search is limited to the area
covered by CONTEXT. If this font is found, then it is provided as an output
of the script. More complex scripts can be built, for example, by combining
more than one of the script blocks of the kind sketched earlier.

94 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 94

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 12:42:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Figure 5.2 explains the idea of the script illustrated here from the docu-
ment tree point of view. HyQL parses each relevant HTML document and
transforms it into a tree representation where the nodes correspond to
HTML tags and the outgoing edges represent the content and children tags
covered by these tags. Then, the context part of the respective HyQL script

Chapter Five: Trainable Information Agents for the Web 95

TNT Job Number: [002564] • Author: [Lieberman] • Page: 95

S

R

L

Figure 5.2

Selection

><\font>

" " "

Document d

CONTEXT

LANDMARK

. . . .

....

Extraction refinement process of a HyQL script.

V:\002564\002564.VP
Monday, December 18, 2000 12:42:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

is given by the subtree of the document tree labeled by CONTEXT. This
subtree contains at a specific location a landmark (e.g., a salient feature
such as a specific image)—that is, a subtree of a specific kind labeled as
LANDMARK. The document portion that should be selected as the relevant
information can be located considering a particular relation with regard to
the landmark position (e.g., the first specific font tag that follows the spe-
cific image object3).

5.4 The Training Dialog

Throughout the rest of this section the terms user and trainer will be used
synonymously (and referred to in the female form). Learning agent (or sim-
ply agent, addressed in the male form) refers to the InfoBroker who is to be
trained on how to extract a particular piece of information from an online
document. The IET (see Fig. 5.1) provides the interface in which both part-
ners can collaborate to accomplish this common goal.

As mentioned in Section 5.2, the training dialogue is invoked whenever
the InfoBroker does not succeed in extracting some piece of information
(e.g., the price for a hotel room) from an online document delivered by
some Web server. In this case, the IET

1. repairs the HTML code of the document under consideration (if
necessary),

2. enhances the so obtained document with additional tags (HTML for-
matting instructions) and JavaScript code, and

3. loads it into a new browser window containing additional buttons for
PBD functionality (see Fig. 5.4 later) and explains the user the current
problem.

These points have to be clarified. First, regarding point 1, most docu-
ments found in the Web are not made of absolutely correct HTML code. In-
stead, most authors rely on the various browsers’ capabilities to somehow
produce a satisfying rendering resembling the author’s intended design. As
HyQL uses the parse tree of these documents as its main data structure, it is

96 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 96

S

R

L

3. “Follows” in the sense of traversing the subtree CONTEXT in a depth-first, left-to-right man-
ner starting at the node LANDMARK.

V:\002564\002564.VP
Monday, December 18, 2000 12:42:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

recommendable to bring them into a canonical form before starting to pro-
duce a wrapper.

Regarding point 2, the enhanced document structure is used in two
ways. First, the JavaScript code serves the purpose to add some interactive
functionality to the document such as highlighting some portion of the
document by moving the mouse over it. Additional tags give the whole doc-
ument a more fine-grained structure, allowing even single words or special
characters to be recognized and providing a unique identifier for each doc-
ument part. As a result, it is easy to find out exactly which document por-
tion was selected (highlighted) by the user. Note that these first steps re-
main invisible to the user; that is, the visual appearance of the document in
her browser will remain unaffected.

Finally, regarding part 3, the training dialogue is initiated as a reaction to
the InfoBroker’s futile attempt to extract information from a particular doc-
ument in order to satisfy an information request forwarded by the travel
agent. The agent uses all the information found so far in order to explain
the current task to the user. In the example described in Section 5.4.4 the
agent tries to find the price for a twin room in some Berlin hotel. Figure 5.3
shows how the user is presented this problem by referring to the already
known values for hotel name, city, and so forth.

The actual training dialogue (Figure 5.4) itself starts with the user ac-
cepting the task presented by the agent and selecting that part of the docu-
ment containing the desired information—in this case, the price of
“475.00”. Then the following cycle starts:

1. The agent synthesizes a wrapper using only the information he obtained
so far and computes a numerical measure of goodness for it.

2. He checks what could possibly be done to improve this wrapper and
suggests the corresponding actions to the user (examples include the
definition of a landmark or a context; see Section 5.3.1 for details on the
general structure of wrappers); if no improvement can be expected, the
agent suggests to terminate the training dialogue.

3. The user picks one of the actions suggested by the agent and executes it
with the agent’s aid.

4. The process returns to step 1.

These steps will be explained in some detail in the following sections.

