Common Sense Video Game Authoring
Jeff Orkin
M.I.T. Media Lab

20 Ames Street, Cambridge, MA

jorkin@media.mit.edu

ABSTRACT

In this paper we describe how integrating a common sense knowledge base with a commercial video game engine allows us to automate AI character behavior. Today’s video game characters can animate beautifully and navigate intelligently from place to place, but they require detailed instructions at a low level about where to go and how to interact with the environment. Associating pre-existing human-labeled game assets with common sense knowledge provides AI characters with an understanding of object affordances, and goals of people in various social roles. We illustrate how this integration leads to automation by describing an implementation of a proof-of-concept common sense game authoring system used to create a restaurant game, where a waitress serves a hungry patron.
Author Keywords

Common sense, video games.
INTRODUCTION

Video games are becoming increasingly accepted as a form of dramatic art. The process of creating games, however, remains more technical than creative. Today’s video game characters can animate beautifully and navigate intelligently from place to place, but they require detailed instructions at a low level about where to go and how to interact with the environment. Ideally, we would be able to direct characters in a game the way we direct human actors for stage or screen; with high level instructions, and assumptions that the actors will take care of the low level details themselves. This paper explores how we can use a common sense knowledge base to leverage exiting information in a virtual world, and use this knowledge to automate AI characters. We describe how a common sense knowledge base can be used to suggest affordances for objects and goals for characters.
The current state of the art requires 3D objects to have associated scripts that tell objects how to behave in response to receiving various commands. Initially, new 3D models are non-interactive to players and AI characters. For example, what looks visually like a chair is really nothing but a blob of polygons until we associate it with a script that enables characters to sit on it. There is often a hierarchy of scripts that allow objects to inherit functionality from more general classes of objects. It can be labor intensive to script all of the objects in the entire
[image: image1.jpg]

A screenshot of the restaurant game.

