
Acquiring Commonsense Through Simulation

Andrea Lyn Lockerd
MIT Media Lab

20 Ames St. E15-313
617-253-0597

alockerd@media.mit.edu

ABSTRACT
In this paper, I present simulation as an alternative solution
to the problem of commonsense knowledge acquisition.
This position stems from the fact that commonsense is
essentially redundant shared experience over time, and
posits that reality computer games could be a forum in
which computers could gain this shared experience from a
human user. The implementation and initial results of a
learning program, ThoughtStreams, is shown to have some
initial success in predicting commonsensical future events
based on past experiences in a simple simulation game
environment.

Keywords
Commonsense, Knowledge Discovery

INTRODUCTION
For years there has been much discussion in the AI
community about what it would take for a machine to have
commonsense. Marvin Minsky discusses many aspects of
commonsense, but perhaps his biggest message is that if
something is only understood in one way then it is hardly
understood at all, and that common sense reasoning is more
than just facts but includes knowledge about how to think,
negative expertise, analogies, and self-reflection [5]. John
McCarthy is of the formalist camp, and has dealt for years
with the problem of expressing common sense knowledge
and common sense reasoning in terms of formal logic [3].

There have also been a few attempts to represent
commonsense knowledge to a computer. In the 1980s,
Doug Lenat set off on the venture to encode commonsense
knowledge into a database, a project called CYC, wherein
each commonsense fact is written in a formal language,
arranged in an ontology, and tagged with context
information [1]. This project has been an enormous
knowledge engineering feat, and is still underway. Open
Mind Common Sense is a similar endeavor, while the main
goal is still to build a database of commonsense knowledge
the representation and acquisition is quite different [7].
Facts in OMCS are written in natural language (English),
and the vision is to have people be able to teach the system
about common sense in the form of – giving knowledge
pieces, clarification, organization, validation, repair. Thus,
unlike CYC, all of the work is left to an inference engine to
make sense of and organize the knowledge instead of the
person entering the knowledge. Another effort to encode
commonsense knowledge sits perhaps between these two

examples. Eric Muller’s ThoughtTreasure is a database of
commonsense facts that are represented in natural language
but also organized in a hierarchy.

Each of these approaches of having people encode facts
about the world in a representation accessible to a machine
runs into the problem of context. Defining what context
was considered when the statement was entered and having
to keep adding and adding exceptions and clarifications to
statements when there’s a conflict. CYC, for example, uses
a 12-dimensional context space in which statements can be
situated, but again the burden of adequately describing a
context is left to the knowledge engineer.

Is building up big databases of commonsense the only
approach? This paper presents an alternative position,
acquiring commonsense through simulation.

There are a number of different opinions about what should
and shouldn’ t be included in common sense, and what it
means for a computer to “use” common sense, but one way
to think about common sense is shared knowledge or
implicit knowledge. For instance, in conversation, what
goes unsaid is implicitly understood to be shared
knowledge, or common sense. In the physical world,
“ things fall down not up” , is implicitly understood to be
shared knowledge given that we all share the same physical
world. This idea extends into smaller circles of shared
knowledge, where the smallest circle of common sense
could be 2 people or a person and a computer. Any time a
group of people shares an experience; they can talk about
or refer to that experience assuming that the others share
the common ground.

Building on this idea that common sense is what goes
unsaid, how do we acquire all of this implicit knowledge?
Even though we cannot remember not knowing most of
what is considered common sense, at some point we all had
to learn these things either by being told explicitly by a
parent or teacher or through observation and experience.
One way a computer might be able to go through a similar
learning process is through simulation or a virtual world.
This approach takes advantage of the fact that there is a
world in which a user can exhibit some commonsense
behavior and the computer can sense and effect. This is
related to and motivated by the ideas of Programming by
Example [2]. Letting the user and the agent interact in this
virtual space turns into an interactive learning session for

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

the agent, allowing the computer to learn in a common
sense way: learning what is common by watching multiple
interactions, learning about a new context or situation by
recognizing action/environment similarities and
differences, making predictions and seeing how they pan
out.

This paper describes a learning agent built to observe a
simulated reality and glean some commonsense knowledge.
The following sections will go through the motivating
scenario, the particular approach and implementation, and
then a discussion of the resulting system.

MOTIVATION
The following example is one originally posed by Lenat
and widely discussed in the commonsense community.
When you hear or see the sentence “Fred told the waiter he
wanted some chips.” What is some of the commonsense
that lets you understand this sentence:

The word “ he” means Fred—and not the waiter.
This event took place in a restaurant.
Fred was a customer dining there.
Fred and the waiter were a few feet apart.
The waiter was at work there, waiting on Fred at that
time.
Both Fred and the waiter are live human beings.
Fred was speaking words to the waiter.
Both of them speak the same language.
Both were old enough to talk.
The waiter is old enough to work.
Fred is hungry.
He wants and expects that in a few minutes the waiter
will bring him a typical portion—which Fred will start
eating soon after he gets them.
We can also assume that Fred assumes that the waiter
also assumes all those things.

