
Supporting User Hypotheses in Problem Diagnosis
on the Web and Elsewhere

Earl J. Wagner
ewagner@media.mit.edu

Henry Lieberman
lieber@media.mit.edu

MIT Media Laboratory
20 Ames St

Cambridge MA 02139

ABSTRACT
People are performing increasingly complicated actions on
the web, such as automated purchases involving multiple
sites. Things often go wrong, however, and it can be diffi-
cult to diagnose a problem in a complex process. Informa-
tion must be integrated from multiple sites before relations
among processes and data can be visualized and understood.
Once the source of a problem has been diagnosed, it can be
tedious to explain the process of diagnosis to others, and
difficult to review the steps later.

We present a web interface agent, Woodstein, that moni-
tors user actions on the web and retrieves related informa-
tion to assemble an integrated view of an action. It man-
ages user hypotheses during problem diagnosis by capturing
users’ judgments of the correctness of data and processes.
These hypotheses can be shared with others, including cus-
tomer service representatives, or accessed later. We will see
this feature in the context of diagnosing problems on the
web, and discuss its broader applicability to system inter-
faces in general.

General Terms
Human Factors

Keywords
Interface Agents, Web Interfaces, Interactive Visualization

Categories and Subject Descriptors
H.5.4 [Information Interfaces and Presentation]: Hy-
pertext/Hypermedia - User issues

1. INTRODUCTION
The state of consumer interfaces for e-commerce is at a

crossroads. Most Americans have access to the web and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI’04, January 13–16, 2004, Madeira, Funchal, Portugal.
Copyright 2004 ACM 1-58113-815-6/04/0001 ...$5.00.

many are familiar with the convenience of late-night bank-
ing and the thrill of last-minute bidding. On the horizon is
the advent of web services, currently being explored and de-
veloped for business-to-business interactions, but inevitably
to directly shape consumers’ interfaces for purchases and
online transactions. And yet most work in e-commerce in-
terfaces for consumers—both in research and in the devel-
opment of web sites—has been focused on what happens
leading up to a transaction: how to provide appropriate and
compelling recommendations, how often and by what means
to provide promotions and updates, and so on. Interfaces
for supporting customers after a transaction have received
little attention and promising new trends including “cus-
tomer self-service” are based on surprisingly old-fashioned
technology such as site-specific searching[7].

The issue of what happens when something goes wrong
in e-commerce is particularly relevant to vendors because
of the risk of losing customers. A recent study found that
after a bad customer service experience, 80% of customers
would be less likely to buy from the online vendor again[4].
And customers are contacting support—nearly half (44%)
of online buyers have made a support contact in the past
six months[3]. Vendors will work to reduce these numbers,
both to build the value of their brands and limit the cost
of customer service. But the need for customer service will
remain, just as our recently upgraded software with great
new features will always have a few bugs.

Although the reasons for contacting customer service vary,
some issues are more common than others. Just over a quar-
ter of all contacts are due to a delayed delivery of a product
or service and another quarter arise because of a billing or
pricing issue[3]. Anyone who has made more than a few
purchases online is familiar with these types of problems.
Looking at your credit card transactions history, you won-
der about that one order you never received. Or maybe you
purchased something then discovered that you received less,
or paid more, than you expected.

Experiences like these make consumers wary when initi-
ating purchases in the first place. Indeed, the more complex
a product or service is, the greater the quality of customer
service will influence the decision[3], with financial services
and airline and hotel reservations being the transactions of
most concern. Importantly, these are also the transactions
that are likely to span multiple sites, with the potential for
greater complications. Consider when there’s a miscommu-
nication among multiple sites over the course of a transac-
tion. Then it becomes the user’s problem to resolve. The

user has to go back and compare each step of what each
vendor did with what it should have done. The user must
assemble a complete history of the entire transaction, then
return and both seek amends from the party at fault and
resolve things with everyone else.

