
CrossBridge: Finding Analogies using Dimensionality Reduction

Abstract

We present CROSSBRIDGE, a practical algorithm for retriev-
ing analogies in large, sparse semantic networks. Other algo-
rithms adopt a generate-and-test approach, retrieving candi-
date analogies by superficial similarity of concepts, then test-
ing them for the particular relations involved in the analogy.
CROSSBRIDGE adopts a global approach. It organizes the
entire knowledge space at once, as a matrix of small concept-
and-relation subgraph patterns versus actual occurrences of
subgraphs from the knowledge base. It uses the familiar
mathematics of dimensionality reduction to reorganize this
space along dimensions representing approximate semantic
similarity of these subgraphs. Analogies can then be retrieved
by simple nearest-neighbor comparison.
CROSSBRIDGE also takes into account not only knowledge
directly related to the source and target domains, but also
a large background Commonsense knowledge base. Com-
monsense influences the mapping between domains, preserv-
ing important relations while ignoring others. This property
allows CROSSBRIDGE to find more intuitive and extensible
analogies.
We compare our approach with an implementation of struc-
ture mapping and show that our algorithm consistently finds
analogies in cases where structure mapping fails. We also
present some discovered analogies.

Introduction
Analogies are comparisons that highlight commonalities be-
tween two seemingly dissimilar ideas. People frequently use
analogies to teach others (Podolefsky and Finkelstein 2006),
to solve problems (Gick and Holyoak 1980) and to under-
stand unfamiliar situations. For example, the analogy “an
atom is like the solar system” enables us to reason about
protons and electrons using knowledge about the Sun and
the Earth. The prevalence of analogies in human thought
makes them an interesting topic for AI research, and many
researchers believe that analogies are an important part of
human cognition (Minsky 1988; Lakoff and Johnson 2003).

Analogies are an integral part of common sense reason-
ing, as analogies dictate how prior knowledge is applied
to novel domains. People frequently solve problems using

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a nearest-neighbors search: they remember a similar prob-
lem, make an analogy to their current problem, then use the
analogy to modify the old solution. Case-based reasoning
systems implement this problem-solving process (Kolodner
1993). A crucial component of these systems is an anal-
ogy mechanism which retrieves and adapts solutions from a
knowledge base.

Structure mapping theory (Gentner 1983), a well-known
theory of analogy, describes analogies as mappings from a
source domain to a target domain. Domains contain con-
cepts and relations. In this paper, we represent domains
using semantic networks, where concepts are vertices and
relations are typed edges. An analogy is a correspondence
between the concepts of two domains that preserves the re-
lations between concepts. For example, consider the “bird
domain” and the “car domain” shown in Figure 1. An
analogy could include a mapping from “bird” to “car” and
from “wing” to “wheel” because this mapping preserves the
PartOf relation: PartOf(wing, bird) maps to PartOf(wheel,
car). In fact, structure mapping theory states that two do-
mains are analogous if their semantic networks are isomor-
phic.

Structure mapping clearly defines analogy, but finding
analogies in real knowledge bases using structure mapping
is difficult. The problem is a generalization of subgraph
isomorphism, which is NP-complete. Further, structure
mapping does not specify how to infer reasonable analo-
gies from sparse knowledge bases, causing it to miss many
plausible analogies. In our evaluation, we show that struc-
ture mapping misses many plausible analogies found by
CROSSBRIDGE.

CROSSBRIDGE implements an approximate form of
structure mapping that allows it to find plausible analogies
even in sparse knowledge bases. CROSSBRIDGE’s essen-
tial assumption is the more isomorphic two domains are, the
more analogous they are. CROSSBRIDGE defines a simi-
larity measure between domains which approximates graph
isomorphism, then uses it as a measure of analogousness.
The similarity measure is defined as the cosine similarity
between domains in domain space, a vector space represen-
tation of domains. We use dimensionality reduction when
constructing the vector space, which reorganizes the space
based on global patterns in the knowledge base and allows
the entire knowledge base to influence the analogy found



PartOf PartOf

UsedFor UsedFor

CapableOfCapableOf

bird

wing

fly

car

wheel

drive

Figure 1: The bird domain and the car domain. An analogy be-
tween these domains maps “bird” to “car,” “wing” to “wheel,” and
“fly” to “drive.” This mapping is an analogy because it preserves
the relations between the concepts in each domain.

between a pair of domains. Dimensionality reduction also
improves the efficiency of scoring analogies. Analogies are
found efficiently using a nearest-neighbors search in domain
space. Our evaluation shows that CROSSBRIDGE is a practi-
cal algorithm for analogy retrieval in knowledge bases with
thousands of concepts and tens of thousands of relations.

