
Introduction

Henry Lieberman

Media Laboratory
Massachusetts Institute of Technology

TNT Job Number: [002564] • Author: [Lieberman] • Page: 1

S

R

L

V:\002564\002564.VP
Wednesday, December 13, 2000 8:18:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

When I first started to learn about programming (many more years ago
than I care to think about), my idea of how it should work was that it should
be like teaching someone how to perform a task. After all, isn’t the goal of
programming to get the computer to learn some new behavior? And what
better way to teach than by example?

So I imagined that what you would do would be to show the computer
an example of what you wanted it to do, go through it step by step, have the
computer remember all the steps, and then have it try to apply what you
showed it in some new example. I guessed that you’d have to learn some
special instructions that would tell it what would change from example to
example and what would remain the same. But basically, I imagined it
would work by remembering examples you showed it and replaying re-
membered procedures.

Imagine my shock when I found out how most computer programmers
actually did their work. It wasn’t like that at all. There were these things
called “programming languages” that didn’t have much to do with what you
were actually working on. You had to write out all the instructions for the
program in advance, without being able to see what any of them did. How
could you know whether they did what you wanted? If you didn’t get the
syntax exactly right (and who could?), nothing would work. Once you had
the program and you tried it out, if something went wrong, you couldn’t see
what was going on in the program. How could you tell which part of the
program was wrong? Wait a second, I thought, this approach to program-
ming couldn’t possibly work!

I’m still trying to fix it.
Over the years, a small but dedicated group of researchers who felt the

same way developed a radically different approach to programming, called
programming by example (PBE) or sometimes programming by demonstra-
tion (the user demonstrates examples to the computer). In this approach,
a software agent records the interactions between the user and a con-
ventional “direct-manipulation” interface and writes a program that corre-
sponds to the user’s actions. The agent can then generalize the program so
that it can work in other situations similar to, but not necessarily exactly the
same as, the examples on which it is taught.

It is this generalization capability that makes PBE like macros on ste-
roids. Conventional macros are limited to playing back exactly the steps re-
corded and so are brittle because if even the slightest detail of the context
changes, the macro will cease to work. Generalization is the central prob-
lem of PBE and, ultimately, should enable PBE to completely replace con-
ventional programming.

2 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 2

S

R

L

V:\002564\002564.VP
Wednesday, December 13, 2000 8:18:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Significantly, the first real commercial market for PBE systems might be
children. Children are not “spoiled” by conventional ideas of programming,
and usability and immediacy of systems for them are paramount. We’ll
present two systems that have been recently brought to market and are en-
joying enthusiastic reception from their initial users. David Smith, Allen
Cypher, and Larry Tesler’s Stagecast Creator, evolved from Apple’s Cocoa/
KidSim, brings rule-based programming by example to a graphical grid
world. Alexander Repenning and Corrina Perrone-Smith’s AgentSheets op-
erates in a similar domain and for a similar audience. Ken Kahn’s ToonTalk,
a programming system that is itself a video game, uses a radically different
programming model as well as a radical user interface. The crucial problem
of generalizing examples gets solved in a simple, almost obvious way—if
you remove detail from a program, it becomes more general.

One way in which PBE departs from conventional software is by apply-
ing new techniques from artificial intelligence (AI) and machine learning.
This approach opens up both a tremendous opportunity and also some
new risks. Brad Myers and Rich McDaniel treat the thorny issue of “How
much intelligence?” from their wide experience in building a variety of PBE
systems.

Of course, we can’t convince people about the value of programming by
example unless we have some good examples of application areas for it!
Next, we move to some application areas that show how PBE can really
make a difference. Everybody’s current favorite application area is the Web.
The Web is a great area for PBE because of the accessibility of a wealth of
knowledge, along with the pressing need for helping the user in organizing,
retrieving, and browsing it. The emerging developments in intelligent
agents can help—but only if users can communicate their requirements
and can control the behavior of the agent. PBE is ideal.

Atsushi Sugiura’s Internet Scrapbook automates assembling Web pages
from other Web sources, and he also explores Web browsers on small
handheld devices. Matthias Bauer, Dietmar Dengler, and Gabriele Paul
present a mixed initiative system: at each step, either the user or the agent
can take action, cooperating to arrive at a “wrapper” that describes the for-
mat of Web pages.

Carol Traynor and Marian Williams point out the suitability of PBE for
domains that are inherently graphical, such as Geographic Information Sys-
tems. If you can see it and point to it, you should be able to program it.
PBE lets users see what they are doing, unlike conventional program-
ming languages, in which graphical data can only be referenced in a pro-
gram by filenames and numbers. They illustrate the utility of PBE for “user-

Introduction 3

TNT Job Number: [002564] • Author: [Lieberman] • Page: 3

S

R

L

V:\002564\002564.VP
Wednesday, December 13, 2000 8:18:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

programmers”—those who specialize in the use of a particular application
but also, at least occasionally, have the need to resort to programming.
Patrick Girard embeds a PBE system in an industrial-strength computer-
aided design (CAD) application. Designers of mechanical, electrical,
manfacturing, or architectual systems can see the objects they are trying to
design directly. Rich McDaniel moves from static graphics to the dynamic
world of computer games, showing how interaction techniques can also
demonstrate “hidden features” of applications that are not directly reflected
in the graphics that the user will eventually see but are nevertheless crucial.