We see an opportunity for software agents, working on the
web, to provide advanced help to consumers in diagnosing
and resolving their own problems, truly fulfilling the poten-
tial of customer self-service. An agent can retrieve infor-
mation about an online transaction and visualize its entire
history, even across multiple sites. For example, it can show
the flow of payments or items as they pass from one organi-
zation to another. As we will see, an agent can even support
the diagnosis of the source of a problem, by helping the user
in generating a hypothesis of the cause. All of this enables
users to “debug” the steps that a vendor took, that they
took or even just their own mental models of a process.

More importantly, we see this technique for annotating
objects with user judgments as being more broadly appli-
cable. This approach can help with current problems in
e-commerce transactions, but also with user actions on the
web in general. Further, these annotations could even be
applied to the interfaces of other software systems, enabling
end-users to diagnose complications in the software they use.

In the rest of this paper we will discuss a software agent,
Woodstein1 with these features. Woodstein monitors user
actions on the web and retrieves related information to as-
semble an integrated view of a transaction. We will see
its “data-history” view, in which it presents the history of
a transaction from the perspective of the transaction ob-
jects such as prices and quantities of stock. We will also see
the agent work at an even more abstract level, in captur-
ing user judgements of the correctness of objects involved
in the transaction while diagnosing problems. The set of
judgements make up a hypothesis as to the cause of the
problem, and we will see how they can be shared as well as
just saved for later reference. We will finish by sketching
out the broader possibilities suggested by user annotations
for problem diagnosis.

2. OVERVIEW OF WOODSTEIN
Woodstein is a software agent that works with a user’s

web browser to answer questions like “How did that data
get that value?” “Why did that happen?” and “What’s
happening now?”. It monitors a user’s actions on the web
to create a record of the overall process. For example, by
watching the user browse an online retailer and add items
to a shopping cart, it recognizes that the user is making a
purchase. Later, when the user loads another page involved
in process, Woodstein annotates the data items in the page
enabling them to be inspected directly. Within the user’s
credit card transactions history page, a single charge can be
examined. The history of the overall purchase process can
be retrieved and reviewed, making it convenient to see the
context of the charge and find out, for instance, what item
was purchased.

Woodstein works by matching a user’s actions to the steps
of an abstract model of the process. Through this recogni-

1Named after Bob Woodward and Carl Bernstein, the Wash-
ington Post reporters who uncovered the Watergate scandal.
When their editor, Ben Bradlee, wanted to know what they
had discovered, he’d stand at the door of his office and yell
“Woodstein!” into the newsroom to call them in[2].

tion, it knows to look for more information about the process
on other web pages and web sites, even if the user never vis-
ited them. By watching the user select a credit card and
shipper for a purchase, Woodstein knows to go to the sites
of the bank and shipper to gather more information about
the status of the purchase, including whether it has been
paid for and delivered.

Woodstein collects and presents information about a user’s
data items and processes. A data item can be simple such as
prices, addresses or dates, or it can be composite such as an
entire transaction record or order. A process is either a user
action, such as loading a page or clicking a link, or a web
site action such as the creation of a new order. Woodstein
is then able to explain the context and history of processes
and data described in pages, such as how the items appeared
in the shopping cart page. It answers questions about the
history and current status of the overall process, as well as
how data in the process was set.

Successfully diagnosing a problem requires an understand-
ing of the causal relations within a system. Woodstein pro-
vides a data-history view to show the history of how a data
item was computed and created. The user can revisit pre-
vious pages in its history within this automatically gener-
ated audit trail. For a purchase, the user can jump from
the charge amount in the credit card transactions page to
a saved copy of the order confirmation page in which the
purchase price appears.

When the user feels that a process or data item looks in-
correct, this judgment can be recorded through the object’s
context-sensitive menu. Woodstein then helps the user in
diagnosing the source of the problem, even if it is just the
user’s incorrect understanding of the process—which is why
we speak of an object “looking” incorrect. Through the pro-
cess of elimination, it makes further annotations and then
suggests other objects to examine. These annotations are
effective. They are managed and extended by the agent,
resulting in a record of the user’s hypothesis regarding the
source of the problem, as well as all of the intermediate
judgements made along the way.

We will now look at an example of Woodstein’s support.
After, we will discuss how Woodstein works in greater detail.

