WO

Generalizing by
Removing Detail:

How Any Program Can Be
Created by Working
with Examples

KEN KAHN
Animated Programs

V:\002564\002564.VP
Wednesday, December 13, 2000 9:25:10 AM
TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page:21

‘t—' LU ‘m

Color profile: Generic CMYK printer profile
Composite Default screen

22 Your Wish is My Command

Abstract

A long-standing goal of the programming by demonstration research com-
munity is to enable people to construct programs by showing how the
desired programs should work on sample inputs. A major challenge is how
to make the programs general. Heuristics and inference can generalize re-
corded actions on sample data in narrow domains but have yet to be much
help in general purpose programming. This chapter describes a program-
ming system called ToonTalk (Kahn 1996; 2000) that takes a different ap-
proach. In ToonTalk the programmer generalizes recorded actions by ex-
plicitly removing details. Children as young as six have constructed a wide
variety of programs in this manner (Playground 2000).

Introduction

There is a very important interplay between the way in which pro-
grams are created and generalized in ToonTalk and the underlying model
of computation. A program is executed as a collection of autonomous
processes that communicate asynchronously in which the behavior of a
process is specified by a set of guarded clauses. A clause is constructed by
performing operations on a single sample data structure. To make the
clause capable of operating on other data structures, the programmer
needs only to remove details from the guard or conditional part of the
clause.

ToonTalk is built on the idea of animated programming. Animated pro-
grams are not constructed by typing text or by constructing diagrams or
stringing icons together. Instead, the programmer is placed as a character in
an animated virtual world where programming abstractions are replaced by
tangible analogs (see Figure 2.1). A data structure, for example, is a box
whose holes can be filled with number or text pads, other boxes, birds,
nests, and robots. Birds and nests are concrete analogs of send and receive
capabilities on communication channels. A robot is a guarded clause that
has been trained by the programmer to take actions when given a box. The
thought bubble of a robot displays the guard or conditions that need to be
satisfied before the robot will run. To generalize a robot, a programmer
needs only to use an animated vacuum to remove details from the box in-
side the robot’s thought bubble.

V:\002564\002564.VP
Wednesday, December 13, 2000 9:25:10 AM

TNT Job Number: [002564] e Author: [Lieberman] e Page:22

Color profile:

Generic CMYK printer profile

Composite Default screen

2.1

Chapter Two: Generalizing by Removing Detail

Computational Abstraction

ToonTalk Concretization

Computation

City

Actor House
Process E B
Concurrent object g
Method Robot
Clause
Guard Contents of thought bubble
Method preconditions -
D g
-
Method actions Actions taught to a robot
Body
Message
Array
Vector

Comparison test

Process spawning

Load\e_d/truck
4%‘_1

ey

Process termination

Bomb

Constants

Numbers, text, pictures, etc.

1997 [oontalk &

File

Channel transmit capability Bird
Message sending g
Channel receive capability Nest
Message receiving
Persistent storage Notebook

Fs =

1 _Sally

Computer science terms and ToonTalk equivalents.

23

V:\002564\002564.VP
Wednesday, December 13, 2000 9:25:15 AM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page:23

Color profile: Generic CMYK printer profile

Composite Default screen

24 Your Wish is My Command

A Brief Introduction to ToonTalk

After thirty years of mixed results, many educators today question the value
of teaching programming to children. It is difficult, and children can do so
many other things with computers. Proponents of teaching programming
argue that programming can provide a very fertile ground for discovering
and mastering powerful ideas and thinking skills (Papert 1980). Further-
more, programming can be a very empowering and creative experience.
Children who can program can turn computers into electronic games, sim-
ulators, art or music generators, databases, animations, robot controllers,
and the multitude of other things that professional programmers have
turned computers into.

Why do we rarely see these wonderful results from teaching children to
program computers? The answer seems to be that programming is hard—
hard to learn and hard to do. ToonTalk started with the idea that perhaps
animation and computer game technology might make programming eas-
ier to learn and do (and more fun). Instead of typing textual programs into a
computer, or even using a mouse to construct pictorial programs, ToonTalk
allows real, advanced programming to be done from inside a virtual ani-
mated interactive world.

The ToonTalk world resembles a twentieth-century city. There are heli-
copters, trucks, houses, streets, bike pumps, toolboxes, hand-held vacuums,
boxes, and robots. Wildlife is limited to birds and their nests. This is just one
of many consistent themes that could underlie a programming system like
ToonTalk. A space theme with shuttlecraft, teleporters, and so on, would
work as well; as would a medieval magical theme or an Alice in Wonderland
theme.

The user of ToonTalk is a character in an animated world. She starts off
flying a helicopter over the city. After landing she controls an on-screen per-
sona. The persona is followed by a doglike toolbox full of useful things.

An entire ToonTalk computation is a city. Most of the action in ToonTalk
takes place in houses. Homing pigeonlike birds provide communication be-
tween houses. Birds are given things, fly to their nest, leave them there, and
fly back. Typically, houses contain robots that have been trained to accom-
plish some small task. A robot is trained by entering his “thought bubble”
and showing him what to do. This chapter focuses on how robots remem-
ber actions in a manner that can easily be generalized so they can be ap-
plied in a wide variety of contexts.

