
Debugging Probabilistic Programs:
Lessons from Debugging Research

Henry Lieberman
 CSAIL

 MIT
 Cambridge, MA 02139
 lieber@media.mit.edu

Yen-Ling Kuo
 CSAIL

 MIT
 Cambridge, MA 02139

 ylkuo@mit.edu

Valeria Staneva
 CSAIL

 MIT
 Cambridge, MA 02139

valeria.staneva@gmail.com

Probabilistic programming, like much of machine learning, has a
dirty little secret: probabilistic programs are difficult to debug.
Improvements in debugging technology hold the most promise for
improving the practicality of machine learning. We need to
democratize the technology by making it more accessible to
beginners.

Probabilistic programming is an elegant formulation of machine
learning tasks and methods. It enables bringing concepts from
conventional programming into the machine learning workflow.
But it also brings unique challenges, such as thinking about values
that vary over time.

It isn't the fault of the Probabilistic Programming movement itself.
Interactive development environments for probabilistic
programming are usually based on the underlying implementation
language, which share similar kinds of problems. Shockingly, most
of today's IDEs simply offer the same set of debugging tools that
appeared in the earliest programming languages: breakpoints, stack
and data inspection, function trace, variable monitoring, and (if
you're very, very lucky), a reasonably accurate single stepper.

Debugging of probabilistic programs is still in its infancy. Here, we
present some lessons from research in debugging of general-
purpose programs, that we think hold promise for future
probabilistic programming environments.

First, the idea of a reversible stepper. Single-steppers are common
in programming environments, but most have fatal flaws that
prevent them from becoming practical tools. Dynamic control over
the level of detail presented is a crucial facility.

More specific to probabilistic programming, is the fact that the
concept of a scalar "value", which appears in most programming
languages, isn't stable. It may take on different numerical constant
values over time. We propose to replace that notion with the idea
of a probabilistic value (or probval), and propose a visualization
technique to represent it in the programming environment.

Instrumentation and Localization
There are two kinds of cognitive tasks in debugging:
instrumentation and localization. Instrumentation is the process of

finding out what the behavior of a given static description is.
Examples are trace, breakpoints, and print statements.

Localization is the process of isolating which static description is
"responsible" for some given undesirable behavior without prior
knowledge of where it might be. Among traditional programming
tools, a stepper is potentially the most effective localization tool,
since it interactively imitates the action of the interpreter, and the
program can, in theory, be stepped until the error is found.

We’ve got you coming and going
Programming is the art of constructing a static description
(program) that results in some dynamic behavior. Debugging is
understand the correspondence between code and behavior, in both
directions. It is the process of breaking down this correspondence
into smaller parts when the larger correspondence does not meet
expectations.

Traditional steppers have a fatal interface flaw: they have poor
control over the level of detail shown. They offer the user a choice
of whether or not to see internal details, before each evaluation of
the current expression. If the user says yes, they risk wading
through much irrelevant information. If they attempt to speed up
the process by skipping over (presumably working) subparts, they
risk missing the precise location of the bug. This leaves the user in
the same dilemma as the instrumentation tools -- they must have a
reasonable hypothesis about where the bug might be before they
can effectively use the debugging tools!

The solution is to provide a reversible control structure. It keeps a
complete, incrementally generated history of the entire workflow.
The user can confidently choose to temporarily ignore the details
of a particular expression, secure in the knowledge that if the
expression later proves to be relevant, the stepper can be backed up.

The downside is that histories cost time and space. But our slogan
is: there's nothing slower than a program that doesn't work yet! It’s
also important to keep the history of the developer's investigation
of the program. Because machine learning programs may be tried
again and again with varying datasets, subsets of a common dataset,
and varying parameters, much can be learned from selectively
returning to previous states in the investigation. This even opens up

 .

the possibility that a machine learning algorithm can use the
histories of investigation themselves as data, learning from the
developer's actions!

A crucial problem in designing an interface for program debugging
is maintaining the visual context. If the item and its visual context
are spatially or temporally separated, a new cognitive task is
created for the user -- matching up the item with its context.