The Analogy Retrieval Problem
We consider the problem of retrieving analogies for a given
target domain T from a large knowledge base G. Both the
domain and the knowledge base are represented as semantic
networks, that is, graphs with typed edges. Each subgraph
of G forms a possible source domain for an analogy. The
goal is to find possible source domains in G and analogies
between these domains and T . For example, an instance of
this problem is “What is analogous to the bird domain?” A
legitimate response is a list of analogies to domains in the
knowledge base, which in our case would include the car
domain.

Our definition of analogy is based on structure mapping
(Gentner 1983). According to structure mapping theory, an
analogy is a correspondence between the concepts of two
domains that preserves the system of relations within the
domains. In a semantic network, an analogy is therefore a
mapping from the vertices of a source domain S to the ver-
tices of the target domain T that preserves the edges in S.
That is, if edge (v0, v1, r) is part of S and an analogy maps
v0 to t0 and v1 to t1, then T contains the edge (t0, t1, r).

Unfortunately, finding analogies according to this defini-
tion is NP-complete, as analogy retrieval is a generalization
of subgraph isomorphism. CROSSBRIDGE approximates
this isomorphism computation, returning a list of analogies
ordered by plausibility. The plausibility score is related
to the number of edges preserved by the analogical map-
ping, but is also influenced by correlations between relations
and other statistical information from the entire knowledge
base. These properties of the scoring function also allow
CROSSBRIDGE to operate on sparse knowledge bases.

CrossBridge
CROSSBRIDGE, our algorithm for analogy retrieval, has two
major steps. The first step is a preprocessing step in which
it constructs domain space from a knowledge base. During
this step, the knowledge base is divided into many fixed-size
source domains, and each of these source domains is repre-
sented as a vector in domain space. These vectors capture

the system of relations within a domain; therefore, the plau-
sibility of an analogy is a function of the distance between
the domains in domain space. The second step retrieves
analogies for a target domain using similarity information
from domain space and a heuristic search.

Domain Space
Domain space is a vector space containing a subset of the
domains found in the knowledge base. Recall that a domain
corresponds to a subgraph of the knowledge base, where the
knowledge base is a large semantic network. In general, a
graph contains an exponential number of subgraphs, so we
therefore cannot place all domains into domain space. We
therefore only include domains with l concepts and more
than m relations. (The constraint on edges is reasonable be-
cause domains with very few edges are not likely candidates
for analogies.) In our evaluation, we use l = 3 and m = 2.

Even with these limits, constructing domain space is an
expensive operation, as it scans the entire knowledge base
and extracts all viable domains. However, domain space
must be constructed only once per knowledge base – it is
an index which helps us efficiently find analogies. We also
note that application-specific filters could reduce the num-
ber of viable domains, which would improve the efficiency
of this process.

Domain space actually contains multiple copies of each
domain, each with a different ordering of its vertices. Or-
dering the vertices of each domain helps us construct analo-
gies between similar domains. To understand the purpose
of this ordering, consider finding analogies for the bird do-
main. With the ordering, we would find that the bird domain
matches the car domain only when the bird domain is or-
dered as say (“bird,” “wing,” “fly”) and the car domain is
ordered as (“car,” “wheel,” “drive”). To construct an anal-
ogy, we simply map “bird” to “car,” “wing” to “wheel,” etc.
Every possible ordering of a source domain has its own vec-
tor representation in domain space.