A robot behaves exactly as the programmer trained him. This training
corresponds in computer science terms to defining the body of a method in

S
__R
_ L

V:\002564\002564.VP

Wednesday, December 13, 2000 9:25:15 AM

TNT Job Number: [002564] e Author: [Lieberman] e Page:24

Color profile: Generic CM
Composite Default screen

YK printer profile

Chapter Two: Generalizing by Removing Detail 25

A truck being loaded with robots and a box.

an object-oriented programming language such as Java or Smalltalk. A ro-
bot can be trained to

* send a message by giving a box or pad to a bird;

e spawn a new process by dropping a box and a team of robots into a
truck (which drives off to build a new house);

e perform simple primitive operations such as addition or multiplication
by building a stack of numbers (which are combined by a small mouse
with a big hammer);

e copy an item by using a magician’s wand;
py Y g g

e change a data structure by taking items out of a box and dropping in
new ones; or

* terminate a process by setting off a bomb.

The fundamental idea behind ToonTalk is to replace computational ab-
stractions by concrete familiar objects. Even young children quickly learn
the behavior of objects in ToonTalk. A truck, for example, can be loaded
with a box and some robots (see Figure 2.2). The truck will then drive off,
and the crew inside will build a house. The robots will be put in the new
house and given the box to work on. This is how children understand

S
__R
L

V:\002564\002564.VP
Wednesday, December 13, 2

000 9:25:15 AM
TNT Job Number: [002564] e Author: [Lieberman] ¢ Page:25

Color profile: Generic CMYK printer profile

Composite Default screen

26 Your Wish is My Command

trucks. Computer scientists understand trucks as a way of expressing the
creation of computational processes or tasks.

An Example of Programming by Example

The ideal way to convey how a programming by demonstration system
works is to demonstrate it. While a live demo would be easier to follow, I'll
present two detailed examples here on paper. (A dynamic replay of these
examples is available from www. toontalk.com/English/wwhes.htm.) The
first example is very simple. The benefits of a general-purpose program-
ming with examples system are most apparent, however, with nontrivial
examples. Hence, the second example is complex. While a complex exam-
ple is hard to follow, it has the advantage that readers probably will need
to think to figure out how to construct an equivalent program in their favor-
ite programming language. Because the example requires some thinking, I
hope that it shows how it really helps to program in a concrete fashion.

As our first example, let’s imagine that Sue is a six-year-old girl who is
fascinated by powers of 2. Sometimes in bed she repeatedly doubles num-
bers in her head before falling asleep. In ToonTalk she’s discovered that she
can use the magic wand to copy a number and then drop the copy on the
original. Bammer, a small mouse with a big hammer, runs out and smashes
the two numbers together. She starts with I and after ten doublings has
1,024 (see Figure 2.3).

She gets tired of repeated copying and dropping and decides to train a
robot to do this for her. Since robots only work on things in boxes, she takes
out a box and drops a I in it (Fig. 2.4[a]). She takes out a fresh robot and
gives the box to the robot.

She finds herself in the robot’s thought bubble, and as she moves the
computer’s mouse, the robot moves. She trains the robot to pick up the
magic wand and copy the I and drop it on the I in the box (Fig. 2.4[b]).
Bammer smashes them so that a 2 is now in the box. Sue indicates that she’s
finished training the robot and leaves his thoughts.

To try out her robot, Sue gives him the box with the 1 in it again (Fig.
2.4[c]). This time the robot knows what to do. Sue watches as he copies the
1 and drops the copy on it. But the robot stops. He won't work on a box with
a 2in it. Sue knows that this is because his thought bubble contains a box
with a I in it, so the robot will only accept a box with a I in it. He’s just too
fussy.

So Sue picks up Dusty the Vacuum and uses him to erase the I in the ro-
bot’s thought bubble (Fig. 2.5[a]). Her robot is now thinking about a box

S

__R
L

V:\002564\002564.VP

Wednesday, December 13, 2000 9:25:15 AM

TNT Job Number: [002564] e Author: [Lieberman] e Page: 26

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Two: Generalizing by Removing Detail 27

L= e B T R T T W] B R VA R
e EiEd ndaindabe el o el{atlal e
£ COUOCCOOCOCCOoCl
&= COoCOCOE o C et
Exl e U e Uy ey U
b | miudnjiodedeinisila
gl B T A" A G L R
el LL@E@W&;L
G _ the mogie wandc
C e LE L
C = lmil
= C g CA
¢ C ol
(et r 8

Manually doubling numbers by copying.

with any number in it. She has generalized her program by removing de-
tail—in this case by erasing the 1.

Now she gives the box with a 2 in it to the robot, and he copies the 2 and
drops it, resulting in a 4. (Fig. 2.5[b]). He then repeats since the result still
matches his thought bubble (Fig. 2.5[c]). Sue sits back, smiles, and watches
as the number doubles over and over again.

