
Context within Common Sense

Avni Shah
MIT EECS Dept.
ashah24@mit.edu

Rebecca Bloom
MIT EECS Dept.
rebeccas@mit.edu

ABSTRACT
There exists many software applications that attempt to use
common sense reasoning to assist users do everyday tasks,
such as schedule their day or write emails. One such
program is ARIA, which relies on the information in
OpenMind’s common sense database. However, these
applications are only as useful as the quality of the common
sense information with which they are reasoning. One vast
improvement in the area of common sense is to introduce
the idea of context, since much common sense information
is only valid within a certain realm. Thus, the objective of
this project was to improve the quality of the information in
OpenMind by adding context to potentially contextually-
ambiguous statements currently in the database. Our
application allows users to add common sense to the
sentences in OpenMind as well as search for contextual
sentences on a particular concept.

Keywords
Common sense, context, OpenMind

INTRODUCTION
There are currently many systems that attempt to
incorporate common sense knowledge in their interactive
applications. The belief is that by giving the system
common sense knowledge about the world, the system will
become “smarter”, and thus be able to assist the user by
presenting him with relevant, useful information based on
what he is doing.
One example of an interactive application that uses
common sense is Erik Mueller’s SensiCal. [1] By accessing
a large database of common sense information (Thought
Treasure), this “smart calendar” is able to fill in missing
information and detect potential problems for the user. For
example, if the user inputs “Take Lisa to lunch at the
steakhouse” and the system is aware that Lisa is a
vegetarian, it may alert the user that he is taking a
vegetarian, who does not eat meat, to a steakhouse. In this
example, SensiCal learned from the information in Thought
Treasure that vegetarians do not eat meat and was able to
apply this knowledge to help the user avoid making a
mistake.

Another such application is ARIA (Annotation and
Retrieval Integration Agent) which is used to assist a user
writing an email or web page. ARIA uses common sense
to extract the “who, what, where, when and why” out of the
user’s text and present the user with pictures to annotate his
email or web-page. [2]

An important realization is that an interactive application
that uses common sense is only as good as the common
sense that it is using. If the knowledge base is faulty or
deficient, then the application will not be useful to the user.
The database that ARIA uses to retrieve common sense
information is OpenMind. The uniqueness of OpenMind
lies in that the information in the database has not been
inputted by a small group of computer programmers hoping
to teach the system about common sense. Instead,
OpenMind obtains its information from thousands of users
who enter information into the system. The hope is that
since there are such a random selection of people inputting
data, the information will not only be more diverse, but will
also more accurately reflect true common sense in society.

One of the limitations of OpenMind is that users often input
information without paying attention to the context in
which this information is true. For example, the database
contains statements such as “a bride wears a white wedding
dress.” While this might be true in some religious contexts,
such as Christianity, this statement is untrue for others. In
Hinduism and in Chinese culture, bridges wear red and not
white.

Our goal for this project was to improve the quality of the
existing data in OpenMind by adding necessary context,
thus making OpenMind a more useful source of common
sense information. Our application extracts contextually
ambiguous statements from OpenMind’s database and
allows users to attach context to these statements. In the
previous example, a user might input “In Christianity,
brides wear white wedding dresses” or “In Hinduism,
brides wear red wedding dresses.” Thus making this
statement more accurate from a contextual point of view.

FUNCTIONALITY
There are three main functions that the user can perform
with our application. Figure 1 depicts the interface, i.e., the
options, that the user is presented with.

The first functionality is to add context to sentences
currently in OpenMind. A user is presented with a
randomly generated sentence from OpenMind's database
and is presented with options to add contextual reference to
the sentence. Due to time constraints, a few specific
contexts (time and conditionality) were chosen to be in the
application. After analyzing the sentence, the user can
choose to add a time context ("when"), a conditional
context ("if"), or another type of context ("other"). If the
sentence does not need to be modified, then the user can
choose "none" and will then be presented with another
sentence to analyze. If the user chooses a specific context
to add to the sentence, he will be presented with another
window, which looks like Figure 2.

Here, the sentence is not modifiable, but a basic template is
laid out for the user. If the user chooses to add any other
type of context, then the user is presented with a similar
window, but this time the sentence is fully modifiable.

The second function that a user can perform is to view what
others have written about a particular sentence. After being
presented with a randomly generated sentence from
OpenMind's database, a user can choose the "What others
said about this sentence” option to see other users'
modifications of the that sentence. This function was
included because at first a user may not immediately realize
a particular sentence is contextually ambiguous. However,

after seeing how others added context to a sentence, the
user may come up with another way to amend the sentence.