To construct domain space, we search the knowledge base
for appropriately-sized domains. We create a row of a binary
matrix for each viable domain with each possible vertex or-
dering. The vector for each domain encodes the relation
structures within the domain, which are characterizations of
the relations in a domain. Once we have found all of the ac-
ceptable domains, we apply dimensionality reduction to the
resulting matrix, which uses global cooccurrence patterns
between relation structures to create a low-dimensional rep-
resentation of each row. Domain space is the space contain-
ing these low-dimensional vectors.

Relation Structures The domain space vector for a do-
main encodes the system of relations within the domain so
that nearly isomorphic domains have similar vectors. We
create features for domains by extracting small systems of
relations from them; each domain is then characterized by
whether or not it contains each system of relations. We
call these systems of relations relation structures because
they characterize the “structure” of the domain which is pre-
served by structure mapping analogies. A relation structure
is essentially a subset of the edges contained in a domain; al-



PartOf

UsedFor

CapableOf

bird
(1)

wing
(2)

fly
(3)

PartOfPartOf

UsedForUsedFor

CapableOf

PartOf

UsedFor

CapableOf

PartOf

UsedFor

UsedFor

HasProperty

CapableOf

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

Figure 2: The bird domain, three relation structures in the domain
(top), and three relation structures not in the domain (bottom). The
vertices of the bird domain are ordered from top-to-bottom, and the
position of each vertex is explicitly shown in parentheses.

ternatively, it is an l-ary relation formed by combining sev-
eral binary relations. Relation structures are extracted by
replacing each vertex with its position in the vertex order-
ing, then selecting a subset of the domain’s edges. Figure 2
shows some of the relation structures which can be extracted
from the bird domain.

We limit the size of the relation structures we use, as the
number of possible relation structures grows exponentially
in the number of edges in each structure. We therefore only
use relation structures with between fmin and fmax edges.
Note that relation structures with too many edges will match
very few graphs, so rare structures are unlikely to help anal-
ogy retrieval. A typical setting is fmin = 1 and fmax = 3.
However, in our evaluation, we set fmin = fmax = 1, as
this setting gives the closest approximation of structure map-
ping.

Domain space represents each domain (with a particular
vertex ordering) as a vector of binary variables that encodes
the relation structures contained within the domain. Note
that if two domains are isomorphic, they will share the same
relation structures when their vertices are correctly ordered.
However, when incorrectly ordered, they may not share any
of the same relation structures. The two orderings describe
a mapping between the vertices of the two domains, as we
construct analogies by simply pairing off the vertices in each
position. The vectors for two domains are only similar when
this implied mapping is nearly an isomorphism.

Dimensionality Reduction Domain space is constructed
by performing dimensionality reduction on the relation
structure vectors. The previous section described how to
characterize each extracted domain as a vector, where each
entry of the vector is a binary value describing whether the
domain contains a particular relation structure. To construct
domain space, we place these vectors into a matrix M , then
perform dimensionality reduction on M . Figure 3 shows a
section of M before dimensionality reduction. The rows of
M are graphs with ordered vertices, and the columns of M
are relation structures. Each entry encodes whether the cor-
responding graph contains the corresponding relation struc-
ture.

Domain space is a reduced-dimensional approximation of
M . We use a truncated singular value decomposition (SVD)
for dimensionality reduction, which reorganizes the space

PartOfPartOf

UsedForUsedFor

CapableOf

PartOf

UsedFor

CapableOf

PartOf

UsedFor

UsedFor

PartOf

UsedFor

CapableOf

UsedFor

UsedFor

UsedFor

PartOf

1

2

3

1

2

3

bird

wing

fly

knife

blade

cut

wing

fly

bird

1

2

3

1

2

3

1

1 1

1 1

0 0 0

0 0

0 0

Figure 3: A section of the matrix M using concepts and relations
from ConceptNet. The rows are subgraphs from the knowledge
base, and the columns are relation structures. The vertices of the
subgraphs are ordered from top-to-bottom. Entries of the matrix
encode the relation structures contained in each subgraph.

based on the most important dimensions, and also helps
smooth over sparsity. This use of dimensionality reduction
is similar to Latent Semantic Analysis (Deerwester et al.
1990). The truncated SVD defines rank-k matrices U, Σ, V
such that M ≈ UΣV T . Domain space is then UΣ. Do-
main space represents every graph G with vertex ordering
P as a k-dimensional vector, u(G,P ). The dimensions of
domain space capture global correlations between relation
structures. Similar graphs in domain space therefore contain
correlated, but not necessarily identical, relation structures.
This property enables us to robustly approximate structure
mapping using vector similarity in domain space. In our
evaluation, we use k = 50.

