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ABSTRACT 
A principal problem in speech recognition is distinguishing 
between words and phrases that sound similar but have 
different meanings. Speech recognition programs produce a 
list of weighted candidate hypotheses for a given audio 
segment, and choose the "best" candidate. If the choice is 
incorrect, the user must invoke a correction interface that 
displays a list of the hypotheses and choose the desired one. 
The correction interface is time-consuming, and accounts 
for much of the frustration of today's dictation systems. 
Conventional dictation systems prioritize hypotheses based 
on language models derived from statistical techniques 
such as n-grams and Hidden Markov Models. 
We propose a supplementary method for ordering 
hypotheses based on Commonsense Knowledge. We filter 
acoustical and word-frequency hypotheses by testing their 
plausibility with a semantic network derived from 700,000 
statements about everyday life. This often filters out 
possibilities that "don't make sense" from the user's 
viewpoint, and leads to improved recognition. Reducing the 
hypothesis space in this way also makes possible 
streamlined correction interfaces that improve the overall 
throughput of dictation systems. 
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INTRODUCTION 
Errors in text generated by speech recognition are usually 
easy for people to spot because they don’t make sense.  
Even a well trained speech recognition system will 
occasionally produce a nonsensical (but phonetically 
similar) word or phrase.  For instance, the phrases 

“recognize speech using common sense” and “wreck a nice 
beach you sing calm incense” while phonetically similar, 
are contextually very different.  Because of this, acoustic 
analysis alone is not enough to accurately recognize 
speech.  Speech recognition systems must also take into 
account the context of what the user is saying.  Previous 
approaches to this problem have relied only on statistical 
techniques, calculating the probability of words appearing 
in a particular order. 
We propose a new solution, using Commonsense 
Knowledge to understand the context of what a user is 
saying.  A speech recognition system augmented with 
Commonsense Knowledge can spot its own nonsensical 
errors, and proactively correct them.  Previously this 
approach has been successfully applied to similar problem 
of predictive text entry [12]. 
We have found that by filtering out hypotheses that don’t 
make sense, we can improve overall recognition accuracy, 
and improve error correction user interfaces. 

Previous Work 
Previous approaches, surveyed by Jelinek, have used 
statistical language models, based on such techniques as 
Hidden Markov Models, and n-grams [1,2,3].  These 
models calculate the probability of each word in a 
vocabulary appearing next, based on the previous sequence 
of words.  Kuhn adapted these models to weigh recently 
spoken words higher, improving accuracy [4].  He found 
that a recently spoken word was more likely to appear then 
either its overall frequency in the language or a Markov 
Model would suggest.  Even with the best possible 
language models, these methods are limited by their ability 
to represent language statistically.  In contrast, we propose 
using Commonsense Knowledge to solve the context 
problem with semantics in addition to statistics. 

Open Mind: Teaching Computers the Stuff we All Know 
Since the fall of 2000 the MIT Media Lab has been 
collecting commonsense facts from the general public 
through a Web site called Open Mind [5,6].  At the time of 
this writing, the Open Mind Common Sense Project has 
collected over 700,000 facts from over 14,000 participants.  
These facts are submitted by users as natural language 
statements of the form “tennis is a sport” and “playing 
tennis requires a tennis racket.”  While Open Mind does 
not contain a complete set of all the common sense facts 

 
 
 
 



found in the world, its knowledge base is sufficiently large 
enough to be useful in real world applications. 
Using natural language processing, the Open Mind 
knowledge base was mined to create ConceptNet [7], a 
large-scale semantic network currently containing over 
300,000 nodes.  ConceptNet consists of machine-readable 
logical predicates of the form: [IsA “tennis” “sport”] and 
[EventForGoalEvent “play tennis” “have racket”].  
ConceptNet is similar to WordNet [8] in that it is a large 
semantic network of concepts, however ConceptNet 
contains everyday knowledge about the world, while 
WordNet follows a more formal and taxonomic structure.  
For instance, WordNet would identify a dog as a type of 
canine, which is a type of carnivore, which is a kind of 
placental mammal.  ConceptNet identifies a dog as a type 
of pet [7]. 
ConceptNet allows software applications to understand the 
relationships between concepts in thousands of domains.  
And this domain knowledge can be leveraged by speech 
recognition engines to understand that “I bought my dog in 
a pet shop” makes more sense then the phonetically similar 
phrase “I bought my dog in a sweatshop.” 

Re-Ranking the Candidate Hypotheses List 
Our implementation accesses the Microsoft Speech Engine 
using the Microsoft Speech SDK 5.1.  The application 
retrieves the Microsoft Speech engine’s hypotheses for 
each speech utterance, and re-ranks the list based on the 
semantic context of what the user has previously said, using 
ConceptNet.  Hypotheses that appear in the concepts 
context are moved toward the top of the list.   
For instance, if the user says “my bike has a squeaky 
brake.”  The Microsoft Speech Engine often predicts the 
final word to be “break,” (as in “to break something”).  
However, by using ConceptNet to understand the context 
of bike (which includes concepts like: tire, seat, wheel, 
pedal, chain… and brake), our application is able to 
correctly guess that the user meant the physical “brake”. 
This is shown in Figure 1. 