Now the question is how to get a computer to bring all of
these things to bear and understand this sentence? Lenat
and the various database approaches propose that all of this
knowledge be encoded in a database for an inference
engine to use in its deliberation. But consider the
simulation approach. If the machine had seen a few
different examples of going to a restaurant, it might be able
to determine at least some of these facts just through
looking at what is common between the current situation
and its past experiences. It is not hard to imagine that it
would be able to say the following having seen a few
restaurant interactions in the past:

This event took place in a restaurant.
Fred was a customer dining there.
Fred and the waiter were a few feet apart.
He wants and expects that in a few minutes the waiter
will bring him a typical portion—which Fred will start
eating soon after he gets them

APPROACH
To try this idea I built a small game world of a mall that
allows a user to show the computer common behaviors in a
few different stores and restaurants. This is a simulation of
having a game environment like the SIMs [8]. A reality
computer game like the SIMs encapsulates commonsense
knowledge on two levels. On one level there is the
commonsense knowledge that went into building the game:
dividing up the world into places, actors, and objects and
enabling interactions between the three. On another level
there is the commonsense that is exhibited by someone
playing the game and giving the computer examples of
commonsensical sequences of interactions in the world.

A defining element in the simulation approach to
commonsense acquisition is the ability to notice differences
and similarities. This is motivated by what Minsky calls
our ‘world of differences’ . He notes that our perceptual
faculties are tuned to react to changes in time [4] Steven
Pinker also relates this idea in terms of language
acquisition [6]. He explains how children hate synonyms,
that no two words are exactly the same; when there’s a
difference there’s a reason and kids are good at finding it.

Another important aspect of this approach is experimental
learning. This is the process of predicting outcomes and
comparing results to see if your memories are reliable, and
then changing them or forgetting them if they are not.

IMPLEMENTATION
The system can be divided into three parts: the game, the
game log output, and ThoughtStreams the commonsense
acquisition program. This game is meant to represent a
very slim version of a reality game like The SIMs, and
what type of reasoning and knowledge acquisition this sort
of platform might afford. The hope is that this method of
common sense reasoning would generalize to any system or
game world where the computer could sense a world view
over time, and had some measure of similarity.

The Game
The game starts at a Storefront, and the user has various
options of stores and restaurants they can enter (Starbucks,
The Gap, etc) and each store has some objects and actors
and interactions that are available with these objects and
actors. As the user is going through the game a log of what
happens is output to a file.

The Game Log
As previously mentioned, a computer game is a nice
paradigm because the world is divided up by the designer
into: places, actors, objects, and interactions/effects
(actor/actor & actor/object), and the events of the game can
be output to a file over time.

In this implementation, a LogEvent encapsulates the
information in a single line of the game log: Place,
ActorsInView, ObjectsInView, and Interactions/Effects.
Actors, objects and places have a unique string name used
to refer to them, and interactions have a unique string name
and optional arguments (EX: eatdrink<object>,
buy<object>, enter<place>, leave<place>, sayhi<actor>,

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

saythanks<actor>, readmenu, sitattable). The LogEvent
also contains the functionality of calculating similarity and
difference between two LogEvents.

ThoughtStreams
ThoughtStreams is an application that runs separate from
the game and watches the game log. The goal of the
program is to discover common sense about the ‘world’
that is exhibited through people playing the game. It does
this through building long-term memories of common
experiences and using these to form expectations about
future events.

ThoughtStreams is comprised of the interaction of multiple
threads of activity and their various interactions with the
data structures for short-term memory (STM) and long-
term memory (LTM). In short, there is a Monitor thread
that packages a new line from the game log into a log event
and stores it in STM. If the current event triggers a long-
term memory the Monitor thread starts a Remember thread,
and if the current event has some similarity to a recent
event in short term memory the Monitor thread starts a
MakeMemory thread. The MakeMemory thread packages
the similar prior events that lead up to the two similar
instances into a LTM structure. The Remember thread is
triggered by these prior events and is then able to predict
future events. Finally, there is a Ponder thread that tries to
improve long term memory by removing pieces of a LTM
that have shown particularly poor prediction reliability.

Monitor
This is the main thread of the program that watches the
game log file and creates a LogEvent for each new entry
and stores it in an array called short term memory (STM).
Another LogEvent is created that encapsulates the
difference between this LogEvent and the previous one and
is stored in an array called delta short-term memory
(∆STM). For each new event a FindSimilarDiff thread is
started.

