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ABSTRACT 
In this paper, I present simulation as an alternative solution 
to the problem of commonsense knowledge acquisition.  
This position stems from the fact that commonsense is 
essentially redundant shared experience over time, and 
posits that reality computer games could be a forum in 
which computers could gain this shared experience from a 
human user.  The implementation and initial results of a 
learning program, ThoughtStreams, is shown to have some 
initial success in predicting commonsensical future events 
based on past experiences in a simple simulation game 
environment. 
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INTRODUCTION 
For years there has been much discussion in the AI 
community about what it would take for a machine to have 
commonsense.  Marvin Minsky discusses many aspects of 
commonsense, but perhaps his biggest message is that if 
something is only understood in one way then it is hardly 
understood at all, and that common sense reasoning is more 
than just facts but includes knowledge about how to think, 
negative expertise, analogies, and self-reflection [5].  John 
McCarthy is of the formalist camp, and has dealt for years 
with the problem of expressing common sense knowledge 
and common sense reasoning in terms of formal logic [3]. 

There have also been a few attempts to represent 
commonsense knowledge to a computer.  In the 1980s, 
Doug Lenat set off on the venture to encode commonsense 
knowledge into a database, a project called CYC, wherein 
each commonsense fact is written in a formal language, 
arranged in an ontology, and tagged with context 
information [1].  This project has been an enormous 
knowledge engineering feat, and is still underway.  Open 
Mind Common Sense is a similar endeavor, while the main 
goal is still to build a database of commonsense knowledge 
the representation and acquisition is quite different [7].  
Facts in OMCS are written in natural language (English), 
and the vision is to have people be able to teach the system 
about common sense in the form of – giving knowledge 
pieces, clarification, organization, validation, repair.  Thus, 
unlike CYC, all of the work is left to an inference engine to 
make sense of and organize the knowledge instead of the 
person entering the knowledge.  Another effort to encode 
commonsense knowledge sits perhaps between these two 

examples.  Eric Muller’s ThoughtTreasure is a database of 
commonsense facts that are represented in natural language 
but also organized in a hierarchy. 

Each of these approaches of having people encode facts 
about the world in a representation accessible to a machine 
runs into the problem of context.  Defining what context 
was considered when the statement was entered and having 
to keep adding and adding exceptions and clarifications to 
statements when there’s a conflict.  CYC, for example, uses 
a 12-dimensional context space in which statements can be 
situated, but again the burden of adequately describing a 
context is left to the knowledge engineer. 

Is building up big databases of commonsense the only 
approach?  This paper presents an alternative position, 
acquiring commonsense through simulation. 

There are a number of different opinions about what should 
and shouldn’ t be included in common sense, and what it 
means for a computer to “use”  common sense, but one way 
to think about common sense is shared knowledge or 
implicit knowledge.  For instance, in conversation, what 
goes unsaid is implicitly understood to be shared 
knowledge, or common sense.  In the physical world, 
“ things fall down not up” , is implicitly understood to be 
shared knowledge given that we all share the same physical 
world.  This idea extends into smaller circles of shared 
knowledge, where the smallest circle of common sense 
could be 2 people or a person and a computer.  Any time a 
group of people shares an experience; they can talk about 
or refer to that experience assuming that the others share 
the common ground. 

Building on this idea that common sense is what goes 
unsaid, how do we acquire all of this implicit knowledge?  
Even though we cannot remember not knowing most of 
what is considered common sense, at some point we all had 
to learn these things either by being told explicitly by a 
parent or teacher or through observation and experience.  
One way a computer might be able to go through a similar 
learning process is through simulation or a virtual world.  
This approach takes advantage of the fact that there is a 
world in which a user can exhibit some commonsense 
behavior and the computer can sense and effect.  This is 
related to and motivated by the ideas of Programming by 
Example [2].  Letting the user and the agent interact in this 
virtual space turns into an interactive learning session for 
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the agent, allowing the computer to learn in a common 
sense way: learning what is common by watching multiple 
interactions, learning about a new context or situation by 
recognizing action/environment similarities and 
differences, making predictions and seeing how they pan 
out.  

This paper describes a learning agent built to observe a 
simulated reality and glean some commonsense knowledge.  
The following sections will go through the motivating 
scenario, the particular approach and implementation, and 
then a discussion of the resulting system. 

MOTIVATION 
The following example is one originally posed by Lenat 
and widely discussed in the commonsense community.  
When you hear or see the sentence “Fred told the waiter he 
wanted some chips.”   What is some of the commonsense 
that lets you understand this sentence: 

The word “ he”  means Fred—and not the waiter.  
This event took place in a restaurant.  
Fred was a customer dining there.  
Fred and the waiter were a few feet apart.  
The waiter was at work there, waiting on Fred at that 
time.  
Both Fred and the waiter are live human beings.  
Fred was speaking words to the waiter.  
Both of them speak the same language.  
Both were old enough to talk. 
The waiter is old enough to work. 
Fred is hungry.  
He wants and expects that in a few minutes the waiter 
will bring him a typical portion—which Fred will start 
eating soon after he gets them.  
We can also assume that Fred assumes that the waiter 
also assumes all those things.  

