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Abstract

Relationship discovery between two entities is a problem that has to be addressed
when constructing a Knowledge Base (KB). A solution to this problem is important
because the KB built from the discovered relations can play a key role in down-
stream tasks, such as analogical reasoning. An example of this kind of reasoning
is whether a dog desires cake: a dog is an animal, cake is food, animals desire
food therefore a dog desires cake. We constructed a system that that is trained on a
commonsense KB and whose inputs are pairs of concepts and its outputs are the
strength of commonsense assertions between the concepts. Our approach is unique
because it can handle out of vocabulary entities and can generalize commonsense
to out of knowledge concepts. We utilize the system to be able to infer the answer
for out of knowledge assertions such as the aforementioned whether a dog desires
cake.

1 Introduction

If we were to ask whether a dog eats cake or not, how would we be able to get an answer? Using
human intuition we could try and find the answer using analogical reasoning. Analogical reasoning
can be seen as a way of reframing a problem to a more familiar context where we can reach an answer
or a solution and apply it back to the original framing(1). Taking the example of the dog, we could
say that a dog is an animal and that a cake is food. In this more abstract frame, we can easily reach
the conclusion that animals desire food. Now that we have that conclusion, we bring the information
back to our original dog and cake frame and can say to a certain degree a dog must desire cake. To be
able to perform this kind of reasoning, you need to have a way to know the relationships between
entities that you are trying to reason about and the relationships of the neighbors of these entities.

Therefore we set out to create a system that can discover relationships between pairs of entities. If
we can discover relationships between concepts then we could find similar concepts and could use
them later on in an analogical reasoning system. Our system is a Multi-Task Learning system trained
on the assertions found in ConceptNet(2), a commonsense knowledge. The inputs to our system
are pairs of concepts in the form of retrofitted word embeddings and the outputs are the strength of
the different relations between the input concepts. To form the inputs, we first learn a FastText(3)
word vector representation of the entities. This representation is through an off the shelf pre-trained
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Figure 1: Complete System Architecture. The dashed lines represent procedures that are only
necessary when the system is being trained.

model. We utilize FastText for its ability to incorporate sub-word information with the purpose of
being able to generalize to out of vocabulary embeddings. Once we have this, we then proceed to
retrofit the embeddings with the information in a KB. We retrofit the embeddings with the idea that
they will incorporate some of the knowledge in the KB such that when they are used in a downstream
analogical reasoning task then they will perform better. Now, we incorporate one of the innovative
parts of our work which is a system that implicitly expands the knowledge in the vectors by learning
retrofitting mappings. We do this because the retrofitting process only modifies embeddings for
entities that are in the knowledge base.

To accomplish this, one of our contributions is a system that we developed called RetroGAN.
RetroGAN is a CycleGAN(4) based system that learns the mapping from word embeddings to
retrofitted word embeddings. By learning this mapping, the system is learning to generalize the
information in the knowledge graph by fusing it with the information present in the word embeddings.
The interesting part about this is that as long as you can generate the word embedding, you will be able
to generate its expanded retrofitted counterpart, and since we are using FastText(3), the generation of
new out of vocabulary entries is robust thanks to the sub-word information learned in the training
of FastText. Additionally, since we have learned the mapping to the retrofitted counterpart, we are
no longer limited to in-knowledge entities. An example of this is if our KB did not have the entity
doggo. Doggo is internet slang for dog. With RetroGAN we can generate a retrofitted embedding for
doggo that should have similar information to that of the dog embedding.

After we have this retrofitting mapping through RetroGAN we run into the problem that we need to
be able to extract the learned knowledge from the embeddings. This is useful, because with it we can
make downstream reasoning systems and we can build knowledge bases. This is where we introduce
our other contribution, a system called Deep Relationship Discovery (DRD) whose inputs are pairs of
learned-retrofitted word vectors, and its outputs are the strength of commonsense assertions between
the two input concepts. Intuitively, DRD learns that semantically similar entities should have similar
assertions.