Find Similar Difference
Giving the difference between the current event and the last
one, the FindSimilarDiff thread searches through ∆STM
and LTM for similar differences. If this one is similar to a
LTM then a Remember thread is started. Otherwise it
looks through ∆STM, and if a similar difference is found
then a new thread is started to make a LTM of this event.

Make Memory
The MakeMemory thread takes the 2 times in ∆STM (now
and then) where there’s been a similar difference and tries
to generalize this event into a long-term memory. A long-
term memory contains the similar difference that caused
this memory to be created, and a list of the prior events that
were similar in both cases.

Remember
A Remember thread is started when the FindSimilarDiff
thread sees that the current difference in the world matches
one of the prior events for a LTM. When a LTM is
triggered, the reference similar difference for this LTM is
predicted to happen in the future. This thread makes the

prediction and waits and then checks to see if the predicted
difference was seen. The particular prior event that
triggered this LTM is then credited with being right or
wrong.

Ponder
The Ponder thread is the final thread of activity and is a
meta reasoning facility. The main goal of this thread is to
try to improve long-term memory. Currently there is one
type of improvement partially implemented, but one could
imagine a number of meta reasoning algorithms: putting
LTMs together that get activated simultaneously,
generalizing on particular slots of a LTM (i.e. combining
the LTM for eatdrink<chocolate> and eatdrink<vanilla> to
eatdrink<object in view>), etc. The current meta reasoning
implementation has to do with “cleaning-up” the list of
prior events that trigger a LTM. Since statistics are kept on
how well each of the priors predicts, the Ponder thread will
be able to go through and prune away priors that
consistently fail to predict the LTM’s event.

RESULTS
This is the first implementation of ThoughtStreams, which
is certainly a work in progress, but the initial results are
promising. This section details an example taken from an
actual run of the game, inferences the system made, and a
discussion of how this performance could be improved.

Table 1, gives the elements of STM and ∆STM from run of
the game. The interactions in this example include: go into
Starbucks, say hi to the cashier, read the menu, order
something, sit at a table, drink it, get up, and then leave. go
into the gap, but decide to leave right away.

DISCUSSION
In this particular slice of the game the system made 23
predictions, 11 of which ended up being correct. This slice
of the simulation was randomly selected from near the end
of a 500-event run of the game. A more elaborate analysis
is necessary to determine true failure rates of the
ThoughtStreams inferences.

Some examples of successful predictions:

• At time, 2, it expected to see 'readmenu<>’ when it
saw 'enter<Starbucks>'.

• And at time, 8, it expected to see 'eatdrink<X>' when it
saw 'order<latte>'.

• My favorite successful example though, is that the
system noticed that I forgot to buy my latte! At time,
12, when it saw eatdrink<latte> it expected to later see
‘buy<X>’…but did not.

The inference failures fall into two basic categories. In a
few of the failures, the remember facility needed to wait a
little longer to see the given effect. Currently it is hard
coded to wait for 10 events and then give up, but this is
certainly an aspect of the design to revisit. The second
failure type is more complicated and has to do with
resolution of generalization. The problem is deciding how
to distinguish the really false predictions from the 'kinda'

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

false predictions. For example, if the prediction said – I
expect to see the actors <ashier and attendant> disappear –
and later its sees a change where these actors do disappear
… but also the place changes. This should probably still be
considered a case of successful prediction, or a ‘kinda false
prediction’ .

Another conclusion I have drawn from analyzing the
resulting predictions, is that predictions that consistently
co-occur and are right and wrong in the same cases should
then be collapsed into one memory. Moreover, I believe
that this mechanism can be used to solve the second failure
problem mentioned above. The root of the problem is that
currently the system is trying to talk about too many things
at the same time. It’s making predictions about
Place/Actor/Object/Effects concurrently. So, I propose that
if each of these types is predicted separately, the individual
predictions can be judged and the most consistent co-

occurring changes would then be gathered together in a
single memory.

FUTURE WORK
I have two directions I am interested in taking this work. I
plan to explore both over the next few months.

1. An obvious next step is to keep improving
ThoughtStreams and work towards testing it in a more
elaborate simulation environment. Two options for
this include: modifying the SIMs to produce a log file
with more details about all of the interactions in the
world, or using the UnrealTournament platform to
build our own reality game. This richer context will
lead to more proof of this approach and cross context
learning. It can also be deployed to a wider user
population to increase the amount of data collection.