Sally, Sue’s twelve-year-old sister, is building a card game in ToonTalk.
She has come to a point where she wants to sort the cards in a player’s hand
by rank. Without thinking very deeply about how to go about this, she cre-
ates a box with five numbers—/3 9 6 4 2]—and gives it to a robot. She then
proceeds to train the robot to rearrange the numbers until she has [234 6
9]. When she gives the box to the robot, he repeats the recorded actions and
sorts the box. She then creates another example box /4 8 2 3 1] and gives it
to the robot, who rejects it because his thought bubble contains a copy of
the original box /3 9 6 4 2] and this new box doesn’t match. She then calls for
Dusty the Vacuum and erases the numbers in the box in the robot’s thought
bubble. When she gives him the box /4 8 2 3 1], once again she watches as
the robot rearranges the box into /I 4 3 2 8]. A bit confused, she then gives
the robot the box [I 2 3 4 5] and watches the robot turn it into /2 5 4 3 1].
While she thought she was training a robot to sort the numbers, she now re-
alizes she had only trained a robot to permute five numbers so that the first
number becomes the second number, the second one the fifth number, and
SO on.

ToonTalk does not contain program generalization heuristics. It does not
try to solve the “data description problem” of figuring out what users mean
when they manipulate objects on the screen. Instead, it has a small number

S
R

L

V:\002564\002564.VP

Wednesday, December 13, 2000 9:25:16 AM
TNT Job Number: [002564] e Author: [Lieberman] ¢ Page:27

2.4

Your Wish is My Command

Generic CMYK printer profile

Default screen

Color profile:
28

Composite

N
Nuuuuuouuuuyu
LS)ouuuuuuUuuy
SuUUuUUUUuUuuo
Juuuuuuouuuy

yuuuu

Jdoduuuy
uuuuuy

Page: 28

Training a robot to double numbers.
e Author: [Lieberman] e

TNT Job Number: [002564]

2000 9:25:22 AM

December 13,

V:\002564\002564.VP

Wednesday,

29

Chapter Two: Generalizing by Removing Detail

Generic CMYK printer profile
Default screen

Color profile:

Composite

lllll.l,lll.llll.ﬂlll'l\ll. , lll:_llll‘l.ll.l.lllllll.lllllL.lllﬁIl-
guuuJuyd , goouuuUuY-n s U LU _ Luugccccc

: ! Juuuuouy
uud . LCLLCLCCCCC

pyuuu

Generalizing and testing the robot.

Page: 29

Author: [Lieberman] e

TNT Job Number: [002564]

2000 9:25:28 AM

December 13,

V:\002564\002564.VP

Wednesday,

Color profile: Generic CMYK printer profile
Composite Default screen

30 Your Wish is My Command

2.1

Programmer’s actions and how the robot remembers them.

Programmer’s actions Robot’s recording of the actions

Took the 3 out of the box Pick up what is in the first hole of the box
Set it down Set it down

Picked up the 2 Pick up what is in the fifth hole

Dropped it in the hole where the 3was Drop it in the first hole

Picked up the 9 Pick up what is in the second hole
Dropped it in the hole where the 2was Drop it in the fifth hole

Picked up the 3 Pick up the first thing set down (in step 2)
Put it where the 9 was Drop it in the second hole

And so until the numbers were sorted And so on

of very simple rules of generalization, and it leaves the task of weakening
the guard conditions to the programmer. As the programmer trains a robot,
the robot moves around, picks things up, drops things, and uses tools to
copy or remove things. Robots remember the actions they were trained to
do based on the position and history of objects. Robots ignore the path and
timing of actions, labels (they are like comments in textual languages) and
other details.

When Sally trained the robot to permute the box of five elements, she
took the actions on the left side of Table 2.1. The robot recorded those ac-
tions as described on the right side of Table 2.1.

When she completed training the robot, his guard was the condition
that his input be exactly the box [3 9 6 4 2]. After she erased the numbers,
the guard only checked that the box contained exactly five numbers; the
numbers could have any value. Clearly, relaxing the conditions didn’t get
her any closer to having a sort program. She could have trained 13!/8! ro-
bots to create a team that could have sorted any hand of five cards. The re-
sulting program would only work with hands of exactly five cards. Instead,
some other approach is needed.

She then thinks that maybe this is a job for recursion. If she could split
the cards into two piles and sort those two piles somehow, she could merge
the two piles by repeatedly taking the card from the pile that is showing the
lower ranking card and putting the card down on a new stack. (In this sce-
nario we'll see how she implements sorting by using the Merge Sort algo-
rithm, but we could, of course, have seen her implement Quick Sort, Bubble
Sort, or other algorithms instead. Also, we'll see her work with arrays when
she could equally well have used lists or other data structures.)

V:\002564\002564.VP
Wednesday, December 13, 2000 9:25:29 AM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 30

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Two: Generalizing by Removing Detail 31

Sally figures that the first thing she’ll need to do is split the box of num-
bers in half. She might have been misled by working with concrete exam-
ples and thought she had to train a robot to break the box with five holes
into a piece with three holes and a remainder with two holes. But then on
the recursive calls she would have to train another robot to break up the box
with three holes into boxes with two and one holes and also train yet an-
other robot to break a box with two holes. By removing details, she’ll be able
to make each of these robots work for any numbers but the team will only
be able to sort boxes with five, three, or two holes. Because ToonTalk is inca-
pable of generalizing one of these robots into one that breaks boxes in half,
she needs to train the robot to compute the size of the box, divide the size
by 2, and use the result to break the box in half.