Putting it all together, with the combination of the RetroGAN and the Deep Relationship Discovery, if
we generate a pair of word embeddings (on possibly new entities) and pass it through the RetroGAN
system, we can get a an expanded commonsense-retrofitted representation of these pairs. We can
then deconstruct the implicit commonsense relationship information by passing the pair through the
Deep Relationship Discovery system. The result is how those two concepts relate within the context
of common sense. In the case that we were exploring some new topic document, if we extract the
entities in that document and we iterate over all of the pairs of entities in a new topic, then our end
result is a set of assertions that show how the entities in the new topic relate from the perspective of
commonsense.

In the following sections we go into details of the RetroGAN system and of the Deep Relationship
Discovery system. Later on we give some background information on relevant topics and talk about
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some related works. We conclude by talking about future work and directions that we intend to
explore.

2 RetroGAN

2.1 System Overview

The original retrofitting operation presented previously, can only be performed on entities that exist in
the knowledge graph. Intuitively this means that we can only give information about things we know
about. However, we build upon the approach presented in (5) by extending it to have a CycleGAN
architecture rather than a regular GAN architecture. We chose the CycleGAN architecture because it
should constrain the domain of the generated embeddings more than a regular GAN because it makes
sure that the generated embeddings can be transferred back to their original form. The use of this
adversarial technique permits us to learn a mapping to be able to retrofit any input word embedding.
Intuitively, the adversarial technique expands the KB that is used to retrofit because it tries to make
similar words have similar retrofitted counterparts, even if these are not in the KB.

2.2 System Architecture

The RetroGAN system that was constructed is based on a CycleGAN architecture. On a high level,
the way that CycleGANs work is that a point from a distribution X is sampled and passed to a
generator network, whose output should be a point in a distribution Y. This output is checked for
accuracy with a discriminator.

The cycle part comes in where the reverse process is also done: the generated sample that belongs to
the distribution Y is passed through another generator network that tries to convert it to the original
distribution X point. This last output is also passed to a discriminator to check that it belongs to the
original distribution. As the system is trained, losses are added up as the cycle is being performed.
The end result, at least in the visual domain, is a more accurate transformation than a regular GAN
system as the generation process is brought full circle and constrained from both directions.

Figure 2: General CycleGAN architecture taken from (4)

Adding to this architecture, we add an attention mechanism in both of the discriminators and
generators with the idea of making the system focus on key parts of the input and output vectors. This
also stabilizes the training of the system(6). Additionally, in our generator we add a couple of 1D
convolutional layers with the intention that these layers smoothen and filter out unimportant aspects
of the input word vectors.

Our attention mechanism consists of a densely connected layer with a softmax output, that is
multiplied by the input layer along with a scaling constant, that is then added to the output of the
prior layer. What this does is that the important parts of the input layer are highlighted through the
multiplication of the softmax layer and scaled appropriately with the constant layer which is then
added to the output of the layer before the attention mechanism. The net result is that the network
should give more emphasis on the relevant parts of the layer that is placed before the attention
mechanism.

For each of our GAN systems the network architectures are as follows. The generators consist of a
densely connected layer, followed by two 1D convolutional layers, followed by a max pooling layer,
followed by a flattened layer, an attention mechanism, a densely connected layer and finally a densely
connected layer that serves as the output. The discriminators are 5 densely connected layers that
progressively get smaller in size with an attention mechanism in the middle. Each of our densely
connected layers is followed by a batch normalization layer with the intention of stabilizing and
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Figure 3: Our attention mechanism with a Batch normalization layer as an input

aiding in convergence of the training. Each of our layers has the ReLu(7) as an activation function
except the outputs of the generator and the discriminator.