Now the question is how to get a computer to bring all of 
these things to bear and understand this sentence?  Lenat 
and the various database approaches propose that all of this 
knowledge be encoded in a database for an inference 
engine to use in its deliberation.  But consider the 
simulation approach.  If the machine had seen a few 
different examples of going to a restaurant, it might be able 
to determine at least some of these facts just through 
looking at what is common between the current situation 
and its past experiences.  It is not hard to imagine that it 
would be able to say the following having seen a few 
restaurant interactions in the past: 

This event took place in a restaurant.  
Fred was a customer dining there.  
Fred and the waiter were a few feet apart.  
He wants and expects that in a few minutes the waiter 
will bring him a typical portion—which Fred will start 
eating soon after he gets them 

APPROACH 
To try this idea I built a small game world of a mall that 
allows a user to show the computer common behaviors in a 
few different stores and restaurants.  This is a simulation of 
having a game environment like the SIMs [8].  A reality 
computer game like the SIMs encapsulates commonsense 
knowledge on two levels.  On one level there is the 
commonsense knowledge that went into building the game:  
dividing up the world into places, actors, and objects and 
enabling interactions between the three.  On another level 
there is the commonsense that is exhibited by someone 
playing the game and giving the computer examples of 
commonsensical sequences of interactions in the world. 

A defining element in the simulation approach to 
commonsense acquisition is the ability to notice differences 
and similarities.  This is motivated by what Minsky calls 
our ‘world of differences’ .  He notes that our perceptual 
faculties are tuned to react to changes in time [4]  Steven 
Pinker also relates this idea in terms of language 
acquisition [6].  He explains how children hate synonyms, 
that no two words are exactly the same; when there’s a 
difference there’s a reason and kids are good at finding it. 

Another important aspect of this approach is experimental 
learning.  This is the process of predicting outcomes and 
comparing results to see if your memories are reliable, and 
then changing them or forgetting them if they are not. 

IMPLEMENTATION 
The system can be divided into three parts:  the game, the 
game log output, and ThoughtStreams the commonsense 
acquisition program.  This game is meant to represent a 
very slim version of a reality game like The SIMs, and 
what type of reasoning and knowledge acquisition this sort 
of platform might afford.  The hope is that this method of 
common sense reasoning would generalize to any system or 
game world where the computer could sense a world view 
over time, and had some measure of similarity. 

The Game 
The game starts at a Storefront, and the user has various 
options of stores and restaurants they can enter (Starbucks, 
The Gap, etc) and each store has some objects and actors 
and interactions that are available with these objects and 
actors.  As the user is going through the game a log of what 
happens is output to a file.   

The Game Log 
As previously mentioned, a computer game is a nice 
paradigm because the world is divided up by the designer 
into: places, actors, objects, and interactions/effects 
(actor/actor &  actor/object), and the events of the game can 
be output to a file over time. 

In this implementation, a LogEvent encapsulates the 
information in a single line of the game log: Place, 
ActorsInView, ObjectsInView, and Interactions/Effects.  
Actors, objects and places have a unique string name used 
to refer to them, and interactions have a unique string name 
and optional arguments (EX: eatdrink<object>, 
buy<object>, enter<place>, leave<place>, sayhi<actor>, 
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saythanks<actor>, readmenu, sitattable).  The LogEvent 
also contains the functionality of calculating similarity and 
difference between two LogEvents. 

ThoughtStreams 
ThoughtStreams is an application that runs separate from 
the game and watches the game log.  The goal of the 
program is to discover common sense about the ‘world’  
that is exhibited through people playing the game.  It does 
this through building long-term memories of common 
experiences and using these to form expectations about 
future events. 

ThoughtStreams is comprised of the interaction of multiple 
threads of activity and their various interactions with the 
data structures for short-term memory (STM) and long-
term memory (LTM).  In short, there is a Monitor thread 
that packages a new line from the game log into a log event 
and stores it in STM.  If the current event triggers a long-
term memory the Monitor thread starts a Remember thread, 
and if the current event has some similarity to a recent 
event in short term memory the Monitor thread starts a 
MakeMemory thread.  The MakeMemory thread packages 
the similar prior events that lead up to the two similar 
instances into a LTM structure.  The Remember thread is 
triggered by these prior events and is then able to predict 
future events.  Finally, there is a Ponder thread that tries to 
improve long term memory by removing pieces of a LTM 
that have shown particularly poor prediction reliability. 