Chapter Five: Trainable Information Agents for the Web 97

TNT Job Number: [002564] • Author: [Lieberman] • Page: 97

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 12:42:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5.4.1 Wrapper Generation and Assessment

Given some selected portion of a document, the agent computes the assess-
ments of possible wrappers, disregarding cases under a certain thresh-
old. To this end, he uses a hierarchy of wrapper classes for the characteriza-
tion of the selection. Each class is a kind of template containing wrapper
building blocks (implemented as HyQL snippets) with parameters yet to be
specified and is associated a numerical valuation reflecting its estimated
utility. This measure mainly refers to the expected robustness of a wrapper
containing a HyQL construct of some sort.4 For example, those exploiting
the document structure can be expected to be more robust than those sim-
ply counting the distance of some selection from the beginning of the
document.

Apart from this intrinsic valuation of the various wrapper classes, a
wrapper assessment must also take into account the cost for localizing the
current selection, given navigational aids such as contexts, landmarks, and
a characterization of the target selection on the basis of syntactic features
such as style and font.5 Here the basic idea is that the more complicated this
navigation is, the more likely it is to fail due to document modifications. For
example, always finding the first occurrence of some text written in red

98 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 98

S

R

L

Figure 5.3

Explaining the current task.

4. Whenever a wrapper fails to produce the desired information and a training dialogue be-
comes necessary, it is analyzed and the assessment of the components responsible for this fail-
ure is decreased.
5. Referring to Figure 5.2, this corresponds to moving from one localization point (e.g., the start
of a context) to the next one—in this case, the landmark—until the selection is reached.

V:\002564\002564.VP
Monday, December 18, 2000 12:42:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter Five: Trainable Information Agents for the Web 99

TNT Job Number: [002564] • Author: [Lieberman] • Page: 99

S

R

L

Figure 5.4

Proposed Activity >>

The current wrapper will do:Possible Actions:

search

search

forward

forward

therein

2nd

1st

font

decimal number

red

18

for color

size

for

Suggest Context

I accept I don’t accept Show me details

Suggest Landmark

Accept Wrapper

Rate the proposed wrapper procedure

Wrapper Definition Control - Microsoft Internet Explorer

✔

✔

Hotel Inter-Continental Berlin

Hotel Reservation - Choose Room and Rate

Room and Rate

CORPORATE RATE. AWARDS MILES IN PARTICIPATING FREQUENT FLYER PROGRAMS.

CORPORATE GUEST ROOM FOR THE CORPORATE TRAVELER

Rate Plan Description:

Daily Rate (per room): 365.00 German Marks

Room Description:

Room and Rate

STANDARD RATE. AWARDS MILES IN PARTICIPATING FREQUENT FLYER PROGRAMS.

KING-EXECUTIVE ROOM WITH PARK VIEW

Rate Plan Description:

Daily Rate (per room): 495.00 German Marks

Room Description:

Room and Rate

STANDARD RATE. AWARDS MILES IN PARTICIPATING FREQUENT FLYER PROGRAMS.

TWIN-EXECUTIVE ROOM WITH CITY VIEW

Rate Plan Description:

Daily Rate (per room): German Marks

Room Description:

475.00

A sample training dialogue.

V:\002564\002564.VP
Monday, December 18, 2000 12:42:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

within some section of a document can be expected to be more robust than
the search for the twenty-third occurrence (due to the fact that the chance
for something unforeseen happening in between is much higher).

To summarize, at each step the agent must consider all reasonable com-
binations of landmark, context, and selection characterization. Their re-
spective assessments are computed taking into account

• the valuation of the selection characterization and its localization cost
with respect to the other defined parts (i.e., the estimated robustness of
the wrapper and the actual localization cost);

• the valuation of context and/or landmark and the resulting
localizations;

• the user’s acceptance, depending the user’s expertise. Components ex-
plicitly suggested by the user obtain a higher value than those proposed
by the agent and simply accepted by the user (disussed later).

5.4.2 Suggesting an Action

The agent has at its disposal a task library containing “recipes” of how to
construct a wrapper of a certain class. The actions they are made of include

• characterizing the selection,

• defining a landmark,

• defining a context, and

• accepting the current wrapper.

More details about these actions will be given in Section 5.4.3.
To suggest an appropriate action to be carried out next, the agent

• evaluates the document structure to identify those wrapper classes that
are, at least in principle, applicable to the current document;

• checks what remains to be done to complete the corresponding task;

• computes the expected utility of each feasible action; and

• presents them to the user in a ranked order reflecting their respective es-
timated usefulness, including a brief help text describing the meaning of

100 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 100

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 12:42:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

these actions. Note that the user is free to choose any feasible action, not
only the one considered best by the agent.