3. AN EXAMPLE OF HOW WOODSTEIN
SUPPORTS PROBLEM DIAGNOSIS

In this example we will see Woodstein’s support for visu-
alizing a user’s actions and managing the user’s hypotheses.
Consider an employee of Yoyodyne who is enrolled in its
stock purchase plan. Each pay period Yoyodyne sets aside
a portion of his pay and, once a year, uses this money to
purchase a block of Yoyodyne shares from its broker, SN-
AFU. He has set up his account at SN-AFU to automatically
transfer the shares to his broker, Sellwell.

The employee is browsing on the web and decides to re-
view Yoyodyne’s share purchases at SN-AFU. He notices
that the number of shares most recently purchased seems
lower than usual at 250, rather than around 400 (Figure 1).

The employee wants to interact with the shares directly
to see their history. When analyzing this page, Woodstein
added its logo overlaying the bottom right of the page. The
employee turns on Woodstein’s inspector by clicking on the
logo. Woodstein converts all of the objects it recognized in
the page to buttons (Figure 2). When the user moves the

Figure 1: Viewing a stock purchase transaction

Figure 2: Inspecting the purchased stock

mouse into a button, Woodstein darkens it and updates the
browser window’s status bar to indicate what will clicking
it will do. This explanation also shows the actual name of
the button’s process or data item.

The employee wants to know how the number of shares
purchased was set and presses down on its button, revealing
a menu. He selects “How was this set?” (Figure 3).

Woodstein opens a pop-up window showing the history
of the shares with English descriptions of the processes and
data involved (Figure 4). This window is the data-history
view and it shows how the data item “shares at SN-AFU”
was set. The top frame, in grey, answers the employee’s
question by explaining that the shares resulted from the
process “SN-AFU set shares at SN-AFU”. Each data item
is set as the result of a process. Processes, in turn, take data
items as inputs. The bottom frame shows how the process
took the number of shares purchased as its input and set
the number of shares at SN-AFU as its output.

Woodstein created this record by matching the Yoyodyne’s
original concrete steps in exercising the employee’s stock

Figure 3: Asking how the stock was purchased

Figure 4: Viewing how the stock was purchased

Figure 5: Noting that the quantity of stock pur-

chased looks wrong

purchase plan with its abstract process model for the action.
After Yoyodyne purchased the stock at SN-AFU, Woodstein
knew to look at both web sites and “follow the money”
to track the stock transaction. In this view, Woodstein
presents the information it gathered from the sites involved
in the purchase, revealing the first few steps back in the
history of the shares.

Processes and data items are both presented as buttons
in Woodstein’s inspection mode, but process buttons are
rounded while data buttons are rectangular2. All buttons
for the same data item or process are equivalent across dif-
ferent views, so interacting with an object’s button in the
page is the same as interacting with it in the data-history
view. Woodstein provides multiple views to show the differ-
ent relations among the processes and data. For instance,
a page shows the original context of objects, but the data-
history view shows how they are causally related.

Returning to the scenario, the employee thinks that the
“shares at SN-AFU” data item looks incorrect. He presses
down on its button in the data-history view and selects
“This looks Wrong” (Figure 5). The button turns red to
indicate it has been annotated as looking incorrect. Wood-
stein then marks the objects involved in setting the data
item, both the process that set it, “SN-AFU set shares at
SN-AFU”, and the input to the process, “shares purchased”,
yellow to indicate that they may be incorrect (Figure 6).

In response to the employee noting the incorrectness of the

2As is standard in data-flow diagrams.

Figure 6: Viewing how the quantity of stock pur-

chased was wrong

Figure 7: Viewing the record of the diagnosis

Figure 8: Noting that the stock purchase looks suc-

cessful

data item, Woodstein opens a pop-up window to guide him
through the rest of the process of diagnosing the problem
(Figure 7). It put the objects it marked on the list of things
for him to examine.