Retrieving Analogies
There are two different procedures for retrieving analogies
depending on the size of the target domain T . Recall that do-
main space only contains domains with exactly l concepts.
If the target domain T also contains l concepts, we simply
use a nearest-neighbors search in domain space to find sim-
ilar domains. If T contains more than l concepts, we split
T into several domains with l concepts, find analogies for
these domains, then merge the resulting analogies using a
heuristic search.

To retrieve analogies for an l-concept target domain T
(e.g., the bird domain), we must represent it in domain
space. We first choose an arbitrary vertex ordering P for
T . If T is a subgraph of the knowledge base, then (T, P ) is
already represented in domain space. Otherwise, we check
which relation structures are in T , construct the correspond-
ing vector, then project this vector into domain space using
the V matrix returned by the SVD. Let u(T,P ) be the result-
ing vector representation of (T, P ).

To find source domains, we compute the cosine similar-
ity between u(T,P ) and every other domain vector u(S,Q).
We sort the results to find the most similar domains to T .



Figure 4: A portion of the ConceptNet semantic network.

Finally, we construct an analogy between T and each simi-
lar source domain S using the vertex orderings. Recall that
the analogy simply pairs off the vertices in each position of
the orderings P and Q. If we represent each ordering as a
mapping from the vertices of the graph to {1, 2, ..., l}, then
P−1 ◦ Q is an analogy from S to T . (Intuitively, use Q to
map the vertices of S to {1, 2, ..., l}, then use P−1 to map
{1, 2, ..., l} to vertices of T .)

We find analogies for larger domains by combining sim-
ilarity information from domain space with a heuristic
search. We initially divide the target domain into several
arbitrary l-concept subdomains and retrieve the 100 best
analogies for each subdomain. We then repeatedly merge
analogies containing at least two identical concept map-
pings. Intuitively, analogies that share several concept map-
pings are likely to refer to the same region of the source se-
mantic network, which suggests that they can be combined.
This heuristic seems to yield reasonable analogies in prac-
tice.

Evaluation
Evaluating analogy algorithms is difficult because it re-
quires a subjective evaluation of analogy quality. To avoid
this problem, we compare our algorithm to structure map-
ping. We define a set of test domains and show that
CROSSBRIDGE retrieves analogies in cases where structure
mapping fails. We then present some analogies retrieved
by CROSSBRIDGE, but not structure mapping, to show that
these additional analogies are reasonable.

Our evaluation uses ConceptNet (Havasi, Speer, and
Alonso 2007), a large semantic network of common sense
knowledge. ConceptNet is constructed by parsing simple
sentences such as “a dog is a pet” into assertions such as
IsA(dog, pet). Each assertion has an associated numerical
quality score. These assertions belong to 21 different rela-
tion types. A portion of ConceptNet is shown in Figure 4.
For our evaluation, we used a subset of ConceptNet contain-
ing all concepts involved in at least 5 assertions. We also
required each assertion to have a score of at least 1. This
semantic network contains 8426 vertices and 85440 edges.