How can the expected utility of an action be estimated? To make the
whole training process as painless as possible to the user, only those actions
should be suggested that actually advance the dialogue by providing valu-
able information to the agent. The numerical wrapper assessment ex-
plained in the previous section forms a good basis for estimating the effect
of an action on the expected wrapper quality. Using the formula

EU(a, u, n) = [ass(wa) − ass(wcurr)] ⋅ Pu(a) − annoy (u, n), (1)

the expected utility for action a and user u can be computed. Note that n is
the number of actions already carried out during the current training dia-
logue; ass(wa) and ass(wcurr) are the assessments of the best wrapper possi-
ble after and before executing action a, respectively. Pu(a) is the probability
of user u successfully carrying out action a, and annoy is a function that, de-
pending on the user’s characteristics, grows monotonically as the length of
the training dialogue increases. Formula (1) thus represents the expected
increase in wrapper quality decreased by a penalty for annoying the user
with yet another action.

In case none of the available actions is assigned a positive utility value—
that is, if no action is expected to provide a sufficient improvement to justify
continuing the training process—the agent suggests to finish the dialogue.

This is the case in the situation depicted in Figure 5.4. As the upper left
window titled Possible Actions indicates, Accept Wrapper (the final action
of each dialogue) is preferred over Suggest Context and Suggest Landmark.
The details of how the user’s preferred action is actually being executed are
explained in the following section.

5.4.3 Executing an Action

Once the user has selected an action to be executed from the ranked list of
alternatives other than terminating the dialogue, the agent tries to give opti-
mal support to facilitate the user’s task. (This special case will be described
later.) To this end, he applies a number of strong heuristics to identify and
suggest candidates for the wrapper component the user is just trying to de-
fine.

To find a candidate for a landmark such as a heading, the agent looks for
boldface text (like Room Rate in the example of Figure 5.4), text followed by

Chapter Five: Trainable Information Agents for the Web 101

TNT Job Number: [002564] • Author: [Lieberman] • Page: 101

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 12:42:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

a colon, or an image. Tables and regions enclosed between two objects (e.g.,
horizontal rules) are considered to be good candidates for contexts. Any
syntactic feature that distinguishes the selected text from its surroundings
(e.g., a special color or font) could make a good characterization.

With each possible component found, the agent generates a wrapper,
computes its quality, and from these results derives a ranked list of sugges-
tions for contexts, landmarks, and so forth. By clicking through this list of
suggestions (and thus highlighting the corresponding parts of the docu-
ment), the user can explore the set of alternatives provided by the agent and
simply accept one of these suggestions or define a new one on her own. In
the case of landmarks and contexts, the latter can be easily accomplished
by just marking the corresponding region with the mouse. The agent then
simply checks for structural correctness and, for example, rejects contexts
that do not contain the target selection. When it comes to characterizing a
selected area, the agent lists all applicable syntactic features (e.g., font,
color, size etc., but also possible “types” such as decimal number or ZIP
code that can be recognized automatically) from which she can select the
ones she considers relevant. So in any case, the user is forced to make only
structurally correct decisions. This interplay between the complementary
capabilities of agent and user will be discussed in Section 5.6.

As already mentioned, terminating the training dialogue is a special
case. Whenever the user decides to accept the agent’s currently best wrap-
per, she is presented with a simple representation of this wrapper in terms
of its components and the way they interact with each other (see Fig. 5.4).
The user can easily modify this wrapper by switching components on and
off and changing the way they are combined. Every time, the effect of such a
modification is immediately displayed in the lower window containing the
current HTML document. This provides a way for the user to experiment
with the agent’s construction and find out whether it actually does what she
intended.

5.4.4 Example

Take as an example scenario for PBE the document shown in Figure 5.4. We
assume the user is planning a trip to Berlin with a stay at Hotel Inter-Conti-
nental. With the wrappers at hand, the trip planner has not been able to ex-
tract the room rates from the hotel page, so the agent initiates a dialogue
with the user.