In addition to automatically identifying objects for the
user to examine next, Woodstein also performs the process
of elimination to help the user identify the source of the
problem. If the output of a process looks wrong, but all of
the inputs look right then something must have gone wrong
with the process. Similarly, if the output looks wrong but
the process itself and all but one if its inputs look right, then
the problem must reside with the remaining input.

The next step is to determine the correctness of the pro-
cess that set the shares, “SN-AFU set shares at SN-AFU”.
Moving the mouse over the button for the process updates
the debugging trail window which provides the employee
with some guidance. If the problem looks like it started be-
fore the process, the process should be marked as correct.
The employee notes that the input share quantity was also
250, so he marks the process as correct (Figure 8). Wood-
stein, in turn, narrows the problem to the input and updates
the data-history view with both new annotations (Figure 9).

The employee still doesn’t know why so few shares were
purchased, though, so he continues. He clicks on the triangle
next to the “shares purchased” data item to open its history,
scrolls the history into view, and clicks on the the process
that set the data item (Figure 10).

The process that resulted in shares being purchased was
“Yoyodyne set shares purchased”. Clicking on a process or
data item causes it to be selected and its button to appear

Figure 9: Viewing how the quantity of stock to pur-

chase looks wrong

Figure 10: Viewing how the number of stock to pur-

chase was computed

pressed in. The shares at SN-AFU were previously selected
because the employee asked how they were set. Now the
process for Yoyodyne setting shares purchased is selected.
When an object is selected, Woodstein opens its “saved-
page” view with page it saved for the object. The page is
either the page the user interacted with directly, or a page
the agent retrieved with the first appearance of the data
item or a description of the process. In this case, the view
features the saved copy of a retrieved page with the number
of shares Yoyodyne intended to purchase (Figure 11). It
is accessible through the “Number of Shares” label, which
corresponds to the process that set the number of shares.

As in other views, Woodstein presents the data items and
processes it is tracking as buttons within the saved page.
Just as with other Woodstein views, the user can interact
with any of these buttons to access the history of his data
and the processes they were involved in.

The employee looks in the data-history view and sees the
inputs to Yoyodyne setting the number of shares purchased.

Figure 11: Viewing the saved page for the compu-

tation of the number of stock to purchase

Figure 12: Viewing how the budget for the stock to

purchase looks wrong

Figure 13: Viewing how the IRS limit limited the

share purchase budget

Yoyodyne used the share purchase budget and the share
price in computing the number of shares. Within the saved
page, he can see some of the history for the share price.
Yoyodyne started with two prices, the price at the beginning
of the period and the price at the end of the period. Then
it took 80% of the lower of the value, which resulted in the
share price of $20. So far, that looks right, and the prices
of the shares themselves look right to the employee so he
marks them. He looks over the rest of the saved page and
notices something unusual. His total contribution this year
was $8000, which looks correct, but for some reason only
$5000 was used to purchase shares. This is unexpected. He
sees the history of the budget, and how it was computed
using his total contribution in the data-history view and
clicks open the share purchase budget data item (Figure 13).

Yoyodyne set the budget, and this process took the total
contribution and an IRS limit as inputs. It looks like limit
may be the source of the problem. The user clicks to select
the limit, opening the saved page that explains it in more
detail (Figure 14).

It looks like this is in fact the cause of the problem he
found. This obscure and newly-introduced policy limited
the amount that could be spent on his stock. With Wood-
stein, the employee was able to easily diagnose this problem
and see that it was actually a problem with his own under-
standing of the stock purchase plan policies. He was able to
see the history of how SN-AFU’s transfer process and Yoy-
odyne’s purchase process interacted with his own data to
create the result on his SN-AFU account page. By tracing
the history of the stock through the data-history view, he
avoided having to look up the history of these processes on
each individual site’s pages. Tracing back into the history
enabled him to see the exact policy that caused the unex-
pected result and, with the saved page view, he was able to
see the explanation of the policy on Yoyodyne’s site buried
deep within its help pages.