We compare CROSSBRIDGE to two baseline algorithms
based on structure mapping. Structure mapping was not de-
signed for analogy retrieval, so we adapted it to retrieval for
the sake of comparison. Our implementation naı̈vely tries to
match the given target domain against every source domain

Test Set CB SM0 SM1
fly, bird, wing 237 0 86
fly, sky, bird, wing 418 0 72
fly, airplane, sky, bird, wing 548 0 3
fly, sky, wing, duck, airplane, bird 793 2 26
school, student, learn 245 1 26
school, book, student, learn 337 0 5
read, school, book, student, learn 872 0 5
school, read, text, book, student, learn 1297 0 1
wood, tree, forest 300 0 43
tree, wood, leaf, forest 477 1 31
tree, wood, leaf, forest, branch 995 1 32
leaf, tree, wood, forest, branch, snake 1919 3 31
table, eat, restaurant 231 79 13869
food, table, eat, restaurant 935 1 16
food, table, restaurant, eat, person 1799 1 20
plate, restaurant, food, person, table, eat 2814 0 8

Table 1: The number of analogies found by the analogy algorithms
on each test set. These counts do not include the trivial analogy in
which every concept is mapped to itself. Each test domain is the
induced subgraph of ConceptNet containing the listed concepts.

in the knowledge base. For each source domain, it consid-
ers every possible mapping to the target domain, aborting
the mapping as soon as it finds an unmapped edge. We
call this algorithm STRUCTURE-MAP-0. We additionally
defined a variant, STRUCTURE-MAP-1, that only aborts if
two unmapped edges are found; this variant more closely
resembles CROSSBRIDGE, as it allows some errors in the
analogical mapping.

Our first experiment shows that structure mapping fre-
quently fails to find analogies. Table 1 shows the number
of analogies found by each algorithm on a test set of target
domains. Each domain is the subgraph of ConceptNet in-
duced by the concepts in each row of the table. The target
domains were chosen by examining ConceptNet for densely
related sets of concepts that intuitively seemed like cohesive
domains. Running structure mapping on all of ConceptNet
was impractical for the larger test domains, so we restricted
ConceptNet to assertions with a score of at least 2 for this
experiment. As Table 1 shows, the variants of structure map-
ping find very few analogies on many of the test sets, while
CROSSBRIDGE consistently finds a good number of analo-
gies.

The additional analogies found by CROSSBRIDGE are
also intuitively reasonable. Figures 5 and 6 show some
analogies found by CROSSBRIDGE that were missed by both
variants of structure mapping. This experiment uses the full
version of ConceptNet, as structure mapping ran in a rea-
sonable period of time for the chosen domains. The se-
lected analogies are drawn from the top 50 results returned
by CROSSBRIDGE and are chosen for diversity. (Many of
the top source domains only differ from each other in one
concept, as there are frequently multiple concepts which
can replace each other in an analogy. For example, in the
bird domain, we can replace “bird” with “plane,” “airplane,”
etc. This behavior is reasonable for a computer, but not very



HasProperty
CapableOf

Desires
UsedFor

PartOf
UsedFor

AtLocation
PartOf

UsedFor
bird

wing

fly

UsedFor

AtLocation
PartOf

UsedFor

CapableOf
UsedFor

eyeglasses

lens

correct vision

AtLocation
UsedFor

UsedFor

MadeOf

CapableOf
UsedFor

bomb

explosive

destroy

CapableOf
UsedFor

UsedFor

AtLocation
IsA

UsedFor
computer

software

process information

Figure 5: The bird domain (as it exists in ConceptNet) and three
analogous source domains found by CrossBridge but not structure
mapping.

UsedForAtLocation
UsedFor

CausesDesire
UsedFor

AtLocation
UsedFor

CapableOf
IsA

Desires
UsedFor

AtLocation

school

book learn

student

UsedFor

AtLocation
PartOf

UsedFor

Desires
UsedFor

AtLocation

AtLocation
UsedFor

church

altar worship

person

CapableOf
Desires
UsedFor

AtLocation

AtLocation

Desires
PartOf

AtLocation
UsedFor

AtLocation
IsA

PartOf

UsedFor
AtLocation

bedroom

bed sex

person

Figure 6: The school domain and two analogous source domains
found by CrossBridge but not structure mapping.

interesting to humans.) The source domains in the figure
are intuitively analogous to the target domain, but Concept-
Net happens to represent each domain somewhat differently.
These slight differences cause both structure mapping algo-
rithms to fail, but CROSSBRIDGE is robust enough to handle
the different representations.