Sally knows that in ToonTalk you can find out the number of holes a box
has by dropping the box on a blank number. (This is an instance of a gen-
eral facility that uses blank or erased data types to express data type coer-
cion.) She also knows that if she drops a box on a number, the box is broken
into two pieces where the number of holes of one piece is equal to the num-
ber underneath. She now has a plan for how to train the robot to break the
box into two equal parts.

She’ll need a robot that returns the sorted version of a box of numbers
(see Fig. 2.6[a]). So she constructs a box whose first element is her first sam-
ple box [3 9 6 4 2] and whose second element is a bird who will be given the
sorted version of the box when the computation terminates. Sally knows
that the bird will then take the box to her nest. Since the Sort robots will
need the help of Merge robots, she takes out a fresh robot and places it in
the third hole. She plans to later replace that robot with the team of Merge
robots after she has trained them. By placing a dummy robot in the hole,
the Sort robots can now refer to the yet-to-be defined Merge robots. She
takes out a fresh robot and gives him the box.

She enters the robot’s thought bubble and trains the robot to create a
blank number by taking out a number, erasing it, and dropping the list of
numbers on it (Fig. 2.6[b]). The blank number changes to the size of the
box. She then has the robot divide the resulting size by 2. (ToonTalk cur-
rently only supports integer arithmetic.) When she makes the robot drop
the box on the number, the box splits into a part with two holes [3 9/ and
the remainder /6 4 2] (Fig. 2.6(c]).

Sally now removes the bird from the box and then makes a copy of the
input box and puts the /6 4 2] box in the copy. She puts the /3 9/ box in the
original input box. She creates a box for the Merge process and puts the bird
in it since the Merge process will produce the final result of the computa-
tion. She takes out two new nests and waits for eggs in the nests to hatch

S
__R
_ L

V:\002564\002564.VP

Wednesday, December 13, 2000 9:25:29 AM
TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page:31

2.6

Your Wish is My Command

Generic CMYK printer profile

Default screen
32

Color profile:

Composite

L,LCLL
hbuuddd
buouuF?

buud=§ :
ECL.W M.”
ooy SNy
PREFSESS hmw,wm <
houdUPugd JUJL
hUnUURUT UL L UL
buuuuuUUUL LU L.
buusudguuuuu (i
buuiuuyg

SRS R N
ho =
D &
o

P iy
L =S

“ i
EREN 0 o~
Podauy 4 S
i oS A7 < 3 E NS
it JauuuS D 5 = - S

SUUOU Y SUUU UGG y -

e L , L

¥l YO0 GG, : i 5 PI_PI Fl PJ B

EEEEEEEEEEEEEEEEEEEEEEEEEEEER HEEEEEEEEENR

(b)
(0

—
©
—

Page: 32

Author: [Lieberman] e

Training a Sort robot to split the problem in half.

TNT Job Number: [002564]

2000 9:25:35 AM

December 13,

V:\002564\002564.VP

Wednesday,

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Two: Generalizing by Removing Detail 33

into birds. She puts the birds in the holes labeled “Answer” in the Sort boxes.
The nests she puts in the holes labeled “Sorted1” and “Sorted2” in the
Merge box (Fig. 2.7[a]).

She trains the robot to take out a truck and use the magic wand to copy
himself (and any future teammates), and to load the truck with his copy and
the Sort box with [6 4 2] in it. She watches the truck drive off and takes out
another truck. She puts a copy of the robot in the hole labeled “Merge” and
the Merge box in the truck (Fig. 2.7[b]). She is now finished training the Sort
robot and exits the thought bubble. The robot has now been trained to
iteratively split the box in half, spawn another Sort process to work on the
second half of the box, and spawn a Merge process to combine the results
from the two Sort processes.

Sally is now ready to try out her sorting robot (Fig. 2.7[c]). She knows
that she still needs to train more robots but wants to see this one work. She
takes Dusty the Vacuum and uses him to erase the box in the hole labeled
“Input” in the newly trained robot’s thought bubble. By doing so the robot’s
“guard” is relaxed so that he’ll accept any box whose first hole contains a
box, second hole contains a bird, and third hole contains one or more
robots.

Sally trained her robot to spawn a new Sort process to sort [6 4 2].
The robot then iteratively sorts [3 9/. She could have chosen to spawn
two new Sort processes and let the current robot terminate instead. But
there would be no advantage to doing so since iteration is tail recursion. In
ToonTalk terms, the only difference is whether the team of robots continues
to work in the same house (iteration) or a new house is built and the robots
and box are moved there (tail recursion). She also trained her robot to
spawn a Merge process to combine the results from the two Sort processes.
Sally also needs to arrange for communication between these new pro-
cesses so that the two Sort processes send their results to the Merge process.
That is why she trained her robot to put a bird in the box used by each Sort
process and the nests of the birds to be in the box used by the Merge
process.

When Sally filled a truck with a box and a robot, the truck drove off.
Since she was in the robot’s thoughts, nothing was “returned” from these re-
cursive calls. This ensures the generality of what the robot is being trained
to do since it will not depend on the computation of any other program
fragment.