 
Figure 1: Re-Ranking the Candidate Hypotheses List 

This example disambiguates between two words that are 
phonetically identical, (“break” and “brake”), but the 
approach also works well for disambiguating words that are 
phonetically similar (like “earned” and “learned”). 
 

EVALUATION 
In a preliminary test, 3 subjects completed a 286-word 
dictation task.  Their error correction interface contained a 
list of alternative hypotheses, and an “undo” button, which 
allowed them to dictate a phrase again.  Each subject 
trained the speech recognition engine before running the 
experiment.  After one initial training session, subjects 
were allowed to familiarize themselves with the error 
correction user interface.  All subjects dictated the same 
text.  We logged the ranking of alternative hypotheses for 
each speech utterance, the number of times the subject 
clicked the “undo” button, and the dictation time.  After the 
subjects completed the dictation task, we analyzed their 
error logs to see if the augmented speech engine would 
have prevented the mistakes from occurring.  We analyzed 
the error logs instead of directly testing our augmented 
speech recognition engine to control for the variability of 
acoustic input.  We found that using Commonsense 
Reasoning to re-rank the candidate hypotheses would have 
prevented 17% of the errors from occurring, which would 
have reduced overall dictation time by 7.5%. 
Additionally, we found that when subjects used the error 
correction interface, if the correct hypothesis appeared 
toward the bottom of the list they would often click the 
“undo” button and say the phrase again instead of reading 
the entire list.  Because of this, we have found the 
augmented speech engine to be more efficient.  Even if the 
first hypothesis is still incorrect, re-ranking the candidate 
hypotheses improves the error correction interface.  
Commonsense Reasoning helps speech recognition engines 
make better mistakes. 

DISCUSSION  
Previous techniques have focused on low-order word n-
grams, where the probability of a word appearing is based 
on the n-1 words preceding it.  The first difference between 
our approach and n-grams is the corpus being used.  In our 
case the corpus consists of Commonsense Knowledge.  
While it is certainly possible to use an n-grams approach on 
a training corpus of Commonsense Knowledge, there are 
also many differences in how these two approaches 
function.  The n-grams approach is a statistical technique 
based on frequency of adjacent words.  Because n is 
usually 2 or 3 (referred to as bigrams and trigrams), this 
approach cannot take into account the context of what the 
user is saying beyond a three word horizon.  To take into 
account more context, n would need to be increased to a 
larger number like 10.  However, this results in intractable 
memory requirements.  Given a training corpus containing 
m words, the n-grams approach where n equals 10 would 
require storing a lookup table with (in the worst case) m10 
entries.  The n-gram approach is usually trained on a corpus 
where m is in the millions.  Commonsense Reasoning is 
able to escape these intractable memory requirements 
because (1) our training corpus is smaller, and (2) our 
parser dose more natural language processing.  To look at 
an example, consider determining the last word in this 
sentence: “buy me a ticket to the movie, I’ll meet you at the 



(thée әtәr)”.  The Commonsense Reasoning approach 
notices the words ticket and movie, and uses ConceptNet to 
look up the context of these two words (which returns list 
of about 20 words), it then concludes “theater” is the best 
guess.  An n-grams approach would need to look up every 
other instance of this sentence before it could form its list 
of candidate hypotheses. 
In addition to being more efficient, processing speech 
based on semantics may also be closer to how the human 
brain completes the task.  Acero, Wang and Wang note that 
“Shortly after a toddler is taught that “dove” is a bird, she 
has no problem in using the word dove properly in many 
contexts that she hasn’t heard before; yet training n-gram 
models require seeing all those n-grams before” [10].  The 
n-gram model, unlike semantics, does not generalize. 

Improving Speech Recognition User Interfaces 
Current speech recognition error correction interfaces 
require the user to read a list of candidate hypotheses and 
then make corrections by saying “pick n” (where n is the 
number of the correct word).  The error correction interface 
for IBM’s ViaVoice [11] is shown in Figure 2.  Reading 
this list of hypotheses is time intensive, and slows down the 
rate at which users can dictate text. 

 
Figure 2: IBM ViaVoice’s Error Correction Interface 

By using Commonsense Reasoning to order this list, the 
correct hypothesis is more likely to appear in the first 
several options.  This allows the user to simply say “oops” 
and the incorrect word is replaced by the next hypothesis.  
Since the user’s attention does not have to shift to the error 
correction window, they will not have to perform a visual 
search of the candidate hypotheses.  This increases the 
overall rate at which users can dictate text, and streamlines 
the interface. 

CONCLUSION 
By using ConceptNet, a vast semantic network of 
Commonsense Knowledge, we are able to reduce the 
number of nonsensical errors produced by speech 
recognition engines.  This increases overall accuracy, and 

can be used to streamline speech recognition error 
correction interfaces, saving user’s time. 
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