Prior Work
Previous work on analogy has produced a rich literature
on the subject, including several theories of analogy, and
dozens of algorithms. In this section, we focus on the work
most closely related to CROSSBRIDGE: analogy retrieval al-
gorithms and analogy algorithms using dimensionality re-
duction. For a more complete discussion of analogy in AI,
we refer the reader to (Melis and Veloso 1998).

Other algorithms for analogy retrieval, such as MAC/FAC
(Gentner and Forbus 1991) and ARCS (Thagard et al. 1990),

model the human analogy retrieval process, and there-
fore have a slightly different focus than CROSSBRIDGE.
CROSSBRIDGE approximates structure mapping, and hence
retrieves structurally similar analogies. Surprisingly, peo-
ple tend not to retrieve structurally similar analogies, even
though they prefer them (Gentner and Landers 1985). As
structural similarity is useful for solving problems and trans-
ferring knowledge between domains (Gick and Holyoak
1980), we believe CROSSBRIDGE may outperform these al-
gorithms in applications requiring knowledge transfer.

Of the analogy retrieval algorithms, our work is most
closely related to MAC/FAC (Gentner and Forbus 1991),
which also retrieves source domains using similarity in a
vector space. MAC/FAC then uses the Structure Mapping
Engine (Falkenhainer, Forbus, and Gentner 1989) to find a
mapping from the target domain to each retrieved domain.
However, the similarity measure used by MAC/FAC mea-
sures the superficial similarity of domains, which is the num-
ber of shared concepts and relations between the two do-
mains. Although this choice emulates the human analogy
retrieval process, it is not optimal for retrieving structurally
similar analogies.

CROSSBRIDGE’s use of dimensionality reduction resem-
bles the Latent Relational Mapping Engine (LRME) (Tur-
ney 2008). LRME solves SAT analogy questions using a
corpus of websites. The program determines the relation-
ship between a pair of words by correlating the phrases that
typically appear between the two words using the SVD. To
solve an analogy, LRME finds the pair of target words that
is most similar to the source words. LRME can also perform
structure mapping using an exhaustive search over possible
mappings. CROSSBRIDGE extends the technique used by
LRME to arbitrarily large sets of concepts.

AnalogySpace (Speer, Havasi, and Lieberman 2008)
also uses the SVD to find similar concepts in ConceptNet
(Havasi, Speer, and Alonso 2007). However, the similarity
of two concepts is based on their shared properties. Analo-
gySpace does not operate on sets of concepts, and therefore
cannot perform structure mapping.

We believe that CROSSBRIDGE also addresses some pre-
viously mentioned problems with structure mapping. Struc-
ture mapping has previously been criticized because it
does not construct its own representation of each domain
(Chalmers, French, and Hofstadter 1991). Structure map-
ping assumes that analogous domains are input in the same
format, with the same relations between concepts, etc. This
assumption is unrealistic, as a domain can be represented
in many different ways. Therefore, Chalmers et al. argue
that an analogy algorithm must also learn a representation of
each domain as part of the analogy process. CROSSBRIDGE
is a step in this direction, as CROSSBRIDGE uses dimension-
ality reduction to learn a new representation of each domain
in its knowledge base. Further, CROSSBRIDGE does not use
a representation that is chosen by the researcher – although
the data in ConceptNet is manually entered, the relations are
not chosen to make certain domains analogous.



Discussion and Future Work
CROSSBRIDGE has several limitations which we would like
to address in future work. For example, CROSSBRIDGE cur-
rently only operates in semantic networks, while past work
has operated in the richer domain of propositional logic. We
think it will be relatively easy to extend CROSSBRIDGE to
operate on propositional logic statements; we only have to
modify the process for selecting domains and constructing
relation structures. However, this extension will be useful
for practical applications, and will also allow us to incorpo-
rate the systematicity criterion from structure mapping the-
ory (Gentner 1983). We could additionally include other
types of constraints on the retrieved analogies using blend-
ing (Havasi et al. 2009).

We think common sense knowledge (like the knowl-
edge in ConceptNet) is a particularly interesting domain for
analogies. Since we expect people to possess this common
sense knowledge, we expect them to understand analogies to
common sense. We would also expect a corpus of common
sense to contain all of the basic “types” of domains. One
possible area for future work is to explain difficult concepts
using analogies to common sense knowledge. For example,
SuggestDesk (Lieberman and Kumar 2005) used analogies
to explain technical problems and their solutions to users.