One may be concerned that this scenario is complex—the robot is doing
quite a large number of steps, and some are rather sophisticated. The alter-
native is even more difficult for most people: entering a symbolic encoding
of Merge Sort with variables and parameters names. Here, the equivalent

S
__R
_ L

V:\002564\002564.VP

Wednesday, December 13, 2000 9:25:35 AM
TNT Job Number: [002564] e Author: [Lieberman] ¢ Page:33

Color profile:
Composite

Generic CMYK printer profile
Default screen

34

Your Wish is My Command

[~
-

bo in thavgit bubble.

Finishing the training of the Sort robot and generaliz-
ingit.

V:\002564\002564.VP
Wednesday, December

13, 2000 9:25:41 AM

TNT Job Number: [002564]

* Author: [Lieberman] ¢ Page: 34

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Two: Generalizing by Removing Detail 35

structures and actions are concrete and tangible, thereby reducing the cog-
nitive load for most people.

ToonTalk programmers generalize robots by erasing and removing
things from their thought bubbles. The simplicity of this process relies on
the fact that all conditionals in ToonTalk are depicted as a visual matching
process. The story one might tell a student learning ToonTalk is that the ro-
bot’s thought bubble displays the kind of box he’s willing to work on. If he is
given a box that differs from that, he’ll pass the box along to another team
member. But if he is given a box with more detail than he is “thinking
about,” then that is fine, and he’ll accept the box. If a number pad, for ex-
ample, is erased, then he’ll be happy with any number in the corresponding
location of the box he is given. This part of the conditional is simply a type
test. If the number pad is removed, then he’ll accept anything in that loca-
tion. Comparisons of numbers and text are handled by pictorially matching
with the tilt of a set of scales that indicates the relationship between the ob-
jects on its sides. If a robot expects an item in the box and sees a nest, he’ll
wait for a bird to put something on the nest. This is the essence of how pro-
cesses synchronize.

Returning to our example, Sally gives the robot the box and watches him
correctly reenact her actions. She watches as he splits off the /6 4 2] box and
loads trucks to spawn the other processes. Her robot then iterates on the re-
maining /3 9] box. She watches the robot split the box and give the /9] part
to a recursive process. But when she watches the robot try to sort the /3]
box, she watches as he stupidly splits it into // and /3] and then proceeds to
work on the /] part. He then stupidly splits that into [/ and /]. Sally realizes
that she’ll need more robots to help her robot with the easy problem of sort-
ing one thing. She grabs her robot to stop him, sets him down, and takes out
a fresh robot. She takes the box and replaces the /] box with a /3] box (see
Fig. 2.8).

This new robot just takes the contents of the “Input” hole and gives it to
the bird since the input is already sorted (Fig. 2.9). Sally then remembers
that in ToonTalk it is good to be tidy and to destroy houses when a team of
robots is finished. So she trains the robot to then pick up a bomb and set it
off. This ends the robot’s training. It also will stop the recursive process.

She now has a robot that will work with a box containing a 3 and another
robot that will work on any box (but incorrectly if the box has only one
hole). She calls for Dusty the Vacuum and erases the 3 in the box in the ro-
bot’s thought bubble. By erasing the 3, she has generalized the robot to work
on any box containing a single number. If, instead, she had removed the 3

completely, then the robot would work with any box containing a single ele- 8

ment regardless of its type.

V:\002564\002564.VP

Wednesday, December 13, 2000 9:25:41 AM
TNT Job Number: [002564] e Author: [Lieberman] ¢ Page:35

Color profile: Generic CMYK printer profile

Composite Default screen

36

Your Wish is My Command

2.8

S R
o]] 0w sl el o Lo e o] ol el sl ek el vl o
[o ity b sl gy B i e R e e E S
| 1AE et) e { tusvg St G b el e w il vt o
e e e B 1 ey prod e ened i vraf ve) @i wr
| B o G ety e Ll U R e

| sy by e sy b] vl berd i e ek ety i i e

BT e | wirfis o] v e s v e et 1)

sk i el Y e @y] e el v s wl mi

i ey et] L [e e o A me il e bl e f e 4 e o]
| b e e i { Eor] e g e e ed e e el e i il o
i) ey e v (ol mif e o el e] e
et eA] b euse]] o 4 PRy L
[Bt el iy B B {?4!’?!11?‘!’¥!l¥?‘t: EiE
e o e Sort one element « «
EE O 1 sy
B C et { B)
ety oy] ety et e 0] e
357 it B (0] e b G Bl)
7] ebd s et i | e
| bl foe] (B i e i e i
(] e et { B0 13 BB G
{ o el it gl el g e o G g

About to train a robot to sort boxes with one hole.

Sally drops the robot that will work on any size box on top of this new ro-
bot. The robot then moves behind the new robot, forming a team. If a box
with one hole is being worked on, then the first robot will take care of it;
otherwise, the second robot will do the work. She has now completed pro-
gramming the Sort process robots and has only the Merge process robots
left to do.

The training of the Merge robots illustrates an important programming
technique of programming by demonstration—the use of derivative exam-
ples. Sally has run the Sort robots on an example, and they have created
houses where dummy Merge robots have been given boxes to work on.
These boxes are new examples that were generated by the Sort robots. Sally
can go to one of these houses and start training a robot with the example
box there. Then when a robot has been trained to do some of the processing
on that box, she can run the robot until he stops. The robot has now gener-
ated another example box for training yet another robot.