The PBD dialogue is presented in the browser together with the relevant
document in the lower frame. The upper frame is reserved for the

102 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 102

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 12:42:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

communication with the user. The Proposed Activity field verbalizes the
next step the user should take for a successful wrapper construction. An in-
teraction history with undo mechanism is available through a pull-down
menu in the top line. The list of ranked possible actions is given on the left
side of the upper frame. A green light indicates that the corresponding ac-
tion is explicitly suggested by the agent, whereas actions with a red light can
be executed “at the user’s own risk” as they will not lead to the best possible
wrapper according to the agent’s computations.

The best choice in the agent’s view is already preselected. Most actions
require an additional communication with the user. This is done in the area
to the right where the user is presented the respective submenus and rele-
vant information for her decision making (e.g., wrapper components pro-
posed by the agent). A red box around an area characterizes a currently rele-
vant interface part for a better orientation of the user.

In an initial step, the user is presented with the task at hand (see Fig.
5.3), which in this case is the identification of the price for a twin room. The
first—and only—action applicable is the selection of the desired informa-
tion. The user marks the price of “475.00” displayed in a red font, as are all
other prices on the Web page.

Having done so, the proposed actions comprise as a first choice to fur-
ther characterize the selection, which the user accepts. The agent lists the
applicable syntactic features (red color, size 18, and italic font, from which
the user selects the first two) and types (in this case, only “decimal number,”
which is also accepted by the user).

Applying his aforementioned heuristics, the agent tries to identify rea-
sonable contexts and landmarks he could suggest to the user to improve
the current wrapper. However, due to the limited capabilities of these
heuristics, he fails to find any document features that could be used as ad-
ditional aids and make the wrapper more robust. Consequently, he suggests
that the user accept the current wrapper, thus terminating the training
dialogue.

After accepting this suggestion, the user is presented with the simple
representation of the current wrapper displayed in Figure 5.4 and asked to
check whether this is what she wanted. As already mentioned, the user can
test what effect minor modifications of the various wrapper components
and their combination will have on the search result. The current wrapper
exclusively makes use of the syntactic features of the selected text area
(looking for the first decimal number in the second occurrence of a text of
size 18 in red) and thus ignores the user’s reason for selecting just this oc-
currence of a room price in this document instead of the first or third one—
namely, the fact that only this price applies to a twin room.

Chapter Five: Trainable Information Agents for the Web 103

TNT Job Number: [002564] • Author: [Lieberman] • Page: 103

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 12:42:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

She decides not to accept this wrapper and adds a landmark to it to con-
nect more strongly the wrapper’s functionality to the semantics of the docu-
ment. Using his purely syntax-based heuristics, the agent suggests a num-
ber of landmark candidates, none of which is suited to robustly identifying
the price of a twin room. In the given example, the agent suggests using one
of the occurrences of “Room and Rate” or the second occurrence of “Daily
Rate (per room):”. The user, recognizing the semantic relationship between
the words “TWIN EXECUTIVE ROOM” in the room description and the
price for a twin room suggests using these three words as a navigational aid.
After integrating this landmark into the wrapper (and giving this compo-
nent an especially high valuation as it was suggested by the user herself),
the agent again checks whether any further improvements are possible. As
this is not the case, the user is again advised to accept the current wrapper
and terminate the training dialogue, which she does.

Figure 5.5 depicts the final wrapper generated by the InfoBroker and
used to satisfy the travel agent’s information request.

5.5 Lessons Learned

Although we have not yet performed a rigorous evaluation of the dialogue
strategies sketched here, a few general lessons can already be derived from
the first prototype of the PBD environment (Bauer and Dengler 1999a). This
first version did not provide ranked suggestions for future user actions but
came with a simple graphical interface that left all decisions exclusively to

104 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 104

S

R

L

Figure 5.5
{ let info X1 := root, descendant(1,font,{color=”red”

size=”18”})
from document d in ...
where text root,ancestor(1,li)

child(-1,br)next(all,span
applies to X1 matches “TWIN EXECUTIVE ROOM*” }

{ select info X2 := root,descendant(1,span)
from X1
where X2 recognized as ‘decimal_number’ }

The final version of the wrapper.

V:\002564\002564.VP
Monday, December 18, 2000 12:42:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the user. In particular, the following two problems repeatedly occurred in
our own interaction with the system:

What to do next? To make this decision, the user has to have some idea of
what benefit the learning agent will have from some action taken by the
user (i.e., which action would provide the most valuable information for the
agent).
Can I stop? Related to the first point is the question of whether or not the
user should continue the training process at all. After all, it makes no sense
to provide more and more information to the learning agent if he has al-
ready acquired enough knowledge about the task at hand to generate a
good solution. To make this decision, the user again has to reason about the
potential impact of further actions on the quality of the learning result.