These applications will have to combine specialized
knowledge with common sense knowledge. Blending
(Havasi et al. 2009) is a powerful technique for combining
data sets using the SVD. Using blending, we can construct
domain space with both common sense knowledge and spe-
cialized, application-specific knowledge. This domain space
will allow us to make analogies from specialized knowledge
to common sense, and vice versa. We believe this technique
could be useful for explaining technical ideas.

We believe that CROSSBRIDGE is a significant im-
provement over previous analogy algorithms because
CROSSBRIDGE makes analogy a practical reasoning mech-
anism. CROSSBRIDGE can be considered a technique for
performing approximate structure mapping in semantic net-
works, and is capable of efficiently retrieving analogies
from large, sparse data sets. These properties suggest that
CROSSBRIDGE may be a useful component of applications
that solve problems by analogy.

An implementation of CROSSBRIDGE is available in Di-
visi, a toolkit for common sense reasoning. Divisi is avail-
able from http://divisi.media.mit.edu/.

References
Chalmers, D.; French, R.; and Hofstadter, D. 1991. High-
level perception, representation, and analogy: A critique of
artificial intelligence methodology.
Deerwester, S.; Dumais, S. T.; Furnas, G. W.; Thomas; and
Harshman, R. 1990. Indexing by latent semantic analysis.
Journal of the American Society for Information Science
41:391–407.
Falkenhainer, B.; Forbus, K. D.; and Gentner, D. 1989.
The structure-mapping engine: Algorithm and examples.
Artificial Intelligence 41(1):1–63.

Gentner, D., and Forbus, K. D. 1991. MAC/FAC: A model
of similarity-based retrieval. Cognitive Science 19:141–
205.
Gentner, D., and Landers, R. 1985. Analogical reminding
: A good match is hard to find. In Proceedings of the Inter-
national Conference on Systems, Man and Cybernetics.
Gentner, D. 1983. Structure-mapping: A theoretical frame-
work for analogy. Cognitive Science 7(2):155–170.
Gick, M. L., and Holyoak, K. J. 1980. Analogical problem
solving. Cognitive Psychology 12:306–355.
Havasi, C.; Speer, R.; Pustejovsky, J.; and Lieberman, H.
2009. Digital intuition: Applying common sense using di-
mensionality reduction. To appear in IEEE Intelligent Sys-
tems.
Havasi, C.; Speer, R.; and Alonso, J. 2007. Conceptnet 3: a
flexible, multilingual semantic network for common sense
knowledge. In Proceedings of Recent Advances in Natural
Languge Processing 2007.
Kolodner, J. 1993. Case-Based Reasoning. San Mateo:
Morgan Kaufmann.
Lakoff, G., and Johnson, M. 2003. Metaphors We Live by.
University of Chicago Press.
Lieberman, H., and Kumar, A. 2005. Providing expert
advice by analogy for on-line help. Intelligent Agent Tech-
nology, IEEE / WIC / ACM International Conference on
0:26–32.
Melis, E., and Veloso, M. 1998. Analogy in problem solv-
ing. In Handbook of Practical Reasoning: Computational
and Theoretical Aspects. Oxford University Press.
Minsky, M. 1988. Society of Mind. Simon & Schuster.
Podolefsky, N. S., and Finkelstein, N. 2006. Use of analogy
in learning physics: The role of representations. Phys. Rev.
ST Phys. Educ. Res. 2(2).
Speer, R.; Havasi, C.; and Lieberman, H. 2008. Anal-
ogyspace: Reducing the dimensionality of common sense
knowledge. In Fox, D., and Gomes, C. P., eds., AAAI, 548–
553. AAAI Press.
Thagard, P.; Holyoak, K. J.; Nelson, G.; and Gochfeld, D.
1990. Analog retrieval by constraint satisfaction.
Turney, P. D. 2008. The latent relation mapping engine:
Algorithm and experiments. NRC-50738.