She walks out of the house into a nearby new house where she sees a
Merge box and a dummy robot. This is one of many houses that the Sortro-
bots created by loading trucks. She wants to work on an example that covers
lots of cases and modifies the box to become [[4 6] [3 6 7] [1 2] bird]. This
represents the merging of the sorted records /4 6] and [3 6 7], where the par-
tial answer /1 2] has already been produced. The advantage of working with
such an example is that in the process of training robots to accomplish this
task, nearly all the different cases will be covered. It can be done with the

S

R

L

V:\002564\002564.VP
Wednesday, December 13,

2000 9:25:42 AM
TNT Job Number: [002564] e

Author: [Lieberman] ¢ Page: 36

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Two: Generalizing by Removing Detail 37

2.9

Training a robot 1o give
the
Wy Box |

Training a robot for the base case of the recursion.

same number of robots as clauses in a traditional programming language
and system.

She wants to train a robot to transform [[4 6] [3 6 7] [1 2] bird]] into [[4 6]
[6 7] [1 2 3] bird]. But she knows that if she trained a robot to take the first el-
ement of the second box and move it to the end of the third box, the robot
would do this regardless of the relationships between the numbers. Some-
how she must make it clear why she is moving the 3 and not the 4.

Sally knows she can use a set of ToonTalk scales to compare numbers. If
the number on the left of a scale is larger than the one on the right, the scale
tilts toward the left. Since she wants to compare the first numbers of each
list, she realizes she’ll have to put a scale between copies of those numbers.
(Instead of copying, she could move the numbers and then move them
back.)

She takes out a fresh robot and gives him the box she made (Fig. 2.10).
She trains the robot to add three new holes to the box, place a scale in
the middle hole, and use the Magic Wand to copy the 4 and put the copy to
the left of the scale and put a copy of the 3 to the right. She watches as the
scale tilts to the right. Her plan is to have another robot, whose guard (i.e.,
thought bubble) will check that the scale is tilted to the right and will move
the 3in that case. So she stops training this robot (Fig. 2.11).

Sally gives the box to her new robot and watches him reenact her ac-

S

tions. She then takes out a fresh robot and gives him the resulting box: [[4 6] _R

[36 7] [12] bird 4 > 3]. She trains this robot to break the [3 6 7/into [3Jand __L

V:\002564\002564.VP

Wednesday, December 13, 2000 9:25:42 AM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page:37

Color profile: Generic CMYK printer profile

Composite Default screen

38

Your Wish is My Command

- e O O T T C T T T T T T T T T T T e Oy
(e {] e pnd il =] e i i o efl ol el o el e e oiog ol o e o e o ey o
e e e R S e R e G O O O TR CECRCR T
e G e G G 2 N - O G O e T e
e G A S G G G G ER e L O O G O O G G
ceccce = (C(E S (e e el elE e le e e e
| e { et] A et (1h] o S R TV GO O ORI T 5
| 4 oy e e e ‘.. a .* (o ol et einielo o oy od ol ol o m
ok e { 1] bt b o ey pipdedededui ol sy wknywy eyl
-LLLL?&EbeLLLLLLLLLLLLLLLL
{ Ehf 1o ety en{ ek e (el ool eilodei mNed ool ed e ay sl ey
(ool eff el e me L st{ededefoilefelolodeloiodeilodad el el
e E e EEE CcoccoiboDoCo0
CCCEcccccE ctcccccoecccccoon
CEEECE cECcCctccon (eie e eie
CECEC fececcEEaE (EEd e = e
EClEcE ECE8e0 s e (eile
FCCCR FEFTEFPT. (Ee o
BiEic & pCCd
FECCh ¥ C C(
CCC 2w (]
CEE Eleiz]
{ i] = IR

About to train the first Merge robot.

[6 7]. She puts the [6 7] box back and takes out the [I 2] box, joins the [3]
box on the right, and puts the [I 2 3] box back (Fig. 2.12). This robot then
removes the three temporary extra holes to restore the box for further
processing.

Sally decides it is now time to generalize her two new robots. She de-
cides the first robot should work with any three boxes followed by a bird
and erases accordingly. The second robot should work with any three boxes,
followed by a bird, followed by a number, a scale tilted to the right, and a
number. She joins the robots into a team (Fig. 2.13).