2.3 Training and Testing

To train our system, we selected the FastText word embeddings trained on the OpenSubtitles dataset(8)
to serve as the input to our system and performed the retrofitting procedure utilizing ConceptNet as
a KB. We selected FastText with the intention that the use of sub-word information could be used
to generate out of vocabulary entities. We then proceeded to filter out by cosine distance the word
embeddings that changed the most after the retrofitting procedure to use as a training set. We utilized
a hardcoded threshold for this. We ran through the retrofitted procedure, and set the hardcoded
threshold to the average cosine distance between the original FastText embeddings and the retrofitted
embedding. The vectors that changed and had a cosine distance less than the threshold signified that
they had deviated considerably from their original embeddings. We utilized these as the training
set, because it meant that these embeddings were the ones that had the most connections in the
knowledge graph. The ones that changed but were above the threshold meant that they had not
deviated considerably and were possibly not in the knowledge graph or had very little information in
the knowledge graph. We set these as the testing set. We set the number of epochs to 50, and a batch
size of 32 per epoch.

Although the RetroGAN system is not the focus of this work, we tested it on the SimLex-999 (9)
dataset and on the SimVerb-3500(10) dataset. Our results can be seen in table 1, along with those
presented in (5).

Table 1: Spearman’s correlation scores for three standard English distributional vectors spaces on
English SimLex-999(SL) and SimVerb-3500 (SV). POST-DFFN uses a deep non-linear feed-forward
network to learn the retrofitting mapping (11). AUXGAN is the work presented in (5), and RetroGAN
is our work

Name SL SV

POST-DFFN 0.503 0.340
AUXGAN 0.513 0.394
RetroGAN 0.451 0.332

As we can see, our RetroGAN system is slightly inferior to the AUXGAN system presented in (5).
We believe this is because of parameter tuning that is done on the AUXGAN system. It is also
possible that the FastText embeddings used in the AUXGAN system are different than the ones that
were utilized in our system. Another possible explanation is that the retrofitting in the AUXGAN
system is the state of the art ATTRACT-REPEL(12), whereas our retrofitting is based on the original
one proposed in (13).
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3 Deep Relationship Discovery System

3.1 System Overview

Given that we can generate word embeddings that have imbued, generalized/expanded commonsense
information in them, we now need a way to utilize that knowledge. The way we tackle this is
by performing the opposite operation: we extract the assertions that are implicit in the pairs of
retrofitted word vectors. Our approach to this problem is to build a Multi-Task Learning (MTL)
system whose inputs are a pair of retrofitted word embeddings, and whose outputs are the strength
of the relationships present in an existing knowledge base. In our specific case, it would be that
the inputs to our system are going to be pairs of the vectors that are generated from the RetroGAN
system, and the outputs are going to the strength of the set of relationships found in ConceptNet.
In particular, the system will have a subset of the ConceptNet relationships which can be found in
appendix A. We chose this subset because in training the MTL system, we do not want to bias the
common body by training one task more than others and the subset we chose has a similar amount of
assertions for each one of the relationships. Intuitively our system should learn to associate assertions
to similar input concepts . Putting this in terms of the analogical reasoning, the system will be able to
infer that if an animal desires food, then things similar to animals will desire things similar to food. It
would also expand the knowledge in a KB.

3.2 System Architecture

Our Deep Relationship Discovery system can be broadly viewed in three sections: an input section,
the body section, and the output section.

Figure 4: DRD System Architecture

The input section consists of a densely connected layer, followed by an attention mechanism, followed
by another densely connected layer. The purpose of this block is to first abstract the input word
vectors, then pick out the essential parts of the abstracted input, and further abstract the result of these
important parts. This is done for both of the input vectors individually. The output of these blocks is
then concatenated and passed to the body section.

The body section is the area that is common to all of the "tasks" that we want to predict. In our case
these tasks are assertions whose weights are the strength of the relationships. The common body
consists of a densely connected layer followed by an attention mechanism, followed by two more
densely connected layers. The intuition behind these layers is that the pertinent information in both of
the inputs is fused and then the important aspects of that fused information is highlighted. Intuitively
in this area, as the system is trained, we learn the information about the knowledge base, how it is
arranged and how things relate to produce certain assertions.