2. A more ambitious direction that I’d like to take this
work is thinking about how both the knowledge

 STM ∆ STM
T Place Actors Ojbects Effect ∆ Place ∆ Actors ∆ Objects ∆ Effects
1 'Storefro nt' 'Storefront'
2 'Storefront' 'enter<Starbucks>' 'enter<Starbucks>'
3 'Starbucks' Cashier Table,

Menu
 'Starbucks' Cashier Table,

Menu

4 'Starbucks' Cashier Table,
Menu

'sayHi<Cashier> 'sayHi<Cashier>
5 'Starbucks' Cashier Table,

M enu
'Cashier says hi!' 'Cashier says hi!'

6 'Starbucks' Cashier Table,
Menu

'readmenu<>' 'readmenu<>'
7 'Starbucks' Cashier Table,

Menu
'menu says latte,
mocha, coffee'

 'menu says latte,
mocha, coffee'

8 'Starbucks' Cashier Table,
Menu

'orde r<latte>' 'order<latte>'
9 'Starbucks' Cashier Table,

Menu,
latte

 latte

10 'Starbucks' Cashier Table,
Menu,
latte

'sitattable<>' 'sitattable<>

11 'Starbucks' Cashier Table,
Menu,
latte

'now you're sitting' 'now you're sitting'

12 'Star bucks' Cashier Table,
Menu,
latte

'eatdrink<latte>’ 'eatdrink<latte>’

13 'Starbucks' Cashier Table,
Menu

 ~latte
14 'Starbucks' Cashier Table,

Menu
'getup<>'

 'getup<>'

15 'Starbucks' Cashier Table,
Menu

'now you're not
sitting'

 'now yo u're not
sitting'

16 'Starbucks' Cashier Table,
Menu

'leave<Starbucks>'

 'leave<Starbucks>'

17 'Storefront' 'Storefront' ~Cashier ~Table,
~Menu

18 'Storefront' 'enter<The Gap>' 'enter<The Gap>'
19 'The Gap' Attendant,

Cashier
 'Attendan t says

welcome to the gap'
 'The Gap' Attendant,

Cashier
 'Attendant says

welcome to the gap'
20 'The Gap' Attendant,

Cashier
 'leave<The Gap>' 'leave<The Gap>'

21 'Storefront' 'Storefront' ~Attendant,
~Cashier

 Table 1: 20 event window of game log

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

acquired in a simulated environment and the learning
process itself can be leveraged outside of that
environment. If this process of learning could
generalize to any system where there is a world view
over time and a facility for calculating similarity and
difference of events, this could be a really useful
architecture in the realm of context-aware computing
applications, allowing us to create systems with
adaptive context formation and context switching.

CONCLUSIONS
There have been are three major attempts to give common
sense knowledge to a computer: CYC, OpenMind, and
ThoughtTreasure. A major limitation with all of these is
the lack of context around the learning/input of the
knowledge. In this paper, I have presented simulation as
an alternative to the database solution of commonsense
knowledge acquisition. This position stems from the fact
that commonsense is essentially redundant shared
experience over time, and posits that reality computer
games could be a forum in which computers could gain this
shared experience from a human user. The learning
program, ThoughtStreams, was built and shown to have
some initial success in predicting commonsensical future
events based on past experiences in a simple simulation
game environment. In a 20 event window of the program’s
output, taken after about 500 events of the game,
ThoughtStreams was able to generate 23 commonsense
statements 11 of which were correct. The correct elements
were obtained as expected through the aggregation of
redundant and complementary events. Failures fell into
two categories, not having enough (or the right amount of)
memory time, and over redundant or simultaneous analysis
of the multiple elements (place, actor, object, effects).

Both of these failure modes are believed to be reduced or
corrected in future work which will include an expansion of
the system to more elaborate simulation environments. In
addition to contributing to the commonsense AI problem, a
generalization of this work should make contributions
toward understanding context aware computing in terms of
context formation and context switching.

REFERENCES
1. D. Lenat, CYC: A Large-Scale Investment in Knowledge

Infrastructure, Communications of the ACM, Nov
1995, Vol. 38, No. 11.

2. H. Lieberman, Your Wish is my Command:
Programming by Example, Morgan Kaufmann, San
Francisco, 2001.

3. J. McCarthy, Artificial Intelligence, Logic and
Formalizing Common Sense, Philosophical Logic and
Artificial Intelligence, edited by Richmond Thomason,
Dordrecht ; Kluwer Academic, 1989.

4. M. Minsky, The Emotion Machine, book draft, Ch. 6.

5. M. Minsky, Commonsense-Based Interfaces,
Communications of the
ACM, Aug 200, Vol. 43, No. 8.

6. S. Pinker, The Language Instinct, HarperCollins, NY,
1995.

7. P. Singh, et. al., Open Mind Common Sense:
Knowledge Acquisition from the General Public,
AAAI, 2002.

8. The SIMs, www.thesims.com.

No license: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