She gives the [[4 6] [6 7] [1 2 3] bird] box to the Merge team. The box is
transformed to [[4 6] [6 7] [1 2 3] bird 4 < 6], and then the robots stop be-
cause the scale is tilted the other way so it doesn’'t match. She gives the box
to a fresh robot and trains him very much like the previous robot. This robot
differs only in that he moves the first number of the second, rather than
first, box to the end of the third box. She generalizes him like the other robot
and joins him to the team. The box is transformed to [[6] [6 7] [1 2 3 4] bird]
and then to [[6] [6 7] [1 2 3 4] bird 6 = 6], and then the team stops because
the scale is balanced and none of the robots can match a balanced scale.
Sally trains a robot to move both numbers to the end, generalizes him, and
joins him to the team. The box is then transformed to [[] [7] [1 2 3 4 6 6]
bird]. When the team iterates, the robot that adds the numbers and scale to
the end of the box triggers an error message. Marty, the personification of

S
__R
L

V:\002564\002564.VP
Wednesday, December 13,

2000 9:25:43 AM
TNT Job Number: [002564]

* Author: [Lieberman] ¢ Page: 38

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Two: Generalizing by Removing Detail 39

Trained the robot to add the three new holes on the
right.

the error system, appears and gives her the warning that the Merge robot
stopped because he was looking for a hole that a box didn't have. A robot
needs to be trained to handle the case where the first hole contains a box
without any holes. This robot needs to take the /7] and add it to the end of
[1 2 3 4 6 6], give the result to the bird, and then set off a bomb because the
task is completed.

After training this robot, Sally mistakenly believes she’s finished and puts
the teams in the correct holes and tries sorting some boxes. She tries /3 2 1]
and she sees a bird fly to the nest with /I 2 3]—the right answer. But then
when she tries [3 9 6 4 2 1 2], Marty appears and gives the same error mes-
sage as before. To see what the problem is, she gets up, goes outside, and
gets into her helicopter. She flies up and sees four extra houses. She lands
near one and goes inside. She sees [[2] [] [1] bird] on the floor and realizes
the problem is just that she didn’t train a robot for the case where the sec-
ond hole has a box with no holes. She trains a new robot much like the pre-
vious robot and adds him to the team.

Sally tries out her program again, and this time flies her helicopter over
the city as it is running. She feels proud as she watches trucks driving to
empty lots, houses being constructed, birds leaving some houses before
they explode, while more trucks emerge from others. Sally has successfully
constructed, tested, and debugged a parallel Merge Sort program.

S
R

L

V:\002564\002564.VP

Wednesday, December 13, 2000 9:25:44 AM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page:39

Color profile: Generic CMYK printer profile

Composite Default screen

40 Your Wish is My Command

2.12

Training the robot to add the first part of the box in
“Sorted2” to the end of the box in “Merged’”.

Discussion

It might seem to be easier for Sally just to type in a parallel Merge Sort pro-
gram in some textual language using variables rather than go through the
process described here. One way to discover if ToonTalk is easier is to study
real people using it and compare them with people using conventional pro-
gramming tools. The Playground (2000) research project has begun such a
study of children six to eight years old, and preliminary results are encour-
aging. Based on informal observations of about a hundred fourth grade stu-
dents and feedback from many hundreds of beta testers and customers, we
are confident that studies such as this will show a dramatic advantage to
programming by example.

Program development is much easier in ToonTalk for several reasons. As
many researchers in the field of programming by demonstration (Cypher
1993) have pointed out, people are generally better at working with exam-
ples than abstractions. Pygmalion (Smith 1993) and Tinker (Lieberman
1993) are two pioneering systems to support general-purpose programming
by example. These systems were not able to eliminate abstractions com-
pletely, however. The need for a conditional test in Tinker, for example, was
automatically discovered, but then the programmer needed to provide the

S
__R
_ L

V:\002564\002564.VP

Wednesday, December 13, 2000 9:25:44 AM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 40

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter Two: Generalizing by Removing Detail 41

L SR SR SR SR SR SR SRR SR SR SR S St
et L A SR e e e
QQ,L A CR S RS
o e RO R TR
C OO T

{ Bt s Je{mo ol e i e e

s] ! G NG R T CR T
(eiei{cle (o lela e e slel)
|2 e (mimd ey mk ey ey e
(EHE COCo oo ol
gEamdagaacacc
cecaGoooaand
Helledsde (ool olnals
e e lais oo dningn
W ccccococco
g Melslelolelalsie
- ccccccco
(silale{e slac]s

i eie (o lelelalely
vledadodeiede (el
oo ot
CooODEaO ey
T e I

Joining the robots into a team after generalizing
them.

predicate expression. When faced with multiple examples, both systems
needed help from the programmer. Tinker asks the user which previous ex-
ample is closest to the current one, for example. In Pygmalion, conditionals
need to be introduced early in the process of demonstrating a program. In
contrast, each ToonTalk clause (i.e., robot) is a self-contained unit whose
conditional test is automatically generated by the system and relaxed by the
programmer.

The task of supporting programming by demonstration is greatly simpli-
fied by the use of an appropriate computation model. ToonTalk has no
nested conditionals, no complex conditionals (i.e., deep guards), no non-
local variables, and no subroutine calls. It is nonetheless a very expressive
high-level programming language. Each of these widespread programming
abstractions interferes with the process of programming by example. Much
of the power and simplicity of ToonTalk comes from the fact that once a ro-
bot starts working, it is just executing “straight-line” code without condi-
tionals or procedure calls (though this straight-line code often includes pro-
cess spawning and interprocess communication). In addition, any “variable
references” are resolved to either the box that the robot was given or some
local temporary variables that are concretized as something placed on the
floor. Procedure calls interfere with a top-down programming style. If the S

subroutines aren’t defined yet, then the system must, like Tinker, introduce _R

L

V:\002564\002564.VP
Wednesday, December 13, 2000 9:25:45 AM

TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page:41

Color profile: Generic CMYK printer profile

Composite Default screen

42 Your Wish is My Command

descriptions of data to represent the return values. These descriptions are
not part of the programming language and add cognitive complexity. Proce-
dures that modify data structures are even harder to handle. In ToonTalk, a
procedure call is just a particular pattern of spawning processes and using
communication channels to return results. A ToonTalk programmer fre-
quently creates pairs of birds and nests and uses the birds to deliver com-
puted values to nests. The nest, when used like this, is a “promise” or “fu-
ture” value (Lieberman 1987). If a ToonTalk programmer needs to compute
something before proceeding, then she splits the task between two robots,
one to spawn the process that computes something and the other to use the
result after it is received.