To overcome these difficulties, we analyzed the training situation at the
respective knowledge levels of the two partners involved. The results of this
analysis led to the utility-based approach to dialogue guidance described
earlier, and they will be presented in some detail in the next section.

5.6 The Communication Problem

Effective communication between user (trainer) and agent (student) is hard
to achieve. This is particularly true in scenarios such as the one sketched in
Section 5.2 in which an agent is to be trained to interact with an already ex-
isting application that was not designed to be “programmed” this way. One
of the most fundamental obstacles is the lack of shared knowledge or in-
sight into the various aspects of the training task at hand. As depicted in
Figure 5.6, at least four different types of information play a key role during
a training dialogue:

• Structural knowledge refers to the internal properties of the program-
ming domain (in this case, the HTML structure of a document to be
processed).

• Procedural knowledge refers to the understanding of (at least) the basic
concepts of the target programming language (in this case, HyQL) and
the way the programs to be developed are intended to work (here, the
principal functioning of wrappers).

• The visual/semantic category is composed of the optical perception of
the application system to be dealt with, the representation of domain

Chapter Five: Trainable Information Agents for the Web 105

TNT Job Number: [002564] • Author: [Lieberman] • Page: 105

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 12:42:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

objects, and its interpretation allowing, for example, semantic rela-
tionships to be derived. Examples include the rendering of an HTML
document in a browser and the identification of some particularly for-
matted portion of text as a heading describing the subsequent
paragraph.

• Finally, domain knowledge includes the basic understanding of con-
cepts from the application domain (e.g., about hotels, room categories,
etc.) and the wording typically used to describe them.

These various categories are not mutually independent. Rather, a lack of
structural knowledge prevents a sufficiently deep insight into the proce-
dural aspects of the task at hand; little or no domain knowledge exacerbates
the interpretation of visual encoding of information beyond purely syntac-
tical aspects. Unfortunately, only a relatively small part of this information
is shared by the user and agent and can thus be used for communication
purposes.

As depicted in Figure 5.6, the learning agent, for example, possesses
deep insight into the (programming) domain structure. In the given

106 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 106

S

R

L

Figure 5.6

Procedural

Visual/semantic

Structural

Domain

Knowledge shared by user and agent.

V:\002564\002564.VP
Monday, December 18, 2000 12:42:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

example, this refers to the system’s ability to evaluate and exploit the under-
lying document structure induced by the HTML code.

While the typical user can be expected to have some basic understand-
ing of HTML at best, this overlap usually proved to be insufficient to explain
the system behavior—its suggestions regarding next actions or wrapper
components—referring to such structural document properties.6

The user’s most prominent capability is in interpreting and understand-
ing the visual appearance of a document in her Web browser. Doing so,
she can easily identify “important,” never-changing aspects of a document
and semantic relationships among objects (e.g., a graphic and its title) by
exploiting her background domain knowledge. The system, on the other
hand, has to rely on a number of more or less feasible heuristics (e.g., “the
first line of a table column typically contains a header describing its con-
tents”) to at least make a guess of which objects are related and might thus
make a good navigational aid.

The coverage of procedural aspects of the training task (i.e., details of the
target language and the general functioning of wrappers) largely depends
on the user’s experience in such training activities, on the one hand, and on
the system’s learning bias, on the other hand.

Even without taking into account misconceptions on either side,7 this
discussion indicates that an effective communication providing perfect
mutual understanding of both partners is almost impossible.

What are the consequences for the training dialogue in the TrIAs sce-
nario? Obviously there exist two almost disjoint, complementary compe-
tence areas. The learning agent suggests the next actions to be taken or
wrapper components (e.g., a landmark) to be used mainly based on its un-
derstanding of the underlying HTML structure. The user—in her role as a
trainer—evaluates these suggestions based on her domain knowledge and
the visual impression of the the document’s rendering in the browser. De-
pending on the user’s estimated expertise, either the agent autonomously
decides on how to continue the training dialogue—that is, the user is only
presented the seemingly best action at each point in time—or the user
is free to accept or ignore the agent’s suggestions, taking over control by
herself.

Chapter Five: Trainable Information Agents for the Web 107

TNT Job Number: [002564] • Author: [Lieberman] • Page: 107

S

R

L

6. The fact that the same visual rendering can be achieved using a number of different HTML
encodings (just think of the many creative ways to use tables) (aggravates this problem, be-
cause it is almost impossible to guess correctly the actually used HTML code just by looking at
its rendering.
7. Some of the heuristics used by the system might be perfectly wrong, as might be a user’s
guess of the document structure derived from its visual appearance.