The employee is happy to have identified the source of his
problem. Now he wants to find out if there’s an alternate
program he can enroll without the restriction. He goes to the
debugging-trail view and clicks on the “Complain” button

Figure 14: Viewing the saved page for the IRS limit

to generate an email (Figure 15).
Within the email’s user-editable area, he asks for more

information. The customer support representative (CSR)
who receives this will be able to review the exact context of
the request based on the path the employee took.

We can see how helpful Woodstein has been by looking at
the steps the user would have to go through to find the same
information without Woodstein. He would have seen the
problem symptom at Yoyodyne’s broker, SN-AFU. The next
step would have been to visit Yoyodyne’s internal pages. He
would log in, find the section for his stock purchase plan
account, and load the purchase history page showing how
the stock was purchased, if it still was available at all. At
that point he would have to go back and carefully read the
help for the stock purchase plan to find the single mention of
the IRS limit. Alternately, he could call Yoyodyne’s internal
support. He would wait on hold before talking to a CSR and,
eventually, after both had traced through the process of the
share purchase, he would learn about the limit.

Woodstein’s records of a user’s exploration and diagno-
sis can be useful again later, after some time has passed.
Suppose that a few months later, the employee is brows-
ing the web and loads his transaction history for his broker,
Sellwell. He sees the automatic transfer from SN-AFU and

Figure 15: Complaining about the IRS limit

Figure 16: Viewing a stock transfer transaction

Figure 17: Viewing how stock was transferred

remembers that there was something unusual about it. He
now wants to review the problem (Figure 16). The user in-
spects the transaction, loads the data-history view and sees
that he had inspected the transferred stock when it was still
at SN-AFU (Figure 17). Since he never heard back from
Yoyodyne’s support, he decides to contact them again.

In this example, we have seen how Woodstein presents the
complete history of the purchased stock, even when it ap-
pears on multiple sites. Furthermore, we saw how it records
the user’s interaction with Woodstein’s history record itself.
The user can make use of the interaction record to, for in-
stance, familiarize someone else with the identified source a
problem. Woodstein also supports reviewing the interaction
history when other pages involved in the process are visited
later. Early testing has shown that even first-time users of
Woodstein can perform a simple diagnosis like the one we
saw in the beginning of this example. The user can access
the history of some data and trace back to a particular pol-
icy involved in computing it in about 5 minutes.

4. HOW WOODSTEIN WORKS
In this section we will see how Woodstein used abstract

process descriptions for the web site actions, along with an-
notations in the web pages, to generate the high-level inter-
face in the example above. Support for new processes and
web sites can be added to Woodstein simply by providing
more descriptions like these.

Woodstein’s process descriptions are formatted in a Lisp-

(def-process-model
<broker1>-transferred-shares-to-<broker2>

(subject "<Broker1>") ;; entity performing action
(verb transferred) ;; action performed by entity
(object "shares to <Broker2>")
(source <broker2>-account-page) ;; page to verify
(steps
<broker2>-set-shares-at-<broker2>
<broker1>-set-shares-at-<broker1>))

(def-event-model <broker2>-set-shares-at-<broker2>
(subject "<Broker2>") ;; entity performing action
(verb set) ;; action performed by entity on var
(object "shares at <broker2>") ;; var to set
(source <broker2>-account-page) ;; page to verify
(step ;; symbols used for plan recognition
(<broker2> set shares-at-<broker2>))

(meta-actions ;; any model-changing actions
ws-set--shares-at-<broker2>))

(def-meta-action ws-set--shares-at-<broker2>
(function-sym ws-set) ;; model-changing action
(arg-forms ;; arguments to model-changing action
(shares-at-<broker2> ;; var to set value of
shares-at-<broker1> ;; var to get value from
<broker1>-account-page))) ;; page to verify var

Figure 18: How the stock purchase budget was com-

puted

like syntax. At the end of the scenario, the user sees the
result of the stock transfer from SN-AFU to Sellwell (Fig-
ure 16). The descriptions for this transfer can be seen in
Figure 18 with comments following semicolons. Woodstein
models the process of a transfer from one broker to an-
other, instantiating <broker1> and <broker2> as SN-AFU
and Sellwell, respectively. A broker updating its number of
shares is a process object inspectable by the user, and this
update, or “set”, event triggers the “meta-action” of Wood-
stein’s updating its record of the user’s shares. Note also
that each process description includes a “source” page used
by Woodstein to verify that the process occured.