Pygmalion made the task of programming more concrete by letting
the programmer manipulate iconic representations of programs and sam-
ple data. Tinker made things more concrete by letting the programmer ma-
nipulate sample data and descriptions of computations. ToonTalk makes
the process of programming even more tangible by avoiding icons and de-
scriptions and by providing concrete animated analogs of every computa-
tional abstraction. Everything in ToonTalk can be seen, picked up, and
manipulated. Even operations like copying or deleting data structures are
expressed by using animated tools like the Magic Wand and Dusty the
Vacuum.

Stagecast Creator is the only other programming by demonstration sys-
tem designed for children. Creator relies upon analogical representations.
“Programming is kept in domain terms, such as engines and track, rather
than in computer terms, such as arrays and vectors” (Smith, Cypher, and
Tesler 2000, 78) In contrast, ToonTalk is programmed in computer terms,
except those terms have “translated” to familiar and tangible objects such
as boxes, birds, and robots. Consequently, ToonTalk is general and power-
ful, whereas “Creator emphasizes ease of use over generality and power”
(Smith et al. 2000).

Special-purpose programming by demonstration systems derive much
of their advantage from the fact that the task of extending or automating
tasks in an application is very similar to the task of performing the task di-
rectly in the user interface. While ToonTalk is a general-purpose program-
ming system, it also has this property. The same objects and tools used
when training robots are also used by the programmer directly to accom-
plish tasks. Direct manipulation and recording are distinguished visually by
whether the programmer is controlling a programmer persona (hand or
person) or a robot. Furthermore, when controlling a robot the system dis-
plays the robot’s thought bubble as the background instead of the usual
floor. The same skills and way of thinking can be used in both modes.

V:\002564\002564.VP

Wednesday, December 13, 2000 9:25:45 AM

TNT Job Number: [002564] e Author: [Lieberman] e Page: 42

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter Two: Generalizing by Removing Detail 43

Summary

According to Smith (1993), “The biggest weakness of Pygmalion, and all the
programming by demonstration systems that have followed it to date, is
that it is a toy system.” ToonTalk is the first system in widespread use that
enables programmers to construct general-purpose programs by demon-
strating how the program should work on examples. Unlike its predecessors
Pygmalion and Tinker, ToonTalk was not designed for computer scientists
(Smith 1993) but for children and adults with no prior programming experi-
ence. Thousands of children have successfully used ToonTalk to construct a
wide variety of programs, including computer games (Playground 2000),
math and word manipulation programs, and animations.

Programming, however, is a cognitively challenging task. A programmer
needs to design the program’s architecture, break large tasks into manage-
able pieces, choose wisely among a range of data structures and algorithms,
and track down and fix the all too common bugs once the program is con-
structed. Enabling the programmer to do these tasks while manipulating
concrete data and sample input helps reduce some of the complexity. But
the hard fun (Papert 1996) remains.

Acknowledgements

Thanks to all those who gave comments to earlier versions of this chapter.
In particular, Mary Dalrymple, Henry Lieberman, and Gordon Paynter de-
serve special thanks.

References

Cypher, Allen, ed. 1993. Watch what I do: Programming by Demonstration. Cam-
bridge, Mass.: MIT Press.

Kahn, Ken. 1996. ToonTalk—An animated programming environment for children.
Journal of Visual Languages and Computing (June).

. 2000. ToonTalk Web site: www.toontalk.com.

Lieberman, Henry. 1987. Concurrent object oriented programming in Act 1.” In

Object oriented concurrent programming, ed. Aki Yonezawa and Mario Tokoro. ___S

Cambridge, Mass.: MIT Press.

V:\002564\002564.VP
Wednesday, December 13, 2000 9:25:46 AM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page:43

Color profile: Generic CMYK printer profile
Composite Default screen

44 Your Wish is My Command

. 1993. A programming by demonstration system for beginning program-
mers.” In

Papert, Seymour. 1980. Mindstorms: Children, computers, and powerful ideas. New
York: Basic Books.

. 1996. The connected family: Bridging the digital generation gap. Longstreet.

Playground Research Project. 2000. Web site: www.ioe.ac.uk/playground.

Smith, David Canfield. 1993. Pygmalion: An executable electronic blackboard.” In

Smith, David Canfield, Allen Cypher, and Larry Tesler. 2000. Novice programming
comes of Age. CACM 43, no. 3 (March). (See also chapter 1 of this book.)

V:\002564\002564.VP
Wednesday, December 13, 2000 9:25:46 AM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 44

