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Probabilistic programming, like much of machine learning, has a 
dirty little secret: probabilistic programs are difficult to debug. 
Improvements in debugging technology hold the most promise for 
improving the practicality of machine learning. We need to 
democratize the technology by making it more accessible to 
beginners.  

Probabilistic programming is an elegant formulation of machine 
learning tasks and methods. It enables bringing concepts from 
conventional programming into the machine learning workflow.  
But it also brings unique challenges, such as thinking about values 
that vary over time.   

It isn't the fault of the Probabilistic Programming movement itself. 
Interactive development environments for probabilistic 
programming are usually based on the underlying implementation 
language, which share similar kinds of problems. Shockingly, most 
of today's IDEs simply offer the same set of debugging tools that 
appeared in the earliest programming languages: breakpoints, stack 
and data inspection, function trace, variable monitoring, and (if 
you're very, very lucky), a reasonably accurate single stepper.  

Debugging of probabilistic programs is still in its infancy. Here, we 
present some lessons from research in debugging of general-
purpose programs, that we think hold promise for future 
probabilistic programming environments.  

First, the idea of a reversible stepper. Single-steppers are common 
in programming environments, but most have fatal flaws that 
prevent them from becoming practical tools.  Dynamic control over 
the level of detail presented is a crucial facility.   

More specific to probabilistic programming, is the fact that the 
concept of a scalar "value", which appears in most programming 
languages, isn't stable. It may take on different numerical constant 
values over time. We propose to replace that notion with the idea 
of a  probabilistic value (or probval), and propose a visualization 
technique to represent it in the programming environment. 

Instrumentation and Localization 
There are two kinds of cognitive tasks in debugging: 
instrumentation and localization. Instrumentation is the process of 

finding out what the behavior of a given static description is. 
Examples are trace, breakpoints, and print statements.  

Localization is the process of isolating which static description is 
"responsible" for some given undesirable behavior without prior 
knowledge of where it might be. Among traditional programming 
tools, a stepper is potentially the most effective localization tool, 
since it interactively imitates the action of the interpreter, and the 
program can, in theory, be stepped until the error is found. 

We’ve got you coming and going 
Programming is the art of constructing a static description 
(program) that results in some dynamic behavior. Debugging is 
understand the correspondence between code and behavior, in both 
directions. It is the process of breaking down this correspondence 
into smaller parts when the larger correspondence does not meet 
expectations.  

Traditional steppers have a fatal interface flaw: they have poor 
control over the level of detail shown. They offer the user a choice 
of whether or not to see internal details, before each evaluation of 
the current expression.  If the user says yes, they risk wading 
through much irrelevant information. If they attempt to speed up 
the process by skipping over (presumably working) subparts, they 
risk missing the precise location of the bug. This leaves the user in 
the same dilemma as the instrumentation tools -- they must have a 
reasonable hypothesis about where the bug might be before they 
can effectively use the debugging tools! 

The solution is to provide a reversible control structure. It keeps a 
complete, incrementally generated history of the entire workflow. 
The user can confidently choose to temporarily ignore the details 
of a particular expression, secure in the knowledge that if the 
expression later proves to be relevant, the stepper can be backed up. 

The downside is that histories cost time and space. But our slogan 
is: there's nothing slower than a program that doesn't work yet! It’s 
also important to keep the history of the developer's investigation 
of the program. Because machine learning programs may be tried 
again and again with varying datasets, subsets of a common dataset, 
and varying parameters, much can be learned from selectively 
returning to previous states in the investigation. This even opens up 
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the possibility that a machine learning algorithm can use the 
histories of investigation themselves as data, learning from the 
developer's actions!  

A crucial problem in designing an interface for program debugging 
is maintaining the visual context. If the item and its visual context 
are spatially or temporally separated, a new cognitive task is 
created for the user -- matching up the item with its context.  

 

The ZStep reversible stepper 

Some of these ideas explained were first implemented in our ZStep 
reversible stepper for Lisp. Code display, data display, and 
graphical output display representations were kept in sync at all 
times [Lieberman and Fry 97].  

Probabilistic Values 
One of the key problems is that deterministic programming 
languages operate on single values, whereas probabilistic 
programming languages operate stochastically on sets. 
Conventional practice is to generate multiple values for 
observation. Look over the shoulder of a practitioner, and you are 
often likely to see lines and lines of similar looking printouts fly by 
at warp speed. More careful work generates graphs of these values, 
with conventional line, scatter plots, and histograms.  

We introduce the idea of a probabilistic value (probval), which can 
take on different values at different times. This is like the idea of 
stochastic variable or random variable in other systems, but we 
want to push these visualization and dependency tracking facilities 
into the values themselves, and better integrate them into the 
programming environment.  

Languages like WebPPL have a set of visualizations which are 
applicable to conventional datatypes like vectors, but these 
visualization procedures must be explicitly invoked. The book, 
Probabilistic Models of Cognition [Goodman and Tenenbaum 16] 
presents an online tutorial that includes a routine that displays 
probabilistic values, e.g. as histograms. But visualization should be 
automatically invoked, in a READ-EVAL-INSPECT loop, 
replacing the traditional READ-EVAL-PRINT loop. It can 
automatically invoke visualizations for observing that value from 
different points of view, including conventional histograms and 
graphs. It should have interactive operations for tracing 
dependencies forward and backward through the workflow, 
available in one click from any context where that value appears. 

We need operations that allow you to replace one underlying set 
with another. We need to be able to create various subsets of the 
set, filtered by various predicates. We need to go forward and 
backward in the stream, and look at the stream at various levels of 
detail. It should be possible to easily substitute one sampling 
procedure for another in the context of any probabilistic value.  
User interaction with sampling procedure selection and control is 
also useful in other contexts, such as sampling in a hypothesis 
space.  

 

Tutorial with explicit histogram visualization 

One visualization that we think is promising is the use of Rapid 
Serial Visual Presentation, or RSVP [Potter 14]. This allows visual 
observation of rapid streams of data in a very small and bounded 
screen space. RSVP, invented by Molly Potter at MIT, was 
developed to read streams of text in a small space at very fast 
speeds. Skilled readers of RSVP can read text at faster rates than 
conventional left-to-right reading of static text, because it does not 
require the saccadic movement of the eye.  Even if the stream goes 
by so rapidly that you can't fully pay attention to every item, visual 
memory allows you to get an overall impression quickly, exactly 
the goal of sampling. 

 

An RSVP reader. Eye focus is on the central red letter. 

Practical use of an RSVP interface requires dynamic control over 
the speed of presentation. RSVP can be adjusted to an appropriate 
speed for an individual reader or individual context. An adaptation 
effect makes it easier to tolerate higher speeds as you "get used to 
it", even over a single session. Reversibility, and forward and 
backward skip operations, are useful to allow for momentary lapses 
of attention.  There is even the potential to automatically adapt 
speed in accordance with input from an eye tracker. 

Seymour Papert, a pioneer in computers and education, used to say, 
“bugs are your friends”. Far from being something shameful, bugs 
can be an impetus for learning more about your program. And for 
learning more about yourself. Debugging shouldn’t be painful. It 
should help you get to know your friends better.   
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