Woodstein tracks web site actions to confirm that they
match its process descriptions. When it expects an action
to have occured, it loads the source page for the action and
compares the data in the page, such as stock quantities, with
the values it is represents in its own model of the process. It
then visualizes the model for the user, including descriptions
of processes and data and their relationships, as well as the
saved pages it used in verifying and extending its model.

This example illustrated a process particular to an orga-
nization, Yoyodyne, and thus information in pages related
to the process must be annotated. More common processes,
such as the stock purchase and transfer, can be described
in a generic way. One area of future research is to extend
Woodstein to robustly extract information from unanno-
tated web pages for common processes like these and even
allow end-users to train it to track simple processes.

5. EVALUATION
We tested the Woodstein’s integrated view and complaint

generator with 16 subjects (see [17] for more details). We hy-
pothesized that subjects who used one of Woodstein’s views
would be more successful in diagnosis and diagnose problems
more rapidly. The eight subjects in the control group diag-

nosed problems spread across multiple pages of multiple web
sites, then simply complained about the relevant data item
or process. The eight subjects in the experimental group
used one of Woodstein’s views, its “process-history” view to
see a history of the overall process in identifying the data
item or process to complain about. This view is organized
to show the history of a process featuring the data, rather
than the history of data featuring processes, but is otherwise
very similar to the data-history view we saw.

Participants were told how the use the system and saw it
demonstrated. This took 5 minutes for control group and
20 minutes for the experimental group. They then had 10
minutes to take a “quiz” in which they used the agent to
select a particular data item and complain about it. For the
experimental group, this required accessing a saved page
through one of Woostein’s history views. Participants then
had 20 minutes to solve a “test” problem involving a sim-
ulated user’s data and an organization’s policies. In this
problem, each participant played the role of a student who
is unable to graduate from his educational institution and
attempts to identify the exact reason and policy involved.
The experimental group could use Woodstein’s view, while
the control group used only pages on the web site.

All participants in the experimental group of the user
study were successful in diagnosing the test problem, taking
an average of 5 minutes. Only two participants in the control
group were successful, requiring an average of 16 minutes.
In addition, at the end of the experiment session, we asked
participants in the experimental group to rate different as-
pects of their experiences with the agent and whether they’d
use it for problems they might encounter. Interestingly, half
would have used the agent to diagnose a problem if they
knew it were to take longer than 5 minutes on the phone.
Of the remaining four, three would use the agent if they
knew a phone resolution would take 15 minutes.

Reflecting the difficulty of managing information about
credit card purchases, half of the participants in the ex-
perimental group said they “strongly agree”3 that they’d
like to have an agent like this one to help in visualizing
and managing their credit card transactions. Two said they
“agree” they’d like to have it, and the remaining two par-
ticipants discussed their concerns later in a free-from sec-
tion. One noted the potential for privacy problems and the
other preferred a more interactive process for complaining.
Though a CSR is interactive, no CSR is able to provide all
perspectives of a transaction involving multiple vendors, as
Woodstein can. An area for future work is to extend end-
user Woodstein to communicate with a “support” version of
Woodstein, perhaps with more detailed models of an orga-
nization’s processes.

In fact, one of the original motivations for Woodstein is
the state of current support involving limited, text-based
media including phone conversations and email. Even a per-
fect interaction with customer service by phone still lacks the
benefits of a web interface. In order to resolve a problem, a
customer must be sure to call during the hours support is of-
fered, and have a block of uninterrupted time. The web, on
the other hand, is always available and if some information
is not immediately at hand, a decision or investigation can

3Participants expressed their level of agreement with a
7-point Likert scale: 1=strongly disagree, 2=disagree,
3=somewhat disagree, 4=neutral, 5=somewhat agree,
6=agree, 7=strongly disagree

be postponed. Furthermore, it is often easier to understand
complex information when it is presented graphically[10].
All of the advantages of a slick web site’s presentation are
lost when the customer has to hear his options or receive
instructions over the phone. In fact, all of the advantages
of a digital format are lost. When both the user and a CSR
use an agent like Woodstein, each could highlight and talk
about data items and processes, and even hypothetical pos-
sibiliites and future events.