PBE can automate many common but mundane tasks that tend to con-
sume a frustratingly large fraction of people’s time. Text editing remains the
application that people spend the greatest amount of time in, and so text
editing applications are the target of the next set of PBE systems we’ll look
at. Tetsuya Masuishi and Nobuo Takahashi use PBE successfully for the
common editing task of generating reports. Toshiyuki Masui’s Dynamic
Macro and PoBox systems use loop detection and a predictive interface
to automate repetitive typing and editing, which can be especially impor-
tant in minimizing typing in small handheld devices or for users with dis-
abilities. The systems of Masuishi, Masui, and Sugiura have all been distrib-
uted to a large user community in Japan. Tessa Lau, Steve Wolfman, Pedro
Domingos, and Dan Weld use the time-honored AI technique of version
spaces to maintain a space of hypotheses about user actions, illustrating the
synergy between work in machine learning and PBE.

Henry Lieberman, Bonnie Nardi, and David Wright also put PBE to work
for user convenience, in training text recognition agents to recognize by ex-
ample common patterns of data that occur in the midst of unstructured in-
formation. Their PBE system for developing text recognition grammars,
Grammex, was the first interactive interface of any kind to make the power-
ful grammar and parsing technology accessible to end users. Alan Blackwell
adds to this general approach a visual syntax for the grammar rules, which
he shows increases user comprehension of the resulting programs.

We shouldn’t forget programming environments themselves as a do-
main for PBE, even if the programming is done in a conventional write-a-
file-and-compile-it programming environment. Jean-David Ruvini and
Christophe Dony take advantage of the truism that people are creatures
of habit. They have a software agent detect habitual patterns in a conven-
tional programming language environment, Smalltalk, and automate those
patterns.

Well, if PBE is so great, how come everybody isn’t using it? It’s our hope
that they soon will. But we realize that PBE represents such a radical

4 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 4

S

R

L

V:\002564\002564.VP
Wednesday, December 13, 2000 8:18:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

departure from what we now know as “programming” that it is inevitably
going to take a while before it becomes widespread. Despite the existence of
many systems showing the feasibility of PBE in a wide variety of domains,
conservatism of the programming community still seems the biggest
obstacle.

Signs are growing, however, that PBE might just be beginning to catch
on. Commercial PBE environments are beginning to appear, such as the
children’s PBE environments cited earlier that are now on the market. But it
also makes sense to view more conventional user-programming facilities,
such as so-called “interface builders,” macros, and scripting systems, as the
“poor man’s programming by example.” Some of these facilities are begin-
ning to evolve in directions that may incorporate elements of the PBE ap-
proach. We also will need conventional applications to become more “PBE-
friendly” so that PBE systems can use the conventional applications as tools
in the same way that a user would operate them manually. Gordon Paynter
and Ian Witten show how we might be able to leverage scripting language
and macro capabilities that are already present or on the way for applica-
tions into full-blown PBE systems. This might facilitate an adoption path
for PBE.

In programming, as in theater, timing is everything. Much of the work in
PBE is involved with demonstrating how to do something, but equally im-
portant is when to do it. David Wolber and Brad Myers explore what they
call “stimulus-response” PBE, in which we generalize on time and user in-
put, to assure that PBE-programmed procedures are invoked at just the
right time. Wolber also compares his PBE animation system to a conven-
tional animation editor/scripting system, Macromind Director, which
brings the similarities and differences of PBE versus conventional applica-
tions into sharp focus.

We then move on to explore some directions where PBE might be head-
ing in the future. Alexander Repenning and Corinna Perrone-Smith show
how we can take PBE a step further, using another important intuitive cog-
nitive mechanism—analogy. We often explain new examples by way of
analogy with things we already know, thus allowing us to transfer and reuse
old knowledge. Repenning and Perrone-Smith show how we can use anal-
ogy mechanisms to edit programs by example as well as create them from
scratch.

Robert St. Amant, Luke Zettlemoyer, Richard Potter, and I explore what
at first might seem like a crazy approach. We actually have the computer
simulate the user’s visual system in interpreting images on the screen rather
than accessing the underlying data. Though it may seem inefficient, it

Introduction 5

TNT Job Number: [002564] • Author: [Lieberman] • Page: 5

S

R

L

V:\002564\002564.VP
Wednesday, December 13, 2000 8:18:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

neatly sidesteps one of the thorniest problems for PBE: coexistence with
conventional applications. The approach enables “visual generalization”—
generalizing on how things appear on the screen, as well as properties of
the data.

Programming by example is one of the few technologies that holds the
potential of breaking down the wall that now separates programmers from
users. It can give ordinary users the ability to write programs while still op-
erating in the familiar user interface. Users are now at the mercy of software
providers who deliver shrink-wrapped, one-size-fits-all, unmodifiable “ap-
plications.” With PBE, users could create personalized solutions to one-of-
a-kind problems, modifying existing programs and creating new ones, with-
out going through the arcane voodoo that characterizes conventional pro-
gramming. In this collection of articles, we hope that the diversity of sys-
tems presented, compelling user scenarios, and promising directions for
the future of PBE will convincingly demonstrate the power and potential of
this exciting technology.

6 Your Wish is My Command

TNT Job Number: [002564] • Author: [Lieberman] • Page: 6

S

R

L

V:\002564\002564.VP
Wednesday, December 13, 2000 8:18:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