The output section contains a task "tail" for each of the relationships that we want to predict. We
have 24 relationships that we want our system to learn. Each tail section is composed of a densely
connected network followed by an attention mechanism followed by another densely connected layer,
and ending with a densely connected layer for an output. The intuition for this section is that each tail
takes the common body as an input and extracts the information that it needs to be able to determine
the strength of the assertion that the tail represents.
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3.3 Training and Preliminary Testing

The way that the Deep Relationship Discovery (DRD) system is trained is the following. We take
all of the data from the assertions in ConceptNet, and proceed to filter out the data that does not
contain our selected set of relationships. Then from this dataset, we proceed to sample batches of
32 assertions for each of the relationships. We then feed forward a pair of vectors from the sampled
assertions, and backpropagate the difference between what our system predicts and what the actual
assertion strength is. In doing this we switch between the tasks and as we train the individual tasks,
we are training the common body. We run 100 epochs to train this system.

To do some preliminary evaluation of the system, we developed a graphical user interface (GUI) based
on vis.js (14) with the intention of visualizing existing assertions and being able to test inference
of assertions that do not exist. It is a more modern version of (15) which utilized a dimensionality
reduction technique to be able to make inference on assertions.

Figure 5: DRD Visualization tool. The blue ellipses are the concepts that we are visualizing, and the
arrows are the the relationships between them. The solid arrows are existing relationships and the
dotted arrows are inferred relationships.

The GUI lets a user supply a prompt concept, and it loads a certain amount of the nearest neighbors
of that prompt concept. The GUI then proceeds to load relationships that already exist in ConceptNet
and renders connections for the assertions. The GUI also lets a user input a source and destination
concept and select a type of relationship to make an inference on the strength of the assertion using a
backend DRD. In a simplistic example, in the GUI we can load the concept dog, the concept cake,
and the concept death, and test the inference of whether a dog desires cake or if a dog desires death.
This is shown in figure 5. The strength of the dog and cake assertion is shown to be 1.78 which is
very different from if we tested whether a dog desires death which gives a strength of 0.63.

4 Background and Related Work

4.1 Knowledge Graphs and Knowledge Bases

A knowledge base is a set of facts, assumptions, and rules which a computer system has available to
solve a problem(16). A knowledge graph is a graph structured knowledge base. In this graph, the
nodes are concepts that are present in the knowledge base, the edges are the relationships between
the concepts, and the weights of the edges are the strength of these relationships. An example of a
small knowledge base can be seen in Figure 6.
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Figure 6: Simple Knowledge Graph

The way to interpret this is that a cat is an animal, a dog is an animal, and dogs and cats are related.
These statements are called assertions. This graph can be interpreted as a set of assertions which take
the form of tuples such as: (source concept, destination concept, relationship, strength).

4.2 A Commonsense Knowledge Base: ConceptNet

ConceptNet is a knowledge graph that connects words and phrases of natural language with labeled
edges. Its knowledge is collected from many sources that include expert created resources, crowd-
sourcing, and games with a purpose. (2) The idea behind ConceptNet is that systems can leverage it
to understand the meaning(s) of the words that people utilize. We utilize ConceptNet in our work as
the KB for concepts and assertions, because it gives a very general understanding of how the world
works. Crossbridge(17) has also utilized ConceptNet to be able to make analogies with the intention
of being able to perform reasoning with the analogies. However this work utilizes dimensionality
reduction techniques which make it hard to evaluate out of knowledge entities.

4.3 Multi-Task Learning

Multitask learning (MTL) is the procedure of learning several tasks at the same time with the aim of
mutual benefit.(18) The core idea is that the information is propagated through the common layers
and then tailored to a specific output pipeline. In essence the common layers act as information that
is shared throughout the tasks. MTL has been used with the purpose of constructing a KB. In the
system MultiE(19), the authors propose using a MTL approach in which the inputs to the system are
a set of queries (entity, relationship, ?) and the output of the system are the likelihood that an entity is
the missing item in the tuple. We explore the use of MTL with a different configuration to try and
leverage its common knowledge for the prediction of assertions to constructing a KB.