6. MANAGING HYPOTHESES WHEN DI-
AGNOSING PROBLEMS IN SYSTEMS

We see the possibility of user annotation as more broadly
applicable beyond just e-commerce on the web. Computer
users interact with systems everyday and often run into
problems. When a problem is repeatable or particularly
troublesome, a user may send a bug report in an informal
way. Systems like Bugzilla[11] have been developed for auto-
matically managing users’ bug reports. Additionally, some
applications, like Mozilla[12], “close the loop” and automati-
cally send a bug report when erroneous behavior is detected,
such as when the program crashes. These applications of-
ten allow users to provide some free-form information about
what they were doing when the problem occured, but they
don’t support user diagnosis in general. Unlike a developer,
however, a user is in the perfect position to diagnose hard-
to-find bugs involving complex configurations. Further, we
suspect that many users would prefer to take a few mo-
ments to diagnose a configuration problem with their oper-
ating system then have to reinstall the entire system and
all of their applications. In fact, often users have to do ex-
actly that and reassemble the history of what they installed
to identify a conflict. Of course, perfectly developed soft-
ware with no bugs would be ideal, but other factors govern
the adoption of new software. Regardless, a higher-level in-
terface for managing hypotheses during diagnosis would be
helpful.

7. RELATED WORK
No other general system explicitly supports end users in

visualizing and diagnosing problems with their e-commerce
transactions or other actions on the web. An earlier work [9]
explains the problem domain in more detail, discusses the
broader issue of end-user debugging and describes research
in software debugging that has influenced this work.

7.1 Debugging
ZStep[8] is a debugger designed to support the cognitive

processes in debugging software, especially visualization and
localization. ZStep is reversible—it records every step of the
execution of a program and allows the programmer to replay
it backward as well as forward.

Woodstein builds on these features and extends them to
the domain of web processes. Like ZStep, Woodstein records
a complete history of a process and allows the user to jump
back to any point of that history or replay it forward or
backward. While ZStep tracks the graphical output of the
program, Woodstein tracks the pages generated by the pro-
cess. The user can go from a data item in a page to the
point in the process in which it was set, and vice versa.

Some researchers have focused on how to better support
end-users and novice programmers in debugging. In the area

of “end-user software engineering”, the Forms/3 project in
particular supports end-users in debugging spreadsheets[15].

7.2 Program Slices
Woodstein performs program slicing to generate its au-

dit trails. Audit trails are used in business to track the
history of a record and show all of the processing it has un-
dergone. Similarly, program slicing is a software engineering
technique for focusing only on the steps of a program that
affect the value of a particular variable[18]. It is helpful for
debugging, when a programmer knows a variable has the
wrong value and wants to know how it was computed.

Program slice tools typically highlight the lines of code,
modules or files in a slice[1]. This is useful for programmers,
for whom the source code is the primary representation of
the program. Within the domain of web actions, however,
we don’t expect the abstract models to be particularly mean-
ingful to end-users. Rather than presenting the abstract de-
scription of the process, Woodstein generates explanations
of the process’ actual concrete execution.

Some tools present slices via control-flow graphs or pro-
gram dependency graphs[6]. Woodstein presents the pro-
gram dependencies in the data-history view, and the pro-
gram execution tree in the process-history view.

7.3 Capturing User Annotations
Little research has focused on capturing user annotations.

Most systems, such as Margin Notes[13] record free-form an-
notations with no representation of their meaning. Wood-
stein features effective annotations with meaning, enabling
it to manage the annotations and even create new ones.

Trellis is a system that supports user annotation of ob-
jects in an application’s interface[5]. Annotations in Trellis
are typically used to indicate the original context of some
information, allowing users to refer back to this context.

Third Voice is a system for managing user annotations of
web pages, allowing users to see pages on the web overlayed
with the comments of other users[16].