The ZStep reversible stepper

Some of these ideas explained were first implemented in our ZStep
reversible stepper for Lisp. Code display, data display, and
graphical output display representations were kept in sync at all
times [Lieberman and Fry 97].

Probabilistic Values
One of the key problems is that deterministic programming
languages operate on single values, whereas probabilistic
programming languages operate stochastically on sets.
Conventional practice is to generate multiple values for
observation. Look over the shoulder of a practitioner, and you are
often likely to see lines and lines of similar looking printouts fly by
at warp speed. More careful work generates graphs of these values,
with conventional line, scatter plots, and histograms.

We introduce the idea of a probabilistic value (probval), which can
take on different values at different times. This is like the idea of
stochastic variable or random variable in other systems, but we
want to push these visualization and dependency tracking facilities
into the values themselves, and better integrate them into the
programming environment.

Languages like WebPPL have a set of visualizations which are
applicable to conventional datatypes like vectors, but these
visualization procedures must be explicitly invoked. The book,
Probabilistic Models of Cognition [Goodman and Tenenbaum 16]
presents an online tutorial that includes a routine that displays
probabilistic values, e.g. as histograms. But visualization should be
automatically invoked, in a READ-EVAL-INSPECT loop,
replacing the traditional READ-EVAL-PRINT loop. It can
automatically invoke visualizations for observing that value from
different points of view, including conventional histograms and
graphs. It should have interactive operations for tracing
dependencies forward and backward through the workflow,
available in one click from any context where that value appears.

We need operations that allow you to replace one underlying set
with another. We need to be able to create various subsets of the
set, filtered by various predicates. We need to go forward and
backward in the stream, and look at the stream at various levels of
detail. It should be possible to easily substitute one sampling
procedure for another in the context of any probabilistic value.
User interaction with sampling procedure selection and control is
also useful in other contexts, such as sampling in a hypothesis
space.

Tutorial with explicit histogram visualization

One visualization that we think is promising is the use of Rapid
Serial Visual Presentation, or RSVP [Potter 14]. This allows visual
observation of rapid streams of data in a very small and bounded
screen space. RSVP, invented by Molly Potter at MIT, was
developed to read streams of text in a small space at very fast
speeds. Skilled readers of RSVP can read text at faster rates than
conventional left-to-right reading of static text, because it does not
require the saccadic movement of the eye. Even if the stream goes
by so rapidly that you can't fully pay attention to every item, visual
memory allows you to get an overall impression quickly, exactly
the goal of sampling.

An RSVP reader. Eye focus is on the central red letter.

Practical use of an RSVP interface requires dynamic control over
the speed of presentation. RSVP can be adjusted to an appropriate
speed for an individual reader or individual context. An adaptation
effect makes it easier to tolerate higher speeds as you "get used to
it", even over a single session. Reversibility, and forward and
backward skip operations, are useful to allow for momentary lapses
of attention. There is even the potential to automatically adapt
speed in accordance with input from an eye tracker.

Seymour Papert, a pioneer in computers and education, used to say,
“bugs are your friends”. Far from being something shameful, bugs
can be an impetus for learning more about your program. And for
learning more about yourself. Debugging shouldn’t be painful. It
should help you get to know your friends better.

REFERENCES

[Goodman and Tenenbaum 16] N. D. Goodman and J. B. Tenenbaum (2016).

Probabilistic Models of Cognition (2nd ed.). Retrieved 2017-11-16 from
https://probmods.org/

[Lieberman & Fry 97] Henry Lieberman and Christopher Fry, ZStep: A Reversible,
Animated, Source Code Stepper, in Software Visualization: Programming as a
Multimedia Experience, John Stasko, John Domingue, Marc Brown, and Blaine
Price, eds., MIT Press, Cambridge, MA, 1997.

[Potter 14] Potter, M.C., Wyble, B., Hagmann, C.E., & McCourt, E.S. (2014).
Detecting meaning in RSVP at 13 ms per picture. Attention, Perception, and
Psychophysics. [2] F.N.M Surname, Article Title,
https://www.acm.org/publications/proceedings-template.