4.4 Word Vectors and Retrofitting

Neural word representations or more commonly known as “word embeddings” are a vectorial
representation of words. This vectorial representation is extracted from layer of a neural network
architecture. Word embeddings contain mostly lexical information about the corpus that they are
trained on. Word embeddings also contain a small amount of semantic information. The amount and
quality of semantic information in them varies greatly depending on the corpus of data used to train
them, and whether there are prevalent biases in that corpus or not.

To remedy this, a procedure called retrofitting(13) was developed to help imbue word vectors with
some of the semantic information of its neighbors in a knowledge graph. Retrofitting is a process in
which word vectors whose entities are present in a knowledge graph, can be iterated over with the
purpose of modifying them in order to make them more similar to the entities that they are connected
to in a knowledge graph.

The procedure tries to strike a balance between an original word embedding and the word embeddings
that are its neighbors in a knowledge graph. It is important to note that only word embeddings that
are present in the knowledge graph will be modified by this equation. An improved version of this
algorithm called expanded retrofitting(2), uses dimensionality reduction of multiple corpuses of
retrofitted words to produce embeddings, along with the average of the embeddings around it to try
and generalize and address the issue of out of vocabulary/out of knowledge graph words.
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More recent work has been done in utilizing adversarial approaches to learn a mapping to be able to
generalize retrofitting(5). We extend this work to use a CycleGAN(4) architecture to try and learn a
more robust mapping.

5 Future Work

There are many areas that this work can be improved and continued. We intend to test our RetroGAN
system by training it with Attract-Repel retrofitting strategies and evaluate it with downstream tasks
such as lexical text simplification similar to what is done for AuxGAN (5) to understand better the
effect of the CycleGAN architecture in learning the mapping. We intend to test our Deep Relationship
Discovery system through human evaluation of previously unseen assertions. Additionally, we want
to explore the optimization of the network configuration and to explore different ways to train the
system by augmenting the data with some noise possibly to improve the generalization performance.

Looking at other areas, we want to leverage domain specific knowledge with general commonsense
knowledge. To this end we are working on developing a transfer learning mechanism so that our
system can adapt the commonsense understanding to some topic dependent knowledge. The reason
for this is to leverage the connections and assertions that appear on a domain specific matter and
combine it with the much broader commonsense information. If we were able to achieve this, we
could build systems that can produce KBs that can be used for task-specific reasoning.

6 Conclusion

This work presents an expansion on work done to generalize retrofitting mappings though the use of a
CycleGAN system called RetroGAN. Additionally, we develop a novel way to discover commonsense-
based assertions between entities, by training a MTL system on a subset of the assertions present
in ConceptNet. We explored the combination of the RetroGAN system with the Deep Relationship
Discovery one to be able to infer assertions from concepts that may or may not be in the vocabulary,
and that may or may not be in the knowledge base. We utilize this system to be able to infer that a
dog does indeed desire cake!
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A Subset of relationships

The subset of the relationships that we train in the Deep Relationship Discovery system are the
following:

["/r/PartOf", "/r/IsA", "/r/HasA", "/r/UsedFor", "/r/CapableOf", "/r/Desires", "/r/AtLocation"
, "/r/HasSubevent", "/r/HasFirstSubevent", "/r/HasLastSubevent", "/r/HasPrerequisite",
"/r/HasProperty", "/r/MotivatedByGoal", "/r/ObstructedBy", "/r/CreatedBy", "/r/Synonym",
"/r/Causes", "/r/Antonym", "/r/DistinctFrom", "/r/DerivedFrom", "/r/SymbolOf", "/r/DefinedAs",
"/r/SimilarTo", "/r/Entails"]
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