V:\002564\002564.VP
Monday, December 18, 2000 12:42:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Adding image-processing capabilities to the learning agent, as is done in
chapter 19 of this book, enables it to (at least partially) understand the
structure and functionality hidden in the user interface. In terms of the pre-
viously mentioned categories, this means that the agent’s coverage of the
“visual” information portion is significantly extended. Equipped with this
enhanced insight into the visual appearance of an application, the agent
can try immediately to interpret and generalize the user’s interaction with
the various interface elements, thus enabling it to program applications
without an API.

Applications specifically designed to be programmed by example try to
bridge the gap between user and system by providing a visual access to
both the programming domain structure and the procedural aspects of
the program to be developed. A typical example of this class is Stagecast
(see chap. 1), a system intended to enable its user to program a kind of
video game. The world inhabited by various kinds of creatures has the
structure of a (visually perceivable) grid, and program steps consist of sim-
ple state transition rules represented by the respective states before and af-
ter rule application.

Even here, however, not all interaction can be solely grounded on visual
perception. Instead, the user must be willing to delve into some of the more
advanced features of the system to describe what is called “hidden states”
in McDaniel (2000). This notion refers to additional aspects of the world
that cannot be inferred from just one example but have to be explicitly
stated by the user or inferred by the system. In the Stagecast example, such
additional information includes abstractions such as “any kind of object
should be in this place in order to make the rule applicable” or “variables”
that represent the internal state of the characters.

This perspective is somewhat similar to the one taken in the Gamut
project (see chap. 8) in which the user is considered to be actually program-
ming. That is, the user is in charge of conveying all required information to
the system, which in turn has to provide appropriate communication chan-
nels to facilitate this task for the user.

Again, this approach differs from the TrIAs perspective, in which the
user initially did not intend to program a system but to use it. Consequently,
she cannot be expected to be infinitely patient and willing to invest her
time and effort to teach the system something she expected it to already
know. In other words, it’s not (only) about making learning as easy as possi-
ble for the agent (compare VanLehn 1987). Thus, the system’s contribution
must clearly exceed the simple check for structural properties of a docu-
ment. In TrIAs this additional accomplishment is achieved by the library of
numerically assessed wrapper components and the strong heuristics

108 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 108

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 12:42:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

enabling the system to hypothesize semantic relationships among (graphi-
cal) objects.

5.7 Another Application Scenario

One peculiarity of the TrIAs scenario was the exchange of the roles as ser-
vice provider and consumer between user and system. This made it neces-
sary to consider carefully the user’s “felicity” (in contrast to concentrating
exclusively on the learner’s state as described in VanLehn 1987).

However, not only applications in which a (possibly unwilling) user
happens to be involved in a training session benefit from the careful de-
sign of their trainable components. In fact, the same PBE approach as
described earlier was used to implement the InfoBeans system (Bauer,
Dengler, and Paul 2000) in which even naive users could configure their
own Web-based information services, satisfying their individual informa-
tion needs.

Figure 5.7 depicts an InfoBox, a personal information system composed
from a number of simple information services. Each of these so-called
InfoBeans represents an information agent that deals with one particular
information source only. Using HyQL wrappers, these agents can query Web
servers, extract interesting pieces of information from the documents deliv-
ered, and communicate these through input and output channels to the
other InfoBeans, thus providing the basis for effective information integra-
tion. Whenever the user wants to create a new InfoBean or modify or extend
an existing one, a training dialogue similar to the one described earlier is
initiated.

The sample InfoBox depicted in Figure 5.7 compares the prices of two
online bookstores. To this end the initial input, author and title of a book,
are forwarded to the InfoBean dealing with Amazon.com, from which the
book price in U.S. dollars is extracted and forwarded to an online currency
converter to obtain the value in German marks. Additionally, the corre-
sponding ISBN number is extracted and delivered to the InfoBean in the
lower left corner that addresses Libri.de and tries to find the same book.
This way a comparison shopping system, although admittedly simplistic,
can be implemented.

Because the InfoBeans application is in the tradition of PBD systems
(e.g., Lieberamn, Nardi, and Wright 1999) in which the user trains the sys-
tem to recognize certain types of situation to be dealt with autonomously,
we removed the “annoyance” factor when assessing the expected utility of

Chapter Five: Trainable Information Agents for the Web 109

TNT Job Number: [002564] • Author: [Lieberman] • Page: 109

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 12:42:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

some system suggestion. Experiments will show which of these versions will
have the better user acceptance.