Monitor 
This is the main thread of the program that watches the 
game log file and creates a LogEvent for each new entry 
and stores it in an array called short term memory (STM).  
Another LogEvent is created that encapsulates the 
difference between this LogEvent and the previous one and 
is stored in an array called delta short-term memory 
(∆STM).  For each new event a FindSimilarDiff thread is 
started. 

Find Similar Difference 
Giving the difference between the current event and the last 
one, the FindSimilarDiff thread searches through ∆STM 
and LTM for similar differences.  If this one is similar to a 
LTM then a Remember thread is started.  Otherwise it 
looks through ∆STM, and if a similar difference is found 
then a new thread is started to make a LTM of this event. 

Make Memory 
The MakeMemory thread takes the 2 times in ∆STM (now 
and then) where there’s been a similar difference and tries 
to generalize this event into a long-term memory.  A long-
term memory contains the similar difference that caused 
this memory to be created, and a list of the prior events that 
were similar in both cases. 

Remember 
A Remember thread is started when the FindSimilarDiff 
thread sees that the current difference in the world matches 
one of the prior events for a LTM.  When a LTM is 
triggered, the reference similar difference for this LTM is 
predicted to happen in the future.  This thread makes the 

prediction and waits and then checks to see if the predicted 
difference was seen.  The particular prior event that 
triggered this LTM is then credited with being right or 
wrong. 

Ponder 
The Ponder thread is the final thread of activity and is a 
meta reasoning facility.  The main goal of this thread is to 
try to improve long-term memory.  Currently there is one 
type of improvement partially implemented, but one could 
imagine a number of meta reasoning algorithms: putting 
LTMs together that get activated simultaneously, 
generalizing on particular slots of a LTM (i.e. combining 
the LTM for eatdrink<chocolate> and eatdrink<vanilla> to 
eatdrink<object in view>), etc.  The current meta reasoning 
implementation has to do with “cleaning-up”  the list of 
prior events that trigger a LTM.  Since statistics are kept on 
how well each of the priors predicts, the Ponder thread will 
be able to go through and prune away priors that 
consistently fail to predict the LTM’s event. 

RESULTS 
This is the first implementation of ThoughtStreams, which 
is certainly a work in progress, but the initial results are 
promising.  This section details an example taken from an 
actual run of the game, inferences the system made, and a 
discussion of how this performance could be improved. 

Table 1, gives the elements of STM and ∆STM from run of 
the game.  The interactions in this example include: go into 
Starbucks, say hi to the cashier, read the menu, order 
something, sit at a table, drink it, get up, and then leave. go 
into the gap, but decide to leave right away. 

DISCUSSION 
In this particular slice of the game the system made 23 
predictions, 11 of which ended up being correct.  This slice 
of the simulation was randomly selected from near the end 
of a 500-event run of the game.  A more elaborate analysis 
is necessary to determine true failure rates of the 
ThoughtStreams inferences. 

Some examples of successful predictions:  

•  At time, 2, it expected to see 'readmenu<>’ when it 
saw 'enter<Starbucks>'.   

•  And at time, 8, it expected to see 'eatdrink<X>' when it 
saw 'order<latte>'.   

•  My favorite successful example though, is that the 
system noticed that I forgot to buy my latte!  At time, 
12, when it saw eatdrink<latte> it expected to later see 
‘buy<X>’…but did not. 

The inference failures fall into two basic categories.  In a 
few of the failures, the remember facility needed to wait a 
little longer to see the given effect.  Currently it is hard 
coded to wait for 10 events and then give up, but this is 
certainly an aspect of the design to revisit.  The second 
failure type is more complicated and has to do with 
resolution of generalization.  The problem is deciding how 
to distinguish the really false predictions from the 'kinda' 
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false predictions.  For example, if the prediction said – I 
expect to see the actors <ashier and attendant> disappear – 
and later its sees a change where these actors do disappear 
… but also the place changes.  This should probably still be 
considered a case of successful prediction, or a ‘kinda false 
prediction’ . 

Another conclusion I have drawn from analyzing the 
resulting predictions, is that predictions that consistently 
co-occur and are right and wrong in the same cases should 
then be collapsed into one memory.  Moreover, I believe 
that this mechanism can be used to solve the second failure 
problem mentioned above.  The root of the problem is that 
currently the system is trying to talk about too many things 
at the same time.  It’s making predictions about 
Place/Actor/Object/Effects concurrently.  So, I propose that 
if each of these types is predicted separately, the individual 
predictions can be judged and the most consistent co-

occurring changes would then be gathered together in a 
single memory. 

FUTURE WORK 
I have two directions I am interested in taking this work.  I 
plan to explore both over the next few months. 