game world, and this programming step interrupts the creative design process.
It can be difficult to untangle the web of scripts, and decipher how commands relate to different types of objects. On the other hand, there are lots of human labels in plain English that already exist within the content for a game! While common sense has little relevance to early video games like Pac Man, Q-Bert, and Dig Dug, popular games today inhabit increasingly familiar environments. In fact, the best selling game series of all time is The Sims, which simulates ordinary everyday life. The content created for games today are full of sensibly named, human-labeled assets including names of models, scripts, animations, textures, and sounds. It would be great if we could use these labels as hooks into a common sense knowledge base that could automatically associate objects with their expected functionality.
We have integrated a commercial game engine with an academic common sense knowledge base to create a proof-of-concept prototype of common sense game authoring. As the user populates a virtual environment with objects, the game editor suggests affordances for objects by using the human-assign labels for 3D models as queries into the common sense knowledge base. After setting up a scene full of objects and furniture, we drop characters into the world, and the editor suggests goals to characters by using the characters’ model names as queries into the common sense knowledge base. This paper describes our implementation of a common sense authoring tool used to create a restaurant game, where a waitress serves food to a customer who sits at a table and eats.
THE RESTAURANT GAME
We integrated our common sense authoring tool with a pre-existing game, developed for another research project designed to learn the behavior of people in a restaurant. The game was developed with a commercial game engine called Torque from Garage Games, and runs on a PC or Mac. Two players connect over the internet, and control a character from a first-person perspective with the mouse and keyboard. The game engine includes an integrated game editor for placing objects. Objects are associated with scripts by editing a mission text file. We implemented the Common Sense Game Editor as an alternate integrated authoring tool.
Objects represented in the game include tables, chairs, dishes, vases of flowers, menus, appliances, and various entrees and desserts. Players take the role or either a customer or waitress, and can pickup objects, read menus, eat food, operate appliances, and sit on chairs. It was encouraging to see how informative the human-labeled 3D object models’ names were for association with common sense. For example, we had models named “chair,” “table,” “soup,” and “salad,” all of which can be easily queried from a common sense knowledge base.
A more complex game is likely to have many variations on the names of objects. The Sims probably has more props for domestic environments than any other game. We can inspect the names of 3D models found in The Sims 2 with the SimsPE application, and find variations such as “tableCoffeeNightClub,” and “tableDiningUpscale.” While these compound names will not work effectively as queries into a common sense knowledge base, it is easy to imagine separating the name into words for use in queries by detecting changes in upper- and lower-casing. Perhaps one could set rules based on naming conventions, such as only querying based on the first word of a compound name; “table” is this case. The point we are making is that even in today’s complex commercial games, the names of objects are still quite informative about their common sense purpose, and can be effectively used to relate objects to common sense knowledge.
CONCEPTNET FOR GAME AUTHORING
ConceptNet is a semantic network of common sense knowledge created by the Common Sense Computing Group at the MIT Media Lab. ConceptNet is built on top of knowledge acquired through the Open Mind Common Sense project (OMCS) [4]. A wide variety of applications have been developed at the Media Lab using OMCS and ConceptNet, including the ARIA photo annotation and retrieval system [3], and the Globuddy dynamic tourist phrase book [1,2].
ConceptNet relates words to other words using twenty semantic relations such as EffectOf, LocationOf, and PropertyOf. The relations that we found most useful for video game authoring were IsA, UsedFor, ConceptuallyRelatedTo, CapableOf, and CapableOfReceivingAction. The editor allows the user to filter the list of objects by an IsA or ConceptuallyRelatedTo relationship with the last object placed. Object placement feels more fluid when the editor suggests placing a table after placing a chair. Once an object is placed, the editor suggests affordances for the object by associating UsedFor and CapableOfReceivingAction relations with the names of commands that the base object’s script is capable of handling. Similarly, the editor suggests goals for characters based on an association between the character type’s CapableOf relations and the names of existing goals that can be assigned to characters.
COMMON SENSE GAME AUTHORING USE CASE
It is easiest to understand the benefits that common sense brings to game authoring by walking through a use case. Here we describe how the common sense editor assists us in the task of setting up a virtual restaurant. We start with an empty restaurant, and our goal is to fill it with furniture, decorations, food, employees and customers.
Assume that we have already implemented a base object class that exposes the commands that objects may handle, and we have implemented goals that may be assigned to characters. Objects may be picked up, eaten, read, sat on, or operated. Characters may sit, eat, read, serve, or clean. The behavior of the goal-oriented autonomous characters is driven by a planning system similar to that which has shipped in commercial games like F.E.A.R., where characters search for a sequence of actions to satisfy relevant goals [5].

[image: image2.jpg]S

Ll

EaT

PICK UP

st

Look AT

OPERATE

ok

The common sense editor suggests affordances for a chair.
We start by bringing up the editor and scrolling through the list of 50 model names to select “chair” from the list. We click on the floor of the restaurant to place the chair. The chair appears, along with a dialogue box suggesting affordances for the chair. The box has “sit” checked, and “eat,” “pickup,” “read”, and “operate” unchecked. These suggestions make sense, so we click “Ok,” and continue placing objects.
Note that the list of affordances is generated dynamically based on the command handlers available on the base object class. So, if we added the command for throwing objects, the common sense editor would display “throw” as another possible affordance of objects, and “throw” would be checked for objects that ConceptNet deems UsedFor throwing, or CapableOfReceivingAction throw.

Once we have placed an object, the editor offers options for filtering the list of what we might want t place next. By default, the list is filtered by an IsA relationship to what we placed last. Thus, after placing a chair, the editor suggests that we may want to place another chair or a stool next. We go ahead and place a second chair, but now we want a table. By changing the editor’s filter from IsA to ConceptuallyRelated, the editor now suggests placing a table, bar, or counter. Through a similar process, we place an entrée on the table (a steak dish), which is conceptually related to a table. The editor suggests that the table does not have any interaction affordances, but the food can be picked up and eaten.
If we had decided that the food was not edible (e.g. a plastic lobster), we could uncheck “eat” from the list of affordances. The system would then find the IsA relationship that best matches the specified affordances, and decide that the lobster IsA object, rather than a food. The editor would filter the list of models to place next by the relationship “IsA object,” listing things like cups, plates, and vases; things that can be picked up, but not eaten.