7.4 Agent-based User Interface
The closest work to Woodstein’s interface in style and

spirit is Collagen[14]. Collagen works to guide users through
tasks, such as making flight reservations or setting up a
timed recording on a VCR. It tracks the steps of the user’s
activity, and matches them through plan recognition to dis-
course models. Unlike Woodstein, Collagen’s typically rep-
resents the agent as a character in the interface.

Collagen guides the user through the normal operation of
a system. Woodstein, on the other hand, helps the user un-
derstand what has happened when something goes wrong.
Collagen supports the user’s task in the present and future
while Woodstein explains the past history of the user’s ac-
tions.

8. CONCLUSION
We have presented Woodstein, a web interface agent for

enabling end-users to visualize and understand their actions
on the web. Further, Woodstein helps users manage their
judgements of the correctness of their data and processes
and diagnose the sources of problems they run into. We saw
an example of how this record of a user’s judgements can be
useful both to share with others, including customer service,
as well as for future reference.

9. ACKNOWLEDGEMENTS
Thanks to Marc Millier for his help in developing the ex-

ample scenario, Chris Laux for help in refining Woodstein’s
interface and Mary Jane for inspiration.

10. REFERENCES
[1] Thomas Ball and Stephen G. Eick. Visualizing

program slices. In IEEE/CS Symposium on Visual
Languages, pages 288–295, 1994.

[2] Carl Bernstein and Bob Woodward. All the
President’s Men. Simon and Schuster, 1974.

[3] David Daniels, Corina Matiesanu, and David
Schatsky. Jupiter Consumer Survey Report: The State
of Customer Service 2003. Jupiter Research, 2003.

[4] David Daniels and David Schatsky. Quantifying the
Cost of Poor Service: Investing in Customer Service
to Defend Revenues. Jupiter Research, April 2002.

[5] Yolanda Gil and Varun Ratnakar. Trellis: An
interactive tool for capturing information analysis and
decision making. In Lecture Notes in Computer
Science 2473. Springer-Verlag, 2002.

[6] Tommy Hoffner, Mariam Kamkar, and Peter Fritzson.
Evaluation of program slicing tools. In Automated and
Algorithmic Debugging, pages 51–69, 1995.

[7] Esteban Kolsky. The Six Steps for Web Self-Service in
Customer Service. Gartner, Inc., March 2002.

[8] Henry Lieberman and Christopher Fry. Zstep 95: A
reversible, animated source code stepper. In John
Stasko, John Domingue, Mark Brown, and Blaine
Price, editors, Software Visualization: Programming
as a Multimedia Experience. MIT Press, Cambridge,
MA, 1997.

[9] Henry Lieberman and Earl J. Wagner. End-user
debugging for e-commerce. In Proceedings of IUI’03,
2003.

[10] Richard Mayer. Multimedia Learning. Cambridge
University Press, 2001.

[11] The Mozilla Organization. Bugzilla: The mozilla bug
database. bugzilla.mozilla.org

[12] The Mozilla Organization. Mozilla. www.mozilla.org

[13] Bradley J. Rhodes. Margin notes: building a
contextually aware associative memory. In Proceedings
of the 5th international conference on Intelligent user
interfaces, pages 219–224. ACM Press, 2000.

[14] Charles Rich, Candice Sidner, , and Neal Lesh.
Collagen: Applying collaborative discourse theory to
human-computer interaction. AI Magazine,
22(4):15–25, 2001.

[15] J. Ruthruff, E. Creswick, M. Burnett, C. Cook,
S. Prabhakararao, M. Fisher II, and M. Main.
End-user software visualizations for fault localization.
In ACM Symposium on Software Visualization, 2003.

[16] Third Voice. www.thirdvoice.com

[17] Earl J. Wagner. Woodstein: A web interface agent for
debugging e-commerce. Master’s thesis, MIT Media
Laboratory, 2003.

[18] Mark Weiser. Program slicing. In Proceedings of the
Fifth International Conference on Software
Engineering, pages 439–449, New York, 1981. IEEE.