5.8 Related Work (Non-PBD)

Instantiations of TrIAs are in the tradition of information integration sys-
tems such as the Information Manifold (IM) and Ariadne (see Levy,

110 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 110

S

R

L

Figure 5.7

A sample InfoBox.

V:\002564\002564.VP
Monday, December 18, 2000 12:42:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Rajaraman, and Ordille 1996 and Knoblock et al. 1998, respectively). While
these concentrate on efficient generation and execution of query plans
and the integration of information from previously unrelated sources, TrIAs
adds the aspect of cooperative problem solving by getting the human user
involved in both training the system and gathering information.

Other differences can be found—for example, in the basic assumptions
regarding the information sources available. IM, for example, makes use of
detailed source descriptions that explicitly represent constraints regarding
the information contained at a particular site (e.g., information about cars
with price > $20000) to optimize the query process. TrIAs, on the other
hand, relies on user interaction to correct obviously wrong source descrip-
tions or add missing details whenever the need arises. This, in turn, is in
contrast to automatic approaches to capture the contents of an information
source in terms of users’ categories such as ILA (Perkowitz and Etzioni
1995).

Current wrapper generation approaches such as those in Hsu (1998)
and Muslea, Minton, and Knoblock (1998) use “landmark grammars” work-
ing on the tokenized document string as a means to specify wrappers.
Since we use a canonical parse tree structure extending the sequential to-
ken representation, we are able to specify more robust wrappers integrat-
ing more abstract landmark patterns. The wrapper induction methods in
Kushmerick, Weld, and Doorenbos (1997), Hsu (1998), and Muslea, Minton,
and Knoblock (1998) mainly aim at automatically constructing content ex-
traction procedures for Web sources. They usually require more than a few
examples to work, and a user-interactive approach with online integration
of new information sources is not adequately supported.

With an increasing interest in building software agents that use informa-
tion available on the Web as one of their main knowledge sources, the prob-
lem of learning how to handle these sources at least semiautomatically
arises. The wrapper induction method (Kushmerick, Weld, and Doorenbos
1997) aims at automatically constructing content extraction procedures for
Web sources. The system inductively learns a wrapper generalizing from ex-
ample query responses. Opposed to our approach, the information sources
considered (and also the wrapper class intended) are limited to have a very
specific structure. Since their approach also requires more than a few exam-
ples to work, a user-interactive approach with online integration of new in-
formation sources like our TrIAs architecture is not adequately supported.

In ILA (Perkowitz and Etzioni 1995), the category translation problem is
concerned—that is, how to translate information from Web sources into in-
ternal concepts of the information broker. We extend ILA’s approach of us-
ing a fixed ontology in that we additionally allow the integration of a user-
specific ontology.

Chapter Five: Trainable Information Agents for the Web 111

TNT Job Number: [002564] • Author: [Lieberman] • Page: 111

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 12:42:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The HyQL language incorporates some ideas from other ap-
proaches. Both WebSQL (Arocena, Mendelzon, and Mihaila 1997) and
W3QL (Konopnicki and Shmueli 1995) provide sophisticated constructs for
navigation on the Web, but they lack an integrated model of parsing docu-
ments and selecting specific parts of them. SgmlQL (1997) is a nice SQL-
style programming language for manipulating SGML (HTML) documents
but lacks any navigation constructs. XML (“Extensible Markup Language-
1997) allows with its linking concept based on XML parse trees a precise
specification of resource locations, especially within documents.

5.9 Conclusion

We have tried to make a case for the use of PBE techniques not only in an
initial, offline training phase but also during the execution of the proce-
dures so acquired. As was mentioned, this particular setting requires the
user to be taken into account much more carefully. After all, she has to “re-
pair” the faulty behavior of a system or agent from which she expected
some useful service.

Early informal tests with nonexpert users indicate that the training
mechanism provided enables (many) end users to deal successfully with
delicate problems of identifying and extracting information from Web-
based information sources. Besides the two application scenarios sketched
earlier—the TrIAs framework that can be instantiated with a number of
different applications and the InfoBeans system—many other uses of
instructable information agents are conceivable, ranging from intelligent
notification services to data warehouses.

References

Arocena, G., A. Mendelzon, and G. Mihaila. 1997. Applications of a Web query lan-

guage. In Proceedings of the 6th International WWW Conference (Santa Clara, Ca-

lif.); www.cs.utoronto.ca/�websql/.