1. An obvious next step is to keep improving 
ThoughtStreams and work towards testing it in a more 
elaborate simulation environment.  Two options for 
this include: modifying the SIMs to produce a log file 
with more details about all of the interactions in the 
world, or using the UnrealTournament platform to 
build our own reality game.  This richer context will 
lead to more proof of this approach and cross context 
learning.  It can also be deployed to a wider user 
population to increase the amount of data collection. 

2. A more ambitious direction that I’d like to take this 
work is thinking about how both the knowledge 

 

  STM     ∆ STM   
T   Place   Actors   Ojbects   Effect     ∆ Place   ∆ Actors   ∆ Objects   ∆ Effects   
1   'Storefro nt'           'Storefront'         
2   'Storefront'       'enter<Starbucks>'           'enter<Starbucks>'   
3   'Starbucks'   Cashier   Table,  

Menu   
    'Starbucks'   Cashier   Table,  

Menu   
  

4   'Starbucks'   Cashier   Table,  
Menu   

'sayHi<Cashier>           'sayHi<Cashier>   
5   'Starbucks'   Cashier   Table,  

M enu   
'Cashier says hi!'           'Cashier says hi!'   

6   'Starbucks'   Cashier   Table,  
Menu   

'readmenu<>'           'readmenu<>'   
7   'Starbucks'   Cashier   Table,  

Menu   
'menu says latte,  
mocha, coffee'   

        'menu says latte,  
mocha, coffee'   

8   'Starbucks'   Cashier   Table,  
Menu   

'orde r<latte>'           'order<latte>'   
9   'Starbucks'   Cashier   Table,  

Menu,  
latte   

        latte     

10   'Starbucks'   Cashier   Table,  
Menu,  
latte   

'sitattable<>'           'sitattable<>   

11   'Starbucks'   Cashier   Table,  
Menu,  
latte   

'now you're sitting'           'now you're sitting'   

12   'Star bucks'   Cashier   Table,  
Menu,  
latte   

'eatdrink<latte>’           'eatdrink<latte>’   

13   'Starbucks'   Cashier   Table,  
Menu   

        ~latte     
14   'Starbucks'   Cashier   Table,  

Menu   
'getup<>'   
  

        'getup<>'   
  

15   'Starbucks'   Cashier   Table,  
Menu   

'now you're not  
sitting'   

        'now yo u're not  
sitting'   

16   'Starbucks'   Cashier   Table,  
Menu   

'leave<Starbucks>'   
  

        'leave<Starbucks>'   
  

17   'Storefront'           'Storefront'   ~Cashier   ~Table,  
~Menu   

  
18   'Storefront'       'enter<The Gap>'           'enter<The Gap>'   
19   'The Gap'   Attendant,  

Cashier   
  'Attendan t says  

welcome to the gap'   
  'The Gap'   Attendant,  

Cashier   
  'Attendant says  

welcome to the gap'   
20   'The Gap'   Attendant,  

Cashier   
  'leave<The Gap>'           'leave<The Gap>'   

21   'Storefront'           'Storefront'   ~Attendant,  
~Cashier   

    

  Table 1: 20 event window of game log 
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acquired in a simulated environment and the learning 
process itself can be leveraged outside of that 
environment.  If this process of learning could 
generalize to any system where there is a world view 
over time and a facility for calculating similarity and 
difference of events, this could be a really useful 
architecture in the realm of context-aware computing 
applications, allowing us to create systems with 
adaptive context formation and context switching. 

CONCLUSIONS 
There have been are three major attempts to give common 
sense knowledge to a computer: CYC, OpenMind, and 
ThoughtTreasure.  A major limitation with all of these is 
the lack of context around the learning/input of the 
knowledge.   In this paper, I have presented simulation as 
an alternative to the database solution of commonsense 
knowledge acquisition.  This position stems from the fact 
that commonsense is essentially redundant shared 
experience over time, and posits that reality computer 
games could be a forum in which computers could gain this 
shared experience from a human user.  The learning 
program, ThoughtStreams, was built and shown to have 
some initial success in predicting commonsensical future 
events based on past experiences in a simple simulation 
game environment.  In a 20 event window of the program’s 
output, taken after about 500 events of the game, 
ThoughtStreams was able to generate 23 commonsense 
statements 11 of which were correct.  The correct elements 
were obtained as expected through the aggregation of 
redundant and complementary events.  Failures fell into 
two categories, not having enough (or the right amount of) 
memory time, and over redundant or simultaneous analysis 
of the multiple elements (place, actor, object, effects).  

Both of these failure modes are believed to be reduced or 
corrected in future work which will include an expansion of 
the system to more elaborate simulation environments.   In 
addition to contributing to the commonsense AI problem, a 
generalization of this work should make contributions 
toward understanding context aware computing in terms of 
context formation and context switching. 
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