At this point, the table is ready for satisfying a hungry customer. We set the editor’s filter back to listing all objects, and place a customer in the restaurant. ConceptNet knows that a customer IsA person, and our editor knows that people have goals, as rather than affordances. A dialogue box appears suggesting goals for this customer. The suggestions are that a customer eats, reads, and sits, but does not serve or clean. Once the user clicks “OK,” the customer begins trying to satisfy his goals. He walks to the table, sits down, and starts eating the steak. The customer was faced with two objects with affordances that could satisfy two different goals, sitting and eating. However, sitting is a precondition of eating in a restaurant (as encoded in the goal for eating), so the customer sits first, then eats.
[image: image3.png]BN R SR MERER] oo couceet|svess zorc|ovess woon|suamarze]

[waitress]

P —
onceptuallyRelatedTo==> person (21, 0)
onceptuallyRelatedTo==> our lunch (19, 0)
onceptuallyRelatedTo==> restaurant (9, 0)
apableof==> serve (0, 7)
onceptuallyRelatedT i [}
onceptuallyRelatedT
conceptuallyRelatedTo=:
onceptuallyRelatedT
ocationof==> at resturant (3,
sA==> woman (3, 0)

onceptuallyRelatedT

apableOf==> serve person food (2,
onceptuallyRelatedTo==> day (2, 0)
onceptuallyRelatedT person 's phone number (2, 0)
onceptuallyRelatedT bigger tip (2, 0)
ConceptuallyRelatedTo==> soup (2, 0)
onceptuallyRelatedT our order (2, 0)
onceptuallyRelatedT person 's roommate (2, 0)
onceptuallyRelatedT order (2, 0)
onceptuallyRelatedT crazy man (2, 0)
ropertyOf==> female 1)

ConceptNet knows that waitresses serve food.

The customer might want some dessert after dinner, so we return to the editor and add a counter with a plate of cheesecake on top. The customer does not get up and eat the cheesecake, because of the precondition for sitting while eating. We repeat the process of placing a character, but this time place a waitress. The system suggests goals of serving and cleaning for her, because ConceptNet says that a waitress is CapableOf serve and clean. This sounds about right, so we click “OK.” The waitress walks to the counter, picks up the cheesecake, serves it to the customer and takes away his dirty dish. The customer proceeds to eat his dessert.

It is easy to imagine expanding from this small contrived scenario to simulating an entire town. Provided that programmers took care of implementing basic object functionality and character goals, designers without programming skills could easily setup a town to function in expected ways, leaving designers to focus their creative energy on more unique story elements.
FUTURE WORK
In this early stage of the project, the connection between the game engine and ConceptNet requires manually querying ConceptNet through the mini-browser, and entering relation data into a lookup table for the game. The next step is to truly integrate the ConceptNet with the game engine, so that this preprocessing step of relating objects to common sense knowledge can be automated.
Once the game and the common sense knowledge base are truly integrated, we would like to run a user study to compare the process of creating a restaurant with the common sense editor, and with the authoring tools that come with Torque. We would like to show that users find the common sense editor to be more intuitive, efficient, and enjoyable to use.

ACKNOWLEDGEMENTS
We thank Henry Lieberman and Junia Anacleto for exposing us to the benefits, possibilities, and opportunities of common sense computing.
REFERENCES
1. Lieberman, H., Faaborg, A., Espinosa, J., and Stocky , T. Common Sense on the Go: Giving Mobile Applications an Understanding of Everyday Life. BT Technology Journal. Kluwer. 2004.

2. Lieberman , H., Liu, H., Singh, P., and Barry, B. Beating Some Common Sense into Interactive Applications. International Joint Conference on Artificial Intelligence. 2003.
3. Liu, H., Lieberman , H. Robust Photo Retrieval Using World Semantics, Proceedings of the 3rd International Conference on Language Resources And Evaluation Workshop: Using Semantics for Information Retrieval and Filtering (LREC2002) -- Canary Islands, Spain.
4. Liu, H., Singh, P. ConceptNet: A Practical Commonsense Reasoning Toolkit. BT Technology Journal. Kluwer. 2004.
5. Orkin, J. 3 States & a Plan: The AI of F.E.A.R. Game Developer's Conference Proceedings. IDGS. 2006.

PAGE
3