Bauer, M., and D. Dengler. 1999a. InfoBeans—Configuration of personalized infor-

mation services. In Proceedings of the International Conference on Intelligent

User Interfaces (IUI ’99) (Los Angeles), ed. M. Maybury. New York: ACM Press.

———. 1999b. TrIAs: Trainable information assistants for cooperative problem solv-

ing. In Proceedings of the 1999 International Conference on Autonomous Agents

(Agents’99) (Seattle, Wash.), ed. O. Etzioni and J. Müller. New York: ACM Press.

112 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 112

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 12:42:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Bauer, M., D. Dengler, and G. Paul. Instructible agents for Web mining. In Proceed-

ings of the International Conference on Intelligent User Interfaces (IUI 2k) (New

Orleans), ed. H. Lieberman.

Billsus, D., and M. Pazzani. 1999. A hybrid user model for news story classification.

In User modeling: Proceedings of the Seventh International Conference (Banff,

Canada), ed. J. Kay. Wien, New York: Springer-Verlag.

Hsu, C.-N. Initial results on wrapping semistructured Web pages with finite-state

transducers and contextual rules. In Workshop on AI and Information Integra-

tion, see also www.isi.edu/ariadne/aiii8-wkshp/proceedings.html9.

Kozierok, R., and P. Maes. A learning interface agent for scheduling meetings. In Pro-

ceedings of the 1993 International Workshop on Intelligent User Interfaces (Or-

lando, Fla.), ed. W. Gray, W. Hefley, and D. Murray. New York: ACM Press.

Knoblock, C., S. Minton, J. Ambite, N. Ashish, P. Modi, I. Muslea, A. Philpot, and S.

Tejada. Modeling Web sources for information integration. In Fifteenth National

Conference on Artificial Intelligence (Madison, Wisc.). Menlo Park, Cambridge,

London: AAAI Press/The MIT Press.

Konopnicki, D., and O. Shmueli. 1995. W3qs: A query system for the World-Wide

Web. In Proceedings of VLDB Conference; see also www.cs.technion.ac.il/

�konop/w3qs.html.

Kushmerick, N., D. Weld, and R. Doorenbos. 1997. Wrapper induction for infor-

mation extraction. In Proceedings of the 15th International Joint Conference

on Artificial Intelligence (Nagoya, Japan, August). San Francisco: Morgan

Kaufmann.

Lieberman, H. 1995. Letizia: An agent that assists Web browsing. In Proceedings of

the 14th International Joint Conference on Artificial Intelligence (Montral, Au-

gust), ed. C. Mellish. San Francisco: Morgan Kaufmann.

Lieberman, H., B. Nardi, and D. Wright. 1999. Training agents to recognize text by

example. In Proceedings of the 1999 International Conference on Autonomous

Agents (Agents’99), (Seattle, Wash.), ed. O. Etzioni and J. Müller. New York: ACM

Press.

Levy, A., A. Rajaraman, and K. Ordille. 1996. Querying heterogeneous information

sources using source descriptions. In Proceedings of the 22nd VLDB Conference.

San Francisco: Morgan Kaufmann.

Mellish, C. ed. Proceedings of the 14th International Joint Conference on Artificial In-

telligence (Montreal, August 1995). San Francisco: Morgan Kaufmann.

Muslea, I., S. Minton, and C. Knoblock. 1998. Learning wrappers for semistructured,

Web-based information sources. In Workshop on AI and Information Integration

(AAAI); see also www.isi.edu/ariadne/aiii8-wkshp/proceedings.html9.

Perkowitz, M., and O. Etzioni. 1995. Category translation: Learning to understand in-

formation on the internet. In Proceedings of the 14th International Joint Confer-

ence on Artificial Intelligence (Montreal, August), ed. C. Mellish. San Francisco:

Morgan Kaufmann.

Chapter Five: Trainable Information Agents for the Web 113

TNT Job Number: [002564] • Author: [Lieberman] • Page: 113

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 12:42:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SgmlQL: SGML Query Language. 1997. See www.lpl.univ-aix.fr/projects/SgmlQL/.

VanLehn, K. 1987. Learning one subprocedure per lesson. Artificial Intelligence 31:

1–40.

Extensible markup language (XML): Part 2. Linking. 1997. W3C Working Draft July

31, www.w3.org/TR/WD-xml-link.

114 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 114

S

R

L

V:\002564\002564.VP
Monday, December 18, 2000 12:42:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