While the first two functionalities mentioned are directed
towards improving the information in OpenMind, the final
one is directed towards helping the user find contextual
information. The user is able to enter a concept, such as

“wedding” or “wedding dress”, and then “Search for
context about a certain concept”. This will return to the
user all the contextual sentences that other users have
inputted about this particular concept. Thus, using the
example from the introduction, if the user search for
“wedding dress”, he would be returned the sentences “In
Christianity, brides wear white wedding dresses” and “In

Hinduism, brides wear red wedding dresses ”. Thus, the
user is given more contextually-accurate information than
he could get from the current OpenMind database.

IMPLEMENTATION
To obtain information from OpenMind, Hugo Liu's
interface with OpenMind (OMCSNet) was used. This
interface provided a link to the information in the form of a
semantic net, i.e., nodes and predicates/relationships to
other nodes. Due to the large size of the semantic net, it
was necessary to extract only the most relevant
information, that is, the information that might have the

Figure 1: Interface to User

Figure 2: Inputting Context

most contextual relevance, culturally and otherwise. For
example, sentences having to do with weddings,
entertainment, etc. were extracted from the semantic net
and used for this project. Although there are quite a few
sentences used, due to time constrains, all the possibly
contextually ambiguous sentences were not extracted from
OpenMind. Fortunately, more sentences can easily be
added to the list of sentences actually used.

Once a sentence is randomly chosen and presented to the
user, any modifications made to the sentence are linked to
the original sentence and stored in an internal database.
This internal database, which is maintained over all
sessions, accounts for the system being able to present the
user with different functionality. First, the system is able to
keep track of all users' modifications to a particular
sentence, which allows the user to see “What others said
about this sentence”. Second, the system is able to search
for modified sentences having to do with a particular
context, thus enabling the user to “Search for context about
a certain concept”. This internal database is kept offline,
meaning that it does not link dynamically with OpenMind's
database. However, a file of modified sentences is
maintained so that the information can eventually be stored
in OpenMind's database and thus accessible to all
OpenMind's users.

LIMITATIONS
The original intent of this project was to actually search
OpenMind's database to find seemingly contradictory
statements that would not be contradictory if context was
added to them. With the use of a semantic net
representation of the information in OpenMind, it would
have been easy to find contradictions such as “A person
wants to eat” and “A person wants to not eat”, since one
sentence is just a negative of the other. However, there are
not enough sentences like this in OpenMind to make this
sort of search worthwhile. Instead, in order to be really
useful, the system needs to find more subtle contradictions.
For instance, it would need to find sentences such as “A
bride wears white” and “A bride wears red,” which seem
like opposing sentences until one adds cultural or religious
context to each sentence. Unfortunately, finding such
contradictions is a very difficult problem, and requires the

system to be smart enough to realize, for instance, that this
is a contradiction because a person cannot wear two colors
at the same time. Unfortunately, given the time constraints
for the project, it was impossible to create such a complex
reasoning system. Thus, the project was limited to
presenting the user with a single sentence, and having the
user – not the system – determine whether the sentence had
contextual implications.

EXTENSTIONS
There was one main functionality that, due to time
constraints, was not implemented in this project. As
mentioned earlier, the system has an internal database that
links modified sentences to their original sentence.
Unfortunately, this linkage is not retained when the
modified sentences are fed back into OpenMind.
Therefore, although OpenMind is being given more
contextually accurate information, OpenMind has no idea
which sentences were originally contextually inaccurate.
Because of the limited time span of this project, a method
of tagging the original sentences in OpenMind’s database
could not be found. However, the ability to do might
greatly improve the usefulness of OpenMind’s information
as users could search within OpenMind for contextual
information linked to a particular concept.

ACKNOWLEDGMENTS
We would like to thank Henry Lieberman, Push Singh,
Hugo Liu, and our fellow MAS.964 students for all their
help and suggestions.

REFERENCES
1. A Calendar with Common Sense. Available at

http://lieber.www.media.mit.edu/people/lieber/Teaching
/Common-Sense-Course/Common-Sense-Calendar.pdf.

2. Adaptive Linking between Text and Photos Using
Common Sense Reasoning. Available at
http://lieber.www.media.mit.edu/people/lieber/Teaching
/Commo n-Sense-Course/AH2002-aria.doc.

3. CHI Conference Publications Format. Available at
http://www.acm.org/sigchi/chipubform/.

